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Abstract
This study investigates rainfall and drought characteristics in southeastern Australia (New 
South Wales and Victoria) using data from 45 rainfall stations. Four homogeneity tests are 
adopted to determine inhomogeneities in the annual total rainfall (ATR) and monthly rain-
fall data, namely The Pettitt test, the SNHT, the Buishand range test and the Von Neumann 
ratio test at significance levels of 1%, 5%, and 10%. Temporal trends in rainfall (ATR, 
monthly, and seasonal) and droughts are examined using autocorrelated Mann–Kendall 
(A-MK) trend test at 1%, 5%, and 10% significance levels. We also assess meteorological 
droughts by using multiple drought indices (3-, 6-, 9-, 12-, 24-, and 36-month Standard-
ized Precipitation Index (SPI) and Effective Drought Index (EDI)). Furthermore, spatial 
variability of temporal trends in rainfall and drought are investigated through interpolation 
of Sen’s slope estimator. The results represent an increasing trend in ATR between 1920 
and 2019. However, southeast Australia is highly dominated by a significant negative trend 
in the medium term between 1970 and 2019. Winter is found to be dominated by a sig-
nificantly negative trend, whereas summer and spring seasons are dominated by a positive 
trend. April is detected as the driest month according to magnitude of Sen’s slope and the 
A-MK test result. Positive trends on droughts are observed at inner parts of the study area, 
whereas a negative trend is detected in the south, southeast, and northeast of the study area 
based on SPIs and EDI. The findings of this study help to understand changes in rainfall 
and droughts in southeastern Australia.
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1 Introduction

Climate change is causing notable hazards and vulnerabilities to communities, socio-
economy, and the natural environment. Australia is one of the most vulnerable countries 
to global warming having limited adaptive capacity (Mpelasoka et  al. 2008). National 
Climate Resilience and Adaptation Strategy has therefore been developed and agreed by 
the Council of Australian Governments in 2007 to manage the risk of climate change and 
variability (Commonwealth of Australia 2015). Since 1970, one of the lowest total annual 
rainfalls was recorded as 351 mm in 2018–2019 (Bureau of Meteorology 2020b). During 
2018–2019, reservoir storage volumes in southeastern Australia were very low. Further-
more, bushfires in eastern Australia during 2019–2020 were widespread, which destroyed 
more than 2000 homes with a burnt area over 5.5 million ha. A total of 25 lives were lost 
in New South Wales (NSW) alone (Australian Bureau of Statistics 2020) due to this bush-
fires and ongoing drought (King et al. 2020). Drought does not only affect a range of sec-
tors or natural environment, but also causes adverse physiological impacts on humans. For 
instance, drought due to rainfall deficiency can increase suicide rate by 8% according to 
Nicholls et al. (2006) and this ratio in NSW was found as 8%-22% by Hanigan et al. (2012).

Shift and trend analysis are essential to understand rainfall variability and the nature 
of climate change. Nevertheless, long-term time series may not be consistent or homoge-
neous due to various non-climatic factors (e.g. station environment, location of station, 
instrumentation, observation practice, abrupt changes in the environment and calculation 
method) affecting the time series data (Peterson et al. 1998; Aguilar et al. 2003; Cao and 
Yan 2012; Mestre et al. 2013). The homogeneity tests of climatic time series may be clas-
sified into two groups, relative tests and absolute tests. Wijngaard et al. (2003) noted that 
absolute tests are more powerful than relative ones. In this study, we selected four widely 
used absolute homogeneity tests to detect inhomogeneities in the rainfall time series, 
namely the Pettitt test, the SNHT for a single break, the Buishand range test, and the Von 
Neumann ratio test. These absolute tests are reported to be adequate to detect the break 
year(s) in the data set (Wijngaard et al. 2003) and they have been adopted widely (Sahin 
and Cigizoglu 2010; Hosseinzadeh Talaee et al. 2014; Che Ros et al. 2016; Akinsanola and 
Ogunjobi 2017; Patakamuri et al. 2020) to assess the inhomogeneity in rainfall data series.

Australia is one of the countries having the highest hydro-climatic variability in the 
world (Drosdowsky 1993; Nicholls et al. 1997). Drought is one of the components of cli-
matic variability in Australia (McKernan 2005). Drought is a damaging (Bryant 1991), 
slow-onset and recurring natural phenomenon and is defined as ‘a sustained, extended 
deficiency in precipitation’ by World Meteorological Organization (WMO) (1986). Hope 
et al. (2010) noted that much of southern Australia experienced significant rainfall decline 
over the last 50 years and a strong decline was observed in the southwest of eastern Aus-
tralia after mid-1990s. Besides, some rainfall declines were detected by Smith (2004) and 
Alexander et al. (2007) in southeast and east coast of Australia. Furthermore, many studies 
addressed droughts in Australia both at regional and national scale (White and O’Meagher 
1995; Mpelasoka et  al. 2008; Barua et  al. 2009; Ummenhofer et  al. 2009; Gallant et  al. 
2013; Nazahiyah et  al. 2014; McGree et  al. 2016; Askarimarnani et  al. 2020). Van Dijk 
et al. (2013), for instance, noted that since 1900, southeast Australia experienced its worst 
drought in the recent history, the so called millennium drought with the longest uninter-
rupted series of years with under median rainfall condition between 2001 and 2009.

More recently, an exceptional drought was experienced in southeastern Australia 
(covering 1989–2018), especially in NSW, Victoria and Queensland due to rainfall 
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deficiency, decreased soil moisture, increased evapotranspiration and temperature (Tian 
et  al. 2019). Gallant et  al. (2013) found that the average drought lengths in parts of 
southeast Australia have shown a significant increase since 1911. Furthermore, south-
east Australia was exposed to some of most intense drought events in terms of duration, 
magnitude and severity, between 2013 and 2019 (Yildirim and Rahman 2021). King 
et  al. (2020) found that southeastern Australia, in particular Murray- Darling Basing, 
had been in severe drought since 2017. Stocker et al. (2013) noted (in the fifth assess-
ment report of the IPCC) an increased temperature and decreased rainfall in southern 
Australia because of positive trend in the Southern Annular Mode (SAM) under the 
RCP4.5 or higher end scenarios. It should be noted that most of the previous studies 
examined trends in droughts by using only a limited number of drought indices. To fill 
this knowledge gap, we have used both SPI (with six different timescales) and EDI in 
this study to examine droughts.

Mann–Kendall (MK) trend test (Mann 1945; Kendall 1975), a rank-based nonpara-
metric method, is the most frequently used method to examine trends in hydromete-
orological, climate and environmental data (Helsel and Hirsch 1992; Lettenmaier 
et al. 1994; Douglas et al. 2000; Sang et al. 2014; Chebana et al. 2017; Yilmaz 2019). 
Although classical MK test is widely used to detect trend in time series, it may not be 
suitable if the serial correlation in the data is too high (Wasserstein et al. 2019). Hamed 
and Rao (1998) developed an empirical formulation for computing effective sample size 
to modify the variance of the MK statistic to eliminate the influence of the serial cor-
relation on the MK test. They found that the modified test is superior to the original MK 
test. Furthermore, Yue et al. (2002) found that the original MK test may not correctly 
determine the probability of significance of trends. Yue and Wang (2004) investigated 
the influence of serial correlation on the MK test by Monte Carlo simulation. In this 
study, modified MK test, proposed by Yue and Wang (2004), has been adopted.

