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Homogeneity analysis, or multiple correspondence analysis, is usually applied to k separate 
variables. In this paper we apply it to sets of variables by using sums within sets. The resulting 

technique is called OVERALS. It Uses the notion of optimal scaling, with transformations that 
can be multiple or single. The single tfansfgrmations consist of three types: nominal, ordinal, and 

numerical. The corresponding OVERALS computer program minimizes a least squares loss 
function by using an alternating lea§t squares algorithm. Many existing linear and nonlinear 
multivariate analysis techniques are shown to be Special cases of OVERALS. An application to 
data from an epidemiologica! survey is presented. 
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Introduction 

Approximately ten years ago Young, de Leeuw, and Takane started to apply the 

optimal scaling ideas, that had  originated in multidimensional scaling, to multivariate 
analysis. This made it possible to link the developments in multidimensional scaling with 

older but related developments in multivariate analysis centering around the notion of 

coding categorical variables by using matrices with zeroes and ones. The resulting A L s o s  

(alternating least squares with optimal scaling) approach to multivariate data analysis was 

based on the idea of alternating the transformation or quantification of variables with the 

fitting of model parameters in an iterative way, using least squares loss functions. This 

resulted in a series of programs for nonlinear multivariate analysis, with special programs 

for additivity analysis, multiple regression, canonical correlation analysis, principal com- 

ponent analysis, and ~ractor analysis. A review of the general ALSOS approach and of the 
results that have been obtained, is given by Young (1981). 
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The ALSOS approach to algorithm construction is quite general, but the framework 

is a bit too narrow for some applications in multivariate analysis, for example, correspon- 

dence analysis (Benz6cri et al., 1973; Benz6cri et al., 1980; Nishisato, 1980; Lebart, Morin- 

aux, & Warwick, 1984; Greenacre, 1984). Although correspondence analysis does not fit 

directly into the ALSOS approach, it is still possible to relate it to the computational 

developments in ALSOS. This has been done in considerable detail by Girl (1981), which 

is summarized briefly in de Leeuw (1984a). In this paper we discuss some of the more 

specific principles of algorithm construction used by Girl, and we apply them to OVER- 

ALS, a very general nonlinear multivariate analysis technique, covering both ALSOS and 

correspondence analysis. 

The major feature of the Girl-system for nonlinear multivariate analysis is that it 

takes homogeneity analysis as its starting point. Homogeneity analysis, also known as 

multiple correspondence analysis, is discussed in great detail in the references on corre- 

spondence analysis mentioned above, and by Tenenhaus and Young (1985). Girl intro- 

duces homogeneity analysis as the cornerstone of multivariate data analysis, and then 

specializes to other multivariate techniques by imposing various forms of restrictions on 

the parameters. Imposing restrictions is one way of dealing with prior information. As a 

consequence the number of parameters is reduced, which generally improves both the 

stability and the interpretability of the solution. The most important restrictions are the 

additivity restrictions. These are discussed in detail in this paper in the section on sets of 

variables. In order to fit the classical linear techniques smoothly into the system we also 

need the rank-one restrictions, which can be combined with additivity restrictions to 

produce a very general class of techniques. Finally measurement restrictions are build into 

the system, in much the same way as in ALSOS. We shall treat these notions in more 

detail in the section on rank-one restrictions and optimal scaling. 

The technique that results if we minimize the general least squares loss function of 

homogeneity analysis under the types of restrictions mentioned above is called OVER- 

ALS. We have to be careful here, because terminological confusion is possible at this 

point. In the first place we discuss a restricted minimization problem, which we call the 

OVERALS problem. In the second place we propose an alternating least squares algo- 

rithm to solve this minimization problem. This is called the OVERALS algorithm. And 

thirdly we have written a FORTRAN computer program implementing this algorithm. 

This is the OVERALS program. It is quite important to keep these three meanings of the 

word OVERALS apart, although in this paper the context will always indicate which one 

of the three meanings we are using at any given moment. 

Homogeneity Analysis 

Homogeneity analysis or multiple correspondence analysis is a method to maximize 

the homogeneity of a number of variables (de Leeuw, 1984b, chap. 3; Greenacre, 1984, 

chap. 5; Guttman, 1941; Meulman, 1982; Lebart, Morineau, & Warwick, chap. 6; Nishis- 

ato, 1980, chap. 5). To define homogeneity analysis we need some notation. Suppose we 

have an n x m multivariate data matrix, with rows corresponding to objects and columns 

to variables. Assume that variable j takes kj different values (has k i categories) and define 

the matrix Gj as the n x kj indicator matrix corresponding to this variable. An indicator 

matrix indicates which categories are scored by which objects. Rows correspond to ob- 

jects, columns to categories. Its elements consist of zeroes (not scored) and ones (scored). 

Homogeneity analysis determines quantifications or transformations of the categories 

of each of the variables such that homogeneity is maximized. A definition of homogeneity 

follows. Let us use the vector y j, with kj elements, for the quantifications of the categories 

of variable j. Expression G i yj represents a single quantification or transformation of the n 
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objects, induced by variable j. Without further conditions on the yj the quantification is 

restricted only by the ties in the data, that is, objects in the same category get the same 

quantification. In homogeneity analysis we work with p simultaneous quantifications for 

each variable (or, to put it differently, with p-dimensional quantifications). Let us collect 

them in k i x p matrices Ys, and let us call these the multiple nominal quantifications of 

variable j. Then the matrices Gj Y~ induce m multiple quantifications of the objects. Perfect 

homogeneity is defined if all multiple quantifications of the objects are the same, say 

X(n x p), thus if X = G 1YI . . . . .  G,n Ym, (de Leeuw, 1984b, chap. 2). Homogenei ty  

analysis minimizes the loss of homogeneity, with loss defined in terms of squared devi- 

ations, over normalized object quantifications: 

m 

min a(X, Y) = ~ SSQ(X - Gj Y~), 

j = l  (1) 
subject to the condition that X ' X  = nl and u 'X = 0, 

where u is a column with n elements equal to one. Symbol SSQ(-) is used for the sum of 

squares of the elements of a vector or matrix. The condition u 'X = 0 guarantees that X is 

in deviations from the column means, while X ' X  = nI makes the columns of X un- 

correlated, with variances equal to one. Elements of X are called object scores. At this 

point we do not go further into the formal development of homogeneity analysis, or into 

computational  implementations. We come back to this at a later stage of the paper. 

