
RESEARCH ARTICLE

Homogeneity Test for Correlated Binary Data

Changxing Ma1*, Guogen Shan2, Song Liu3

1Department of Biostatistics, University at Buffalo, Buffalo, New York 14214, USA, 2Department of

Environmental and Occupational Health, School of Community Health Sciences, University of Nevada Las
Vegas, Las Vegas, NV 89154, USA, 3 Department of Biostatistics and Bioinformatics, Roswell Park Cancer
Institute, Buffalo, NY 14203, USA

* cxma@buffalo.edu

Abstract

In ophthalmologic studies, measurements obtained from both eyes of an individual are

often highly correlated. Ignoring the correlation could lead to incorrect inferences. An as-

ymptotic method was proposed by Tang and others (2008) for testing equality of proportions

between two groups under Rosner's model. In this article, we investigate three testing pro-

cedures for general g� 2 groups. Our simulation results show the score testing procedure

usually produces satisfactory type I error control and has reasonable power. The three test

procedures get closer when sample size becomes larger. Examples from ophthalmologic

studies are used to illustrate our proposed methods.

Introduction

In randomized clinical trials [2], patients are usually randomized into two or more treatment

groups, and patients within each group receive the same treatment. Often a control group or a

group with standard treatment is included for testing the efficiency of new treatments. After

the randomization, all patients are followed up in exactly the same way as designed, and the

only difference is the treatment assigned to each group. A randomized clinical trial is a good

choice to eliminate many of the biases and to avoid ethical problems that may arise from com-

paring treatments [3] [4]. For example, in a double-blinded two-arm clinical trial for an oph-

thalmologic study, all patients are randomized into two treatment groups and the same

treatment is applied to both eyes of patients from the same group. Such clustered data with a

cluster size of two often arises from statistical and medical applications, for example, ophthal-

mologic studies, orthopaedic studies, otolaryngological studies and twin studies.

We wish to test if the outcomes are identical among the two or more treatment groups. Ob-

viously, the information collected from two eyes of a single person tends to be highly correlat-

ed. Any statistical methods that ignore the feature of dependence, such as t tests, analyses of

variance, or chi-square tests, could lead to incorrect inferences (see, [5] [6] [7] [8] [9]).

In this article, we consider the case of a dichotomous outcome, such as the presence of a dis-

ease or some other binary trait. Several statistical tests have been proposed. Rosner [5] pro-

posed a parametric model and a test statistic for testing homogeneity of proportions among g

groups. However, the maximum likelihood estimates (MLEs) and likelihood-based tests were

not given. [1] [10] considered this problem for two groups only and proposed several
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asymptotic testing procedures, including the score test. It is difficult to extend the testing pro-

cedures from 2 groups to g groups (g> 2), due to the complexity of deriving the information

matrix and maximum likelihood estimates which can be obtained only by numerical iterations.

The score test statistic has demonstrated better type I error control and power than other test-

ing procedures, when comparing two treatment groups [1]. We expect the score test, investi-

gated for comparing multiple treatment groups in this article, to perform well as compared to

other procedures.

In this article, we present the methods for comparing proportions among any g groups, with

g� 2. The maximum likelihood estimate under Rosner’s model and three different methods

(Likelihood Ratio test, Wald-type test, Score test) are derived and investigated in Section 2. In

Section 3, Monte Carlo simulation studies are conducted to compare the performance of vari-

ous tests and comparisons are evaluated with respect to empirical type I error rates and powers.

Examples from otolaryngological studies are illustrated to demonstrate our methodologies in

Section 4. Finally, we give some concluding remarks in Section 5.

Methods

Suppose we wish to compare g groups of individuals from an ophthalmologic study withmi in-

dividuals in the ith group, i = 1, . . ., g; N = ∑mi total subjects (Table 1). Let Zijk = 1 if the kth eye

of jth individual in the ith group has a response at the end of the study, and 0 otherwise, i = 1,

. . ., g, j = 1, . . .,mi, k = 1, 2. Letmli denote the number of subjects who has exactly l responses

in the ith group, and Sl be the number of subjects who has exactly l responses (e.g., affected

eyes)

Sl ¼
X

g

i¼1

mli; l ¼ 0; 1; 2:

A parametric model proposed by [5] is given as

PrðZijk ¼ 1Þ ¼ pi; PrðZijk ¼ 1jZij;3�k ¼ 1Þ ¼ Rpi; ð1Þ

i = 1, . . ., g, j = 0, . . .,mi, k = 1, 2 for some positive R. The constant R is a measure of depen-

dence between two eyes of the same person. If R = 1, the two eyes from the same patient are

completely independent. If Rπi = 1, the eyes of each patient in the i-th group are completely de-

pendent. The R satisfies 0< R� 1/a, if a� 1/2; (2 − 1/a)/a� R� 1/a, if a> 1/2; where a =

max{πi, i = 1, . . ., g}. From the conditional probability in Eq (1), it is easy to show that the

Table 1. Frequencies of the number of affected eyes for persons in g groups.

group

number of affected eyes 1 2 � � � g total

0 m01 m02 � � � m0g S0

1 m11 m12 � � � m1g S1

2 m21 m22 � � � m2g S2

total m1 m2 � � � mg N

doi:10.1371/journal.pone.0124337.t001
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correlation between two eyes is

ri ¼ corrðZij1;Zij2Þ ¼
pi

1� pi

ðR� 1Þ; i ¼ 1; . . . ; g: ð2Þ

We wish to test whether the response rates of the g groups are identical. The hypotheses are

given as

H0 : p1 ¼ � � � ¼ pg ¼ p

against

H1 : some of the pi are unequal:

Based on the observed data ~M ¼ ðm01; � � � ;m0g ;m11; � � � ;m1g ;m21; � � � ;m2gÞ, the corre-

sponding log-likelihood can be expressed as

lðp1; . . . ; pg ;RÞ ¼
X

g

i¼1

½m0i log ðR pi
2 � 2 pi þ 1Þ þm1i log ð2pið1� RpiÞÞ þm2i log ðR p

2

i Þ�:

Differentiating l(π1, . . ., πg; R) with respect to parameters π1, . . ., πg and R yields

@l

@pi

¼
2m2i

pi

þ
ð2R pi � 2Þm0i

R pi
2 � 2 pi þ 1

þ
ð4R pi � 2Þm1i

2pi ðR pi � 1Þ
; i ¼ 1; . . . ; g ð3Þ

@l

@R
¼
X

g

i¼1

m2i

R
þ

pi
2 m0i

R pi
2 � 2 pi þ 1

þ
pi m1i

R pi � 1

� �

ð4Þ

Under the null hypothesis H0 : π1 = � � � = πg = π, the maximum likelihood estimates of π and

R satisfy

@l

@R
¼ 0 and

@l

@p
¼

2 S2
p

þ
ð2R p� 2Þ S0
R p2 � 2pþ 1

þ
ð4R p� 2Þ S1
2p ðR p� 1Þ

¼ 0;

A direct algebra calculation results in the MLEs of p0
is and R

p̂H0
¼

S1 þ 2S2
2N

and

R̂H0
¼

4NS2

ðS1 þ 2S2Þ
2
:

Denote p̂ i; i ¼ 1; . . . ; g and R̂ as the maximum likelihood estimate of πi, i = 1, . . ., g and R,

respectively. p̂ i; i ¼ 1; . . . ; g and R̂ are the solution of the following equations

@l

@pi

¼ 0; i ¼ 1; . . . ; g;
@l

@R
¼ 0:

There is no closed form solution and it has to be solved iteratively. We can simplify the formula

in Eq (3) as the following 3rd order polynomial (for i = 1, . . ., g)

p3
i �

4m0i þ 5m1i þ 6m2i

2Rmi

p2

i þ
m0i þ ð1þ RÞm1i þ ð2þ RÞm2i

R2mi

pi �
m1i þ 2m2i

2R2mi

¼ 0
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The (t + 1)th update for πi can be directly obtained by the real root of the above equation, and

R can be updated by the Fisher scoring method

Rðtþ1Þ ¼ RðtÞ �
@2l

@R2
ðpðtÞ

1 ; . . . ; pðtÞ
g ;RðtÞÞ

� ��1
@l

@R
ðpðtÞ

1 ; . . . ; pðtÞ
g ;RðtÞÞ:

See next section for the formula of @2 l
@R2
.