Droughts can be categorized into four groups as meteorological, hydrological, agri-
cultural, and socioeconomic droughts (Wilhite and Glantz 1985). This study focused 
on assessing meteorological drought by using two drought indices: Standardized Pre-
cipitation Index (SPI) and Effective Drought Index (EDI). It should be noted that the 
SPI (McKee et al. 1993) was recommended by The World Meteorological Organization 
(WMO) to analyse meteorological droughts by national agencies (World Meteorological 
Organization 2012). An effective drought monitoring tool, the EDI, (Byun and Wilhite 
1999) has been widely used in Australia (Deo and Şahin 2015; Deo et  al. 2017) and 
around the world (Pandey et al. 2008; Kim et al. 2009; Yildirim 2015; Kamruzzaman 
et al. 2019; Malik et al. 2021).

The link between historical climate patterns, drought, and other modes of variability 
due to changing climate are still ambiguous. Hence, our study aims to fill this knowl-
edge gap by identifying trends in spatiotemporal rainfall and drought data, which is one 
of the key research challenges as noted by Kiem et al. (2016). The specific objectives 
of this study are (i) to investigate the inhomogeneities in the rainfall time series data of 
45 selected rainfall stations in southeast Australia, each representing a rainfall district, 
in order to detect reliability of climatic data set for this study; (ii) to identify changes in 
rainfall in terms of annual average, monthly, and seasonal rainfall by using autocorre-
lated MK test and Sen’s slope estimator; (iii) rigorous identification of trends in drought 
indices through the use of multiple timescales (3, 6, 9, 12, 24 and 36-months) SPI and 
EDI; and (iv) to illustrate spatial variability of trends in rainfall and drought indices via 
interpolation of Sen’s slope estimator (by spline interpolation technique).
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2  Study area and data

This study focuses on southeast Australia, bounded by 28°S -39°S and 140° E- 154° E. This 
covers Victoria (VIC) and New South Wales (NSW) states in Australia that are extended 
over a broad range of climatic zones (arid to tropical). Southeast Australia is dominated 
by ‘summer’, ‘uniform’, ‘winter’, and ‘arid’ climatic conditions (Bureau of Meteorology 
2016). NSW is divided into thirteen catchment regions, whereas VIC is divided into ten 
regions. There are many reservoirs in NSW and VIC to meet drinking water requirements 
of Sydney and Melbourne, the two largest cities in Australia and other regional cities and 
to meet agricultural needs of many farmers. The main natural climate drivers for southeast 
Australia affecting droughts and floods include Southern Annular Mode (SAM), Indian 
Ocean Dipole (IOD), Southern Oscillation (ENSO) and El Niño (CSIRO 2010).

A total of 45 rainfall stations were selected, one from each Rainfall Districts (RD) in 
the study area (Fig. 1). In selecting these stations, we considered that a station must have a 
longer period of data (more than 90 years) without maximum of 5% missing periods, and 
not more than one station being selected from a single RD. Also, the beginning and end of 
the selected data record should be the same for all the stations, which were taken as 1920 
and 2019, respectively. Australia has 99 RDs, 30 and 15 of them are in NSW and VIC, 
respectively. The RD system was initiated in 1913, which helps to group rainfall sites in 
terms of relatively similar rainfall/climate. RD has no relationship with political districts, 
census districts, water catchments and shire boundaries. Monthly rainfall data for 45 rain 

Fig. 1  The map of Southeastern Australia illustrates the locations of spatially distributed the 45 synoptic 
rainfall stations. a elevation map was prepared by using the 5454 real-time rainfall stations’ elevations. b 
depicts the rainfall districts (RD) with locations of stations and interpolated (the spline method) average 
annual rainfall (AAR)
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gauges were obtained from Australian Bureau of Meteorology (Bureau of Meteorology 
2020a) between 1920 and 2019 (Table 1). Monthly rainfall data for 100 years were used 
to detect change points (homogeneity), monotonic trends in rainfall (annual, seasonal, and 
monthly) and drought indices.

3  Methodology

3.1  Homogeneity tests

Four homogeneity tests are selected to detect breaks (inhomogeneities) in rainfall time 
series data: the Pettitt test (Pettitt 1979), the SNHT for a single break (Alexandersson 
1986), the Buishand range test (Buishand 1982), and the Von Neumann ratio test (Von 
Neumann 1941). These are regarded as absolute homogeneity tests and are capable to spec-
ify the homogeneity of a given time series data (Schönwiese and Rapp 1997; Wijngaard 
et al. 2003). While the Pettitt, the SNHT, and the Buishand range tests identify jump in the 
time series and find the break point, the Von Neumann test assumes that the time series 
data are not randomly distributed. This test is unable to define the year of the break. The 
Buishand range test and the Pettitt test are more susceptible to break points in the middle 
of the time series, whereas the SNHT is more sensitive to breaks near the beginning and 
end of the time series (Hawkins 1977; Wijngaard et  al. 2003; Costa and Soares 2009). 
Furthermore, the SNHT and the Buishand range test assume that Yi (see Eq. 4) is normally 
distributed. The Pettitt test, on the other hand, which is a nonparametric rank test, does not 
depend on this assumption.

3.1.1  Pettitt test

Pettitt test which is based on the Mann–Whitney and Wilcoxon test is a nonparametric 
approach to analyse the departure of homogeneity in the time series (Pettitt 1979). This 
nonparametric method detects the point of change in a time series (e.g. annual and monthly 
rainfall series).

The ranks r1, ..., rn of the Y1, ...,Yn are used to calculate the statistics:

If a break is found in year K, the absolute value of Xk approaches to maximum value.

Critical values associated with different significance levels for XK for time series with 
different lengths were given by Pettitt (1979).

3.1.2  Standard normal homogeneity test

Alexandersson (1986) defined a test statistic T(k) to make comparison between the mean 
values of the first k years of the record and the last n − k years:

(1)Xk = 2

k∑
i=1

ri − k(n + 1), k = 1, 2, ..., n

(2)XK = max
1≤k≤n

||Xk
||
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Table 1  Studied rain gauge stations in southeastern Australia with identifier (ID), geographic co-ordinates, 
average annual rainfall (AAR) (mm), maximum of annual rainfall (mm) (MaxAR), minimum of annual 
rainfall (MinAR)

ID State Latitude Longitude Elevation (m) AAR (mm) MaxAR (mm) MinAR (mm)

