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We establish wavelet characterizations of homogeneous Besov spaces on stratified Lie groups, both
in terms of continuous and discrete wavelet systems. We first introduce a notion of homogeneous
Besov space Ḃs

p,q in terms of a Littlewood-Paley-type decomposition, in analogy to the well-

known characterization of the Euclidean case. Such decompositions can be defined via the spectral
measure of a suitably chosen sub-Laplacian.We prove that the scale of Besov spaces is independent
of the precise choice of Littlewood-Paley decomposition. In particular, different sub-Laplacians
yield the same Besov spaces. We then turn to wavelet characterizations, first via continuous
wavelet transforms (which can be viewed as continuous-scale Littlewood-Paley decompositions),
then via discretely indexed systems. We prove the existence of wavelet frames and associated
atomic decomposition formulas for all homogeneous Besov spaces Ḃs

p,q with 1 ≤ p, q < ∞ and
s ∈ R.

1. Introduction

To a large extent, the success of wavelets in applications can be attributed to the realization
that wavelet bases are universal unconditional bases for a large class of smoothness spaces,
including all homogeneous Besov spaces. Given a wavelet orthonormal basis {ψj,k}j,k ⊂

L2(Rn) (consisting of sufficiently regular wavelets with vanishing moments) and f ∈ L2(Rn),
the expansion

f =
∑

j,k

〈
f, ψj,k

〉
ψj,k (1.1)
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converges not only in ‖ · ‖L2 , but also in any other Besov space norm ‖ · ‖Ḃs
p,q
, as soon as f is

contained in that space. Furthermore, the latter condition can be read off the decay behaviour

of the wavelet coefficients {〈f, ψj,k〉}j,k associated to f in a straightforward manner.

This observation provided important background and heuristics for many wavelet-

based methods in applications such as denoising and data compression, but it was also

of considerable theoretical interest, for example, for the study of operators. In this paper

we provide similar results for simply connected stratified Lie groups. To our knowledge,

studies of Besov spaces in this context have been largely restricted to the inhomogeneous

cases. The definition of inhomogeneous Besov spaces on stratified Lie groups was introduced
independently by Saka [1], and in a somewhat more general setting by Pesenson [2, 3]. Since
then, the study of Besov spaces on Lie groups remained restricted to the inhomogeneous
cases [4–8], with the notable exception of [9] which studied homogeneous Besov spaces on
the Heisenberg group. A further highly influential source for the study of function spaces
associated to the sub-Laplacian is Folland’s paper [10].

The first wavelet systems on stratified Lie groups (fulfilling certain technical as-
sumptions) were constructed by Lemarié [11], by suitably adapting concepts from spline
theory. Lemarié also indicated that the wavelet systems constructed by his approach were
indeed unconditional bases of Saka’s inhomogeneous Besov spaces. Note that an adaptation,
say, of the arguments in [12] for a proof of such a characterization requires a sampling theory
for bandlimited functions on stratified groups, which was established only a few years ago
by Pesenson [13]; see also [14].

More recent constructions of both continuous and discrete wavelet systemswere based
on the spectral theory of the sub-Laplacian [15]. Given the central role of the sub-Laplacian
both in [8, 15], and in view of Lemarié’s remarks, it seemed quite natural to expect a wavelet
characterization of homogeneous Besov spaces, and it is the aim of this paper to work out the
necessary details. New results in this direction were recently published in [16–18].

The paper is structured as follows. After reviewing the basic notions concerning
stratified Lie groups and their associated sub-Laplacians in Section 2, in Section 3 we
introduce a Littlewood-Paley-type decomposition of functions and tempered discributions

on G. It is customary to employ the spectral calculus of a suitable sub-Laplacian for

the definition of such decompositions, see, for example, [8], and this approach is also

used here (Lemma 3.7). However, this raises the issue of consistency: the spaces should
reflect properties of the group, not of the sub-Laplacian used for the construction of the

decomposition. Using a somewhat more general notion than the φ-functions in [12] allows

to establish that different choices of sub-Laplacian result in the same scale of Besov spaces

(Theorem 3.11). In Section 4, we derive a characterization of Besov spaces in terms of

continuous wavelet transform, with a wide variety of wavelets to choose from (Theorem 4.4).
As a special case one obtains a characterization of homogeneous Besov spaces in terms of the
heat semigroup. (See the remarks before Theorem 4.4.)

In Section 5, we study discrete characterizations of Besov spaces obtained by sampling
the Calderón decomposition. For this purpose, we introduce the coefficient space ḃsp,q. The

chief result is Theorem 5.4, establishing that the wavelet coefficient sequence of f ∈ Ḃs
p,q lies

in ḃsp,q. Section 5 introduces our most important tool to bridge the gap between continuous
and discrete decompositions, namely, oscillation estimates.

We then proceed to study wavelet synthesis and frame properties of the wavelet
system. Our main result in this respect is that for all sufficiently dense regular sampling sets
Γ, the discrete wavelet system {ψj,γ}j∈Z,γ∈Γ

obtained by shifts from γ and dilations by powers
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of 2 is a universal Banach frame for all Besov spaces. In other words, the wavelet system allows
the decomposition

f =
∑

j,γ

rj,γψj,γ (1.2)

converging unconditionally in Ḃs
p,q whenever f ∈ Ḃs

p,q, with coefficients {rj,γ}j,γ ∈ ḃsp,q de-

pending linearly and boundedly on f , and satisfying the norm equivalence

∥∥∥
{
rj,γ
}
j,γ

∥∥∥
ḃsp,q

≍
∥∥f
∥∥
Ḃs
p,q
. (1.3)

2. Preliminaries and Notation

Following the terminology in [19], we call a Lie group G stratified if it is connected and
simply connected, and its Lie algebra g decomposes as a direct sum g = V1 ⊕ · · · ⊕ Vm, with
[V1, Vk] = Vk+1 for 1 ≤ k < m and [V1, Vm] = {0}. Then g is nilpotent of step m and generated
as a Lie algebra by V1. Euclidean spaces R

n and the Heisenberg group H
n are examples of

stratified Lie groups.
IfG is stratified, its Lie algebra admits a canonical (natural) family of dilations, namely,

δr(X1 +X2 + · · · +Xm) = rX1 + r2X2 + · · · + rmXm

(
Xj ∈ Vj

)
(r > 0), (2.1)

which are Lie algebra automorphisms. We identify G with g through the exponential map.
Hence G is a Lie group with underlying manifold R

n, for some n, and the group product
provided by the Campbell-Baker-Hausdorff formula. The dilations are then also group
automorphisms of G. Instead of writing δa(x) for x ∈ G and a > 0, we simply use ax,
whenever a confusion with the Lie group product is excluded. After choosing a basis of g

obtained as a union of bases of the Vi, and a possible change of coordinates, one therefore has
for x ∈ G and a > 0 that

ax =
(
ad1x1, . . . , a

dnxn

)
, (2.2)

for integers d1 ≤ · · · ≤ dn, according to xi ∈ Vdi
.

Under our identification of G with g, polynomials on G are polynomials on g (with
respect to any linear coordinate system on the latter). Polynomials on G are written as

p

(
dim(G)∑

i=1

xiYi

)
=
∑

I

cIx
I , (2.3)



4 Journal of Function Spaces and Applications

where cI ∈ C are the coefficients with respect to a suitable basis Y1, Y2, . . ., and xI =

xI1
1 x

I2
2 , . . . , x

In
n the monomials associated to the multi-indices I ∈ N

{1,...,n}. For a multi-index
I, define

d(I) =
n∑

i=1

Iin(i), n(i) = j for Yi ∈ Vj . (2.4)

A polynomial of the type (2.3) is called of homogeneous degree k if d(I) ≤ k holds, for all
multiindices I with cI /= 0. We write Pk for the space of polynomials of homogeneous degree
k.

We let S(G) denote the space of Schwartz functions on G. By definition, S(G) =

S(g). Let S′(G) and S′(G)/P denote the space of distributions and distributions modulo
polynomials on G, respectively. The duality between the spaces is denoted by the map
(·, ·) : S′(G) × S(G) → C. Most of the time, however, we will work with the sesquilinear
version 〈f, g〉 = (f, g), for f ∈ S′(G) and g ∈ S(G).

Left Haar measure on G is induced by Lebesgue measure on its Lie algebra, and it is
also right-invariant. The number Q =

∑m
1 j(dimVj) will be called the homogeneous dimension

of G. (For instance, for G = R
n and H

n we have Q = n and Q = 2n + 2, respectively.) For any
function φ on G and a > 0, the L1-normalized dilation of φ is defined by

Daφ(x) = aQφ(ax). (2.5)

Observe that this action preserves the L1-norm, that is, ‖Daφ‖1 = ‖φ‖. We fix a homogeneous
quasi-norm | · | on Gwhich is smooth away from 0 with, |ax| = a|x| for all x ∈ G, a ≥ 0, |x−1| =

|x| for all x ∈ G, with |x| > 0 if x /= 0, and fulfilling a triangle inequality |xy| ≤ C(|x|+ |y|), with
constant C > 0. Confer [19] for the construction of homogeneous norms, as well as further
properties.

Moreover, by [19, Proposition 1.15], for any r > 0, there is a finite Cr > 0 such that∫
|x|>R

|x|−Q−rdx = CrR
−r for all R > 0.