Rank-One Restrictions and Optimal  Scaling 

In homogeneity analysis with the dimensionality p _> 2 we work with multiple quan- 

tifications. Each dimension adds another quantification of the categories of each variable, 

and the different quantifications of the same variable have no simple relation to each 

other. This makes interpretation sometimes complicated, especially in the case of vari- 

ables whose categories have a clear ordinal or even numerical interpretation. For  this 

reason we introduce rank-one restrictions into homogeneity analysis, which make it possi- 

ble to have multidimensional solutions for object scores with only a single quantification 

(or optimal scaling) for categories. As another benefit the use of rank-one restrictions 

makes it possible to relate homogeneity analysis to many of the classical multivariate 

techniques. Mathematically the rank-one restriction (for variable j) is 

Y~ = zj a / ,  (2) 

with zj the kfvector  of single category quantifications, and aj the p-vector of weights. Thus 

the quantification matrix Yj is restricted to be a rank-one matrix. The columns of Y~ are 

all the same, apart  from weight factors. 

If  no further conditions are imposed on the single quantifications z~ we call them 

single nominal. Incorporating prior ordinal information on the categories can be done by 

requiring that the elements of zj are in the appropriate order. This defines the single 

ordinal treatment of a variable. Single numerical restrictions can also be quite useful. We 

may require that zj is linear with known scores for the categories. All these restrictions are 

discrete, because variables have a restricted number of categories. There are consequently 

many tied observations, and ties in the data remain ties in the representation. In the 

continuous treatment of variables, as in the primary approach to ties of Kruskal (1964), ties 

can become untied. Because homogeneity analysis is firmly based on the indicator matrix, 

it does not allow untying of ties, and consequently our approach has no continuous 

treatment of variables. 

The combination of homogeneity analysis with the rank-one restrictions defines a 
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form of nonlinear principal component  analysis. We shall discuss this as one of the 

various special cases below, but first we introduce the implementation of sets of variables 

into homogeneity analysis. 

Sets of Variables 

In many applications of multivariate analysis the variables are grouped in a natural 

way into sets of variables. Think of multiple regression for instance, where one has a 

number  of independent variables, or of canonical correlation analysis. One way of dealing 

with sets of variables in homogeneity analysis is by using interactive coding, familiar from 

the analysis of variance. Variables which belong together are collected as subvariables of 

one interactive variable, and the analysis is applied to the interactive codings instead of to 

the original variables. 

For  a set of r subvariables the interactive variable has categories corresponding to all 

cells of the r-dimensional cross table. Thus using interactive coding can rapidly lead to a 

very large number  of categories. For  5 subvariables with 5 categories, the interactive 

variable has 3125 categories, which is far too much for any data analysis technique. 

Almost all cells will be empty, especially if we cross this gigantic variable with others. 

Nevertheless we may still feel that the subvariables really belong together for the purposes 

of the analysis we are interested in, and that they form a set of variables in a natural way. 

We can try to avoid the empty cell problem by imposing additivity restrictions on the 

interactive variables. In analysis of variance terminology this means that we require that 

the category quantifications for the interactive variables consist of main effects only, 

without interactions between subvariables. 

We now translate the above into mathematical  notation. The index set J = {1 . . . . .  

m} for variables is partit ioned into subsets J(1) . . . . .  J(k), where k is the number  of sets of 

variables. We use t for the index indicating sets, thus in the sequel always t = 1 . . . . .  k. The 

homogeneity analysis problem with k sets of variables is now defined (de Leeuw, 1984b) as 

min tr(X, Y)-- ~ SSQ(X--  ~ Gj Yj), 
j • J ( t )  (3) 

subject to the condition that X'X = nl and u'X = O. 

Subvariables within sets are treated by (3) as additive. Thus, conceptually, sets of 

variables are dealt with by first creating interactive variables, and then by imposing 

additivity restrictions. Therefore all within set interactions vanish if variables are coded as 

concatenated indicators, it is also possible to require that only some within set interac- 

tions vanish by leaving some of the interactive codings intact. For  instance a set with 4 

variables can be coded as 6 concatenated indicators corresponding with all pairs of 

variables, or as two concatenated indicators, the first one corresponding with three sub- 

variables, and the second one with the remaining subvariable. 

The Definition of OVERALS 

In the introduction we defined OVERALS as the combination of homogeneity analy- 

sis with optimal scaling and additivity restrictions. Now we are ready for a more formal 

definition. This involves the combination of (2) and (3) into the problem 

min o(X, Y) = ~ SSQ(X - J •~:(t) Gj Yj), 

subject to the condition that X'X = nl and u 'X = 0, (4) 

and for some (sub)variables Yi -- zia) and zj ~ C j,  
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which is the definition of the OVERALS problem. In (4) we have used the general 

notation z i ~ Cj to indicate that there may be measurement restrictions on the category 

quantifications (numerical, ordinal, and nominal). The measurement level in (4) is conse- 

quently mixed, not only because we can choose between single nominal, single ordinal, 

and single numerical, but also because we have multiple nominal as an option as well. We 

still consider (4) as a form of homogeneity analysis, with restrictions, and we have imple- 

mented a technique for solving the OVERALS problem in the OVERALS computer 

program. In the following section we discuss the algorithm used in this program. 

The OVERALS Algorithm 

In this section we explain how the OVERALS problem is solved by using an alter- 

nating least squares (ALS) algorithm. First we solve the multiple OVERALS problem, 

which is the OVERALS problem with all measurement levels multiple nominal. Then we 

solve the general OVERALS problem (with variables having multiple and/or single 

measurement levels, from now on briefly called multiple and single variables) by imposing 

rank-one restrictions on the multiple quantifications corresponding with single variables. 