46,043 NSW −31.56 143.37 75 264.9 680.2 66.4
47,013 NSW −32.97 143.11 72 240.1 679.6 61.7
48,168 NSW −29.12 147.90 150 457.7 988.4 117.3
49,002 NSW −34.64 143.56 61 330.2 692.3 121.7
51,008 NSW −32.46 148.15 244 510.1 1031.1 191.5
51,034 NSW −31.50 147.69 192 443.8 1027.5 102.0
52,019 NSW −29.35 148.69 149 497.3 918.6 101.0
53,034 NSW −30.12 149.32 168 560.0 1133.2 136.4
54,032 NSW −29.20 150.61 425 632.2 1058.9 141.0
55,023 NSW −30.98 150.25 285 619.1 1134.4 237.4
56,013 NSW −29.70 151.69 1060 842.9 1320.4 339.4
57,023 NSW −30.29 152.17 1195 912.9 1608.4 481.2
58,012 NSW −29.43 153.36 27 1482.9 2716.8 736.0
59,024 NSW −30.64 153.00 5 1443.0 3015.5 687.0
60,036 NSW −31.86 152.34 66 1117.2 2211.5 378.8
61,007 NSW −32.03 150.58 255 637.4 1264.3 281.6
62,013 NSW −32.36 149.53 475 651.7 1411.7 274.9
63,005 NSW −33.43 149.56 713 643.2 1275.2 214.2
64,008 NSW −31.28 149.28 520 752.8 1596.7 293.7
65,022 NSW −33.16 148.59 530 677.8 1314.4 239.0
66,062 NSW −33.99 151.13 39 1204.3 2194.0 624.8
67,019 NSW −33.82 150.91 61 876.3 1900.0 394.6
68,024 NSW −34.23 150.91 370 1435.4 3048.6 630.4
69,018 NSW −36.09 150.05 17 978.9 1822.2 467.8
70,045 NSW −35.15 149.06 634 701.9 1367.0 273.8
71,021 NSW −36.48 148.59 990 624.1 1153.6 246.9
72,044 NSW −35.30 148.21 300 816.3 1307.4 324.8
73,043 NSW −34.49 148.13 500 681.7 1168.8 205.7
74,087 NSW −35.33 146.03 115 408.4 814.3 148.3
75,049 NSW −34.45 144.17 75 319.2 815.1 113.6
76,047 VIC −35.07 142.31 65 328.0 682.2 110.0
77,040 VIC −35.53 142.73 80 319.9 693.3 88.7
78,038 VIC −36.27 142.22 115 373.7 742.9 144.8
79,008 VIC −36.94 141.87 155 496.6 826.2 242.0
80,015 VIC −36.16 144.76 96 423.5 893.1 189.3
81,008 VIC −36.54 144.78 144 514.6 1090.7 200.0
82,009 VIC −36.61 146.54 238 901.7 1553.4 353.4
83,010 VIC −36.63 146.86 266 1120.7 1856.0 449.4
84,014 VIC −37.11 148.69 591 720.9 1120.5 400.1
85,096 VIC −38.61 146.32 95 1060.0 1490.4 634.0
86,090 VIC −37.71 145.79 240 1362.0 2261.1 652.2
87,045 VIC −37.52 144.08 605 935.9 1415.5 497.8
88,023 VIC −37.23 145.91 230 846.8 1401.3 404.8
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 where

 and

When a break is found at the year K , T(k) approaches at a maximum close to the year 
k = K . The indicator, T0 , of test statistic is explained as:

Jarušková (1996) studied the test and defined the relationship between her T(n) and T0 as 
follow:

If the T0 exceeds a certain level, then the null hypothesis is rejected, which depends on the 
size of the sample.

Jarušková (1996) provided critical values for the statistic T0 as a function of n in her study 
(see also Khaliq and Ouarda 2007).

3.1.3  Buishand range test

Buishand range test which is a parametric test was introduced by Buishand (1982) in order 
to find break points in the time series by assuming test values are independent and normally 
distributed. It is more sensitive to find break points in the middle of a time series (Hawkins 
1977).

The adjusted partial sums of the statistics are calculated as follows:

(3)T(k) = kz
2

1
+ (n − k)z

2

2
, k = 1, 2, ..., n

(4)z1 =
1

k

k∑
i=1

(
Yi − Y

)

s
and z2 =

1

n − k

k∑
i=k+1

(
Yi − Y

)

s

(5)s =
1

n

n∑
i=1

(
Yi − Y

)2

(6)T0 = max
1≤k≤n T(k)

(7)T0 =
n(T(n))2

n − 2 + (T(n))2

(8)S∗
0
= 0 and S∗

k
=

k∑
i=1

(
Yi − Y

)
k = 1, 2, ..., n

Table 1  (continued)

ID State Latitude Longitude Elevation (m) AAR (mm) MaxAR (mm) MinAR (mm)

89,103 VIC −37.97 143.22 173 572.0 912.8 271.6
90,060 VIC −38.47 142.75 55 875.5 1262.8 563.8

*Data length is 100 years between 1920 and 2019 for all rainfall stations
**First two digits of ID refer to the RD number, e.g. station 46,043 is located in 46th RD (except station 
51,008 which is located in 50th RD)
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 where Y  is the mean of time series observations and ( Y1, Y2, ...,Yn ) and k is the number of 
the observation at a located break point.

The partial sum, S∗
k
 , of the given series will fall and rise around zero when a series is 

homogeneous. If a break exists in year K , S∗
k
 reaches a negative shift (maximum) or posi-

tive shift (minimum) near k = K.
The significance of the shift is calculated with the ‘rescaled adjusted range’ R . R is 

obtained as follows:

The calculated critical values for R∕
√
n can be obtained from (Buishand 1982).

3.1.4  Von Neumann ratio test

The Von Neumann, which is a nonparametric ratio test (Von Neumann 1941), was defined 
as follows:

If the sample is homogeneous, the expected value N is equal 2. When the sample has a 
break, N is generally smaller than the critical value (Buishand 1981). An increasing trend 
or slow oscillations in level will tend to result in small values of N , vice versa, rapid vari-
ations in the mean may yield large values of N (Bingham and Nelson 1981). In contrast 
to the other three homogeneity tests, the Von Neumann test provides no indication of the 
break year. Critical values of N are given by Buishand (1981) (also see (Bingham and Nel-
son 1981; Buishand 1982)).

The outcomes of the homogeneity assessments of the four absolute tests for annual and 
monthly data set are interpreted following (Schönwiese and Rapp 1997; Wijngaard et al. 
2003), i.e. an overall classification is made based on the number of test accepting the alter-
native hypothesis (rejecting the null hypothesis). A generally accepted method for catego-
ries is as follow: Class 1 is ‘useful’, if one or no test reject the null hypothesis at the 1%, 
5% and 10% level. Class 2 is ‘doubtful’, if two tests reject the null hypothesis at the 1%, 5% 
and 10% level. Class 3 is ‘suspect’, if three or four tests reject the null hypothesis at the 1%, 
5%, and 10% level.

Wijngaard et al. (2003) applied the same procedure for the classification of homogeneity 
assessment for the 1% level. We, on the other hand, extended and addressed the method for 
three different significance levels (1%, 5%, and 10%) to have wider perspective for homo-
geneity assessments of rainfall series in this study.

3.2  Drought indices

3.2.1  Standardized precipitation index

McKee et al. (1993) introduced Standardized Precipitation Index (SPI) to find drought initi-
ation and end, magnitude, and intensity. SPI is determined by standard normal distribution.