Our conventions for left-invariant operators on G are as follows. We let Y1, . . . , Yn

denote a basis of g, obtained as a union of bases of the Vi. In particular, Y1, . . . , Yl, for
l = dim(V1), is a basis of V1. Elements of the Lie algebra are identified in the usual manner
with left-invariant differential operators on G. Given a multi-index I ∈ N

n
0 , we write Y I for

Y I1
1 ◦ · · · ◦ Y In

n . A convenient characterization of Schwartz functions in terms of left-invariant
operators states that f ∈ S(G) if and only if, for all N ∈ N, |f |N < ∞, where

∣∣f
∣∣
N

= sup
|I|≤N,x∈G

(1 + |x|)N
∣∣∣Y If(x)

∣∣∣. (2.6)

In addition, the norms | · |N induce the topology of S(G) (see [19]).
The sub-Laplacian operator onG can be viewed as the analog of the Laplacian operator

on R
n defined by L = −

∑n
i=1 ∂

2/∂x2
k
. Using the above conventions for the choice of basis

Y1, . . . , Yn and l = dim(V1), the sub-Laplacian is defined as L = −
∑l

i=1 Y
2
i . Note that a less

restrictive notion of sub-Laplacians can also be found in the literature (e.g., any sum of
squares of Lie algebra generators); we stress that the results in this paper crucially rely on
the definition presented here. A linear differential operator T on G is called homogenous
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of degree l if T(f ◦ δa) = al(Tf) ◦ δa for any f on G. By choice of the Yi for i ≤ l, these
operators are homogeneous of degree 1; it follows that L is homogenous of degree 2, and Lk

is homogenous of degree 2k. Furthermore, any operator of the form Y I is homogeneous of
degree d(I).

When restricted to C∞
c , L is formally self-adjoint: for any f, g ∈ C∞

c (G), 〈Lf, g〉 =

〈f, Lg〉. (For more see [15].) Its closure has domain D = {u ∈ L2(G) : Lu ∈ L2(G)}, where
we take Lu in the sense of distributions. From this fact it quickly follows that this closure is
self-adjoint and is in fact the unique self-adjoint extension of L|C∞

c
; we denote this extension

also by the symbol L.
Suppose that L has spectral resolution

L =

∫∞

0

λdPλ, (2.7)

where dPλ is the projection measure. For a bounded Borel function f̂ on [0,∞), the operator

f̂(L) =

∫∞

0

f̂(λ)dPλ (2.8)

is a bounded integral operator on L2(G) with a convolution distribution kernel in L2(G)

denoted by f , and

f̂(L)η = η ∗ f ∀η ∈ S(G). (2.9)

An important fact to be used later on is that for rapidly decaying smooth functions, f ∈

S(R+), the kernel associated to f̂(L) is a Schwartz function. For a function f on G we define

f̃(x) = f(x−1) and f∗ = f̃ . For f ∈ L2(G) ∩ L1(G), the adjoint of the convolution operator
g �→ g ∗ f is provided by g �→ g ∗ f∗.

3. Homogeneous Besov Spaces on Stratified Lie Groups

In this section we define homogeneous Besov spaces on stratified Lie groups via Littlewood-
Paley decompositions of distributions u as

u =
∑

j∈Z

u ∗ ψ∗
j ∗ ψj , (3.1)

where ψj is a dilated copy of a suitably chosen Schwartz function ψ. In the Euclidean setting,
it is customary to construct ψ by picking a dyadic partition of unity on the Fourier transform
side and applying Fourier inversion. The standard way of transferring this construction to
stratified Lie groups consists in replacing the Fourier transform by the spectral decomposition
of a sub-Laplacian L, see Lemma 3.7. However, this approach raises the question to what
extent the construction depends on the choice of L. It turns out that the precise choice of
sub-Laplacian obtained from a basis of V1 is irrelevant. In order to prove this, we study
Littlewood-Paley decompositions in somewhat different terms. The right setting for the study
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of such decompositions is the space of tempered distributions modulo polynomials, and the
easiest approach to this convergence is via duality to a suitable space of Schwartz functions.

Definition 3.1. LetN ∈ N. A function f : G → C has polynomial decay orderN if there exists
a constant C > 0 such that, for all x ∈ G,

∣∣f(x)
∣∣ ≤ C(1 + |x|)−N . (3.2)

f has vanishing moments of order N, if one has

∀p ∈ PN−1 :

∫

G

f(x)p(x)dx = 0, (3.3)

with absolute convergence of the integral.

Under our identification of G with g, the inversion map x �→ x−1 is identical to the
additive inversion map. That is, x−1 = −x, and it follows that p̃ ∈ PN for all p ∈ PN . Thus, if
f has vanishing moments of order N, then for all p ∈ PN−1

∫

G

f̃(x)p(x)dx =

∫

G

f(x)p̃(x)dx = 0, (3.4)

that is, f̃ has vanishing moments of order N as well.
Vanishing moments are central to most estimates in wavelet analysis, by the following

principle: in a convolution product of the type g ∗ Dtf , vanishing moments of one factor
together with smoothness of the other result in decay. Later on, we will apply the lemma to
Schwartz functions f, g, where only the vanishing moment assumptions are nontrivial. The
more general version given here is included for reference.

Lemma 3.2. LetN,k ∈ N be arbitrary.

(a) Let f ∈ Ck, such that Y I(f) is of decay order N, for all I with d(I) ≤ k. Let g have
vanishing moments of order k and decay orderN + k +Q + 1. Then there exists a constant,
depending only on the decay of Y I(f) and g, such that

∀x ∈ G ∀0 < t < 1:
∣∣g ∗

(
Dtf

)
(x)
∣∣ ≤ Ctk+Q(1 + |tx|)−N . (3.5)

In particular, if p > Q/N,

∀x ∈ G ∀0 < t < 1:
∥∥g ∗

(
Dtf

)∥∥
p
≤ C′tk+Q(1−1/p). (3.6)

(b) Now suppose that g ∈ Ck, with Y I(g̃) of decay orderN for all I with d(I) ≤ k. Let f have
vanishing moments of order k and decay orderN + k +Q + 1. Then there exists a constant,
depending only on the decay of f and Y I(g̃), such that

∀x ∈ G ∀1 < t < ∞ :
∣∣g ∗

(
Dtf

)
(x)
∣∣ ≤ Ct−k(1 + |x|)−N . (3.7)
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In particular, if p > Q/N,

∀x ∈ G ∀1 < t < ∞ :
∥∥g ∗

(
Dtf

)∥∥
p
≤ C′t−k. (3.8)

Proof. First, let us prove (a). Let 0 < t < 1. For x ∈ G, let Pk

x,Dtf̃
denote the left Taylor

polynomial of Dtf̃ with homogeneous degree k − 1, see [19, Definition 1.44]. By that result,

∣∣∣∣Dtf
(
y−1x

)
− Pk

x,Dtf̃

(
y
)∣∣∣∣ ≤ Ck

∣∣y
∣∣k sup

|z|≤bk|y|,d(I)=k

∣∣∣Y I
(
Dtf̃

)
(xz)

∣∣∣, (3.9)

with suitable positive constants Ck and b. We next use the homogeneity properties of the
partial derivatives [19, page 21], together with the decay condition on Y If to estimate for I
with d(I) = k

sup
|z|≤bk|y|

∣∣∣Y I
(
Dtf̃

)
(xz)

∣∣∣ = tk sup
|z|≤bk|y|

∣∣∣Dt

(
Y I f̃

)
(xz)

∣∣∣

= tk+Q sup
|z|≤bk|y|

∣∣∣
(
Y I f̃

)
(t(x · z))

∣∣∣

≤ tk+Q sup
|z|≤bk|y|

Cf(1 + |t(x · z)|)−N

≤ tk+Q sup
|z|≤bk|y|

Cf(1 + |tx|)−N(1 + |tz|)N

≤ tk+Q(1 + b)kNCf(1 + |tx|)−N
(
1 +

∣∣y
∣∣)N ,

(3.10)

where the penultimate inequality used [19, 1.10], and the final estimate used |ty| = t|y| ≤ |y|.
Thus,

∣∣∣∣Dtf
(
y−1x

)
− Pk

x,Dtf̃

(
y
)∣∣∣∣ ≤ C̃kt

k+Q(1 +
∣∣y
∣∣)N+k

(1 + |tx|)−N . (3.11)

Next, using vanishing moments of g,

∣∣(g ∗Dtf
)
(x)
∣∣ ≤

∫

G

∣∣g
(
y
)∣∣
∣∣∣∣Dtf

(
y−1x

)
− Pk

x,Dtf̃

(
y
)∣∣∣∣dy

≤ C̃k(1 + |tx|)−Ntk+Q
∫

G

∣∣g
(
y
)∣∣(1 +

∣∣y
∣∣)N+k

dy

≤ C̃k(1 + |tx|)−Ntk+Q
∫

G

Cg

(
1 +

∣∣y
∣∣)−Q−1

dy,

(3.12)
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and the integral is finite by [19, 1.15]. This proves (3.5), and (3.6) follows by

∥∥g ∗Dtf
∥∥
p
≤ C′tk+Q

(∫

G

(1 + |tx|)−Npdx

)1/p

≤ C′′tk+Q−Q/p, (3.13)

using Np > Q.
For part (b), we first observe that

(
g ∗Dtf

)
(x) = tQ

(
f̃ ∗Dt−1 g̃

)
(t · x). (3.14)

Our assumptions on f, g allow to invoke part (a) with g̃, f̃ replacing f, g, and (3.7) follows
immediately. (3.8) is obtained from this by straightforward integration.

We let Z(G) denote the space of Schwartz functions with all moments vanishing. We
next consider properties of Z(G) as a subspace of S(G) with the relative topology.

Lemma 3.3. Z(G) is a closed subspace (in particular complete) of S(G), with S(G) ∗Z(G) ⊂ Z(G),

as well as f̃ ∈ Z(G) for all f ∈ Z(G). The topological dual of Z(G), Z′(G), can be canonically
identified with the factor space S′(G)/P.