First we introduce some notation which is more convenient than the summation 

notation within sets used in (3) and (4). We write all G~ corresponding with variables in set 

t next to each other in the matrix G t, and the Yj for set t above each other in )~t. Thus 

(3, Yt is the sum of all Gj Yj in set t. 

The stationary equations for the OVERALS problem (4) are the following. The 

optimal object scores ~ ,  for given Yj, must satisfy the equation 

~?~ = M ~ (3 ,~ , ,  (5) 
- -  t 

with ~ a symmetric matrix of Lagrange multipliers, and M = [I -- n- luu ' ]  the operator 

which transforms a vector into deviations from the mean. Equation (5) is obtained by 

differentiating the loss function with respect to X under the restrictions that u'X = 0 and 

X ' X  = nI. If we write Z for the right-hand side of (5), then premultiplying both sides by 

their transposes gives n(I)2 = Z 'Z .  Thus (I)= (Z'Z/n) 1/2, and .~ = nl/2Z(Z'Z)-I/2. Com- 

puting the optimum X is actually a form of the Orthogonal Procrustes problem, for 

which the solution is classical (Cliff, 1966). The right hand side of (5) is the average of the 

multiple transformed sets of variables, where each transformed set is the sum of a number 

of transformed variables. The optimal matrix of object scores is an orthogonalized version 

of this average. 

The optimal category quantification of variablej of set t is 

= D]-1G~X -- Vt~), with 
(6) 

Vtj = _QtYt - G~Y i and Dj = G'iG ~. 

In order to show that (6) does indeed give the optimal multiple quantifications we write 

SSQ(X - G, Y,) = SSQ((X - Vo) - Gj Y~) 

- - - S S Q ( ( X - V  0 G l ~ ) + t r ( ~ -  ' " -- Yj) Dj(Y~ - Y~). (7) 

Clearly the minimum over Yj is obtained by setting Yj equal to ~ .  The matrix Dj is 

diagonal, and contains the frequencies of the different categories of variable j. The oper- 

ator D]IG'~ averages over objects belonging to the same category, that is, computes 

category means. We average the object scores X minus a correction term V,j for the other 

variables in set t. Note that in the "one variable in each set" case, the correction term is 
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zero. In that case the optimal category quantification is the average or centroid of the 

object scores of all objects in the category. 

The two equations (5) and (6) illustrate the centroid principle which is one of the 

leading principles in correspondence analysis. Category quantifications are centroids of 

objects scores (with a correction for other variables, if necessary), and object scores are 

averages of quantified variables (with an orthogonalization, if necessary). The multiple 

OVERALS problem is solved by an ALS-procedure which alternates Step (5), combined 

with the Procrustes orthogonalization, and Step (6). The centroid principle in the station- 

ary equations (5) and (6) is implemented by a reciprocal averaging algorithm. 

The general OVERALS problem is the multiple OVERALS algorithm with an extra 

inner iteration step for single variables (i.e., variables with rank-one restrictions) added. 

The inner iteration step consists of estimation of weights and single category quantifica- 

tions, again it alternates two steps of an inner ALS-procedure. We could continue the 

inner iterations until convergence before proceeding with outer iterations again, but com- 

putational experience has indicated that performing only one inner iteration is generally 

more efficient (Takane, Young, & de Leeuw, 1980). 

The multiple category quantifications (6) are computed for all variables, both multi- 

ple and single. Weights and single category quantifications are solved for each single 

variable separately. In order to show how this must be done optimally, we use the 

partitioning of the sum of squares in (7), assuming now that Ys is the currently optimal 

multiple quantification, and z~ the current single quantification. Thus 

SSQ(X - G~ Y,) --- SSQ(X -- Vtj ) -- Gj Ys) 

= SSQ((X - Vii ) - G i Ys) + tr (Ys - z)aj)'Dj(Y~ - z)aj). (8) 

Define 

0,~ = (z~'D~ z j)-I  Yj'Dj zj .  (9) 

The last term of (8) can now be written as 

tr (Yj - z~ag'Dj(Y j - z~a 9 = tr (Y~ -- zj dj)'D~Y i - z ~ a g + z j ' D j z j ( a  ~ -- aj)'(~j -- aj), (I0) 

which shows that hj is optimal. In the same way we can define 

~j = (a~ a j) -1Yiaj, (11) 

and write 

tr (Yj - z~ aj)'Dj(Y s -- z~aj) = tr (Yy - ~ a~)'D~(Yj -- f~ aj)+a~aj(~j -- zj)'D~(~j -- z~). (12) 

Now Yj and aj are the current values of the multiple category quantifications and the 

weights, respectively. We see from (12) that (1t) is optimal for single nominal variables. 

For  single ordinal variables the transformations are obtained by using monotone regres- 

sion (MR), with weights D j,  on the single nominal solution. (See also Young, 1981.) The 

regression is based on the original ordering of the categories in the data matrix. Thus for 

single ordinal the optimum is 

i j  = MR{(aj aj)-~ Yj at}, (13) 

and for single numerical transformations we use linear regression (LR) instead. Thus 

~7 = LR{(ajaj )-1Yjaj}. (14) 

Summarizing the OVERALS algorithm we have: an alternating least squares pro- 

cedure estimating the objects scores plus orthogonalization (5), and for each variable the 
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multiple category quantifications (6). If there are single variables the single category 

quantifications and the weights are also estimated in a separate ALS-procedure of which 

one step is carried out in each major iteration. Then (6) is followed by (9), (11), (13) and 

(14). 

Relationship Between OVERALS and Eigenvalue Problems 

In this section we discuss the OVERALS loss function for the multiple case, and the 

general mixed case a bit more in detail. We do this to relate the technique to various more 

familiar concepts from linear multivariate analysis. More specifically we want to investi- 

gate if and in how far OVERALS solves eigenvector-eigenvalue problems. 

