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Abstract

We investigate the way big rips are approached in a fully inhomogeneous description of the

space-time geometry. If the pressure and energy densities are connected by a (supernegative)

barotropic index, the spatial gradients and the anisotropic expansion decay as the big rip is

approached. This behaviour is contrasted with the usual big-bang singularities. A similar

analysis is performed in the case of sudden (quiescent) singularities and it is argued that the

spatial gradients may well be non-negligible in the vicinity of pressure singularities.
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Consider the situation where the matter content of the present Universe is dominated by

a perfect fluid with barotropic index w = p/ρ < −1. Evidence of this possibility seems to

be suggested from the analysis of Type Ia supernovae. If this is the case future singularities

may be expected [1, 2] (see also Refs. [3, 4, 5]).

In the present paper we intend to study the nature of future big rip singularities in a

fully inhomogeneous approach whose relevance in the context of usual big-bang singularities

has been exploited long ago [6] (see also [7, 8] and references therein). For instance, in the

case of conventional big-bang singularities one can show that the relative contribution of the

gradients decays as the singularity is approached. Does the same happens in the case of

future (big-rip) singularities? In the case of big-bang singularity the anisotropy is believed

to play an important rôle in the way the singularity is effectively approached. is this true

also for big-rips? These are some of the questions we ought to address.

Consider first the case where the perfect barotropic fluid filling the Universe is charac-

terized by a supernegative equation of state, i.e. w = −1 − ǫ, with ǫ > 0. We shall then

be interested in the contribution of the spatial gradients as the the big rip is approached.

To achieve this goal Einstein equations must be written in fully inhomogeneous terms. By

writing the line element as 2

ds2 = dt2 − γij(~x, t)dxidxj , (1)

the Hamiltonian and momentum constraints take the form 3

K2 − TrK2 + r = 16πG[(p + ρ)u0u
0 − p], (2)

∇iK −∇kK
k
i = 8πG(p + ρ)u0ui, (3)

where

Kj
i = −1

2
γjk ∂

∂t
γki, K = Ki

i , TrK2 = Kj
i K

i
j , (4)

and where r = ri
i is the trace of the spatial (instrinsic) curvature computed from the three

dimensional Ricci tensor in terms of γij. The (ij) components of Einstein equations are,

instead,
1√
γ

∂

∂t

(√
γKj

i

)

− rj
i = 4πG[−2(p + ρ)uiu

j + (p − ρ)δj
i ]. (5)

where γ = det(γij).

Consider then the following expansion of the spatial metric, i.e.

γij(~x, t) = a2(t)[αij(~x) + βij(~x, t)], (6)

when the term βij(~x, t) contains the contribution of the gradients while αij(~x) does not con-

tain any gradient. Recalling that the inverse metric, to this order in the gradient expansion,
2Note that, in this approach, γij(~x, t) contains 6 independent degrees of freedom corresponding to the

correct number of initial conditions required for a general discussion of the problem.
3In the following the overdot will denote a partial derivation with respect to the cosmic time coordinate.
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is given by γij = [αij − βij]/a2(t), the extrinsic curvature (and its traces) can be readily

computed. For instance, from Eqs. (4) and (6)

Kj
i = −(Hδj

i +
β̇j

i

2
), (7)

where H = ȧ/a. Since from the momentum constraint (3) the velocity field is always of

higher order in the gradient expansion, i.e.

u0ui =
∂kβ̇

k
i − ∂iβ̇

16πG(p + ρ)
, (8)

the contribution of the peculiar velocity field can be neglected in the remaining equations.

This is not true necessarily to higher order in the gradient expansion.

Thus, recalling that u0u
0 = 1 + αijuiuj/a

2(t), and using Eqs. (4)–(7), Eqs. (2) and (5)

can be written, respectively, as

6H2 + 2Hβ̇ +
P
a2

= 16πGρ, (9)

2(Ḣ + 3H2)δj
i + β̈j

i + 3Hβ̇j
i + Hβ̇δj

i +
2

a2
Pj

i = 8πG(ρ − p)δj
i , (10)

where we defined rj
i = Pj

i /a
2 (in this notation Pj

i and its traces are time-independent).