Proof. By definition, Z(G) is the intersection of kernels of a family of tempered distributions,
hence a closed subspace. For p ∈ P and f ∈ Z(G), one has by unimodularity of G that

〈p, f̃〉 = 〈p̃, f〉 = 0, since p̃ is a polynomial. But then, for any g ∈ S(G) and f ∈ Z(G), one has
for all polynomials p on G that

〈
g ∗ f, p

〉
=
〈
g, p ∗ f̃

〉
=
〈
g, 0

〉
= 0, (3.15)

since f ∈ Z(G) implies p ∗ f̃ = 0 (translation on G is polynomial). Thus g ∗ f ∈ Z(G). All
further properties of Z(G) follow from the corresponding statements concerning Z(Rn). For
identification of Z′(Rn) with the quotient space S(Rn)′/P, we first observe that a tempered
distribution ϕ vanishes onZ(Rn) if and only if its (Euclidean) Fourier transform is supported
in {0}, which is well known to be the case if and only if ϕ is a polynomial. Using this
observation, wemap u ∈ Z′(Rn) to ũ+P, where ũ is a continuous extension of u to all ofS(Rn);
such an extension exists by the Hahn-Banach theorem. The map is well defined because
the difference between two extensions of u annihilates Z(Rn) and hence is a polynomial.
Linearity follows from well-definedness. Furthermore, the inverse of the mapping is clearly
obtained by assigning w + P to the restriction w|Z(G).

In the following, we will usually not explicitly distinguish between u ∈ S′(G) and
its equivalence class modulo polynomials, and we will occasionally write u ∈ S′(G)/P. The
topology of S′(G)/P is just the topology of pointwise convergence on the elements of Z(G).
For any net (uj + P)

j∈I
, uj +P → u+P holds if and only if 〈uj , ϕ〉 → 〈u, ϕ〉, for all ϕ ∈ Z(G).

We next study convolution on S′(G)/P.
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Lemma 3.4. For every ψ ∈ S(G), the map u �→ u ∗ ψ is a well-defined and continuous operator
S′(G)/P → S′(G)/P. If ψ ∈ Z(G), the associated convolution operator is a well-defined and
continuous operator S′(G)/P → S′(G).

Proof. Note that P ∗S(G) ⊂ P. Hence u �→ u ∗ ψ induces a well-defined canonical map
S′(G)/P → S′(G)/P. Furthermore, u �→ u ∗ ψ is continuous on S′(G), as a consequence
of [19, Proposition 1.47]. Therefore, for any net uj → u and any ϕ ∈ Z(G), the fact that
ϕ ∗ ψ∗ ∈ Z(G) allows to write

〈
uj ∗ ψ, ϕ

〉
=
〈
uj , ϕ ∗ ψ∗

〉
−→

〈
u, ϕ ∗ ψ∗

〉
= 〈u ∗ ψ, ϕ〉, (3.16)

showing uj ∗ ψ → u ∗ ψ in S′(G)/P.
For ψ ∈ Z(G), the fact that P∗ψ = {0} makes the mapping u �→ u ∗ ψ ∈ S′(G) well-

definedmodulo polynomials. The continuity statement is proved by (3.16), with assumptions
on ψ and ϕ switched.

The definition of homogeneous Besov spaces requires taking Lp-norms of elements of
S′(G)/P. The following remark clarifies this.

Remark 3.5. Throughout this paper, we use the canonical embedding Lp(G) ⊂ S′(G). For
p < ∞, this gives rise to an embedding Lp(G) ⊂ S′(G)/P, using that P ∩ Lp(G) = {0}.
Consequently, given u ∈ S′(G)/P, we let

‖u‖p =
∥∥u + q

∥∥
p

whenever u + q ∈ Lp(G), for suitable q ∈ P (3.17)

assigning the value ∞ otherwise. Here the fact that P ∩ Lp(G) = {0} guarantees that the
decomposition is unique, and thus (3.17)well-defined.

By contrast, ‖ · ‖∞ can only be defined on S′(G), if we assign the value∞ to u ∈ S′(G)\

L∞(G).
Note that with these definitions, the Hausdorff-Young inequality ‖u ∗ f‖p ≤ ‖u‖p‖f‖1

remains valid for all f ∈ S(G), and all u ∈ S′(G)/P (for p < ∞), respectively, u ∈ S′(G) (for
p = ∞). For p = ∞, this is clear. For p < ∞, note that if u + q ∈ Lp(G), then (u + q) ∗ ψ =

u ∗ ψ + q ∗ ψ ∈ Lp(G) with q ∗ ψ ∈ P.

We now introduce a general Littlewood-Paley-type decomposition. For this purpose
we define for ψ ∈ S(G),

ψj = D2jψ. (3.18)

Definition 3.6. A function ψ ∈ S(G) is called LP-admissible if for all g ∈ Z(G),

g = lim
N→∞

∑

|j|≤N

g ∗ ψ∗
j ∗ ψj (3.19)



10 Journal of Function Spaces and Applications

holds, with convergence in the Schwartz space topology. Duality entails the convergence

u = lim
N→∞

∑

|j|≤N

u ∗ ψ∗
j ∗ ψj (3.20)

for all u ∈ S′(G)/P.

The following lemma yields the chief construction of LP-admissible functions.

Lemma 3.7. Let φ̂ be a function in C∞ with support in [0, 4] such that 0 ≤ φ̂ ≤ 1 and φ̂ ≡ 1 on

[0, 1/4]. Take ψ̂(ξ) =
√
φ̂(2−2ξ) − φ̂(ξ). Thus, ψ̂ ∈ C∞

c (R+), with support in the interval [1/4, 4] ,
and

1 =
∑

j∈Z

∣∣∣ψ̂
(
22jξ

)∣∣∣
2
a.e. (3.21)

Pick a sub-Laplacian L, and let ψ denote the convolution kernel associated to the bounded left-invariant
operator ψ̂(L). Then ψ is LP-admissible, with ψ ∈ Z(G).

Proof. Let us first comment on the properties of ψ that are immediate from the construction
via spectral calculus: ψ ∈ S(G) follows from [20] and vanishing moments by [15,
Proposition 1].

Now let g ∈ Z(G). First note that 2-homogeneity of L implies that the convolution
kernel associated to ψ̂(2−2j ·)(L) coincides with ψj . Then, by the spectral theorem and (3.21),

g =
∑

j∈Z

[
ψ̂
(
2−2j ·

)
(L)
]∗

◦
[
ψ̂
(
2−2j ·

)
(L)
]
g =

∑

j∈Z

g ∗ ψ∗
j ∗ ψj (3.22)

holds in L2-norm.
For any positive integer N,

∑

|j|≤N

g ∗ ψ∗
j ∗ ψj = g ∗D2N+1φ − g ∗D2−Nφ, (3.23)

where φ ∈ S(G) is the convolution kernel of φ̂(L). Since φ is a Schwartz function, it follows
by [19, Proposition (1.49)] that g ∗ D2N+1φ → cφg, for N → ∞, for all g ∈ S(G), with
convergence in S(G) and a suitable constant cφ.

We next show that g ∗Dtf → 0 in S(G), as t → 0, for any f ∈ S(G). Fix a multi-index
I and N,k ∈ N with k ≥ N. Then left-invariance and homogeneity of Y I yield

∣∣∣Y I(g ∗Dtf
)
(x)
∣∣∣ = td(I)

∣∣∣g ∗Dt

(
Y If

)
(x)
∣∣∣

≤ Cf,gt
k+Q+d(I)(1 + |tx|)−N

≤ Cf,gt
k+Q+d(I)−N(1 + |x|)−N .

(3.24)
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Here the first inequality is an application of (3.5); the constant Cf,g can be estimated in terms
of |f |M, |g|M, forM sufficiently large. But this proves g ∗Dtf → 0 in the Schwartz topology.

Summarizing,
∑

|j|≤N g ∗ ψ∗
j ∗ ψj → cφg in S(G), and in addition by (3.22),

∑
|j|≤N g ∗

ψ∗
j ∗ ψj → g in L2, whence cφ = 1 follows.

Note that an LP-admissible function ψ as constructed in Lemma 3.7 fulfills the
convenient relation

∀j, l ∈ Z :
∣∣j − l

∣∣ > 1 =⇒ ψ∗
j ∗ ψl = 0, (3.25)

which follows from [ψ̂(2−2j ·)(L)] ◦ [ψ̂(2−2l·)(L)] = 0.

Remark 3.8. By spectral calculus, we find that ψ = Lkgk, with gk ∈ Z(G). In particular, the
decomposition

f = lim
N→∞

∑

|j|≤N

f ∗ ψ∗
j ∗D2jL

k(gk
)

= lim
N→∞

Lk

⎛
⎝∑

|j|≤N

f ∗ ψ∗
j ∗ 2

−kjD2jgk

⎞
⎠

(3.26)

shows that Lk(Z(G)) ⊂ Z(G) is dense.

We now associate a scale of homogeneous Besov spaces to the function ψ.

Definition 3.9. Let ψ ∈ Z(G) be LP-admissible, let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, and s ∈ R. The
homogeneous Besov space associated to ψ is defined as

Ḃ
s,ψ
p,q =

{
u ∈ S′(G)/P :

{
2js
∥∥∥u ∗ ψ∗

j

∥∥∥
p

}

j∈Z

∈ ℓq(Z)

}
, (3.27)

with associated norm

‖u‖Ḃs,ψ
p,q

=

∥∥∥∥∥

{
2js‖u ∗ ψ∗

j ‖p

}

j∈Z

∥∥∥∥∥
ℓq(Z)

. (3.28)

Remark 3.10. The definition relies on the conventions regarding Lp-norms of distributions
(modulo polynomials), as outlined in Remark 3.5. Definiteness of the Besov norm holds
because of (3.20).