The gamma distribution,g(x) , is defined by the following:

(9)
R =

(
max
0≤k≤n S

∗
k
− min

0≤k≤n S
∗
k

)

s

(10)N =

n−1∑
i=1

(
Yi − Yi+1

)2
∕

n∑
i=1

(
Yi − Y

)2
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where � represents shape parameter ( 𝛼 > 0 ), � represents scale parameter ( 𝛽 > 0 ), x is pre-
cipitation depth ( x > 0 ), and Γ(�) is the gamma function. � and � are required to be estimated 
from the precipitation data for each of the given timescales (3, 6, 9, 12, 24, 36-months) for 
each station. These scale and shape parameters were estimated by the maximum likelihood 
method (Thom 1958) as follow:

 where x represents the mean of data, and n is the number of data points. 
The cumulativeprobabilityG(x) is found by

Since gamma distribution is undefined for zero values, Eq. (14) is expressed as follows:

As per Thom (1966), q is found by m/n where m is count of zeros in a given dataset of 
length n. The cumulative probability,H(x) , can be transformed to the standard normal variate 
Z (the SPI value) which has a zero mean and unit variance.

3.2.2  Effective drought index

Byun and Wilhite (1999) introduced The Effective Drought Index (EDI) to define and monitor 
initiation-end and accumulated stress of drought. The data set to compute EDI is generally at a 
daily time-step (Byun and Wilhite 1996; Morid et al. 2006; Akhtari et al. 2009; Kim and Byun 
2009; Kim et al. 2009). However, EDI can also be calculated from monthly rainfall time series 
(Smakhtin and Hughes 2007; Pandey et al. 2008; Akhtari et al. 2009). The EDI, in contrast to 
the SPI, is calculated only once as it does not depend on a time-step. The EDI is a function of 
PRN – ‘the precipitation necessary to the return to normal condition’. EP, the monthly effec-
tive precipitation can be computed as follow:

 where N is the actual duration of preceding period and Pi is the precipitation. Then, the 
mean of each month’s EP ( EP ) is calculated to find DEP which is the deviation of precipi-
tation as:

(11)g(x) =
1

𝛽𝛼Γ(𝛼)
x𝛼−1e−x∕𝛽 , for x > 0

(12)� =
1

4A

(
1 +

√
4A

3

)
and � =

x

�

(13)A = ln
�
x
�
−

∑n

i=1
ln
�
xi
�

n

(14)G(x) =

x

∫
0

g(x)dx =
1

��Γ(�)

x

∫
0

x�−1e−x∕�dx

(15)H(x) = q + (1 − q)G(x)

(16)EP =

N∑
m=1

[(
m∑
i=1

Pi

)
∕m

]

(17)DEP = EP − EP
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Then, EDI can be found by

 where �PRN is the standard deviation of the PRN values (for relevant months).
Drought classifications of the SPI and the EDI can be found in (McKee et  al. 1993; 

Dogan et al. 2012; Jain et al. 2015; Wable et al. 2019).

3.3  Trend analysis

3.3.1  Mann Kendall trend test

The Mann–Kendall (MK) test was developed by Mann (1945) and Kendall (1975). This is 
a nonparametric test to identify monotonic trend in a time series. The MK test is based on 
the statistic S, which can be expressed by

 where Xj and Xi represent the value of sequence j and i (j > i) which express the time indi-
ces associated with individual time series and n is the data length.

where

Mann (1945) and Kendall (1975) noted that the statistic S is roughly normally distrib-
uted, under the null hypothesis, when n ≥ 8 (data length of 100 years in this study), with 
the variance and mean of statistics S as follows:

 where Ti indicates the number of data in the ith tied group, m shows the number of tied 
groups. The standardized test statistic Z , under the null hypothesis, is computed as follow:

The standard MK statistic Z follows the standard normal distribution with zero mean 
and unit variance. The null hypothesis is rejected and trend is considered as significant 

(18)PRN = DEP

/ N∑
i=1

1

i

(19)EDI = PRN∕�PRN

(20)S =

n−1∑
i=1

n∑
j=i+1

sgn
(
Xj − Xi

)

(21)sgn
�
Xj − Xi

�
=

⎧⎪⎨⎪⎩

+1 if
�
Xj − Xi

�
> 0

0 if
�
Xj − Xi

�
= 0

−1 if
�
Xj − Xi

�
< 0

(22)E(S) = 0

(23)V(S) =
n(n − 1)(2n + 5) −

∑m

i=1
Tii(i − 1)(2i + 5)

18

(24)Z =

⎧⎪⎨⎪⎩

S−1√
V(S)

if S > 0

0 if S = 0
S+1√
V(S)

if S < 0
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if the absolute value of Z is higher than the critical value Z1−� (increasing or decreasing 
trend) for two tailed test (where � is the statistical significance level). Wang et al. (2020) 
suggests that slightly increasing of significance level, such as from 0.05 to 0.1, and longer 
time series will improve the power of the MK test. In this study, the statistically significant 
trends were tested with a significance level of � = 0.01, � = 0.05, and � = 0.10 (99%, 95%, 
and 90% of confidence interval).

Bayley and Hammersley (1946) investigated “effective” number of observations for 
autocorrelation in data by focusing a variance of the average of a length of data points n, 
whereas the data are autocorrelated. Yue and Wang (2004) modified the MK test to elimi-
nate the effect of serial correlation on the MK trend. For this purpose, they documented 
the ability of using effective sample size (ESS) approach (Bayley and Hammersley 1946; 
Matalas and Langbein 1962; Lettenmaier 1976) (BHMLL-ESS) to minimize the influence 
of serial correlation on the MK test by Monte Carlo simulations (Yue and Wang 2004). In 
this study, the autocorrelation has been accounted for following the Yue and Wang method 
(more details about the method can be found in (Yue and Wang 2004)).

3.3.2  Sen’s slope estimator

An approach proposed by Thiel (1950) was then extended by Sen (1968) to develop the 
slope estimates of N pairs of data in the nonparametric procedure by using the Kendall’s 
tau. Hirsch et al. (1982) studied the Sen’s slope (or called Theil-Sen slope) to express the 
magnitude of trend as a slope. The Sen slope can be estimated by

 where Xij is the slope of the lines connecting each pair of points ( ti , Yi ) and ( tj,Yj ). Yj and Yi 
are the data values in the time tj and ti , respectively.

The N values in Eq. 25 are arranged in ascending order of magnitude (let us denote the 
rth smallest value by Xr for r = 1, ...,N .) and the Sen’s slope (or the median of the N num-
bers) is computed as follows:

 Xmedian is computed by a two-sided test for three different confidence intervals (99%, 95%, 
and 90%) and the robust slope can be found by the nonparametric test. The negative (pos-
itive) value of Xmedian indicates a downward (upward) magnitude of a trend in the time 
series.

3.3.3  Spatial distribution of trends

Spatial variability of trends in rainfall and drought indices was explored through interpola-
tion of Sen’s slope estimator by using spline interpolation method in ArcGIS environment 
(https:// www. esri. com). The spline method was recommended and applied by several stud-
ies (Cannarozzo et al. 2006; Basistha et al. 2008; Shifteh Some’e et al. 2012; Yilmaz and 
Perera 2015) to interpolate Sen’s slope estimator. More details about the spline interpola-
tion method can be found in (Talmi and Gilat 1977; Hartkamp et al. 1999).

