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Abstract. Current literature suggests that ACE SNP rs4343, ACE 2350A>G in exon 17, T202T, may be the best proxy for the

ACE Alu I/D whereas rs4363 and rs4362 may be slightly stronger predictors of ACE levels. Considering reported difficulties in

genotyping ACE I/D and stronger associations of rs4343 than ACE I/D with plasma ACE levels in Africans, and suitability of

rs4343 for allelic mRNA (cDNA) studies, we developed and validated a liquid phase assay for rs4343, which has advantage on

both functional and technical grounds. We confirmed that rs4343, is in near perfect linkage disequilibrium (D’ = 1, r2 = 0.88,

n = 64) with ACE I/D in Europeans (A and G alleles of rs4343 marking insertion and deletion alleles of ACE I/D respectively).

We then studied its association with metabolic and cardiovascular traits in 3253 British women (60–79 years old).

Apart from a nominal trend of association with diastolic blood pressure (p anova = 0.08; p trend = 0.05), no other associations

were observed. A post-hoc vascular and general phenome scan revealed no further associations.

We conclude that ACE I/D is not a major determinant of metabolic and cardiovascular traits in this population. Liquid phase

genotyping of SNP rs4343 may be preferable to gel based ACE I/D genotyping both for technical and functional reasons.

Keywords: Angiotensin converting enzyme, insertion deletion polymorphism, metabolic syndrome trait, Alu element, single

nucleotide polymorphism

1. Introduction

Genetic variants in the renin angiotensin system

(RAS), which affect cardiovascular function and fluid
balance, have been widely studied. Among them, there
is an insertion deletion (I/D) polymorphism represent-

ing the presence or absence of a 287 base pair (bp) Alu
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element situated in intron 16 of ACE on chromosome

17.

ACE D (deletion) allele has a strong and well repli-

cated association with higher plasma ACE levels [1]

and the major role of ACE in the RAS and in the func-

tion of many tissues, has invited continued study in di-

verse clinical phenotypes, with over 1759 papers iden-

tified in PubMed (http://www.ncbi.nlm.nih.gov/) using

the search phrase “ACE AND genotype”. Large scale

studies or meta-analyses have not found ACE I/D to

be associated with hypertension [2–4] or predictive of
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antihypertensive drug response [5]. For myocardial

infarction, some have not found significant associa-

tion [2], while others have reported modest positive

associations [6,7]. With stroke, association with DD

genotype has been claimed [8], although negative in

another study [9]. DD genotype has been associated

with reduced risk of Alzheimer’s disease (AD) [10],

and it has been suggested that decreased ACE activity

may influence AD susceptibility through beta-amyloid

metabolism [11]. DD genotype has also been report-

ed to be associated with diabetic nephropathy but not

retinopathy [12], and subjects with II genotype have

reduced risk [13]. With systemic lupus erythematous

(SLE), there was no association with ACE I/D in meta-

analysis [14]. Generally, it seems that some reported

associations might be due to small-study bias, and when

very large studies are undertaken, some associations

disappear, such as earlier claims concerning ACE I/D

association with pre-eclampsia [15]. However, other

interesting associations such as with endurance perfor-

mance and positive energy balance [16,17] and abdom-

inal aortic aneurysm [18] and endothelial-dependent

vasodilatation with exercise [19] have not been subject-

ed to extensive replication studies and meta-analyses.

However, ACE I/D genotyping has presented difficul-

ties due to failures of amplification of the larger al-

lele in heterozygotes [20]. More complex amplifi-

cation protocols [21] using flanking primers plus a

primer internal to the Alu insertion element have re-

duced this problem, but gel-based resolution of prod-

ucts is still necessary, which is laborious and time-

consuming, although faster or higher throughput elec-

trophoresis systems such as microplate array diagonal

gel electrophoresis (MADGE) [22], PhastSystem [23]

and capillary electrophoresis [24] offer improvements.