The combination of Lemma 3.7 with Definition 3.9 shows that we cover the homo-
geneous Besov spaces defined in the usual manner via the spectral calculus of sub-Laplacians.
Hence the following theorem implies in particular that different sub-Laplacians yield the
same homogeneous Besov spaces (at least within the range of sub-Laplacians that we
consider).
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Theorem 3.11. Let ψ1, ψ2 ∈ Z(G) be LP-admissible. Let s ∈ R and 1 ≤ p, q ≤ ∞. Then, Ḃ
s,ψ1

p,q =

Ḃ
s,ψ2

p,q , with equivalent norms.

Proof. It is sufficient to prove the norm equivalence, and here symmetry with respect to ψ1

and ψ2 immediately reduces the proof to showing, for a suitable constant C > 0,

∀u ∈ S′(G)/P : ‖u‖
Ḃ
s,ψ1

p,q

≤ C‖u‖
Ḃ
s,ψ2

p,q

, (3.29)

in the extended sense that the left-hand side is finite whenever the right-hand side is. Hence

assume that u ∈ Ḃ
s,ψ2

p,q ; otherwise, there is nothing to show. In the following, let ψi,j = D2jψ
i

(i = 1, 2).
By LP-admissibility of ψ2,

u = lim
N→∞

∑

|j|≤N

u ∗ ψ∗
2,j ∗ ψ2,j , (3.30)

with convergence in S′(G)/P. Accordingly,

u ∗ ψ∗
1,ℓ = lim

N→∞

∑

|j|≤N

u ∗ ψ∗
2,j ∗ ψ2,j ∗ ψ

∗
1,ℓ , (3.31)

where the convergence on the right-hand side holds in S′(G), by Lemma 3.4. We next show
that the right-hand side also converges in Lp. For this purpose, we observe that

∥∥∥ψ2,j ∗ ψ
∗
1,ℓ

∥∥∥
1
=
∥∥∥D2j

(
ψ2 ∗D2ℓ−jψ

1∗
1

)∥∥∥
1
=
∥∥∥ψ2 ∗D2ℓ−jψ

1∗
∥∥∥
1
≤ C2−|ℓ−j|k, (3.32)

where k > s is a fixed integer. For ℓ−j ≥ 0, this follows directly from (3.8), using ψ1, ψ2 ∈ S(G),
and vanishing moments of ψ1, whereas for ℓ − j < 0, the vanishing moments of ψ2 allow to
apply (3.6).

Using Young’s inequality, we estimate with C from above that

∑

j∈Z

∥∥∥u ∗ ψ∗
2,j ∗ ψ2,j ∗ ψ

∗
1,ℓ

∥∥∥
p
≤
∑

j∈Z

∥∥∥u ∗ ψ∗
2,j

∥∥∥
p

∥∥∥ψ2,j ∗ ψ
∗
1,ℓ

∥∥∥
1

≤ C
∥∥∥u ∗ ψ∗

2,j

∥∥∥
p
2−|j−ℓ|k

(3.33)

≤ C
∑

j∈Z

2js
∥∥∥u ∗ ψ∗

2,j

∥∥∥
p
2−|j−ℓ|k−js. (3.34)

Next observe that

2−|j−ℓ|k−js = 2−ℓs ·

{
2−|j−ℓ|(k+s) j ≥ ℓ

2−|j−ℓ|(k−s) j < l
≤ 2−ℓs2−|j−ℓ|(k−|s|). (3.35)
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By assumption, the sequence (2js‖u ∗ ψ∗
j,2‖p

)j∈Z
is in ℓq, in particular, bounded. Therefore,

k − |s| > 0 yields that (3.34) converges. But then the right-hand side of (3.31) converges
unconditionally with respect to ‖ · ‖p. This limit coincides with the S′(G)/P-limit u ∗ ψ∗

1,ℓ

(which because of ψ∗
1,ℓ

∈ Z(G) is even a S′(G)-limit), yielding u ∗ ψ∗
1,ℓ

∈ Lp(G), with

2ℓs
∥∥∥u ∗ ψ∗

1,ℓ

∥∥∥
p
≤ 2ℓs

∑

j∈Z

∥∥∥u ∗ ψ∗
2,j ∗ ψ2,j ∗ ψ

∗
1,ℓ

∥∥∥
p

≤ C32
ℓs
∑

j∈Z

2js
∥∥∥u ∗ ψ∗

2,j

∥∥∥
p
2−|j−ℓ|(k−|s|).

(3.36)

Now an application of Young’s inequality for convolution over Z, again using k − |s| > 0,
provides (3.29).

As a consequence, we write Ḃs
p,q = Ḃ

s,ψ
p,q , for any LP-admissible ψ ∈ Z(G). These spaces

coincide with the homogeneous Besov spaces for the Heisenberg group in [9], and with the
usual definitions in the case G = R

n.
In the remainder of the section we note some functional-analytic properties of Besov

spaces and Littlewood-Paley-decompositions for later use.

Lemma 3.12. For all 1 ≤ p, q ≤ ∞ and all s ∈ R, one has continuous inclusion maps Z(G) →֒

Ḃs
p,q →֒ S′(G)/P, as well as Z(G) →֒ Ḃs∗

p,q, where the latter denotes the dual of Ḃ
s
p,q. For p, q < ∞,

Z(G) ⊂ Ḃs
p,q is dense.

Proof. We pick ψ as in Lemma 3.7 and define Δjg = g ∗ ψ∗
j for g ∈ S′(G). For the inclusion

Z(G) ⊂ Ḃs
p,q, note that (3.6) and (3.8) allow to estimate for all g ∈ Z(G) and k ∈ N that

∥∥Δjg
∥∥
p
≤ Ck2

−|j|k. (3.37)

Here the constant Ck is a suitable multiple of |g|M, for M = M(k) sufficiently large. But this
implies that Z(G) ⊂ Ḃs

p,q continuously.
For the other embedding, repeated applications of Hölder’s inequality yield the

estimate

∣∣〈f, g
〉∣∣ =

∣∣∣∣∣∣
∑

j∈Z

〈
f, g ∗ ψ∗

j ∗ ψj

〉
∣∣∣∣∣∣

≤
∑

j∈Z

∣∣∣
〈
f ∗ ψ∗

j , g ∗ ψ∗
j

〉∣∣∣

≤
∑

j∈Z

∥∥∥f ∗ ψ∗
j

∥∥∥
p′

∥∥∥g ∗ ψ∗
j

∥∥∥
p

=
∑

j∈Z

(
2−js

∥∥∥f ∗ ψ∗
j

∥∥∥
p′

)(
2js
∥∥∥f ∗ ψ∗

j

∥∥∥
p

)

≤
∥∥f
∥∥−s
p′,q′

∥∥g
∥∥s
p,q

(3.38)
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valid for all f ∈ Z(G) ⊂ Ḃ−s
p′,q′ and g ∈ Ḃs

p,q. Here p′, q′ are the conjugate exponents of p, q,

respectively. But this estimate implies continuity of the embeddings Ḃs
p,q ⊂ S′(G)/P and

Z(G) ⊂ Ḃs∗
p,q.

For the density statement, let u ∈ Ḃs
p,q, and ǫ > 0. For convenience, we pick ψ according

to Lemma 3.7. Since q < ∞, there exists N ∈ N such that

∑

|j|>N−1

2jsq
∥∥Δju

∥∥q
p
< ǫ.

(3.39)

Next define

KN =
∑

|j|≤N

ψ∗
j ∗ ψj = D2N+1φ −D2−Nφ. (3.40)

Let w = u ∗ KN . By assumption on u and Young’s inequality, w ∈ Lp(G), and since p < ∞,
there exists g ∈ S(G) with ‖w − g‖p < ǫ1/q. Let f = g ∗KN , then f ∈ Z(G), and for j ∈ Z,

∥∥Δj

(
u − f

)∥∥
p
=
∥∥∥
(
u − f

)
∗ ψ∗

j

∥∥∥
p

≤
∥∥∥u ∗ ψ∗

j − u ∗KN ∗ ψ∗
j

∥∥∥
p
+
∥∥∥w ∗ ψ∗

j − g ∗KN ∗ ψ∗
j

∥∥∥
p
.

(3.41)

For |j| ≤ N−1, the construction of ψj andKN implies thatKN ∗ψ∗
j = ψ∗

j , whereas for |j| > N+1,

one has KN ∗ ψ∗
j = 0. As a consequence, one finds for |j| < N − 1

∥∥Δj

(
u − f

)∥∥
p
≤
∥∥w − g

∥∥
p

∥∥∥ψ∗
j

∥∥∥
1
=
∥∥w − g

∥∥
p

∥∥ψ
∥∥
1
< ǫ1/q

∥∥ψ
∥∥
1
, (3.42)

and for |j| > N + 1

∥∥Δj

(
u − f

)∥∥
p
≤
∥∥∥u ∗ ψ∗

j

∥∥∥
p
< ǫ1/q. (3.43)

For ||j| −N| ≤ 1, one finds

∥∥Δj

(
u − f

)∥∥
p
≤ Cǫ1/q (3.44)

with some constant C > 0 depending only on ψ. For instance, for j = N,

∥∥Δj

(
u − f

)∥∥
p
≤
∥∥u ∗ ψ∗

N − u ∗
(
ψ∗
N−1 ∗ ψN−1 + ψ∗

N ∗ ψN

)
∗ ψ∗

N

∥∥
p

+
∥∥w ∗ ψ∗

N − g ∗
(
ψ∗
N−1 ∗ ψN−1 + ψ∗

N ∗ ψN

)
∗ ψ∗

N

∥∥
p
.