(25)Xij =

(
Yj − Yi

tj − ti

)
, (tj ≠ ti;tj > ti) (for which (i, j) ∈ S)

(26)Xmedian =

{
XM+1 if N = 2M + 1 (odd)(

XM + XM+1

)
∕2 if N = 2M (even)

https://www.esri.com
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4  Results and discussion

4.1  Homogeneity tests

Table 2 illustrates the results of the homogeneity tests on annual total rainfall (ATR) data 
at significance levels of 1%, 5%, and 10%. Von Neumann ratio test gives no information on 
the year of break, and hence, this is marked as “X” in Table 2 without referring to any year. 
Only station 86,090 is found to be inhomogeneous at significance level of 1% and classified 
as ‘suspect’ Class 3 since all the four tests reject the null hypothesis at 1% level. Table 2 
clearly shows that number of inhomogeneous stations increases as confidence interval 
decreases in that four stations are found as ‘suspect’ at significance level of 5%. This num-
ber reaches to ten stations at significance level of 10%. Significant break years at 1% signif-
icance level is detected by the Pettitt test (Fig. 2). Figure 2a shows the change in the mean 
of ATR for station 86,090 occurs in 1996, which is determined by the four homogeneity 
tests as can be seen in Table 2. Another shift is found in 1936 at 1% significance level for 
station 74,087, which is detected only by the Pettitt test (Fig. 2b and Table 2). Although 
significant downward break points are detected at significance level of 1% for these two 
stations (Fig. 2), both upward and downward shifts are detected at 5% and 10% significance 
levels at different years for various stations (Figure S1). Besides, only the SNHT shows an 
abrupt change (lower mean than break point) in 2012 and 2017. Table 3 shows that 98% of 
the selected stations in the study area are homogenous and ‘useful’ based on significance 
level of 1% in terms of ATR. However, 82% and 62% of the selected stations are found 
to be homogeneous in terms of ATR for significance levels of 5% and 10%, respectively. 
Karabörk et al. (2007) suggests that a significance level of 5% is adequate in determining 
change points and inhomogeneities in the rainfall time series. It should be noted that at 5% 
level, 11 stations were found to be inhomogeneous: among these, only five show significant 
trends (Table 2).

The homogeneity test results of monthly total rainfall time series for the selected 45 
stations in southeastern Australia indicate that 98% of stations may be assigned to Class 
1 ‘useful’ for July, September, and December months, whereas for the other nine months, 
100% of the stations are found to be homogeneous at significance level of 1% (Table S1; 
Figure S2). Non-homogenous stations for September (station ‘81,008’) and December (sta-
tion ‘67,019’) are regarded as ‘doubtful’, while inhomogeneous station for July (station 
‘60,036’) is rated as ‘suspect’. March, May, and August are the only months when 100% of 
the stations are found to be homogenous at the three significance levels. Absolute homo-
geneity tests based on monthly total rainfall time series show that the data set is highly 
homogenous at the adopted significance levels (Table S1). Homogeneity of monthly data 
set is crucial as drought analysis is generally undertaken based on monthly rainfall data.

4.2  Average rainfall

Spatial patterns of the average annual rainfall (AAR), standard deviation (SD), and coef-
ficient of variation (CV) values with areal coverage are given in Fig. 3. Spline interpola-
tion (Talmi and Gilat 1977) with natural breaks classification (Jenks 1967) is adopted 
to prepare Fig. 3. The results show that the AAR varies from 240 mm in the northwest 
to about 1483 mm in eastern and southern coasts of the study area. AAR for the entire 
study area is 725 mm, and more than 70% of the region have less than 725 mm annual 



1669Natural Hazards (2022) 112:1657–1683 

1 3

Ta
bl

e 
2 

 L
ist

 o
f i

nh
om

og
en

eo
us

 a
nn

ua
l t

ot
al

 ra
in

fa
ll 

tim
e 

se
rie

s w
ith

 b
re

ak
 y

ea
rs

 b
as

ed
 o

n 
fo

ur
 a

bs
ol

ut
e 

ho
m

og
en

ei
ty

 te
sts

St
at

io
n 

nu
m

be
r

1%
5%

10
%

A
–M

K
 te

st 
at

 5
%

Pe
tti

tt
SN

H
T

B
ui

sh
an

d
Vo

n 
N

eu
m

an
n

Pe
tti

tt
SN

H
T

B
ui

sh
an

d
Vo

n 
N

eu
m

an
n

Pe
tti

tt
SN

H
T

B
ui

sh
an

d
Vo

n 
N

eu
m

an
n

Si
gn

ifi
ca

nt
 o

r n
ot

 (d
ire

c-
tio

n)

47
,0

13
–

–
–

X
19

72
–

19
72

X
19

72
19

72
19

72
X

Y
 (U

pw
ar

d)
49

,0
02

–
–

–
–

–
–

19
45

X
19

45
–

19
45

X
N

 (U
pw

ar
d)

51
,0

34
–

–
–

–
–

–
–

–
19

67
–

19
67

–
Y

 (U
pw

ar
d)

52
,0

19
–

–
–

–
–

–
–

X
–

20
12

–
X

N
 (U

pw
ar

d)
54

,0
32

–
–

–
X

–
20

17
–

X
–

20
17

–
X

N
 (U

pw
ar

d)
55

,0
23

–
–

–
–

–
19

46
19

46
X

19
46

19
46

19
46

X
Y

 (U
pw

ar
d)

56
,0

13
–

–
–

–
–

20
17

–
–

–
20

17
–

–
N

 (D
ow

nw
ar

d)
60

,0
36

–
–

–
–

–
–

–
–

–
–

–
X

N
 (D

ow
nw

ar
d)

61
,0

07
–

–
–

–
–

–
–

–
–

–
–

X
N

 (U
pw

ar
d)

62
,0

13
–

–
–

–
–

–
–

–
–

–
19

46
–

Y
 (U

pw
ar

d)
64

,0
08

–
–

–
–

–
–

19
46

–
19

46
19

46
19

46
–

Y
 (U

pw
ar

d)
66

,0
62

–
–

–
–

–
–

–
–

–
–

19
48

–
N

 (U
pw

ar
d)

67
,0

19
–

–
–

–
–

–
19

48
X

19
48

19
48

19
48

X
N

 (U
pw

ar
d)

68
,0

24
–

–
–

X
–

–
–

X
–

–
19

48
X

N
 (U

pw
ar

d)
69

,0
18

–
–

–
X

–
–

–
X

–
–

–
X

N
 (D

ow
nw

ar
d)

71
,0

21
–

–
–

–
19

76
–

19
61

X
19

76
19

61
19

61
X

Y
 (D

ow
nw

ar
d)

74
,0

87
19

36
–

–
–

19
36

–
–

–
19

36
–

–
–

N
 (D

ow
nw

ar
d)