In Europeans, rs4343, ACE 2350A>G (≡A2350G) a

silent substitution in exon 17, is in complete linkage dis-

equilibrium (LD) with ACE I/D [25]. Here, we report

development of a simple liquid phase fluorescence as-

say of the rs4343, its validation as a proxy for ACE I/D

and association study with metabolic syndrome traits

and phenome scan in 3253 British women.

2. Materials and methods

The British Women’s Heart and Health study

(BWHHS) DNA bank consisted of 3253 DNA samples

from British women aged 60–79 years old recruited

in BWHHS [26]. DNA was extracted using a salting

out procedure [27]. All the women included in this

study were described as white by the examining nurse.

A priori we examined the association of rs4343, ACE

2350A>G, with blood pressure and other metabolic

traits (see Table 1) to see if we could replicate earlier

findings with these outcomes. We then undertook a

phenome scan in which dense phenotypic information

in human cohorts is scanned for associations with indi-

vidual genetic variants [28]. We examined the associ-

ation of this SNP with 87 socioeconomic, lifestyle and

health related characteristics of the women. Please find

the list of variables in the supplement 1. Associations

with these variables were examined at two alpha levels:

0.01 and 0.05.

Oligonucleotide primers and probes were:

ACE 2350A>G F 5’ – CCCCTTACAAGCAGAG-

GTGA

ACE 2350A>G R 5’ – CCATGCCCATAACAGG

TCTT

ACE 2350A>G P 5’ – ATGGCCACGTCCCGG

ACE 2350A>G Q 5’ – ATTCAAACCCCTACCA-

GATCTGACGAATG

ACE 2350A>G P (probe) was derivatised with flu-

orescein at 5’ and phosphate at 3’ ends, position of the

SNP is in bold, and ACE 2350A>G Q (quencher) was

derivatised with Dabcyl at 3’.

PCR conditions: templates were 20 ng of genom-

ic DNA, plated on 384-well PCR plates (Cat No.

TF-0384/W, www.abgene.com) in 2 µl of water, and

dried at 80◦C for ten minutes for storage. PCR mix-

ture contained: 0.5 µl of 10× PCR buffer, 0.2 mM

dNTPs, 0.02 µM of the forward and 0.1 µM of the re-

verse primers, 0.04 µM of each probe (MWG-Biotech,

Ebersberg, Germany), 2 mM MgCl2, 0.01 U/µl of Taq

DNA Polymerase (Promega, Madison, WI, USA) and

H2O to 5 µl. Thermal cycling was on an MJ Tetrad

(Bio-Rad, Hercules, CA): 94◦C for 2 minutes, 94◦C

for 30 seconds, 56◦C for 30 seconds 72◦C for 30 sec-

onds, last three steps were repeated for 99 cycles, and

72◦C for 2 minutes. PCR products were loaded with

5 µl of chillout 14 Liquid waxTM (MJ Research Inc,

www.mjr.com), then centrifuged at 3000 rpm for 3 min-

utes before loading the 384 well plate into a LightTyper

instrument (Cat No. 03 357414001, Roche Diagnostics

GmbH, USA). LightTyper is a high-throughput geno-

typing technology using fluorescent melting curves [29,

30]. In brief, an oligonucleotide pair (a quencher and a

fluorescent probe) was present during PCR. The single-

base variation binding probe was derivatized with flu-

orescein at the 5’ end and phosphate at the 3’ end and

was complementary in its middle third to one of the

alleles represented, and the quencher oligonucleotide



M.R. Abdollahi et al. / Homogeneous assay of rs4343, an ACE I/D proxy 13

Table 1

Associations of genotype with components of the metabolic syndrome

Mean or % (95% CI) of phenotype by genotype P anova (2df)b P trend (1df)b

AA (n = 806) GA (n = 1671) GG (n = 776)

Insulin 6.89 6.88 7.08 0.57 0.41

(µU/l)* (6.55, 7.24) (6.66, 7.10) (6.76, 7.42)

Glucose 5.95 5.91 5.92 0.73 0.67

(mmol/l)* (5.87, 6.03) (5.86, 5.97) (5.85, 6.00)
Triglyceride 1.65 1.65 1.70 0.30 0.20

(mmol/l)* (1.60, 1.70) (1.61, 1.69) (1.65, 1.75)