Clearly the trace-free part of Eq. (10) reduces to

(

β̈j
i −

1

3
β̈δj

i

)

+ 3H
(

β̇j
i −

1

3
β̇δj

i

)

= − 2

a2

(

Pj
i −

1

3
δj
iP

)

. (11)

Equation (10) allows to determine the gradient contribution to the energy density and the

following relation

3(2Ḣ + 3H2) + β̈ + 3Hβ̇ +
P
2a2

= −24πGp, (12)

allows to determine the gradient contribution to the pressure density.

Even if not strictly necessary we can imagine to split ρ and p as

ρ = ρ + ρ̃, p = p + p̃, (13)

where, from Eqs. (10) ρ and p obey the usual Friedmann equations

H2 =
8πG

3
ρ, (14)

(2Ḣ + 3H2) = −8πGp, (15)

ρ̇ + 3H(ρ + p) = 0. (16)

Eq. (16) comes from the (0) component of the covariant conservation equation, i.e.

1√
γ

∂

∂t
{√γ[(p + ρ)u0u

0 − p]} − 1√
γ
∂i[

√
γ(p + ρ)u0u

i] − Kℓ
k[(p + ρ)ukuℓ + pδk

ℓ = 0. (17)
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Equation (17) also implies that ρ̃ and p̃ obey

∂ρ̃

∂t
+ 3H(ρ̃ + p̃) +

β̇

2
(ρ + p) = 0. (18)

According to the same logic, Eq. (9) defines ρ̃ in terms of β̇ and P, i.e.

2Hβ̇ +
P
a2

= 16πGρ̃. (19)

The fully inhomogeneous solution of the system can then be derived and it is:

βj
i (~x, t) = a−2−3ǫBj

i (~x) (20)

Kj
i = −H

[

δj
i −

3ǫ + 2

2
a−2−3ǫBj

i (~x)
]

. (21)

The space-dependent tensor Bj
i is related to the three-dimensional curvature tensor Pj

i by

virtue of Eq. (10); the explicit result is

Pj
i = −H2

0

4
[(3ǫ + 2)(3ǫ − 2)Bj

i − (3ǫ2 + 12ǫ + 4)Bδj
i ]. (22)

The physical significance of Eq. (22) is most easily understood by inverting Eq. (22), i.e.

Bj
i =

4

H2
0 (4 − 9ǫ2)

[

Pj
i −

3ǫ2 + 12ǫ + 4

4(9ǫ + 4)
Pδj

i

]

. (23)

Equation (23) determines Bj
i as a function of the three-dimensional spatial curvature com-

puted from the αij(~x). The form of αij is in a sense arbitrary. But once αij(~x) is fixed, Bj
i (~x)

follow immediately from Eq. (23).

To derive Eqs. (22) and (23) the following parametrization for the scale factor and for

the Hubble factor

a(t) =
(

tbr − t

t0

)

−
2
3ǫ

, H(t) = H0a
3
2
ǫ, (24)

has been used. In Eq. (24) tbr denotes the value of the cosmic time at the moment of the

big-rip singularity. As a consequence of Eqs. (20), (21) and (22) the energy density is

ρ =
3H2

8πG

[

1 +
ǫ

2
a−2−3ǫB(~x)

]

. (25)

Since ǫ > 0, the relative contribution of the gradients to the energy density (second term

inside the squared bracket of Eq. (25)) and to the extrinsic curvature (second term inside

the squared bracket in Eq. (21)) vanishes asymptotically, for t → tbr. For instance, from

Eq. (21), recalling Eq. (24)

Kj
i = −H

[

δj
i −

3ǫ + 2

2

(

tbr − t

t0

)

2(2+3ǫ)
3ǫ Bj

i (~x)
]

. (26)
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This property of big-rip singularities resembles what is known in the case of usual big-bang

singularities where also the gradients decay though with a different power of the cosmic time

coordinate. Big-bang singularities are argued to be homogeneous but also rather anisotropic

[6]. As far as the big-rips are concerned, the situation may be very different.

To illustrate the last point, consider a given time t∗ at which gradients can be already

neglected. This implies, in the notation of Eq. (6), that

αxx = e2 Ax(t), αyy = e2 Ay(t), αzz = e2 Az(t), (27)

where, for simplicity, the tensor αij has been diagonalized 4.