(3.45)
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A straight forward application of triangle and Young’s inequality yields

∥∥u ∗ ψ∗
N − u ∗

(
ψ∗
N−1 ∗ ψN−1 + ψ∗

N ∗ ψN

)
∗ ψ∗

N

∥∥
p
≤
∥∥u ∗ ψ∗

N

∥∥
p

(
1 + 2

∥∥ψ∗ ∗ ψ
∥∥
1

)

< ǫ1/q
(
1 + 2

∥∥ψ∗ ∗ ψ
∥∥
1

)
.

(3.46)

Similar considerations applied to w = u ∗KN yield

∥∥w ∗ ψ∗
N − g ∗

(
ψ∗
N−1 ∗ ψN−1 + ψ∗

N ∗ ψN

)
∗ ψ∗

N

∥∥
p

≤ 2
∥∥u ∗ ψ∗

N

∥∥
p

∥∥ψ∗ ∗ ψ
∥∥
1
+ 2
∥∥g ∗ ψ∗

N

∥∥
p

∥∥ψ∗ ∗ ψ
∥∥
1

≤ 2ǫ1/q
∥∥ψ∗ ∗ ψ

∥∥
1
+ 2
(∥∥w ∗ ψ∗

N

∥∥
p
+
∥∥(w − g

)
∗ ψ∗

N

∥∥
p

)∥∥ψ∗ ∗ ψ
∥∥
1

≤
(
4
∥∥ψ∗ ∗ ψ

∥∥
1
+
∥∥ψ∗ ∗ ψ

∥∥
1

∥∥ψ
∥∥
1

)
ǫ1/q.

(3.47)

Now summation over j yields

∥∥u − f
∥∥
Ḃs
p,q

≤ C′ǫ, (3.48)

as desired.

Remark 3.13. Let ψ be as in Lemma 3.7. As a byproduct of the proof, we note that the space

D =
{
f ∗KN : f ∈ S(G), N ∈ N

}
(3.49)

is dense in Z(G) as well as Ḃs
p,q, if p, q < ∞. In D, the decomposition

g =
∑

j∈Z

g ∗ ψ∗
j ∗ ψj (3.50)

holds with finitely many nonzero terms.

We next extend the Littlewood-Paley decomposition to the elements of the Besov
space. For simplicity, we prove the result only for certain LP-admissible functions.

Proposition 3.14. Let 1 ≤ p, q < ∞, and let ψ ∈ Z(G) be an LP-admissible vector constructed via
Lemma 3.7. Then the decomposition (3.19) converges for all g ∈ Ḃs

p,q in the Besov space norm.

Proof. Consider the operators ΣN : Ḃs
p,q → Ḃs

p,q,

ΣNg =
∑

|j|≤N

g ∗ ψ∗
j ∗ ψj . (3.51)

By suitably adapting the arguments proving the density statement of Lemma 3.12, it is easy
to see that the family of operators (ΣN)N∈N

is bounded in the operator norm. As noted in
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Remark 3.13, the ΣN strongly converges to the identity operator on a dense subspace. But
then boundedness of the family implies strong convergence everywhere.

A further class of spaces for which the decomposition converges is Lp.

Proposition 3.15. Let 1 < p < ∞, and let ψ ∈ Z(G) be an LP-admissible vector constructed via
Lemma 3.7. Then the decomposition (3.19) converges with respect to ‖ · ‖p, for all g ∈ Lp(G).

Proof. Let the operator family (ΣN)N∈N
be defined as in the previous proof. Then, ΣNf =

g ∗D2N+1φ−g ∗D2−Nφ, and Young’s inequality implies that the sequence of operators is norm-
bounded. It therefore suffices to prove the desired convergence on the dense subspace S(G).
By [19, Proposition 1.49], g ∗D2N+1φ → cφg. Furthermore, forN ∈ N,

(
g ∗D2−Nφ

)
(x) = 2−NQ

∫

G

g
(
y
)
φ
(
2−N

(
y−1x

))
dy

=

∫

G

g
(
2Ny

)
φ
(
y−1 · 2−Nx

)
dy

= 2−NQ(D2Ng ∗ φ
)(

2−Nx
)
,

(3.52)

and thus

∥∥g ∗D2−NQφ
∥∥
p
= 2−NQ

(∫

G

∣∣∣
(
D2Ng ∗ φ

)(
2−Nx

)∣∣∣
p
dx

)1/p

= 2−NQ+NQ/p
∥∥D2Ng ∗ φ

∥∥
p
.

(3.53)

Again by [19, Proposition 1.49], (D2Ng ∗ φ) → cgφ, in particular,

2−NQ+NQ/p
∥∥D2Ng ∗ φ

∥∥
p
−→ 0 as N −→ ∞. (3.54)

Hence, ΣNg → cφg, and the case p = 2 yields cφ = 1.

Theorem 3.16. Ḃs
p,q is a Banach space.

Proof. Completeness is the only issue here. Again, we pick ψ ∈ Z(G) as an LP-admissible
vector via Lemma 3.7. Suppose that {un}n∈N

⊂ Ḃs
p,q is a Cauchy sequence. As a consequence,

one has in particular, for all j ∈ Z, that {un ∗ ψ
∗
j }n∈N

⊂ Lp(G) is a Cauchy sequence, hence

un ∗ ψ
∗
j → vj , for a suitable vj ∈ Lp(G). Furthermore, the Cauchy property of {un}n∈N

⊂ Ḃs
p,q

implies that

{{
2js
∥∥∥un ∗ ψ

∗
j

∥∥∥
p

}

j∈Z

}

n∈N

⊂ ℓq(Z) (3.55)
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is a Cauchy sequence. On the other hand, the sequence converges pointwise to {2js‖vj‖p}j
,

whence

∑

j∈Z

2jsq
∥∥vj

∥∥q
p
< ∞. (3.56)

We define

u = lim
M→∞

∑

|j|≤M

vj ∗ ψj . (3.57)

Now, using (3.56) and Z(G) ⊂ Ḃ−s
p′,q′ , where p′, q′ are the conjugate exponents of p, q,

respectively, a straightforward calculation as in the proof of Lemma 3.12 shows that the
sum defining u converges in S′(G)/P. Furthermore, (3.56) and (3.25) easily imply that
u ∈ Ḃs

p,q. Finally, for the proof of un → u, we employ (3.25) together with the equality
ψ∗
j =

∑
|l−j|≤1 ψ

∗
l
∗ ψl ∗ ψ

∗
j , to show that

∥∥(un − u) ∗ ψj

∥∥
p
=

∥∥∥∥∥∥
un ∗ ψj −

∑

|l−j|≤1

vl ∗ ψl ∗ ψ
∗
j

∥∥∥∥∥∥
p

≤
∑

|l−j|≤1

∥∥∥
(
un ∗ ψ

∗
l − vl

)
∗ ψl ∗ ψ

∗
j

∥∥∥
p

≤
∑

|l−j|≤1

∥∥un ∗ ψ
∗
l − vl

∥∥
p

∥∥∥ψl ∗ ψ
∗
j

∥∥∥
1
−→ 0, as n −→ ∞.

(3.58)

Summarizing, the sequence {{2js‖(un − u) ∗ ψ∗
j ‖p

}
j∈Z

}
n∈N

∈ ℓq(N) is a Cauchy sequence, con-

verging pointwise to 0. But then ‖un − u‖Ḃs
p,q

→ 0 follows.

4. Characterization via Continuous Wavelet Transform

The following definition can be viewed as a continuous-scale analog of LP-admissibility.

Definition 4.1. ψ ∈ S(G) is called Z-admissible, if for all f ∈ Z(G),

f = lim
ǫ→ 0,A→∞

∫A

ǫ

f ∗Da

(
ψ∗ ∗ ψ

)da
a

(4.1)

holds with convergence in the Schwartz topology.
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The next theorem reveals a large class of Z-admissible wavelets. In fact, all the
wavelets studied in [15] are also Z-admissible in the sense considered here. Its proof is an
adaptation of the argument showing [15, Theorem 1].

We let

S(R+) =

{
f ∈ C∞(0,∞) : ∀k ∈ N0, f

(k)decreases rapidly, lim
ξ
f (k)(ξ) exists

}
. (4.2)

Theorem 4.2. Let ĥ ∈ S(R+), and let ψ be the distribution kernel associated to the operator Lĥ(L).
Then ψ is Z-admissible up to normalization.

Proof. The main idea of the proof is to write, for f ∈ Z(G),

∫A

ǫ

f ∗Da

(
ψ∗ ∗ ψ

)da
a

= f ∗

∫A

ǫ

Da

(
ψ∗ ∗ ψ

)da
a

= f ∗DAg − f ∗Dǫg,

(4.3)

with suitable g ∈ S(G). Once this is established, f ∗DAg → cgf for A → ∞ follows by [19,
Proposition (1.49)], with convergence in the Schwartz topology. Moreover, f ∈ Z(G) entails
that f ∗ Dǫg → 0 in the Schwartz topology: given any N > 0 and I ∈ N

n
0 with associated

left-invariant differential operator Y I , we can employ (3.5) to estimate

sup
x∈G

(1 + |x|)N
∣∣∣
(
Y If ∗Dǫg

)
(x)
∣∣∣ = sup

x∈G

(1 + |x|)NǫQ+d(I)
∣∣∣f ∗Dǫ

(
Y Ig

)
(x)
∣∣∣

≤ C sup
x∈G

(1 + |x|)NǫQ+d(I)+k(1 + |ǫx|)−M

≤ C sup
x∈G

(1 + |x|)N−MǫQ+d(I)+k−M,

(4.4)

which converges to zero for ǫ → 0, as soon asM ≥ N and k > M −Q − d(I). But this implies
f ∗Dǫg → 0 in S(G), by [19].