75
,0

49
–

–
–

–
–

–
–

X
–

–
19

68
X

Y
 (U

pw
ar

d)
77

,0
40

–
–

–
–

–
–

19
54

–
–

–
19

54
X

Y
 (U

pw
ar

d)
78

,0
38

–
–

–
–

–
–

–
–

–
19

45
19

45
–

N
 (U

pw
ar

d)
79

,0
08

–
–

–
–

–
–

19
93

–
–

19
93

19
93

X
N

 (D
ow

nw
ar

d)
80

,0
15

–
–

–
–

–
–

–
–

–
–

–
X

Y
 (D

ow
nw

ar
d)

84
,0

14
–

–
–

–
–

–
–

–
–

–
–

X
N

 (D
ow

nw
ar

d)



1670 Natural Hazards (2022) 112:1657–1683

1 3

Ta
bl

e 
2 

 (c
on

tin
ue

d)

St
at

io
n 

nu
m

be
r

1%
5%

10
%

A
–M

K
 te

st 
at

 5
%

Pe
tti

tt
SN

H
T

B
ui

sh
an

d
Vo

n 
N

eu
m

an
n

Pe
tti

tt
SN

H
T

B
ui

sh
an

d
Vo

n 
N

eu
m

an
n

Pe
tti

tt
SN

H
T

B
ui

sh
an

d
Vo

n 
N

eu
m

an
n

Si
gn

ifi
ca

nt
 o

r n
ot

 (d
ire

c-
tio

n)

86
,0

90
19

96
19

96
19

96
X

19
96

19
96

19
96

X
19

96
19

96
19

96
X

Y
 (D

ow
nw

ar
d)

87
,0

45
–

–
–

–
–

19
45

19
45

–
19

45
19

45
19

45
–

N
 (U

pw
ar

d)

89
,1

03
–

–
–

–
–

–
19

69
–

19
69

–
19

69
–

Y
 (U

pw
ar

d)

Y
 a

nd
 N

 re
fe

r t
o 

Ye
s a

nd
 N

o,
 re

sp
ec

tiv
el

y.
 U

pw
ar

d 
an

d 
D

ow
nw

ar
d 

re
fe

r t
o 

tre
nd

 d
ire

ct
io

n 
ba

se
d 

on
 A

–M
K

 te
st



1671Natural Hazards (2022) 112:1657–1683 

1 3

total rainfall (ATR) in southeastern Australia (Fig. 3a). The lowest AAR (240–323 mm) 
is observed in northwest of the region with 30% of areal coverage, whereas the highest 
AAR (1295–1483 mm) is found in eastern and southern coasts, with only 2% of areal 
coverage.

Fig. 2  Significant change in rainfall time series with downward shift in the mean of the annual total rainfall 
(ATR) between 1920 and 2019. a shows station 86,090 and b shows station 74,087 (mu1 and mu2 are the 
mean rainfall before and after the break year, respectively)

Table 3  Absolute homogeneity test results and classification for annual total rainfall (ATR) series. The val-
ues in parenthesis indicate the percentage of total number of stations

Significance 
level (%)

Pettitt SNHT test Buishand Von Neumann Class 1 
‘useful’  
(%)

Class 2 
‘doubtful’ 
(%)

Class 3 
‘suspect’ 
(%)

1 2 1 1 5 44 (98) 0 (0) 1 (2)
5 4 5 11 11 37 (82) 4 (9) 4 (9)
10 11 12 17 17 28 (62) 8 (18) 9 (20)

Fig. 3  a Average annual rainfall (AAR), b standard deviation (SD) of AAR, and c coefficient of variation 
(CV) in percentage of AAR with areal coverage in southeastern Australia between 1920 and 2019
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As can be seen in Fig. 3b, SD associated with the AAR varies between 97.8 mm (west-
ern part) and 492.1  mm (eastern coast). CV (the ratio of SD and AAR) varies between 
15.2% and 48%. Figure 3c displays that heavy rainfall zones (eastern and southern coast) 
have the least variability (i.e. a smaller SD), whereas lower rainfall zones (northwest) have 
higher variability in rainfall, which is as expected. Our average rainfall statistics show simi-
larities with Hajani and Rahman (2018) for NSW region, which focused on NSW alone 
with 200 rainfall stations covering a data period of 1945–2014.

4.3  Trend analysis

4.3.1  Rainfall trend analysis

Table  4 shows outcomes of long-term monotonic trends detected by autocorrelated 
Mann–Kendall (A-MK) trend test (Yue and Wang 2004). Upward trend in ATR at 25 sta-
tions (55.6%) is detected, whereas downward trend in ATR at 20 stations (44.4%) is found 
when significance level is ignored. It can be seen in Table 4 that as the significance level 
is reduced, the number of stations showing significant trends is reduced. This is since a 
smaller significance level is more rigorous than a higher significance level resulting in 
acceptance of the null hypothesis (H0: There is no trend in the data) for a greater number 
of stations. Our results for long-term ATR trend analysis show a decline in south of the 
study area (VIC) in contrast to Hennessy et al. (1999). The main reason is that the present 
study analyses trends for the rainfall data till 2019, whereas data availability of the pre-
vious study was limited to mid-1990s. Another reason may be abrupt changes or highly 
variable rainfall quantities during the last decades of the study period. Although long-term 
(1920–2019) ATR has been dominated by a positive trend, the last half of the data set 
(1970–2019) is dominated by a decreasing trend (Table 4). The medium term, 1970–2019, 
is dominated by a decreasing trend at 1%, 5%, and 10% significance levels. The finding of 
the medium-term ATR in our study is similar to Gallant et al. (2007). Positive trend, on the 
other hand, is dominated in the study area between 1920 and 1969.

Monotonic trends of monthly rainfall time series obtained by the A-MK test are 
shown in Table  5 where April and October rainfalls are highly dominated by nega-
tive trend in addition to decreasing/downward trends of June, July, August, and Sep-
tember. As an illustration, in April, negative trend is detected at 41 stations, whereas 
only four stations show positive trends, although it is not statistically significant. April 
was the only month where there was no single case with positive trend at 1%, 5%, and 
10% significance levels. Statistically significant positive trend is detected in November 
(the month with the most increasing trends) at 31, 36, and 38 rainfall stations out of 
45 at 1%, 5%, and 10% significance levels, respectively (Table 5). Furthermore, posi-
tive trends are detected in January, February, March, May, and December in contrast to 

Table 4  Number of rainfall 
stations showing positive and 
(negative) trends by A–MK 
trend test for annual total rainfall 
(ATR) for different time intervals

Time frame Significance level 
ignored

Significance level considered

1% 5% 10%

1920–2019 25 (20) 10 (4) 12 (6) 13 (6)
1970–2019 2 (43) 0 (31) 0 (36) 0 (37)
1920–1969 36 (9) 18 (1) 21 (1) 24 (1)
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Hajani and Rahman (2018). Hajani and Rahman (2018) focused changes in rainfall in 
NSW at 200 rainfall stations with data period of 1945 to 2014. Our findings for monthly 
rainfall trends for April, August, October, November, and December are similar to 
Hajani and Rahman (2018). One of the main reasons for different results in few cases 
is that VIC is included in our study area and we observe significant monthly negative 
trends, in particular for February, March, May, June, July, and September in south of the 
study area (in VIC region).