Let us start with multiple OVERALS. Remember that Gj was the indicator matrix of 

variable j, and G, was the supermatrix containing all Gj in set t, obtained by writing the 

Gj next to each other. It follows directly from (4) that the minimum of the loss over the 

Yt, for fixed X, is attained at Yt = [Gt] +X, with [ . ] +  denoting the Moore-Penrose 

inverse. Substituting in (4) gives 

~r(X,.) = Z tr X'{1 - P,}X, (15) 
t 

_G_ + with P, = t[Gt] , the orthogonal projector on the subspace spanned by the columns of 

Gt. Minimization of (15) over X, subject to the normalization conditions specified in (4), 

gives the stationary equation 

E {MP, M } X  = kXO,  (16) 
r - -  

with (~ a symmetric matrix of Lagrange multipliers. This shows that the optimal X is a 

basis for the eigenspace spanned by the p principal eigenvectors of the matrix MP  * M, 

with P • the average of the projectors Pt. The minimum loss is given by 

with 2 s the p largest eigenvalues of MP  • M (and also of O). This shows that solving the 

multiple OVERALS problem corresponds to solving the eigenvalue problem for M P ,  M, 

and that the minimum loss is a linear function of the average of the p largest eigenvalues. 

In fact it suffices to consider the eigenvalue problem for P , ,  as M P ,  M is the deflated P ,  

matrix with the first trivial eigenvector, which has all elements the same, removed. The 

eigenvalue problem could also be solved directly, by using a Jacobi or Householder- 

Givens algorithm, but this is quite impractical in many situations, because the number of 

objects can be very large indeed. 

It is of considerable interest to observe that instead of solving the eigenvalue problem 

for P ,  in order to find the optimal X, we can also solve the generalized eigenvalue 

problem for the pair (~, kI)) in order to find the optimal Y. Here C is the Butt-matrix of 

the problem, defined by ~ = G'G, with .~ having all G t next to each other (or, what 

amounts to the same thing, all Gj next to each other). Matrix C contains the bivariate 

cross tables of all pairs of variables. Compare Girl (1981, p. 62), or Greenacre (1984, p. 

140). Matrix D is block-diagonal, it is the direct sum of the G'~G t. Thus the optimal Y 

satisfies 

c g  = k D Y ® .  (18)  

--1 t s The proof is short. Because P . X = k - I G D - 1 G ' X = X ®  and D .Q = Y we have 

G Y  = kX®. Premultiplying both sides with D - 1 G '  gives I ) - l ~ y  = kY®, which is (18). 
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Using (18) may be, at least in some situations, an attractive way to compute the optimal 

solutions of the homogeneity analysis problem with sets of variables. In other cases, 

however, this generalized eigenvalue problem may be simply too large. Above that, the 

whole development only applies if all variables are treated as multiple. 

For  OVERALS with single quantifications only we follow a similar procedure to 

study the optimal solutions. We introduce some new notation to do this efficiently. 

Define, for each variable, the vector qs = Gj zj. The qi are normalized induced scores for 

objects, or transformed variables. They are organized as columns of matrices Q, ,  one for 

each set. In a similar way the weight vectors aj are organized as rows of matrices A,. We 

may rewrite the OVERALS problem (4), supposing that all variables are single, as 

min a(X, Q, A) = ~ SSQ(X - QtA,), 
t 

subject to the condition that X'X = nI and u 'X = 0, (19) 

z s ~ C s . 

Now problem (19) is very closely related to our previous OVERALS problem (4). We 

merely have to replace G, in our previous formulas by Q, and Y, by At. But this means 

that (16) also applies with 1~, = Q,[Q,]+.  Also a( , , , )  is defned  as in (17) from the eigen- 

values of the average projector P , .  If  we write all Qt next to each other in Q, then we can 

also compute a( , , , )  as in (17) from the generalized eigenvalues of C = Q ' Q  with respect to 

k times the direct sum of the Q'tQ,.  There is one considerable difference between (19) and 

its predecessors, however. The vectors qj are functions of the zi, which means that the 

average projector P ,  and the Burt matrix C are a function of the single category quantifi- 

cations as well. Thus we can write 

a ( . , Q , . ) = n k p { 1 - p - ' ~ 2 s ( Q )  }. (20) 

Result (17) shows that multiple OVERALS amounts  to computing eigenvalues of a given 

matrix, result (20) shows that single OVERALS means choosing single quantifications of 

the variables in such a way that the sum of the p largest eigenvalues is maximized. Of  

course Q is constant if all variables happen to be single numerical. 

We can now combine our results so far to obtain the interpretation of the minimum 

loss for the mixed case, in which some variables are single and some are multiple. But we 

shall introduce a somewhat different terminology, which makes the comparison more 

interesting. We use the notion that a multiple variable can be considered as a number  of 

copies of a single variable. Or, somewhat differently, a multiple variable is really a set of 

single variables. This idea is due to de Leeuw (1983, t984a). 

Suppose Yj is a given multiple quantification. We can decompose Yi, a matrix with kj 

rows and p columns, in many different ways in the form Yj = Z~ Aj. One solution simply 

takes the columns of Zj  as the normalized version of the columns of Y~, and takes A s 

equal to the diagonal matrix of standard deviations of these columns. But Zj  could also 

be an orthogonalized version of Yj, with Aj symmetric or upper-triangular, and so on. In 

any case the decomposition can be written as 

YJ = E zJga}r, (21) 
r 

and thus 

Gj Yj = ~ gs, a},. (22) 
r 

Here index r is used for the columns of Z s and the rows of A s in the decomposition of Y~. 
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If there are p~ such rows, then (21) and (22) show that having a multiple variable is 

equivalent to having pj single variables with the same indicator matrix G j ,  that is, pj 

copies. Note that in general we can take pj < min(p, k j). 

By using the idea of copies we red-rice the mixed problem, with both single and 

multiple variables, to the single OVERALS problem, and we can use the interpretation of 

this problem in terms of eigenvalues of the Burt-tables and average projectors defined by 

means of the Q, given above. An additional benefit of use of copies is that it becomes easy 

to define multiple ordinal and multiple numerical variables. We can fix the measurement 

level of each of the factors in the decomposition separately. Thus we can, for instance, use 

one variable three times in its set, once-ordinal and two times nominal. If  all copies of a 

variable are ordinal, then it is multiple ordinal. This opens many new possibilities, but we 

merely outline them here, because the use of copies is not yet implemented in the program 

OVERALS. If one wants to use the notion of copies in the program, one actually has to 

create the copies in the data set. 