By solving Einstein equations in the absence of spatial curvature it is easy to show that

Ai(t) =
2a(t∗)Ai(t∗)

3(ǫ + 2)

[

1 −
(

a

a∗

)

−
3
2
(ǫ+2)]

(28)

where Ai are integration constants obeying
∑

i Ai = 0. Initial conditions have been fixed by

requiring that Ai(t∗) = 0. Clearly, recalling Eq. (24), in the limit t → tbr the second term

in the squared bracket of Eq. (28) goes to zero and becomes then negligible as the big-rip is

approached. In the case of conventional big-bang singularities, the analog of the second term

in the squared brackets evolves as a3(w−1)/2 with 0 ≤ w < 1. In this case the contribution of

the anisotropy clearly grows in the limit a → 0.

As in the case of conventional big-bang singularities, the evolution of the anisotropy can

also be studied in the more general case when spatial curvature is included [6]. Within

our parametrization the contribution of the curvature always decay as a−2. Therefore, for

t → tbr the rôle of the curvature may be neglected. Again, this property is not realized

in the vicinity of big-bang singularities. Actually, in the case of big-bang singularities the

anisotropy grows as the bang is approached. For more general classes of Bianchi models, also

the spatial curvature grows and this occurrence may induce the celebrated chaotic features

and the related BKL oscillations [6].

Up to now we have considered the case where the big-rip is caused by a perfect barotropic

fluid with w < −1. Needless to say that, in the class of models previously investigated, the

dominant energy condition is violated. In connection with this problem, both in brane-world

models [9, 10] and in four-dimensional Friedmann-Robertson-Walker models [11, 12, 13]

the possible occurrence of a different type of quiescent (or sudden) singularities has been

emphasized. In sudden (future) singularities the scale factor and its first derivative are

both finite but higher derivatives of the scale factor may diverge5. In some class of four-

dimensional examples this behaviour implies that while the energy density is finite at the

rip, the pressure density diverges. As correctly pointed out in [11], sudden singularities may

occur without a violation of the dominant energy condition.

4Non-diagonal (or more general) forms of αij do not change the essence of the argument (see below).
5Along a similar perspective but with a different chain of arguments, Ref. [14] also argues that the

presence of a singularity in the future is not necessary even if the barotropic index is supernegative.
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Consider then the example given in [11] of sudden singularities. The scale factor can be

written as

a(t) =
(

t

ts

)q

(as − 1) + 1 −
(

1 − t

ts

)n

. (29)

For 1 < n < 2 and 0 < q ≤ 1 the solution is defined in the interval 0 < t < ts. For t → 0 the

model has a curvature (big-bang) singularity where the Hubble parameter and the energy

density are both divergent. More interesting is the second singularity taking place for t → ts.

For t → ts the energy density and the Hubble parameter are both finite but the pressure

density and the second time derivative of the scale factor are divergent.

The question we ought to address in the following concerns the nature of the gradient

expansion in the vicinity of sudden singularities. From Eqs. (9) and (10) it can be argued

that the contribution of the gradients to the quasi-isotropic solution may be different if the

scale factor behaves as in Eq. (29): in the limit t → ts both the scale factor and the Hubble

rate are finite for the class of solutions given in Eq. (29). On the contrary, as previously

discussed for big-rips with w < −1, in the limit t → tbr, the scale factor and the Hubble rate

are divergent (see Eq. (24)). This difference is reflected in the contribution of the first-order

gradients.

To avoid the proliferation of parameters, the attention will now be focussed on a particular

model belonging to the class defined by Eq. (29). Consider then the case q = 1/2 and

n = 3/2. Indeed, the same qualitative results hold for all the models of the class described

by Eq. (29) with the appropriate restrictions mentioned above. Let us also define, for

notational convenience the dimensionless variable τ = t/ts. Then a particular solution of

the fully inhomogeneous system including gradients can be easily obtained and expanded for

t ∼ ts, i.e. for τ ∼ 1. The most notable difference is that, in this case, pressure and energy

density are not connected by a barotropic index. The final result for the extrinsic curvature

can be written as

Kj
i = −H(t)δj

i − λ(t)Bj
i (~x), (30)

whith Pj
i = t−2

s Bj
i and where

H(t) =
1

2ts

bs + 3
√

(1 − τ) τ
[

1 − (1 − τ)
3
2 + bs

√
τ
] √

τ

≃ 1

4tsa2
s

[2bsas + 6as

√
1 − τ + (as + bs)bs(1 − τ)] + O(|1 − τ |3/2).