Information matrix

Differentiating @l
@pi

; i ¼ 1; . . . ; g and @l
@R
with respect to πi, i = 1, . . ., g and R respectively yields

@2l

@p2
i

¼
m0i ð�2R2 p2

i þ 4R pi þ 2R� 4Þ

ðR p2
i � 2pi þ 1Þ

2
�
2m2i

p2
i

�
ð2R2 p2

i � 2R pi þ 1Þm1i

p2
i ðR pi � 1Þ

2
;

@2l

@pi@R
¼ �

m1i

ðR pi � 1Þ
2
�

2 ðpi � 1Þpim0i

ðR pi
2 � 2 pi þ 1Þ

2
;

i ¼ 1; . . . ; g

@2l

@pi@pj

¼ 0; i 6¼ j;

@2l

@R2
¼ �

S2
R2

�
X

g

i¼1

p2
i m1i

ðR pi � 1Þ
2
�
X

g

i¼1

p4
i m0i

ðR p2
i � 2 pi þ 1Þ

2
:

Then we have

Iii ¼ E �
@2l

@p2
i

� �

¼
2mi ð2R

2 pi
2 � R pi

2 � 2R pi þ 1Þ

pi ðR pi
2 � 2 pi þ 1Þð1� R piÞ

;

Ii;gþ1 ¼ E �
@2l

@pi@R

� �

¼ �
2 ð1� RÞpi

2 mi

ðR pi
2 � 2 pi þ 1Þð1� R piÞ

;

i ¼ 1; . . . ; g

Iij ¼ E �
@2l

@pi@pj

 !

¼ 0; i 6¼ j;

Igþ1;gþ1 ¼ E �
@2l

@R2

� �

¼
X

g

i¼1

pi
2 miðRpi � 2 pi þ 1Þ

RðR pi
2 � 2 pi þ 1Þð1� R piÞ

:

The (g + 1) × (g + 1) information matrix is denoted as I(π1, . . ., πg; R) = (Iij).

Under the null hypothesis H0 : π1 = � � � = πg = π, it is straightforward but tedious to show

that the inverse of the information matrix can be expressed as

I�1ðp;RÞ ¼
p4 R ðR� 1Þ

2

Nð2 p2 R2 � p2 R� 2 pRþ 1Þ

c1 1 � � � 1 d

1 c2 1 1 d

� � � � � � � � � � � � � � �

1 1 � � � cg d

d d d d h

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

ð5Þ

Homogeneity Test for Correlated Binary Data

PLOS ONE | DOI:10.1371/journal.pone.0124337 April 21, 2015 4 / 12



where

ci ¼
ðR p2 � 2 pþ 1Þ ð1� pRÞN

2 p3 R ðR� 1Þ
2
mi

þ 1; i ¼ 1; . . . ; g;

d ¼
2 p2 R2 � p2 R� 2 pRþ 1

p3 ðR� 1Þ
;

h ¼
ð2 p2 R2 � p2 R� 2 pRþ 1Þ

2

p6 ðR� 1Þ
2

:

With the MLEs and information matrix derived, we consider the following test statistics.

Likelihood ratio test (TLR)

The likelihood ratio (LR) test is given by

TLR ¼ 2½lðp̂1; . . . ; p̂g ; R̂Þ � lðp̂H0
; . . . ; p̂H0

; R̂H0
Þ�:

Under the null hypothesis, TLR is asymptotically distributed as a chi-square distribution with g

− 1 degrees of freedom.

Wald-type test (TW)

The null hypothesis H0 : π1 = � � � = πg can be alternatively expressed as C β
T = 0 where β = (π1,

� � �, πg, R) and

C ¼

1 �1 0

1 �1 0

. .
. . .

. ..
.

1 �1 0

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

g�1;g

:

Wald-type test statistic (TW) for testingH0 can be expressed as

TW ¼ ðbCTÞðCI�1CTÞ
�1
ðCbTÞjb ¼ ðp̂1; . . . ; p̂g ; R̂Þ;

where I is the Fisher information matrix for and TW is asymptotically distributed as a chi-

square distribution with g − 1 degrees of freedom. TW can be simplified as

TW ¼

Pg

i;j¼1
p̂ ip̂ jDij

Pg

k¼1
ðb2k � hakÞ

;
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where

Dij ¼

(

ðb2i � haiÞ
P

k 6¼i ak þ aið
P

k 6¼ibiÞ
2; if i ¼ j;

biaj
P

k 6¼jbk þ bjai
P

k6¼i bk � haiaj � bibj
P

k 6¼i;j ak; if i 6¼ j;

ak ¼
�2mkð2R̂

2p̂2
k � R̂p̂2

k � 2R̂p̂k þ 1Þ

p̂kðR̂
2p̂3

k � 3R̂p̂2
k þ R̂p̂k þ 2p̂k � 1Þ

;

bk ¼
2mkð1� R̂Þp̂2

k

R̂2p̂3
k � 3R̂p̂2

k þ R̂p̂k þ 2p̂k � 1
;

h ¼
X

g

i¼1

mi

p̂4
i

1� 2p̂ i þ R̂p̂2
i

þ
p̂2

i

R̂
þ

2p̂3
i

1� R̂p̂ i

" #

:

Other multivariate tests of π’s can be similarly done by choosing the corresponding Cmatrix

in the above statistic. Further, a Wald-type test statistic for testing H0a : πi = πj vsH1a : πi 6¼ πj, i

6¼ j can be given by

TWaði; jÞ ¼ ðbcTÞðcI�1cTÞ
�1
ðcbTÞjb ¼ ðp̂1; . . . ; p̂g ; R̂Þ;

where c = (0, . . ., 1, . . ., −1, . . ., 0) with 1 in the ith element and −1 in the jth element. TWa is as-

ymptotically distributed as a chi-square distribution with 1 degree of freedom. TWa(i, j) can be

simplified as

TWaði; jÞ ¼
aiajðp̂ i � p̂ jÞ

2
ð
Pg

k¼1
ðb2k=akÞ � hÞ

ðai þ ajÞð
Pg

k6¼i;jðb
2
k=akÞ � hÞ þ ðbi þ bjÞ

2
:

Score test (TSC)

The score test statistic TSC is given by

T2
SC ¼ UIðp;RÞ

�1
UT jp1 ¼ � � � ¼ pg ¼ p̂H0

;R ¼ R̂H0

where

U ¼
@l

@p1

; . . . ;
@l

@pg

; 0

 !

and see (Eq 5) for the formula of the inverse of the information matrix I(π, R)−1.

It can be simplified as

T2
SC ¼

X

g

k¼1

NðS2
1
m0k � S0S1ðm1k þ 2m2kÞ þ 2S0S2m1kÞ

2

S0S1ðS
3
1 þ S0S

2
1
þ 4S0S

2
2
Þmk

ð6Þ

after lengthy algebra calculations. T2
SC is asymptotically distributed as a chi-square distribution

with g − 1 degree of freedom.

Remark 1. One limitation of the score statistic is that it cannot be computed if S0 = 0 or S1 =

0. We dealt with this problem by adding 1/(2g) tomij for such situations.

Homogeneity Test for Correlated Binary Data
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Remark 2. [1] derived a score test TSC for g = 2 as

TSC ¼
N½S0S1ðm11 þ 2m21Þ �m01S

2
1
� 2m11S0S2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1m2S0S1½S
2
1
ðS0 þ S1Þ þ 4S0S

2
2
�

p ;

which is equivalent to (Eq 6).

Monte Carlo simulation studies

We now investigate the performance of proposed statistics and testing procedures discussed in

the previous section. First, we investigate the behavior of the type I error rates of various proce-

dures for g = 2,3,4,5; sample sizem1 = � � � =mg = 20, 40, 60, 80 and 100; π1 = � � � = πg = π0 = 0.5

(0.1)0.8; and R = 1 + ρ(1 − π0)/π0 where ρ = 0.4(0.1)0.6. An imbalanced sample setting is also

considered. In each configuration, 50,000 replications are generated based on the null hypothe-

sis, and empirical type I error rates are computed as the number of rejections/50000. The results

are presented in Table 2. Following [1], we calculated the ratio of empirical type I error rate to

the nominal type I error rate. A test is said to be liberal if the ratio is greater than 1.2 (i.e.,> 6%

for α = 5%), conservative if the ratio is less than 0.8 (i.e.,< 4%), and robust if the ratio is be-

tween 0.8 and 1.2.

Generally, score tests T2
SC produce satisfactory type I error controls for any configuration

while LR tests and Wald tests are liberal, especially for small samples and larger numbers of

groups (g). When g> 2, Wald tests are more liberal than LR tests and these tests get closer

when sample size becomes larger.

LR tests and Wald-type tests are extremely liberal for a small sample size (i.e.,m = 20), and

their actual sizes inflate with the increase of the correlation coefficient (i.e., ρ).

Next, we evaluate the power performance of proposed methods. We consider the alternative

hypotheses withH1 : π = (0.25, 0.4), (0.25, 0.325, 0,4), and (0.25, 0.3, 0.35, 0.4) for g = 2, 3, and

4, respectively. R is chosen as 1, 1.5, and 2.0 and sample sizem1 = � � � =mg = 20, 40, 60, 80 and

100. Ronser’s statistic T is also considered in the simulation studies and the results are pre-

sented in Table 3.

Based on the simulation results, LR and Wald tests are generally more powerful than score

tests and Ronser’s T generally has less power. However, power of LR and Wald tests is often

overestimated in small sample size due to the inflated type I error rates from these tests being

observed (see Table 2). For moderate or large sample sizes, the powers of the three proposed

methods are close. Overall, the score test is highly recommended as it has reasonable power

with satisfactory type I error control.