HDL-C 1.65 1.66 1.65 0.71 0.95

(mmol/l) (1.62, 1.68) (1.64, 1.69) (1.62, 1.68)

CRP 1.88 1.85 1.83 0.94 0.64

(mg/l)* (1.74, 2.03) (1.75, 1.95) (1.69, 1.98)

Fibrinogen 3.41 3.46 3.42 0.19 0.80

(g/l) (3.37, 3.46) (3.43, 3.50) (3.37, 3.47)
Systolic BP 147.2 146.8 147.8 0.36 0.67

(mmHg) (145.4, 149.0) (145.6, 148.1) (146.0, 149.6)

Diastolic BP 79.1 79.3 80.3 0.08 0.05

(mmHg) (78.3, 79.9) (78.7, 79.8) (79.5, 81.1)

Hypertensive 48.7 48.4 50.1 0.72 0.57

(%)a (45.2, 52.2) (46.0, 50.8) (46.6, 53.7)

BMI 27.4 27.7 27.6 0.55 0.52

(kg/m2) (27.1, 27.8) (27.4, 27.9) (27.2, 27.9)

Waist/hip 0.821 0.817 0.817 0.52 0.21

(0.817, 0.826) (0.814, 0.820) (0.813, 0.822)
Height 1590 1587 1589 0.44 0.76

(mm) (1586, 1594) (1584, 1590) (1585, 1593)

*Geometric means and 95% CI of geometric mean.
ahypertension defined as systolic blood pressure >=160 mmHg or diastolic blood pressure >=100 mmHg

or taking antihypertensive medication.
b2df is test for genotype and 1df is regression on allele.

was derivatized with Dabcyl at its 3’ end located ad-
jacent to the probe for the single-base variation. The
anchor quencher oligonucleotide quenches the probe
for the single-base variation while in its vicinity. With
increasing temperature, the probe dissociates from its
target strand, thus releasing its fluorescein from the
vicinity of the Dabcyl quencher with a consequent in-
crease in fluorescence. The first derivative of the fluo-
rescence curve thus shows peaks at two separate melt-
ing temperatures when the single-base variations is in
the heterozygous state.

64 random DNA samples of the BWHHS were also
genotyped for ACE I/D [22] in order to perform LD
analysis with the SNP. Statistical analyses including
ANOVA (for genotype associations with phenotypes)
and regression (for allelic association with phenotypes)
were performed using Stata 9.0 (http://www.stata.com).
D’ and r2 were calculated according to Lewontin RC
(1964) and Zapata C et al. (2001) [31,32].

3. Results

Figure 1 shows the pattern of genotypes done blind-
ed to sample and other genotyping (e.g. ACE I/D) data.

Three completely distinctive patterns were obtained.

Asymmetric locations of blank wells in microplates en-

sured no possibility of plate swap errors or rotations.

Genotype frequencies were AA = 806, AG = 1671 and

GG = 776, which are in Hardy-Weinberg equilibrium

(χ2 = 2.5, p = 0.12). The SNP was in complete LD

with the ACE I/D (D’ = 1, χ2 = 112.90, p = 2 ×
10−26) with an r2 (correlation) of 0.88. It should be

noted that any significant genotyping error rate would

‘create’ a fourth haplotype, i.e. unity value for D’, im-

plying fewer than four haplotypes, would not occur.

The I allele corresponds with A2350, and the D allele

corresponds with 2350G, consistent with a previous

report in a similar population [33].

Apart from a borderline association with diastolic

blood pressure (p anova = 0.08; p trend = 0.05)

with GG (corresponds with DD) genotype averaging

1 mmHg higher level, there was no statistically signifi-

cant association with any metabolic syndrome trait (Ta-

ble 1) nor with any of the characteristics included in the

phenome scan (all p-values >0.2). Analysis of a core

set of 16 variables is shown in Table 1. Adjustment of

the genotype-diastolic blood pressure association for

age, use of antihypertensive medication and body mass
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Fig. 1. The pattern of 2350A>G genotypes. Genotypes a, b and c

show genotypes AA, AG, and GG respectively. X axis represents

temperature in ◦C, Y axis represents the first derivative of the fluo-

rescence curve against temperature.

index produced results identical to those without these

adjustments (presented in Table 1), since genotype was

not associated with any of these characteristics.