λ(t) = −
6
√

1 − τ − 3
(

−5 + 4
√

1 − τ
)

τ + 10 bs τ
3
2 + 6 τ 2

√
1 − τ

15 ts
(

1 −
√

1 − τ + bs

√
τ +

√
1 − τ τ

)3 , (31)

having defined, for notational convenience, bs = as − 1. As it can be appreciated from the

last equations, the exact expressions are rather cumbersome, therefore, in the following, the

result for the expansion in the limit τ ∼ 1 will be given directly. In particular, factorizing
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H(t) in Eq. (30) and expanding the relative contribution of the gradients we have

Kj
i = −H

{

δj
i +

[

−2

3

2as + 1

bsa2
s

+
2(2as + 1)

b2
sa

2
s

√
1 − τ

+
(as + 2)[1 + a2

s(4as − 13) − 10as]

3b3
sa

3
s

(1 − τ) + O(|1 − τ |3/2)
]

Bj
i (~x)

}

. (32)

Clearly, in the limit τ → 1 (i.e. t → ts) the contribution of the gradients, weighted by the

space-dependent factor B(~x), is not subleading. This behaviour has to be contrasted with

the case of big rip singularities (see, for instance, Eqs. (21) and (26)) where for t → tbr the

gradient contribution is subleading.

In similar the form of ρ and p can also be derived and it is:

ρ = ρ
{

1 −
[

2 (a2
s − 2as − 2)

9 bs
2 a2

s

+
4 (1 + as + a2

s )

3b3
s a2

s

√
1 − τ

+
2 (−2 + 21 as + 17 as

2 + 47 as
3 − 3 as

4 + as
5)

9 as
3 bs

4 (1 − τ) + O(|1 − τ |3/2)
]

B(~x)
}

, (33)

p = p
{

1 +
[

√
1 − τ

3as
− a2

s − 1

18a2
s

(1 − τ) + O(|1 − τ |3/2)
]

B(~x)
}

. (34)

The exact expressions of ρ and p are a bit involved and then their expansion for τ → 1 will

be given

ρ ≃ 3

32πG a2
s t2s

[

b2
s + 6bs

√
1 − τ +

2a3
s − 5a2

s + 13as − 1

as
(1 − τ) + O(|1 − τ |3/2)

]

, (35)

p ≃ 3

16πGast2s
√

1 − τ

[

1 +
a2

s − 1

2a2
s

√
1 − τ − 3(as − 1)

2as
(1 − τ) + O(|1 − τ |3/2)

]

. (36)

From Eq. (33) it can be deduced that as t → ts the gradients are not subleading. Moreover,

from Eq. (35) one can also argue that for t → ts, ρ is finite. On the contrary, in the same

limit, i.e. τ → 1 the pressure density diverges (see Eq. (36)). The amusing thing is that, in

this case, the relative contribution of the gradients of Eq. (34) is subleading as t → ts.

In conclusion, let us summarize the main findings of the present investigation. In the

first part it has been shown that if the dominant source of the background geometry is given

by a perfect fluid with supernegative barotropic index (i.e. w < −1) then the contribution

both of the spatial gradients and of the anisotropy tends to decay as the big-rip singularity is

approached. For the more conventional big-bang singularities the situation is a bit different:

while gradients also decay in the vicinity of the big-bang, the anisotropy and the curvature

may well grow and lead to some type of chaotic approach to the singularity.

We then moved to the analysis of sudden singularities. In this case the dominant energy

condition is not violated. While the scale factor, the Hubble parameter and the energy

density are all finite as the singularity is approached, the pressure density diverges. In this

situation we included the contribution of the gradients and showed in an explicit example
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(representative of a more general class of backgrounds) that the relative contribution of the

gradients does not decay in the vicinity of the sudden singularity.

Various interesting generalizations are left for future works. The analysis of single fluid

big rip singularities can be generalized to a multi-fluid situation in analogy to what recently

discussed in the homogeneous and isotropic case [15]. In this situation it would be also

interesting to discuss the fate of the anisotropy in more general Bianchi models.
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