Examples

We first reanalyze the data presented by [5] to illustrate the newly proposed methods. The data

consists of 218 persons aged 20–39 with retinitis pigmentosa (RP) who were seen at Massachu-

setts Eye and Ear Infirmary. They were classified into four genetic types, namely, autosomal

dominant RP (DOM), autosomal recessive RP (AR), sex-linked RP (SL), and isolate RP (ISO).

The differences between these four groups on the Snellen visual acuity (VA) were assessed. An

eye was considered affected if VA was 20/50 or worse, and normal if VA was 20/40 or better.

The sample used for this analysis consists of 216 persons out of the sample of 218 persons each

of whom had complete information for VA on both eyes (Table 4).

An overall significant difference between the proportions of affected eyes in the four groups

is from 0.0769 to 0.1173 based on proposed methods and 0.010 on Rosner’s statistic T

(Table 5).

Homogeneity Test for Correlated Binary Data
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Table 2. The type I error rates (percent) of various procedures underH0 : π1 = � � � = πg = π0 at α = 0.05 based on 50,000 replicates.

m π0 ρ g = 2 g = 3 g = 4 g = 5

T2
LR T2

W T2
SC T2

LR T2
W T2

SC T2
LR T2

W T2
SC T2

LR T2
W T2

SC

20 0.5 0.4 6.70 6.63 5.39 6.95 8.09 5.06 7.10 9.64 4.99 7.19 10.66 5.05

0.5 6.70 5.76 5.34 7.11 7.66 5.10 7.34 9.48 5.01 7.34 10.81 4.82

0.6 7.11 4.86 5.35 7.27 6.94 4.80 7.72 9.51 4.79 8.19 11.97 4.92

0.6 0.4 6.63 6.51 5.25 6.80 8.18 5.16 7.05 9.42 5.15 6.87 10.44 4.80

0.5 6.64 5.57 5.32 6.82 7.14 4.95 6.96 8.93 4.82 7.38 10.45 4.92

0.6 7.18 4.58 5.37 7.34 6.95 4.91 7.64 9.29 4.89 7.80 11.54 4.85

0.7 0.4 6.46 6.28 4.76 6.79 7.96 5.05 6.85 9.28 4.92 6.99 10.55 4.77

0.5 6.90 5.58 5.11 6.89 7.23 4.90 7.30 9.06 4.77 7.64 10.98 4.91

0.6 7.46 4.43 5.02 7.72 6.94 4.80 7.97 10.36 4.73 8.42 13.80 4.92

0.8 0.4 6.76 6.51 4.94 7.26 8.35 4.85 7.49 10.37 4.81 7.71 12.15 4.75

0.5 7.58 5.45 4.99 7.92 7.89 4.78 8.04 11.50 4.72 8.24 14.92 4.65

0.6 7.81 4.00 4.37 8.31 6.94 4.46 8.15 11.87 4.42 8.28 17.56 4.52

40 0.5 0.4 5.72 5.61 5.07 6.00 6.42 5.16 5.86 7.01 4.97 6.00 7.66 5.03

0.5 5.71 5.11 5.15 5.84 5.89 4.98 5.90 6.80 4.91 6.11 7.55 4.92

0.6 5.76 4.66 5.13 5.84 5.48 4.98 6.12 6.62 4.97 6.20 7.45 5.02

0.6 0.4 5.58 5.48 4.98 5.72 6.08 5.05 5.83 6.90 4.98 5.87 7.48 4.99

0.5 5.74 5.13 5.14 5.82 5.83 5.03 6.04 6.73 5.18 6.16 7.57 5.13

0.6 5.84 4.73 5.19 5.79 5.37 5.00 5.98 6.49 4.94 6.05 7.43 4.97

0.7 0.4 5.62 5.41 5.03 5.84 6.11 5.13 5.58 6.42 4.85 5.71 7.30 4.89

0.5 5.59 4.94 4.96 5.88 5.79 5.21 5.86 6.65 5.05 5.69 7.28 4.89

0.6 5.74 4.56 5.00 5.73 5.60 4.88 6.01 6.76 5.00 6.08 7.59 4.97