Thus it remains to construct g. To this end, define

ĝ(ξ) = −
1

2

∫∞

ξ

a
∣∣∣ĥ
(
a2
)∣∣∣

2
da, (4.5)

which is clearly in S(R+), and let g denote the associated convolution kernel of ĝ(L). By the
definition, g ∈ S(G). Let ϕ1, ϕ2 be in S(G), and let dλϕ1,ϕ2

denote the scalar-valued Borel
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measure associated to ϕ1, ϕ2 by the spectral measure. Then, by spectral calculus and the
invariance properties of da/a,

〈∫A

ǫ

ϕ1 ∗Da

(
ψ∗ ∗ ψ

)
f
da

a
, ϕ2

〉
=

∫∞

0

∫A

ǫ

(
a2ξ
)2∣∣∣ĥ

(
a2ξ
)∣∣∣

2da

a
dλϕ1,ϕ2(ξ)

=
1

2

∫∞

0

∫A2ξ

ǫ2ξ

a
∣∣∣ĥ
(
a2ξ
)∣∣∣

2
dadλϕ1,ϕ2(ξ)

=

∫∞

0

ĝ
(
A2ξ

)
− ĝ
(
ǫ2ξ
)
dλϕ1,ϕ2(ξ)

=
〈
ϕ1 ∗

(
DAg −Dǫg

)
, ϕ2

〉
,

(4.6)

as desired.

Hence, by [15, Corollary 1] we have the following.

Corollary 4.3. (a) There exist Z-admissible ψ ∈ Z(G).
(b) There exist Z-admissible ψ ∈ C∞

c (G) with vanishing moments of arbitrary finite order.

Given a tempered distribution u ∈ S′(G)/P and a Z(G)-admissible function ψ, the
continuous wavelet transform of u is the family (u ∗Daψ

∗)a>0 of convolution products.
We will now prove a characterization of Besov spaces in terms of the continuous wavelet
transform.

Another popular candidate for defining scales of Besov spaces is the heat semigroup;
see for example, [1] for the inhomogeneous case on stratified groups, or rather [21] for the
general treatment. In our setting, the heat semigroup associated to the sub-Laplacian is given

by right convolution with ht(x) = Dth(x), where h is the kernel of ĥ(L) with ĥ(ξ) = e−ξ.
Theorem 4.2 implies that ψ = Lkh is Z-admissible; it can be viewed as an analog of the well-
known Mexican Hat wavelet. (For general stratified Lie groups, this class of wavelets was
studied for the first time in [15].) The wavelet transform of f ∈ S′(G) associated to ψ is then
very closely related to the k-fold time derivative of the solution to the heat equation with
initial condition f . By choice of h,

u(x, t) =
(
f ∗Dth

)
(x) (4.7)

denotes the solution of the heat equation associated to L, with initial condition f . A formal
calculation using left invariance of L then yields

∂kt u = Lk(f ∗Dth
)
= f ∗ Lk(Dth) = t2kf ∗Dtψ

∗. (4.8)

Thus the following theorem also implies a characterization of Besov spaces in terms of the
heat semigroup.



20 Journal of Function Spaces and Applications

Theorem 4.4. Let ψ ∈ S(G) beZ-admissible, with vanishing moments of order k. Then, for all s ∈ R

with |s| < k, and all 1 ≤ p < ∞, 1 ≤ q ≤ ∞, the following norm equivalence holds:

∀u ∈ S′(G)/p ‖u‖Ḃs
p,q

≍
∥∥∥a �−→ as

∥∥u ∗Daψ
∗
∥∥
p

∥∥∥
Lq(R+;da/a)

. (4.9)

Here the norm equivalence is understood in the extended sense that one side is finite if and only if the
other side is. If ψ ∈ Z(G), the equivalence is also valid for the case p = ∞.

Proof. The strategy consists in adapting the proof of Theorem 3.11 to the setting where one
summation over scales is replaced by integration. This time, however, we have to deal with
both directions of the norm equivalence. In the following estimates, the symbol C denotes a
constant that may change from line to line, but in a way that is independent of u ∈ S′(G).

Let us first assume that

∫

R

asq
∥∥u ∗Daψ

∗
∥∥q
p

da

a
< ∞, (4.10)

for u ∈ S′(G)/P, 1 ≤ p, q ≤ ∞, for a Z-admissible function ψ ∈ S(G) with kψ > |s| vanishing
moments (ψ ∈ Z(G), if p = ∞). Let ϕ ∈ Z(G) be LP-admissible. Then, for all j ∈ Z,

u ∗ ϕ∗
j = lim

ǫ→ 0,A→∞

∫A

ǫ

u ∗Daψ
∗ ∗Daψ ∗ ϕ∗

j

da

a
(4.11)

holds in S′(G), by Lemma 3.4.
We next prove that the right-hand side of (4.11) converges in Lp. For this purpose,

introduce

cj =

∫∞

0

∥∥∥u ∗Daψ
∗ ∗Daψ ∗ ϕ∗

j

∥∥∥
p

da

a
. (4.12)

We estimate

cj ≤

∫∞

0

∥∥u ∗Daψ
∗
∥∥
p

∥∥∥Daψ ∗ ϕ∗
j

∥∥∥
1

da

a

=

∫2

1

∑

ℓ∈Z

∥∥u ∗Da2ℓψ
∗
∥∥
p

∥∥∥Da2ℓψ ∗ ϕ∗
j

∥∥∥
1

da

a

(4.13)

≤

(∫2

1

(∑

ℓ∈Z

∥∥u ∗Da2ℓψ
∗
∥∥
p

∥∥∥Da2ℓψ ∗ ϕ∗
j

∥∥∥
1

)q
da

a

)1/q

log (2)1/q
′

, (4.14)

where we used that da/a is scaling invariant. Note that the last inequality is Hölder’s in-
equality for q < ∞. In this case, taking qth powers and summing over j yields

∑

j∈Z

2jsqc
q

j ≤ C

∫2

1

∑

j∈Z

2jsq
(∑

ℓ∈Z

∥∥u ∗Da2ℓψ
∗
∥∥
p

∥∥∥Da2ℓψ ∗ ϕ∗
j

∥∥∥
1

)q
da

a
. (4.15)
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Using vanishing moments and Schwartz properties of ψ and ϕ, we can now employ (3.6) and
(3.8) to obtain

∥∥∥Da2ℓψ ∗ ϕ∗
j

∥∥∥
1
≤ C2−|j−ℓ|k, (4.16)

with a constant independent of a ∈ [1, 2]. But then, since k > |s|, we may proceed just as in
the proof of Theorem 3.11 to estimate the integrand in (4.15) via

∑

j∈Z

2jsq
(∑

ℓ∈Z

∥∥u ∗Da2ℓψ
∗
∥∥
p

∥∥∥Da2ℓψ ∗ ϕ∗
j

∥∥∥
1

)q

≤ C
∑

ℓ∈Z

2ℓsq
∥∥u ∗Da2ℓψ

∗
∥∥q
p
. (4.17)

Summarizing, we obtain

∑

j

2jsqc
q

j ≤ C

∫2

1

∑

ℓ∈Z

2ℓsq
∥∥u ∗Da2ℓψ

∗
∥∥q
p

da

a

≤ C

∫∞

0

asq
∥∥u ∗Da2ℓψ

∗
∥∥q
p

da

a
< ∞.

(4.18)

In particular, cj < ∞. But then the right-hand side of (4.11) converges to u ∗ ϕ∗
j in Lp. The

Minkowski inequality for integrals yields ‖u ∗ ϕ∗
j ‖p

≤ cj , and thus

‖u‖
q

Ḃs
p,q

≤ C

∫∞

0

asq
∥∥u ∗Da2ℓψ

∗
∥∥q
p

da

a
, (4.19)

as desired. In the case q = ∞, (4.16) yields that

sup
j

2js
(∑

ℓ∈Z

∥∥u ∗Da2ℓψ
∗
∥∥
p

∥∥∥Da2ℓψ ∗ ϕ∗
j

∥∥∥
1

)
≤ C sup

ℓ

2ℓs
∥∥u ∗Da2ℓψ

∗
∥∥q
p
. (4.20)

Thus, by (4.13),

sup
j

2jscj ≤ C

∫2

1

sup
ℓ

2ℓs
∥∥u ∗Da2ℓψ

∗
∥∥
p

da

a

≤ C ess sup
a

as
∥∥u ∗Daψ

∗
∥∥
p
.