We have shown in this section that OVERALS can be interpreted in terms of 

eigenvalue problems. In the mixed multiple and single numerical case these eigenvalue 

problems could be defined completely in terms of the data. OVERALS then becomes the 

simultaneous iteration method for computing a few of the dominant  eigenvalues of a 

matrix, and it consequently converges to the global minimum of  its loss function (Ruti- 

shauser, 1969). In the other cases the eigenvalue problem varied with the single quantifica- 

tions, and we had to choose the quantifications in such a way that the dominant eigen- 

values were maximized. This is a nonlinear problem, which may have many local minima. 

We do not know how serious the local minimum problem is. All nonlinear multivariate 

analysis problems, except the eigenvalue problems, have to take the existence of local 

minima into account. The little research that has been done, by Segijn (1984) and Kuhfeld 

(1985) in the P R I N C A L S / P R I N Q U A L  framework, shows that local minima do not 

appear  to be a serious problem. But it is not known how general this finding is. 

The Computer  Program OVERALS 

The OVERALS algorithm as described above has been implemented in a computer  

program which is also called OVERALS (Verdegaal, 1986). It has been developed at the 

Department  of Data  Theory by the authors of the article, and it has been written in 

FORTRAN.  

In the OVERALS program three initializations are performed. The object scores X 

are initialized by using random values (the user determines p). For  single variables the 

quantifications are set equal to the standardized versions of the original data. The multi- 

ple category quantifications are initialized as zero. The program starts by computing a 

solution which has all multiple variables multiple nominal and all single variables single 

numerical. After convergence of these initial iterations the measurement levels of the 

single variables are adjusted to the types specified by the user, and the iterations are 

restarted. This strategy seems to prevent the occurrence of local minima rather effectively, 

at least in the case in which the measurement level of the variables is single ordinal. A 

random initialization for the category quantifications is also possible. In case of single 

nominal variables we advise the use of one or several random starts. 

In the program the iteration process is stopped when the loss difference between 

consecutive main steps is small enough. The user may define "small enough." 

Another feature of the OVERALS program is the final rotation. After convergence 

the object scores X and the category quantifications Yj are rotated in such a way that the 

X are the eigenvectors of the matrix M P  • M, and not merely a rotation of these eigenvec- 
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tors. The eigenvalues of this matrix, which are called the generalized canonical correlations 

by de Leeuw (1984a), are a measure of the goodness-of-fit of OVERALS. To find some 

indication for the significance of these statistics. De Leeuw and van der Burg (1986) have 

studied their permutation distribution. They found that the significance testing methods 

they developed seemed to work rather well, but their study has a somewhat limited scope. 

Geometry of OVERALS 

In the preceding sections we have discussed object scores and multiple and single 

category quantifications. How do we interpret the values of these parameters geo- 

metrically? Let us make pictures in p-dimensional space (in practice, of course, we can 

only plot two- or three-dimensional projections of these pictures). The object scores X 

define a cloud of n points in this space, with unit variance in all directions. The projec- 

tions on the different dimensions are uncorrelated. 

We can compute the centroids of the objects which correspond to the same category 

of each variable (see Figure 7). We call these values the category centroids, in formula 

rows of DfIGjX .  In general these centroids are different from the multiple category 

quantifications given in (6), except if there is only one variable in the set. If we put 

category centroids and multiple category quantifications together in one plot, we can 

"see" the influence of the other variables in the set. 

The single category quantifications zi, together with the weights a i ,  can be used to 

construct the rank-one quantifications. By plotting the multiple category quantifications 

and the rank-one quantifications z~ a) in a single plot, we see the effect of the rank-one 

restrictions. The rank-one quantifications are on a line through the origin, with direction 

cosines proportiomil to a s. The transformed variables qj = Gj z~ can be correlated with the 

object scores X to produce the component loadings ej, The name is chosen in analogy with 

principal component analysis. They can be depicted as vectors representing transformed 

variables in the 'space of the object scores (see Figure 2). We can also plot, in the same 

space, the average rank-one quantifications zle ), which are the projections of each category 

into the space of object scores (see Figure 4). These are different from the zj a), because 

the ej are the correlations of qi with X, while the a~ are the correlations ofq  i with X - V o. 

Thus again the difference is the contribution of the other variables. 

In two-sets canonical correlation analysis it is more usual to show plots of the 

canonical variables for both sets, which are the GtY ,, than of the object scores. If there 

are only two sets, G 1 Y1 and G 2 Y2 are orthogonal, and related by a diagonal transforma- 

tion. If the number of sets is larger the canonical variables are no longer orthogonal, and 

they may differ more fundamentally. Therefore we prefer object score plots, but one can, 

of course, plot canonical variables for each of the sets if this seems desirable. 

Relationship With Other Multivariate Techniques 

It is interesting to consider the relationship between the OVERALS technique and 

other linear and nonlinear multivariate techniques. We can be brief about the relationship 

with homogeneity analysis. If each set contains only one variable, and all variables are 

multiple nominal, then OVERALS is identical to homogeneity analysis. This special case 

has been implemented in the program HOMALS (van de Geer, 1985). If there are only 

two variables, and both these variables are multiple nominal, then OVERALS is equiva- 

lent to correspondence analysis. 

If each set contains only one variable, but the measurement levels are mixed, then 

OVERALS defines a form of nonlinear principal component analysis. This technique has 

been implemented in a separate program PRINCALS (Girl, 1985). The related PRIN- 
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CIPALS program of Young, Takane, and de Leeuw (1978) does not have multiple op- 

tions, but can handle continuous variables. PRINCIPALS is now implemented in PRIN- 

QUAL (Kuhfeld, Sarle & Young, 1985). If all variables are single numerical, and each set 

contains only one variable, OVERALS becomes ordinary principal component analysis. 