The results of A-MK test of seasonal rainfall are summarized in Table  6, which 
depict that Summer (December-January–February) and Spring (September–October-
November) seasons are dominated by significantly upward trend, while significant 
downward trend is observed in winter (June-July–August) at 1%, 5%, and 10% signifi-
cance levels between 1920 and 2019 (Table 6) like Hajani and Rahman (2018). Autumn 
rainfall, on the other hand, is dominated by a positive trend at 23 stations, whereas neg-
ative trends are detected at 22 stations out of 45 (when significance level is ignored). 
Our results for seasonal trends show upward or downward trend; this is contradictory 
to Hajani and Rahman (2018), who found a decrease for each seasons in NSW over the 
period 1945–2014 when significance level was ignored. Besides, they did not find sta-
tistically significant decreasing trend at significance level of 1% in winter, whereas we 
find statistically significant downward trends at 1% level at 12 stations in winter, and 9 
of these are located in NSW.

Table 5  Number of rainfall 
stations showing positive and 
(negative) trends by the A–MK 
trend test for monthly rainfall 
(between 1920 and 2019)

Months Significance level 
ignored

Significance level considered

1% 5% 10%

January 33 (12) 11(2) 15(3) 16(6)
February 33(12) 10(3) 14(3) 17(3)
March 36 (9) 8 (2) 13 (3) 18 (3)
April 4 (41) 0 (17) 0 (25) 0 26)
May 25(20) 3 (2) 7 (4) 11 (7)
June 19 (26) 3 (8) 6 (13) 9 (13)
July 16 (29) 4 (9) 7 (13) 8 (18)
August 15 (30) 0 (4) 4 (9) 5 (11)
September 21 (24) 4 (3) 6 (5) 10 (7)
October 13 (32) 0 (13) 2 (17) 4 (19)
November 41 (4) 31 (1) 36 (2) 38 (2)
December 34 (11) 17 (1) 20 (2) 22 (2)

Table 6  Number of rainfall 
stations having positive and 
(negative) trends by A–MK 
trend test for the seasonal rainfall 
(between 1920 and 2019)

Season Significance level 
ignored

Significance level considered

1% 5% 10%

Summer 33 (12) 17 (3) 21 (3) 23 (3)
Autumn 23 (22) 6 (4) 8 (6) 10 (7)
Winter 18 (27) 4 (12) 5 (15) 8 (16)
Spring 33 (12) 12 (2) 17 (4) 19 (5)
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4.3.2  Spatial distribution of temporal trends in rainfall

Spatial patterns of Sen’s slope and trends by the A-MK test are illustrated in Fig.  4. In 
southeastern Australia, summer and winter rainfalls contribute more than 50% of the ATR. 
Trends in summer and winter, therefore, have a direct impact on trends in ATR in the study 
area. Figure 4c depicts that the northeast and south-centre of the study area are experienced 
the lowest magnitude of trend in winter, which is similar to Taschetto and England (2009). 
Furthermore, the lowest trends in summer (Fig. 4a) are detected mainly in the northeast, 
south, southeast, and northwest of the study area. Meneghini et  al. (2007) noted that the 
current decline of rainfall in winter might continues for longer years because of the climate 
driver-SAM. The highest variation in trend magnitude is monitored in spring as -1.21 and 
0.82  mm/year, whereas the lowest variation is observed in summer season as -0.62 and 
0.73 mm/year. Spring, on the other hand, has the most notable negative trend, -1.21 mm/
year, in seasonal level (Fig. 4d). Besides, the magnitude of trend calculated by Sen’s slope 
of the ATR is observed to have the highest variability between -3.2 and 1.92 mm/year com-
pared to variation in trends in seasonal level (Fig. 4e). It is found that the lowest magnitude 
of trends on the basis of 100 years of rainfall data is observed in the south-centre, eastern 
coast, and southeast of the study area in terms of four seasons and ATR similar to the study 
by Cai et al. (2014). Gallant et al. (2007) reported a declining trend in the eastern coast in 
the winter and summer, whereas spring had slightly increased trend similar to our findings. 
Hennessy et al. (2008) and our results in relation to the spatial patterns of ATR trend show 
a higher degree of similarity with only exception for southeast centre (VIC). We observe the 
lowest ATR trend (Fig. 4e), in contrast to Hennessy et al. (2008), for VIC region, whereas 
they found it for the eastern coastal region with data length between 1950 and 2007.

Figure 5 shows the spatial distribution of temporal trends in monthly rainfall, the cor-
responding magnitudes (in mm/year) are computed by Sen’s slope estimator and A-MK 

Fig. 4  Spatial distribution of Sen’s slope (mm/year) and trends by A-MK test (significance level ignored) 
for seasonal scale and annual total rainfall (ATR) between 1920 and 2019
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test. The highest variation in magnitude of trend is observed for November between -0.45 
and 0.54 mm/year, whereas the lowest variation is seen for September between -0.16 and 
0.29 mm/year. The lowest monthly magnitude of the Sen’s slope is detected as -0.73 mm/
year for October (in VIC), while the highest one is found for February with 0.64 mm/year 
(in NSW). Spatial patterns of Sen’s slope estimator and A-MK test outcomes clearly illus-
trate that April is the driest month with 91% of stations have negative trend in southeastern 
Australia since 1920 (Fig.  5, Table  5). March, May and April have vital importance to 
‘wet up’ Victorian catchments. The magnitude of trend for April is found to be -0.5 mm/
year (lowest) and 0.03 mm/year (highest). October is dominated by a significantly negative 
trend for 13, 17, and 19 stations at 1%, 5%, and 10% significance levels, respectively. Fur-
thermore, October is the only month where a negative trend is observed throughout VIC 
(south of the study area) without any positive trend.

4.4  Drought trend analysis

Spatial distribution maps of Sen’s slope and trends by the A-MK test for SPIs of mul-
tiple timescales and EDI are given in Fig.  6 (Sen’s slope estimator for SPIs of different 
timescales and EDI between 1920 and 2019 in southeastern Australia can be found in 
Table S2). Up and down arrows in Fig. 6 show the A-MK trends when significance level 
is ignored. It is found that the most of southern part of the study area (southeast of NSW 
and west and southern part of VIC) have a negative trends in terms of short and long-term 

Fig. 5  Spatial distribution of Sen’s slope and trends for rainfall stations by A-MK (significance level 
ignored) test for monthly rainfall between 1920 and 2019
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droughts based on SPIs of different timescales and EDI for a data length of 100  years. 
Southwest and south-centre of the study area are the most drought prone and vulnerable 
area in terms of short- and long-term drought trends.