(4.21)

The remainder of the argument is the same as for the case q < ∞.
Next assume u ∈ Ḃs

p,q. Then, for all a ∈ [1, 2] and ℓ ∈ Z,

u ∗Da2ℓψ
∗ =

∑

j∈Z

u ∗ ϕ∗
j ∗ ϕj ∗Da2ℓψ

∗, (4.22)



22 Journal of Function Spaces and Applications

with convergence in S′(G)/P; for ψ ∈ Z(G), convergence holds even in S′(G). As before,

∥∥∥∥∥∥
∑

j∈Z

u ∗ ϕ∗
j ∗ ϕj ∗Da2ℓψ

∗

∥∥∥∥∥∥
p

≤
∑

j∈Z

∥∥∥u ∗ ϕ∗
j

∥∥∥
p

∥∥ϕj ∗Da2ℓψ
∗
∥∥
1
. (4.23)

Again, we have ‖ϕj ∗Da2ℓψ
∗‖

1
� 2−|j−ℓ|k with a constant independent of a. Hence, one

concludes in the same fashion as in the proof of Theorem 3.11 that, for all a ∈ [1, 2],

∥∥∥
(
2ℓs
∥∥u ∗Da2ℓψ

∗
∥∥
p

)
ℓ∈Z

∥∥∥
q
≤ C

∥∥∥∥∥

(
2js
∥∥∥u ∗ ϕ∗

j

∥∥∥
p

)

j∈Z

∥∥∥∥∥
q

, (4.24)

again with a constant independent of a. In the case q = ∞, this finishes the proof immediately,
and for q < ∞, we integrate the qth power over a ∈ [1, 2] and sum over ℓ to obtain the desired
inequality.

Remark 4.5. Clearly, the proof of Theorem 4.4 can be adapted to consider discrete Littlewood-
Paley decompositions based on integer powers of any a > 1 instead of a = 2. Thus consistently
replacing powers of 2 in Definitions 3.6 and 3.9 by powers of a > 1 results in the same scale
of Besov spaces.

As an application of the characterization via continuous wavelet transforms, we
exhibit certain of the homogeneous Besov spaces as homogeneous Sobolev spaces, and we
investigate the mapping properties of sub-Laplacians between Besov spaces of different
smoothness exponents.

Lemma 4.6. Ḃ0
2,2 = L2(G), with equivalent norms.

Proof. Pick ψ by Lemma 3.7. Then spectral calculus implies that for all f ∈ Z(G)

∥∥f
∥∥2
Ḃ0
2,2

=
∑

j∈Z

∥∥∥f ∗ ψ∗
j

∥∥∥
2

2
=
∥∥f
∥∥2
2
. (4.25)

SinceZ(G) is dense in both spaces, and both spaces are complete, it follows that Ḃ0
2,2 = L2(G).

The next lemma investigates the mapping properties of sub-Laplacians between
Besov spaces of different smoothness exponents. Its proof is greatly facilitated by the
characterization via continuous wavelet transforms.

Lemma 4.7. Let L denote a sub-Laplacian. For all u ∈ S′(G)/P, 1 ≤ p, q < ∞, s ∈ R and k ≥ 0,

∥∥∥Lku
∥∥∥
Ḃs−2k
p,q

≍ ‖u‖Ḃs
p,q
, (4.26)
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in the extended sense that one side is infinite if and only if the other side is. In particular, Lk : Ḃs
p,q →

Ḃs−2k
p,q is a bijection, and it makes sense to extend the definition to negative k. Thus, for all k ∈ Z,

Lk : Ḃs
p,q −→ Ḃs−2k

p,q (4.27)

is a topological isomorphism of Banach spaces.

Proof. Pick a nonzero real-valued h ∈ S(R+), an integer m > |s| and let ψ denote

the distribution kernel of Lmĥ(L). Hence ψ is admissible by Theorem 4.2, with vanishing
moments of order 2m and ψ∗ = ψ. On L2(G), the convolution operator u �→ u ∗Daψ

∗ can be

written as Ψ̂a(L)with a suitable function Ψ̂a. For u ∈ Z(G) ⊂ L2(G), spectral calculus implies

∥∥∥
(
Lku

)
∗Daψ

∗
∥∥∥
p
=
∥∥∥
(
Ψ̂a(L) ◦ L

k
)
(u)
∥∥∥
p

=
∥∥∥
(
Lk ◦ Ψ̂a(L)

)
(u)
∥∥∥

=
∥∥∥Lk(u ∗Daψ

∗
)∥∥∥

p

=
∥∥∥u ∗ Lk(Daψ

∗
)∥∥∥

p

= a2k
∥∥∥u ∗Da

(
Lkψ

)∗∥∥∥
p
,

(4.28)

where we employed left invariance to pull Lk past u in the convolution. Note that up to
normalization, Lkψ is admissible with vanishing moments of order 2m + 2k > |s − 2k|. Thus,
applying Theorem 4.4, we obtain

∥∥∥Lku
∥∥∥
Ḃs−2k
p,q

≍

∥∥∥∥a �−→ as−2k
∥∥∥
(
Lku

)
∗Daψ

∗
∥∥∥
p

∥∥∥∥
Lq(R+;da/a)

=

∥∥∥∥a �−→ as
∥∥∥u ∗Da

(
Lkψ

)∗∥∥∥
p

∥∥∥∥
Lq(R+;da/a)

≍ ‖u‖Ḃs
p,q
.

(4.29)

Now assume that Lku ∈ Ḃs−2k
p,q . Then, combining the density statements from Lemma 3.12

and Remark 3.8, we obtain a sequence {un}n∈N
⊂ Z(G) with Lkun → Lku in Ḃs−2k

p,q ; thus

also with convergence in S′(G)/P. The norm equivalence and completeness of Ḃs
p,q yield that

un → v ∈ Ḃs
p,q, for suitable v ∈ Ḃs

p,q. Again, this implies convergence in S′(G)/P. Since

Lk is continuous on that space, it follows that Lkun → Lkv, establishing that Lkv = Lku.
Since any distribution annihilated by Lk is a polynomial, this finally yields u = v ∈ Ḃs

p,q, and

‖u‖Ḃs
p,q

≍ ‖Lku‖Ḃs−2k
p,q

follows by taking limits. A similar but simpler argument establishes the

norm equivalence under the assumption that u ∈ Ḃs
p,q.

This observation shows that we can regard certain Besov spaces as homogeneous Sob-
olev spaces, or, more generally, as generalizations of Riesz potential spaces.
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Corollary 4.8. For all k ∈ N: B2k
2,2 = {f ∈ S′(G)/P : Lkf ∈ L2(G)}.

As a further corollary, we obtain the following interesting result relating two sub-
Laplacians L1 and L2. For all k ∈ Z, the operator

Lk
1 ◦ L

−k
2 : L2(G) −→ L2(G) (4.30)

is densely defined and has a bounded extension with bounded inverse. More general an-
alogues involvingmore than two sub-Laplacians are also easily formulated. For the Euclidean
case, this is easily derived using the Fourier transform, which can be viewed as a joint spectral
decomposition of commuting operators. In the general, nonabelian case however, this tool is
not readily available, and we are not aware of a direct proof of this observation, nor of a
previous source containing it.

5. Characterization of Besov Spaces by Discrete Wavelet Systems

We next show that the Littlewood-Paley characterization of Ḃs
p,q can be discretized by

sampling the convolution products f ∗ψ∗
j over a given discrete set Γ ⊂ G. This is equivalent to

the study of the analysis operator associated to a discrete wavelet system {ψj,γ}j∈Z,γ∈Γ
, defined

by

ψj,γ(x) = D2jTγψ(x) = 2jQψ
(
γ−1 · 2jx

)
. (5.1)

Throughout the rest of the paper, we assume that the wavelet ψ ∈ Z(G) has been chosen
according to Lemma 3.7 and ψ∗ = ψ.

We first define the discrete coefficient spaces which will be instrumental in the
characterization of the Besov spaces.

Definition 5.1. Fix a discrete set Γ ⊂ G. For a family {cj,γ}j∈Z,γ∈Γ
of complex numbers, we define

∥∥∥
{
cj,γ
}
j∈Z,γ∈Γ

∥∥∥
ḃsp,q

=

⎛
⎜⎝
∑

j

⎛
⎝∑

γ∈Γ

(
2j(s−Q/p)

∣∣cj,γ
∣∣
)p
⎞
⎠

q/p
⎞
⎟⎠

1/q

. (5.2)

The coefficient space ḃsp,q(Γ) associated to Ḃs
p,q and Γ is then defined as

ḃsp,q(Γ) :=

{{
cj,γ
}
j∈Z,γ∈Γ

:
∥∥∥
{
cj,γ
}
j∈Z,γ∈Γ

∥∥∥
ḃsp,q

< ∞

}
. (5.3)

We simply write ḃsp,q if Γ is understood from the context.

We define the analysis operator Aψ associated to the function ψ and Γ, assigning each
u ∈ S′(G)/P the family of coefficients Aψ(u) = {〈u, ψj,γ〉}j,γ . Note that the analysis operator

is implicitly assumed to refer to the same set Γ that is used in the definition of ḃsp,q.
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We next formulate properties of the sampling sets we intend to use in the following.
We will focus on regular sampling, as specified in the next definition. Most of the results are
obtainable for less regular sampling sets, at the cost of more intricate notation.

Definition 5.2. A subset Γ ⊂ G is called regular sampling set, if there exists a relatively compact
Borel neighborhood W ⊂ G of the identity element of G satisfying

⋃
γ∈Γ γW = G (up to a set

of measure zero) as well as |γW ∩ αW | = 0, for all distinct γ, α ∈ Γ. Such a set W is called a Γ-
tile. A regular sampling set Γ is called U-dense, forU ⊂ G, if there exists a Γ-tile W ⊂ U.

Note that the definition of U-dense used here is somewhat more restrictive than, for
example, in [14]. A particular class of regular sampling sets is provided by lattices, that
is, cocompact discrete subgroups Γ ⊂ G. Here, Γ-tiles are systems of representatives mod
Γ. However, not every stratified Lie group admits a lattice. By contrast, there always exist
sufficiently dense regular sampling sets, as the following result shows.

Lemma 5.3. For every neighborhood U of the identity, there exists a U-dense regular sampling set.