If there are two sets of variables we move into the realm of canonical correlation 

analysis. In fact if all variables are considered single numerical OVERALS becomes 

equivalent to ordinary canonical correlation analysis. If only one interactive variable is 

reduced to a set of variables by using additivity restrictions, while the other interactive 

variable is left intact (coding treatment effects), we can use OVERALS to perform multi- 

variate analysis of variance. If one set of single variables is combined with a set containing 

one multiple nominal variable (coding a partition of the objects), we can perform canoni- 

cal discriminant analysis. An OVERALS of two sets of single variables is very close, but 

not exactly identical, to the nonlinear canonical correlation technique CANALS proposed 

by van der Burg and de Leeuw (1983), and van der Burg (1983). CANALS is an improve- 

ment of MORALS/CORALS proposed by Young, de Leeuw, and Takane (1976). 

Canonical analysis techniques with k sets of variables were proposed in the single 

numerical case by many authors. Two early contributors are Horst  (1961) and Carroll 

(1968). Kettenring (1971), Girl (1981, chap. 6), and van de Geer (1986, pt. IV) provide 

reviews. It is possible to think of OVERALS, with all variables single, as a nonlinear 

generalization of one of these generalized forms of canonical correlation analysis. In fact it 

is a k-set canonical correlation analysis with optimal scaling. The difficulty with this 

interpretation (from the didactical point of view) is the step from single OVERALS to 

OVERALS with both single and multiple quantifications. This step is not very natural, 

and we need the notion of copies to bridge the gap between multiple and single (section 

on the relationship of OVERALS with eigenvalue problems). Therefore we have chosen 

the alternative route of starting with homogeneity analysis, and introducing OVERALS 

by discussing the use of additivity and rank-one restrictions. For  the other route, via 

generalized canonical correlation analysis, we refer to van der Burg, de Leeuw, and 

Verdegaal (1984). 

Application of OVERALS 

The data of this study are based on field surveys on chronic lung disease, carried out 

at three year intervals between 1972 and 1982 in the Netherlands (van der Lende et al., 

1981; van Pelt, Quanjer, Wise, van der Burg, & van tier Lende, 1985). The locations were 

a rural area, Vtagtwedde, and an industrial town, Vlaardingen, the latter having a much 

higher grade of air pollution. The residents of both towns have been questioned, amongst 

other things, about their smoking behavior, their respiratory symptoms and their personal 

background. The smoking behavior has been operationalized by four variables: SMO, 

RATE, PER, and TIME;  respiratory symptoms by five variables: COU, PHLE,  DYS, 

WHE, and AST. As background variables we used SEX and AGE. The residence is 

denoted by RES. The variables and the meaning of the categories are given in Table 1. 

There are 2870 individuals sampled from a data base of 3959 individuals under 56 

years of age. Starting from the distribution of AGE for the total data base, we sampled 

four groups (denoted MR = men from rural Vlagtwedde, MI = men from industrial 

Vlaardingen, and WR, WI for the women) with identical AGE-distributions, so that there 

exists no correlation between AGE and SEX × RES. This was done to avoid trivial 

relationships, mainly between AGE and RES (on the average people in rural areas are 
older). 

The goal of the OVERALS analysis was to find a common space in the four sets 
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T A B ~  1 

Variables from the study of chronic lung disease. 

set 1 

set2 

set 3 

set4: 

RES: 

S M ~  

RATE: 

PER: 

TIME: 

AGE: 

SEX: 

COU: 
PI-II~E: 
DYS: 

~0~¢wx-XE: 

AST: 

Residence, (1) Vlagtwedde, (2) Vlaardingen. 

Smoking, (1) never smoker, (2) ex-smoker, O) current 
smoker. 

Rate of smoking (amount of tobacco), (1) never smoker, 
(2) low rate, .... , (9) high rate. 

Smoking period, (1) never smoker, (2) short period, .... , 
(13) long period. 

Time since last cigarette, (I) never smoker, (2) long 
ago, .... , (5) recently, (6) current smoker. 

Age discreticized into periods of 3.5 years, (I) age 

19 - 22.5, .... , (10) age 52.5 - 56. 
Sex, (1) male, (2) female. 

Coughing, (1) no, (2) persistent. 
Phlegm, (1) no, (2) persistent. 
Dyspnoea or shortage of breath, (1)no, (2) slight/ 

moderate, (3) severe. 
Wheezing, (1) never, (2) ever, (3) severe. 
Asthma, (1) ever, (2) never. 

determined by the respiratory symptoms, smoking behavior, personal background, and 

residency. 

We did four analyses, starting with 2870 individuals and all variables single nominal, 

except AGE which was taken as single ordinal. The same analysis was repeated for men 

and women separately. Finally another analysis on all 2870 individuals was performed, 

but now the variables AGE and SEX were combined to one interactive variable AGE x 

SEX, taken as multiple nominal, and the other variables were taken as single nominal. We 

considered only two-dimensional solutions. We discuss the results of the analyses with the 

help of plots. We show transformations of several variables (Figure 1), component toad- 

ings (Figures 2, 5, and 6), object scores (Figures 3 and 7), and average rank-one quantifica- 

tions (Figure 4). In addition we have two tables which give correlations (Table 2) and 

eigenvalues (Table 3). We do not show the weights as they are difficult to interpret due to 

the fact that they "incorporate" the correlations with the other variables in the set (Geom- 

etry of OVERALS, or Thorndike, 1977). 