0.8 0.4 5.76 5.33 5.30 5.85 6.16 4.99 5.98 7.19 5.10 6.00 8.00 5.04

0.5 5.58 4.63 4.97 5.68 5.78 4.76 5.81 6.87 4.68 6.00 7.79 4.92

0.6 5.85 4.44 4.91 5.91 5.71 4.67 6.20 7.23 4.77 6.43 8.51 4.71

60 0.5 0.4 5.39 5.20 4.94 5.67 6.02 5.06 5.60 6.27 4.95 5.62 6.77 4.91

0.5 5.57 5.10 5.11 5.85 5.83 5.23 5.75 6.28 5.02 5.74 6.59 4.99

0.6 5.58 4.67 5.06 5.60 5.28 5.02 5.84 6.08 5.15 5.51 6.39 4.79

0.6 0.4 5.57 5.46 5.19 5.57 5.77 5.06 5.38 6.09 4.86 5.80 6.75 5.14

0.5 5.36 4.90 4.97 5.42 5.39 5.01 5.55 5.85 4.94 5.57 6.39 4.91

0.6 5.56 4.79 5.21 5.56 5.33 4.98 5.52 5.78 4.93 5.69 6.62 4.95

0.7 0.4 5.46 5.24 5.09 5.51 5.62 5.10 5.60 6.23 5.08 5.44 6.47 4.85

0.5 5.44 4.99 5.10 5.54 5.51 5.08 5.48 6.02 4.97 5.47 6.55 4.85

0.6 5.42 4.70 5.04 5.32 5.14 4.84 5.50 5.82 4.91 5.47 6.57 4.82

0.8 0.4 5.41 5.05 5.07 5.52 5.69 5.01 5.47 6.19 4.94 5.50 6.76 4.97

0.5 5.42 4.79 5.04 5.67 5.58 5.19 5.61 6.14 4.98 5.53 6.91 4.80

0.6 5.36 4.56 4.87 5.76 5.59 5.08 5.78 6.54 4.88 5.81 7.33 4.94

80 0.5 0.4 5.29 5.17 4.95 5.56 5.75 5.12 5.61 6.21 5.13 5.50 6.32 5.00

0.5 5.25 4.88 4.91 5.34 5.37 5.02 5.43 5.75 4.90 5.53 6.14 4.96

0.6 5.34 4.72 5.05 5.49 5.26 5.08 5.50 5.70 4.93 5.59 6.09 5.04

0.6 0.4 5.46 5.34 5.23 5.41 5.51 4.99 5.25 5.66 4.82 5.38 6.10 4.98

0.5 5.32 4.91 5.02 5.26 5.25 4.96 5.47 5.77 5.16 5.37 5.98 4.97

0.6 5.31 4.75 4.98 5.35 5.12 5.00 5.59 5.81 5.15 5.35 6.04 4.92

0.7 0.4 4.99 4.78 4.75 5.30 5.41 4.97 5.30 5.74 4.92 5.45 6.24 4.98

0.5 5.35 4.93 5.13 5.36 5.26 5.06 5.58 5.96 5.16 5.37 6.00 4.90

0.6 5.38 4.83 5.13 5.41 5.38 5.03 5.39 5.83 4.91 5.42 6.01 4.86

0.8 0.4 5.32 4.97 5.08 5.47 5.51 5.09 5.35 5.81 4.97 5.40 6.22 4.96

(Continued)
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The maximum likelihood estimates and pairwise comparisons based onWald-type test

TWa(i, j) are shown in Table 6. It shows a significant difference between DOM and AR

(p = 0.0207).

Another example was a recent study from a cross-sectional, population-based sample in

Iran assessing the prevalence of avoidable blindness [11]. Nearly 3000 persons were examined

and blindness was assessed for seven age groups (Table 7). Test statistics T2
LR ¼ 134:7,

T2
W ¼ 89:1, T2

SC ¼ 161:1, and T = 202.0 consistently show the significant age differences (p-

values< 0.0001), and MLE R̂ ¼ 3:35 (r̂ i ¼
p̂ i

1�p̂ i
ðR̂ � 1Þ are from 0.05 to 0.59) shows positive

correlations between eyes for the same person.

Concluding remarks

In this article, we investigated three procedures for testing the homogeneity of correlated data

with a cluster size of two. We derived the maximum likelihood estimate algorithm by utilizing