4. Discussion

Here, we describe a liquid phase genotyping assay

of rs4343 using 384 well endpoint PCR and 384 well

microplate LightTyper reader. We also validated the

strong LD (r2 = 0.88) of this SNP with ACE I/D in

comparison with (r2 = 0.91) [11]. In Europeans, this

assay can substitute gel based ACE I/D typing which

is susceptible to size dependent preferential amplifica-

tion of alleles [20,34]. Further, this assay has benefits

with respect to cost, convenience, time and automa-

tion which are of particular importance to large scale

epidemiological studies. This assay could also facili-

tate the implementation of genotype-specific reference

ranges for serum ACE level in diagnostic contexts.

As the I/D is located in an intron, there is uncer-

tainty about its possible causal role or the mechanism

of its effects. The D allele of ACE I/D is associated

with higher mRNA levels [35,36] and with higher ACE

activity [1], with almost two fold difference between

opposite homozygotes. The ACE I/D does not seem to

affect splicing [37], but fine mapping does not exclude

a causal role for another SNP in very strong LD with

ACE I/D. There appears to be stronger association with

ACE levels for rs4343 than for the ACE I/D itself, in

Africans [38]. However, we note that splice score pre-

dictions (http://www.fruitfly.org/seq tools/splice.html)

are essentially identical for the alleles of rs4343 and

Zhu et al. (2000) [39] demonstrated highest SNP asso-

ciation with ACE levels for rs4363 in an interval from

intron 25 to 3’ noncoding region, slightly 3’ to ACE

I/D and rs4343. SNP rs4343, by contrast, most closely

tags ACE I/D and is exonic.

Our study was of a female population and did not

identify any positive associations with metabolic traits

or with a large number of health and lifestyle related

characteristics. Per allele effects (based on known trend

of ACE levels across the three genotype groups) and

hence the use of 1 degree of freedom (d.f) regression

tests for phenotypes, might be considered the most ap-

propriate genetic model, but 2d.f ANOVA tests of geno-

types were also negative for all traits studied. There

is significant evidence in the literature that various as-

sociations of ACE I/D (hypertension, diastolic blood

pressure, overweight, and abdominal obesity) may be

male specific [40–42]. However, not all studies have

confirmed a male specific effect [43–45], and caution is

required in interpreting such sub-group analyses since

they are often performed post-hoc when no overall ef-

fect has been found. In mice also, the blood pressure

effect of ACE I/D predominates in males [46,47], al-

though the mechanism remains obscure.

Prince JA et al. (2001) [48], genotyped rs4343 as

a surrogate to ACE I/D, using Dynamic Allele Spe-

cific Hybridization. The DASH system utilises allele

specific hybridization and fluorescence monitoring of
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oligonucleotide dissociation from target, but requires

post PCR steps of solid phase binding,double strand de-

naturation, neutralisation and oligonucleotide anneal-

ing prior to the read step.

TaqMan assays represent a more integrated one step

liquid phase assay design and TaqMan assay of ACE

SNPs has been reported in a Japanese population [49].

Among seven studied SNPs, which were in LD with

ACE I/D, rs4341 (in intron 16) was shown to give good

resolution in a TaqMan assay. However, rs4343, which

is presently the most plausible causal site for effect on

ACE level [38] was not studied. Capital and consum-

ables costs are much higher for TaqMan than for the

approach described here. rs4343 is an exonic SNP with

the potential also of being studied at the mRNA level.

In summary, we have developed and validated an

economical high throughput SNP assay for rs4343, a

SNP tag for the ACE I/D which is also a silent coding

SNP expressed at the mRNA level. We have applied

this assay to a phenome scan in a large cardiovascular

risk survey of British women. We found no strong ev-

idence that this SNP was associated with blood pres-

sure, metabolic traits or other characteristics in these

women.
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