An overall impression of the first analysis (men & women I) is obtained from the 

component loadings (Figure 2). However, before we are able to interpret this figure we 

have to study the transformations of the variables. We find that the single nominal 

restriction for most variables results in almost ordinal transformations. The exceptions 

are the smoking behavior variables RATE, PER and TIME. Transformation plots of all 

smoking variables and of AGE are given in Figure 1. The violations of ordinality occur 
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mainly in the first categories of RATE, PER and TIME, which correspond to people who 

have never smoked. Due to the nonlinear transformations of the variables we expect 

differences between the correlations before and after transformation (respectively upper 

and lower triangle of  Table 2). However the overall structure of the correlation matrix 

does not change a great deal, except for the submatrix of smoking habits. They form a 

tight cluster before transformation (mainly related to sex). After transformation they split 
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T A B L E  2 

Correlat ions before  and after  transformation, respect ive ly  upper  and lower  triangle, 
m e n  and  w o m e n  I. 

lIES 

SMO .04 .75 
RATE .02 .03 .74 

PER .02 .01 .26 .73 
TIME -.07 .03 .38 .17 

.00 .04 .03 .02 .00 -.06 .09 .I1 .05 .04 .04 

.71 -.32 .18  

.64 

AGE .00 -.06 .01 .67 - .15 
SEX -.06 -.35 -.23 -26 .03 

COU .09 .15 .20 .12 .05 

pI-n~ .11 .10 .16 .II .04 

DYS .05 .02 .12 .19 .01 

WIIE .04 .15 .13 .09 .04 

AST .04 .00 -.02 .02 -.04 

RES SMORATE PER TIME 

. . . .   .o7 ............. 
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.19 .15 .14 .18 ~1 

.16 .11 .02 .16 -~1 

...... .06 .07 .22 .08 .04 

-.10 -.09 .06 -.06 .01 

.53 .24 .31 .17 

.53 .25 .31 .13 

.23 .24 .33 .20 

.28 .27 .29 .31 

.17 .13 .19 .32 

AGE SEX COU PHLE DYS WIIE AST 

up into age-related smoking habits (PER and TIME) and sex-related smoking habits 

(SMO and RATE). This is mainly because of the quantification for the nonsmokers 

category. 
The component loadings, which are the correlations between object scores and trans- 

formed variables, are plotted as vectors in Figure 2. They point towards a high quantifica- 

tion. As we have seen, this means that they point to individuals having high category 

numbers for all variables. We only have to keep in mind that the categories for non- 

smokers are quantified around zero, and that ex-smokers and current smokers have the 

same quantification in this solution. The component loadings are interpreted in the usual 

way. Thus a high age corresponds to a long period of smoking and to severe dyspnoea. 

The respiratory symptoms, except DYS, are much more related to SEX than to AGE. As 

the vectors for symptoms and SEX point into opposite directions their relationship is 

negative. Thus in this sample men more often have symptoms than women. The SEX- 

vector and the SMO-vector are opposite too, thus also men in this sample are more often 

ex-smokers than women. 

In addition to plotting variables we plotted individuals by their object scores (Figure 

3). Together with the object scores we present the 90-percentile contours (equiprobability 

ellipses) of each of the four SEX x RES groups MR, MI, WR, and WI. The figure shows 

that men differ from women. Also that the difference between Vlagtwedde and Vlaard- 

ingen is larger for women than for men. To obtain more insight in the plot of object 

scores with respect to the other variables we projected single category quantifications of 

all variables onto the space of object scores (Figure 4). Above we referred to these 

projections as average rank-one quantifications. The categories of the variables lie on 
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Object  scores and  90-percent  con tours  for SEX x RES, m e n  & w o m e n  I. (M = men,  W = women ,  R = Vlagt-  

wedde,  I - Vlaardinger) .  
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lines with the same direction as the vectors of Figure 2. To keep Figures 3 and 4 legible, 

they have been plotted with different scales. In Figure 4 the categories are indicated by 

the first (or first two) letters of their variable name and their category number (RE = RES, 

S---SMO, R = R A T E ,  P = P E R ,  T = T I M E ,  A = A G E ,  S E = S E X ,  C - - C O U ,  

PH = PHLE, D = DYS, W = WHE, AS = AST). Only the categories in the middle are 

left out of the plot. Thus categories which are missing in the plot have quantifications 

near zero. 

Figure 4 shows how the categories are quantified, and tells how to interpret the 

object scores. For instance at the left, above the middle, we see categories for older people 

(AGE-categories A9 and A10) who most likely smoked already a long time (PER- 

categories p8 to P13), or who stopped smoking long ago (T3 and T4, category T2 does 

not occur), and probably with a severe dispnoea (D3). This means that we find object 

scores for people characterized in this way at the left side of Figure 3. (In the slightly 

oblique vertical direction Figure 4 shows no variation in AGE but much variation in the 

respiratory symptoms COU, PHLE and WHE, in the smoking variables RATE and 

SMO, in SEX and in RES. In the lower part of Figure 4 we find categories for people with 

respiratory symptoms (C2, PH2, W2, W3), most probably men (SE1)living in Vlaard- 

ingen (RE2) who smoke(d) a lot ($2, $3, R7, R8, R9). In the upper part we find categories 
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A v e r a g e  r a n k  o n e  quan t i f i ca t i ons ,  m e n  & w o m e n  I. (RE = RES,  S = S M O ,  R = R A T E ,  P = P E R ,  T = T I M E ,  

A = A G E ,  S E = S E X ,  C = C O U ,  P H = P H L E ,  D = D Y S ,  W = W H E ,  A S = A S T ,  1, . . . ,  1 0 = c a t e g o r y  

numbers ) .  
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for females (SE2) and for never smokers (S1) or very light smokers (R2, R3, R4). Most 

likely they have no respiratory symptoms (Wl,  and C1, P H i  in the center). Thus in the 

plot of the object scores we find healthier people, apart  from heaving dyspnoea, more at 

the top. They are more often women than men, do not smoke or lightly so, live more in 

Vlagtwedde than Vlaardingen, and are found in all AGE categories. 

Differences between men and women with respect to smoking habits and respiratory 

symptoms are a dominant  feature in this solution. We therefore reanalyzed the data 

separately for men and women. We present the plots of component  loadings in Figures 5 

arid 6. Note  that the two plots are on the same scale. In both cases the respiratory 

symptoms (except DYS) are independent from AGE, and strongly related to RATE. 

Compared  to Figure 2, the variable DYS has moved away from AGE, apparently because 

we have controlled for SEX. In fact shortage of breath (DYS) occurs equally often in 

women as in men and correlates mainly with age. It  also correlates with the other 

symptoms, but in the two-dimensional solution of males and females together there was 

no "place" to show that. 