Table 2. (Continued)

m π0 ρ g = 2 g = 3 g = 4 g = 5

T2
LR T2

W T2
SC T2

LR T2
W T2

SC T2
LR T2

W T2
SC T2

LR T2
W T2

SC

0.5 5.04 4.61 4.83 5.51 5.44 5.16 5.60 6.05 5.14 5.27 6.22 4.86

0.6 5.19 4.64 4.92 5.39 5.40 4.86 5.46 6.00 4.90 5.49 6.52 4.86

100 0.5 0.4 5.23 5.09 4.94 5.27 5.38 4.98 5.34 5.81 4.98 5.21 5.90 4.72

0.5 5.41 5.13 5.17 5.40 5.44 5.01 5.32 5.64 4.98 5.44 5.96 4.99

0.6 5.39 4.85 5.16 5.45 5.25 5.14 5.28 5.38 4.83 5.47 5.78 4.95

0.6 0.4 5.33 5.23 5.13 5.42 5.63 5.18 5.46 5.79 5.15 5.17 5.82 4.83

0.5 5.11 4.85 4.91 5.40 5.29 5.02 5.39 5.62 5.07 5.13 5.66 4.79

0.6 5.26 4.87 5.07 5.48 5.23 5.21 5.37 5.48 4.96 5.09 5.53 4.76

0.7 0.4 5.37 5.16 5.18 5.15 5.23 4.85 5.44 5.74 5.05 5.35 5.87 5.08

0.5 5.17 4.90 5.00 5.15 5.08 4.91 5.16 5.47 4.86 5.28 5.83 4.96

0.6 5.50 5.06 5.29 5.38 5.27 5.08 5.36 5.61 4.99 5.30 5.87 4.93

0.8 0.4 5.33 5.09 5.09 5.04 5.12 4.78 5.29 5.72 4.91 5.31 5.93 4.95

0.5 5.16 4.79 4.93 5.23 5.21 4.97 5.45 5.84 5.03 5.38 6.21 4.88

0.6 5.18 4.72 4.88 5.38 5.31 4.96 5.62 6.04 5.19 5.38 6.35 4.85

* 0.5 0.4 6.32 6.87 5.30 6.14 7.42 4.92 6.62 8.69 5.15 6.29 9.33 4.81

0.5 6.44 6.54 5.29 6.49 7.30 5.05 6.60 8.47 4.93 6.62 9.50 4.86

0.6 6.54 6.07 5.13 6.58 7.11 4.93 6.88 8.66 4.91 6.88 9.76 4.95

0.6 0.4 5.91 6.42 5.07 6.12 7.34 4.98 6.33 8.40 5.04 6.40 9.31 5.10

0.5 6.00 6.16 4.95 6.48 7.39 5.19 6.61 8.31 5.17 6.32 9.10 4.77

0.6 6.16 5.99 4.85 6.52 6.91 4.97 7.15 8.54 5.06 6.91 9.69 4.92

0.7 0.4 6.00 6.44 5.13 6.17 7.36 5.09 6.19 8.30 4.88 6.26 9.26 4.82

0.5 6.26 6.24 5.19 6.30 7.25 4.91 6.50 8.20 4.83 6.75 9.48 5.11

0.6 6.56 6.15 5.04 6.75 7.28 4.90 6.99 8.90 4.77 6.58 9.90 4.67

0.8 0.4 6.20 6.74 5.01 6.48 7.60 5.07 6.78 9.04 4.92 6.71 9.93 4.81

0.5 6.77 6.71 5.04 6.69 7.65 4.72 7.09 9.59 4.80 6.72 10.54 4.62

0.6 7.16 7.08 4.63 7.50 9.41 4.83 7.75 12.24 4.78 7.36 14.32 4.60

* unequal sample sizes: (m1, . . ., mg) = (20,40), (20,30,40), (20, 25, 30, 35), (20,25,30,35,40) for g = 2,3,4,5, respectively.

doi:10.1371/journal.pone.0124337.t002
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Table 3. The power (percent) of various procedures at α = 0.05 based on 50,000 replicates.