Nine rainfall stations in NSW (48,168, 56,013, 57,023, 59,024, 60,036, 69,018, 70,045, 
71,021, and 72,044) and seven rainfall stations in VIC (76,047, 79,008, 80,015, 82,009, 
84,014, 86,090, and 90,060) are dominated by a significant negative trend in terms of 
short, seasonal, and long-term droughts based on the SPIs of all the timescales and EDI. 
EDI detects a negative trend at 20 stations (44.4%) out of 45 mainly in southern part of the 
region. Table 7 presents number of stations showing trends, computed by the A-MK test 
for SPIs of multiple timescales and EDI. Long-term drought trend analysis outcomes show 
that the area is dominated by a positive trend based on SPI and EDI (Table 7) when sig-
nificance level is ignored. Our drought trend analysis results show similarities with those 
of Hennessy et al. (2004), who found both an increasing and decreasing trend in the NSW 
area. Rahmat et  al. (2012) carried out a drought trend analysis based on a 3-month SPI 
and 12-month SPI at five rainfall stations covering rainfall data period 1949–2010 in VIC. 
They observed a downward trend at five stations for SPI of 3 and 12-month; our updated 
and comprehensive results support their findings, i.e. VIC is dominated by a decreasing 
trend in terms of short- and long-term drought.

Furthermore, ATR trend analysis (Fig. 4e) has a high level of correlation with drought 
trend analysis considering SPI and EDI (Fig. 6). However, it should be noted that climatic 

Fig. 6  Spatial patterns of Sen’s slope between 1920 and 2019 for SPIs of 3, 6, 9, 12, 24, and 36- months 
and EDI are given at a, b, c, d, e, f and g, respectively. Here, trends of rainfall stations are computed by 
A-MK test (significance level is ignored)
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variability of the last decades must be considered and compared with the long-term analy-
sis to interpret the recent variabilities. Since the medium-term ATR trends, between 1970 
and 2019, show a significantly negative trends in the region and we know that the severity 
of recent drought aggravated over the past two–three decades due to changes in rainfall and 
temperatures (Gallant et al. 2007; Murphy and Timbal 2008; Timbal 2009; Ummenhofer 
et al. 2009; Dey et al. 2019). Furthermore, Yildirim and Rahman (2021) found maximum 
drought quantities (the longest duration, biggest magnitude, and highest intensity) of short- 
and long-term droughts in various rainfall districts in southeastern Australia between 2013 
and 2019. It can be concluded that the study area suffered from a prolonged drought till 
2019.

5  Conclusion

This study investigates homogeneity (based on annual and monthly rainfall series), rain-
fall trends (annual, seasonal, and monthly) and drought trends based on SPI and EDI for 
southeast Australia considering rainfall data for 1920–2019. Spatial distribution of trends 
by spline interpolation technique is also examined. Significant change in the annual total 
rainfall (ATR) may not be discovered by the simple MK test, whereas A-MK test is able 
to eliminate the influence of serial correlation on the MK test as suggested by Hamed and 
Rao (1998) & Yue and Wang (2004).

Four absolute homogeneity tests (the Pettitt test, the SNHT, the Buishand, and the Von 
Neumann tests) are applied on a long historical ATR and monthly rainfall data from 45 
selected rain gauges in southeast Australia to check data reliability. Through this process, 
only one station is found as inhomogeneous at a 1% significance level based on ATR and 
hence it is classified as ‘suspect’ station. Furthermore, four and nine stations are found to 
be ‘suspect’ based on ATR at significance levels of 5% and 10%, respectively. Homogene-
ity test results of monthly rainfall show that nine months can be regarded as 100% homo-
geneous and only one station as inhomogeneous for three months (July, September, and 
December) at 1% significance level. March, May, and August are found to be fully homo-
geneous at significance levels of 1%, 5%, and 10%.

Based on the A-MK trend test, a positive trend is observed at 25 stations, and a 
negative trend at 20 stations for ATR when significance level is ignored. South and 

Table 7  Number of rainfall 
stations presenting positive and 
(negative) trends by A–MK trend 
test for SPIs of 3, 6, 9, 12, 24, 
and 36–month and EDI (between 
1920 and 2019)

Note: SPI-3 indicates 3-month SPI and so on

Drought Index Significance 
level ignored

Significance level considered

1% 5% 10%

SPI–3 26 (19) 9 (3) 12 (8) 14 (9)
SPI–6 26 (19) 10 (5) 12 (7) 14 (9)
SPI–9 25 (20) 11 (5) 12 (6) 14 (8)
SPI–12 25 (20) 11 (5) 12 (5) 14 (8)
SPI–24 28 (17) 11 (5) 14 (5) 18 (6)
SPI–36 29 (16) 12 (5) 18 (5) 20 (5)
EDI 25(20) 8 (5) 13 (8) 14 (8)



1678 Natural Hazards (2022) 112:1657–1683

1 3

northeastern parts of the study area are dominated by a negative trend for long-term 
ATR. It is found that the study area is dominated by a significantly negative trend (in 
relation to ATR) at significance level of 1%, 5%, and 10% in the medium term between 
1970 and 2019. The rainfall decrease in the study area can be explained by a severity 
and increased frequency of climate driver El Niño since 1970s (Simmonds and Keay 
2000; Fyfe 2003; Gallant et  al. 2007) in addition to the effects of SAM and ENSO 
(Kiem and Verdon-Kidd 2010).

It is also found that winter is dominated by a significantly negative trend at 1%, 5% and 
10% significance levels. A decreasing trend in winter is detected at 27 stations out of 45 
when significance level is ignored. Summer and spring seasons are dominated by a posi-
tive trend. 33 stations in each of these seasons show an increasing trend (when significance 
level is ignored). On the other hand, autumn rainfall is generally dominated by a positive 
trend with 48.9% of the stations presenting a decreasing trend when significance level is 
neglected.

Results of investigation of spatial variability of trends show that mostly southern part 
of the study area is dominated by a negative trend in terms of seasonal scale and ATR. 
Besides, northeastern part of the region is highly dominated by a decreasing trend in win-
ter season. Furthermore, April is detected (at 41 stations) as the driest month according to 
magnitude of Sen’s slope and A-MK trend test result. Moreover, October is seen to have 
the lowest magnitude of trend. June, July, August, and September are dominated by a nega-
tive trend in the study area in addition to April and October. It is also found that November 
and December are dominated by a statistically significant increasing trend at 1%, 5%, and 
10% significance levels.

When we consider drought trend analysis, it is found that the study area is dominated by 
a positive trend based on short- and long-term droughts, particularly within the inner parts 
of the region. However, there is a good number of stations (between 36 and 44% of the total 
stations) that show negative trends in short- and long-term droughts based on SPI and EDI. 
The lowest magnitude of trend is detected mainly in the southern part of the study area 
based on SPI and EDI results. Negative trends of short and long-term droughts are detected 
in south, southeast, and northeast of the region based on SPIs of multiple timescales and 
EDI. Keywood et al. (2017) also reported a rainfall decline and the subsequent droughts 
in southern and eastern (involving NSW and VIC) Australia. The decrease in rainfall and 
drought due to rainfall deficiency in the study area can be explained by El Niño, which is 
linked to drought, which has been more frequent and severe in the past decades (Gallant 
et al. 2007; Freund et al. 2019).

The present study helps to understand characteristics of rainfall changes and drought 
trends in southeast Australia. The findings of this study will be helpful to fill important 
knowledge gaps in rainfall-drought trends. It is suggested that decadal climate variability 
of rainfall and drought should be addressed and interpreted to better understand effects of 
climate drivers (such as SAM, IOD, ENSO, and El Niño) on natural disaster like droughts.
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