Figures 5 and 6 show that the smoking period, PER, correlates more with AGE for 

men than women. Also we see that SMO has a different direction and length for the two 

solutions. This is a reflection of the fact that between 1972 and 1982 most older women 

do not smoke, whereas the neversmokers in males are usually the younger ones. 

Another difference between the solutions for men and women is in the role of resi- 

dence. For  men this variable is total ly unexplained, for women it is very pronounced in 

the solution. The respiratory symptoms correlate with the rate of smoking for both men 

and women, but they only correlate with residence for women (Figures 5 and 6). This 

indicates that fewer women in Vlagtwedde smoke than in Vlaardingen, or they smoke less. 

It seems therefore that the difference in smoking behaviour between males and females, 

and between the two residences among females, is a more important  predictor than place 

of living as such. 

Up till now we found a strong effect of AGE (independent from symptoms, except 

DYS) both in the total analysis and in the separate analyses for men and women. We also 

found a large difference between males and females. Therefore we reanalyzed the data, but 

in this case with the interactive variable AGE × SEX taken as multiple nominal (men & 

women II). The results confirm the conclusions of the first analysis. We show the catego- 
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ries of  A G E  × SEX (M1 . . . . .  M10,  W l  . . . . .  W l 0 )  in the space of  object scores (Figure 7). 

Each category point is in the centroid of (the object scores  of)  all individuals scored in 

that particular category• The quantif ications form a letter V bent leftwards. In fact north- 

west is still the direction of  increasing age, and north-east  still the direction of  SEX- 

difference. Categories  M1 and W l  overlap,  W 2  and W3 have changed order, as have W 9  

and W l 0 ,  and M9 and M10. But the interchanges are, on the whole ,  minor• The category 

quantif ications of the other variables are very similar to  those  of  Figure 4, w e  do  not  

show them. Although there is an interaction effect between SEX and A G E  (the younger  

females and males  differ less from each other than older ones  do)  w e  can easily describe 

the effect by two separate variables as the results o f  the two  analyses do  not  differ 

substantially.  

Summariz ing  the four analyses we  can say that we  found a relationship between 

s m o k i n g  behaviour and respiratory s y m p t o m s  for both males  and females• Only  for 

w o m e n  w e  also found an effect of  residence with respect to respirator~¢ symptoms .  This  

effect can be reduced to a difference in s m o k i n g  habits between w o m e n  from Vlaardingen 

and Vlagtwedde.  Sex is correlated with both  s y m p t o m s  and s m o k i n g  behaviour.  Age is 

mos t ly  related to s m o k i n g  variables with a t ime effect, such as T I M E  and PER.  The 

s y m p t o m s  are not  related to  age (in the age range we  have considered),  except shortage of  

breath• W e  found an interaction effect between A G E  and SEX• Younger  people  differ less 
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Object  scores  and  ca tegory  centroids  for A G E  x SEX,  m e n  & w o m e n  II. ( M  = m e n ,  W = w o m e n ,  1 . . . . .  
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in symptoms and smoking habits than older people do. The nonlinear transformation of 

the variables (first analysis) has effected mostly the smoking habit variables. Mainly due 

to the quantification for the category nonsmokers the cluster of smoking habits falls apart  

after transformation. For  completeness we finish this application with an overview of the 

generalized canonical correlations (Table 3). Perfect homogeneity corresponds with a 

correlation of 1, and no relation at all with a canonical correlation of 1/k. From Table 3 it 

can be seen that for men the first dimension is much more important  than the second one. 

For  the other analyses the two dimensions are more of equal importance. 

We emphasize that this example is only a tiny demonstrat ion of the capabilities of 

OVERALS. There are so many  choices and options in the program, that we can never 

cover the complete range of possibilities. We refer to Girl (I981) for other examples. Many 

applications of special cases of OVERALS can be found throughout  that  book. 

Discussion and Extensions 

The OVERALS algorithm opens many possibilities in data analysis. It  covers most  

of the usual linear and nonlinear multivariate analysis techniques, But this generality 

comes at a price. In the first place there is the possibility of local minima in some of the 

more complicated special cases. It is necessary to study the seriousness of this problem in 

more detail in the future. In the second place we do not have information on the stability 

of the results. For several special cases of OVERALS (two variables, or k sets each with 

one variable) research has been done, however for the more general cases of OVERALS 

not very much is known. De Leeuw and van der Burg (1986) make a start by means of 

randomization methods. They compare several methods and obtain promising results. 

They investigate the stability of generalized canonical correlation in a small study. More 

work in this direction has been planned. Van der Burg and de Leeuw have investigated 

ways of computing confidence regions for the OVERALS results. For  this they use the 

Delta method combined with the Jackknife. Their results are encouraging, but still very 

preliminary. 

Another apparent  disadvantage of the OVERALS method is the fact that it can only 

handle complete data matrices. We did not discuss missing values in this article. The 

computer  program OVERALS does handle missing data, however, on the basis of  equa- 

tions given by Girl (1981, chap. 6). Verdegaal (1985, 1986) gives an extensive discussion of 

the OVERALS program with missing data. 

The nonlinear transformations in OVERALS are a real extension of the usual linear 

transformations in multivariate analysis. However  the transformations we use are neces- 

sarily step functions. This can be a disadvantage in some cases. To make transformations 

more smooth we can, for instance, use splines. De Leeuw, van Rijckevorsel, and van der 

TABLE 3 

~ n e r a l i z ~  Canonical Correlations. 

m e n  & w o m e n  I 

m e n  

w o m e n  

m e n  & w o m e n  H 

.469 .390 

.510 .317 

.426 .362 

.486 .398 
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W o u d e n  (1981)  h a v e  i m p l e m e n t e d  sp l ines  in  t he  p r i n c i p a l  c o m p o n e n t  a l g o r i t h m .  W e  p l a n  

to  i n t e g r a t e  t he se  t r a n s f o r m a t i o n s  i n t o  O V E R A L S  as  well .  

W i t h  t h e s e  e x t e n s i o n s  O V E R A L S  c a n  ef fec t ive ly  b e  a p p l i e d  in  e v e n  m o r e  d a t a  a n a l y -  

sis s i t u a t i o n s .  
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