m R g = 2 g = 3 g = 4

T2
SC T2

LR T2
W

T T2
SC T2

LR T2
W

T T2
SC T2

LR T2
W

T

20 1.0 29.5 31.7 33.5 30.2 22.1 24.8 28.7 22.7 20.6 23.5 28.5 20.9

1.5 24.7 29.2 29.9 24.5 18.7 23.2 26.0 18.7 17.4 22.1 26.6 16.8

2.0 30.0 36.4 29.8 21.3 23.6 30.8 27.4 16.1 21.9 29.4 29.4 14.8

40 1.0 52.2 53.5 54.9 52.8 41.9 43.6 46.1 42.3 39.9 41.7 44.7 40.1

1.5 45.6 48.7 49.3 44.1 35.9 39.5 41.3 34.2 34.4 37.8 40.7 32.3

2.0 55.9 60.0 55.6 37.6 45.8 50.6 48.3 29.1 43.7 48.7 48.2 27.2

60 1.0 69.8 70.6 71.5 70.2 59.4 60.6 62.3 60.0 57.5 58.8 60.9 57.8

1.5 62.7 64.8 65.3 60.1 52.3 54.8 56.3 49.5 50.4 53.1 55.2 47.3

2.0 74.3 76.6 74.4 52.6 64.8 68.2 66.8 42.0 63.4 66.9 66.2 40.2

80 1.0 81.7 82.2 82.7 82.1 72.9 73.7 74.7 73.2 71.4 72.2 73.6 71.5

1.5 75.9 77.2 77.6 72.7 65.8 67.6 68.7 62.3 64.7 66.6 68.0 61.0

2.0 86.1 87.2 86.1 64.5 78.4 80.6 79.7 53.8 78.0 80.2 79.9 52.3

100 1.0 89.4 89.6 89.9 89.6 82.6 83.1 83.7 82.7 82.0 82.5 83.4 82.1

1.5 84.8 85.6 85.9 82.1 76.4 77.7 78.5 73.0 75.5 76.9 77.9 71.6

2.0 92.8 93.4 92.8 74.3 87.4 88.9 88.4 64.6 87.4 88.8 88.6 63.0

H1 : π = (0.25, 0.4) (0.25, 0.325, 0,4) (0.25, 0.3, 0.35, 0.4)

Note: T is the test statistic [5].

doi:10.1371/journal.pone.0124337.t003

Table 4. Distribution of the number of affected eyes for persons in each genetic type [5].

genetic type

number of affected eyes DOM AR SL ISO

0 15 7 3 67

1 6 5 2 24

2 7 9 14 57

doi:10.1371/journal.pone.0124337.t004

Table 5. Statistic and p-value for comparing VA for different genetic types of RP.

method T2
LR T2

W T2
SC

T

statistic 5.8862 6.2966 6.8475 11.36

p-value 0.1173 0.0980 0.0769 0.010

doi:10.1371/journal.pone.0124337.t005
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the root of third order polynomial equations. The Fisher scoring method is usually criticized

for converging slowly, especially when the number of parameters is large (e.g. g is large). How-

ever, the algorithm derived in this paper is very efficient. This is because only R is updated by

Fisher scoring iterations, and πi, i = 1, . . ., g are the roots of third order polynomials, a closed

form solution.

Simulation results showed that the proposed approach (score test) has satisfactory type I

error control and reasonable power, regardless of number of groups, sample size, or parameter

configurations. On the other hand, the LR test and Wald test have inflated type I error in small

sample size. When sample size becomes larger, the three test procedures get closer.

For binary correlated data, there are alternative ways to solve the MLE iteratively or perform

hypothesis testing by model-based methods, e.g., GENMOD or GLIMMIX in SAS. However,

neither iterative version of test statistics nor model-based method provides the explicit form of

the test statistic. The explicit form of the test statistic in our proposed method is useful not only

for its simplicity, but also for further development of the exact test. For example, in small sam-

ple situation, an exact test may overcome the inflated type I error rate and thus is highly desir-

able. To perform exact test, it will requires extensive calculations which makes it nearly

impossible using iterative versions of test statistics or model-based methods.

To overcome inflated type I error control in asymptotic tests, [10] and [12] considered exact

tests for g = 2. We consider the exact tests for g> 2 as interesting future work.

A user-friendly web-based calculator, including model estimations, hypothesis testings, and

simulations, is available from the corresponding author upon request.

Table 6. Wald-type test results comparing VA for different genetic types of RP.

Group i MLE p̂^i Standard Error Comparison group

DOM AR SL ISO

DOM 0.3930 0.0041 – -0.0868 (p = 0.3116) -0.1698 (p = 0.0207) -0.1001 (p = 0.1363)

AR 0.4798 0.0039 – -0.0830 (p = 0.2135 -0.0132 (p = 0.8284)

SL 0.5628 0.0022 – 0.0697 (p = 0.0748)

ISO 0.4931 0.0011 –

^R
^¼ 1:6639

doi:10.1371/journal.pone.0124337.t006

Table 7. Prevalence of avoidable blindness from a sample population in Iran [11].

Age Group Blindness Sample Prevalence MLE

None Unilateral Bilaterial

50–54 yrs 964 23 2 0.014 0.014

55–59 yrs 541 17 8 0.029 0.030

60–64 yrs 469 18 4 0.026 0.027

65–69 yrs 257 16 5 0.047 0.048

70–74 yrs 242 32 3 0.069 0.067

75–79 yrs 127 30 9 0.145 0.134

80+ yrs 104 29 10 0.171 0.149

doi:10.1371/journal.pone.0124337.t007
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