Proof. By [14, Lemma 5.10], there exists Γ ⊂ G and a relatively compact W with nonempty
open interior, such that

⋃
γW tiles G (up to sets of measure zero). Then V = Wx−1

0 is a Γ-tile,
for some point x0 in the interior of W . Finally, choosing b > 0 sufficiently small ensures that
bV ⊂ U, and bV is a bΓ-tile.

The chief result of this section is the following theorem which shows that the Besov
norms can be expressed in terms of discrete coefficients. Note that the constants arising in the
following norm equivalences may depend on the space, but the same sampling set is used
simultaneously for all spaces.

Theorem 5.4. There exists a neighborhood U of the identity, such that for all U-dense regular
sampling sets Γ, and for all u ∈ S′(G)/P and all 1 ≤ p, q ≤ ∞, the following implication holds:

u ∈ Ḃs
p,q =⇒

{〈
u, ψj,γ

〉}
j∈Z,γ∈Γ

∈ ḃsp,q(Γ). (5.4)

Furthermore, the induced coefficient operator Aψ : Ḃs
p,q → ḃsp,q is a topological embedding. In other

words, on Ḃs
p,q one has the norm equivalence

‖u‖Ḃs
p,q

≍

⎛
⎝∑

j

(∑

γ

(
2j(s−Q/p)

∣∣〈u, ψj,γ

〉∣∣
)p
)q/p

⎞
⎠

1/q

, (5.5)

with constants depending on p, q, s, and Γ.

Remark 5.5. As a byproduct of the discussion in this section, we will obtain that the tightness
of the frame estimates approaches 1, as the density of the sampling set increases. That is, the
wavelet frames are asymptotically tight.
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For the proof of Theorem 5.4, we need to introduce some notations. In the following,
we write

Xj =
{
u ∗ ψ∗

j : u ∈ S′(G)
}
, (5.6)

which is a space of smooth functions, as well as X
p

j = Xj ∩ Lp(G). Furthermore, let Γj = 2jΓ,

and denote by RΓj : Xj ∋ g �→ g|Γj the restriction operator.
In order to prove Theorem 5.4, it is enough to prove the following sampling result for

the spaces Xj ; the rest of the argument consists in summing over j. In particular, note that the
sampling set Γ is independent of p and j, and the associated constants are independent of j.

Lemma 5.6. There exists a neighborhoodU of the identity, such that for allU-dense regular sampling
sets Γ, the implication

g ∈ X
p

j =⇒ RΓjg ∈ ℓp
(
Γj
)
, (5.7)

holds. Furthermore, with suitable constants 0 < c(p) ≤ C(p) < ∞ (for 1 ≤ p ≤ ∞), the inequalities

c
(
p
)∥∥∥u ∗ ψ∗

j

∥∥∥
p
≤

⎛
⎝∑

γ∈Γ

2−jQ
∣∣〈u, ψj,γ

〉∣∣p
⎞
⎠

1/p

≤ C
(
p
)∥∥∥u ∗ ψ∗

j

∥∥∥
p

(5.8)

hold for all j ∈ Z and all u ∈ Xj .

Proof. Here we only show that the case j = 0 implies the other cases; the rest will be
established below. Hence assume (5.8) is known for j = 0. Let g = u ∗ψ∗

j ∈ Xj . For arbitrary j,

we have that ψ∗
j = 2jQψ∗

0 ◦ δ2j , and thus

u ∗ ψ∗
j = 2jQu ∗

(
ψ∗ ◦ δ2j

)
=
(
vj ∗ ψ∗

)
◦ δ2j . (5.9)

Here vj = u ◦ δ2−j , where the dilation action on distributions is defined in the usual manner
by duality. The last equality follows from the fact that δ2j is a group homomorphism. Recall
that for any j and γ , ψj,γ(x) = 2jQψ(γ−1 ·2jx), applying the case j = 0, we obtain for p < ∞ that

⎛
⎝∑

γ∈Γ

∣∣〈u, ψj,γ

〉∣∣p
⎞
⎠

1/p

=

⎛
⎝∑

γ∈Γ

∣∣∣
〈
vj , ψ0,γ

〉∣∣∣
p

⎞
⎠

1/p

≤ C
(
p
)∥∥∥vj ∗ ψ∗

0

∥∥∥
p

= C
(
p
)∥∥∥
(
vj ∗ ψ∗

0

)
◦ δ2j ◦ δ2−j

∥∥∥
p

= C
(
p
)∥∥∥
(
u ∗ ψ∗

j

)
◦ δ2−j

∥∥∥
p

= C
(
p
)
2jQ/p

∥∥∥u ∗ ψ∗
j

∥∥∥
p
,

(5.10)
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which is the upper estimate for arbitrary j. The lower estimate and the case p = ∞ follow by
similar calculations.

For the remainder of this section, we will therefore be concerned with the case j = 0,
which will be treated using ideas similar to the ones in [14], relying mainly on oscillation
estimates. Given any function f on G and a set U ⊂ G, we define the oscillation

oscU
(
f
)
(x) = sup

y∈U

∣∣∣f(x) − f
(
xy−1

)∣∣∣. (5.11)

We can then formulate the following result.

Proposition 5.7. Let X0 ⊂ S′(G) be a space of continuous functions. Suppose that there exists K ∈

S(G) such that, for all f ∈ X0, f = f ∗K holds pointwise. Define X
p

0 = X0 ∩ Lp(G), for 1 ≤ p ≤ ∞.
Let ǫ < 1, and, U be a neighborhood of the unit element fulfilling ‖oscU(K)‖1 ≤ ǫ. Then, for all
U-dense regular sampling sets Γ, the following implication holds:

∀f ∈ X0 : f ∈ X
p

0 =⇒ f |Γ ∈ ℓp(Γ). (5.12)

The restriction map RΓ : f → f |Γ induces a topological embedding (X
p

0 , ‖ · ‖p) → lp(Γ).
More precisely, for p < ∞,

1

|W |1/p
(1 − ǫ)

∥∥f
∥∥
p
≤
∥∥RΓf

∥∥
p
≤

1

|W |1/p
(1 + ǫ)

∥∥f
∥∥
p
, ∀f ∈ X

p

0 , (5.13)

whereW denotes a Γ-tile, and

(1 − ǫ)
∥∥f
∥∥
∞
≤
∥∥RΓf

∥∥
∞
≤ (1 + ǫ)

∥∥f
∥∥
∞
, ∀f ∈ X∞

0 . (5.14)

Proof. We introduce the auxiliary operator T : ℓp(Γ) → Lp(G) defined by

T(c) =
∑

γ∈Γ

cγLγχW ,
(5.15)

with c = (cγ)γ∈Γ. Since the sets γW are pairwise disjoint, T is a multiple of an isometry, ‖Tc‖p =

|W |1/p‖c‖p. In particular, T has a bounded inverse on its range, and Tc ∈ Lp(G) implies c ∈

ℓp(Γ) for any sequence c ∈ C
Γ.

The equation f = f ∗K implies the pointwise inequality

oscU
(
f
)
≤
∣∣f
∣∣ ∗ oscU(K) (5.16)

(see [14, page 185]). Now Young’s inequality provides for f ∈ Xp:

∥∥oscU
(
f
)∥∥

p
≤
∥∥f
∥∥
p‖oscU(K)‖1 ≤ ǫ

∥∥f
∥∥
p
. (5.17)
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Since the γW ’s are disjoint, we may then estimate, for all f ∈ Xp,

∥∥f − TRΓf
∥∥p
p
=
∑

γ∈Γ

∫

γW

∣∣f(x) − f
(
γ
)∣∣pdx

≤
∑

γ∈Γ

∫

γW

∣∣oscU
(
f
)
(x)
∣∣pdx

=
∥∥oscU

(
f
)∥∥p

p

≤ ǫp
∥∥f
∥∥p
p
.

(5.18)

In particular, TRΓf ∈ Lp(G), whence RΓf ∈ ℓp(Γ). In addition, we obtain the upper bound of
the sampling inequality for f ∈ Xp

∥∥RΓf
∥∥
p
=
∥∥∥T−1TRΓf

∥∥∥
p

≤
∥∥∥T−1

∥∥∥
∞

∥∥TRΓf
∥∥
p

≤
∥∥∥T−1

∥∥∥
∞

(∥∥f
∥∥
p
+
∥∥f − TRΓf

∥∥
p

)

≤
∥∥∥T−1

∥∥∥
∞
(1 + ǫ)

∥∥f
∥∥
p

≤
1

|W |1/p
(1 + ǫ)

∥∥f
∥∥
p
.

(5.19)

The lower bound follows similarly by

∥∥RΓf
∥∥
p
≥ ‖T‖−1∞

∥∥TRΓf
∥∥
p

≥ ‖T‖−1∞

(∥∥f
∥∥
p
−
∥∥f − TRΓf

∥∥
p

)

≥ ‖T‖−1∞ (1 − ǫ)
∥∥f
∥∥
p

≥
1

|U|1/p
(1 − ǫ)

∥∥f
∥∥
p
.

(5.20)

Thus (5.13) and (5.12) are shown, for 1 ≤ p < ∞. For p = ∞, we note that ‖T‖∞ = ‖T−1‖∞ = 1.
Furthermore,

∥∥f − TRγf
∥∥
∞
≤ sup

γ
ess sup

x∈γW

∣∣f(x) − f
(
γ
)∣∣

≤
∥∥oscU

(
f
)∥∥

∞
.

(5.21)

Now the remainder of the proof is easily adapted from the case p < ∞.

It remains to check the conditions of the proposition for

X0 =

{
f = u ∗ ψ∗

0 : u ∈
S′(G)

P

}
. (5.22)
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Lemma 5.8. There exists a Schwartz function K acting as a reproducing kernel for X0, that is, f =

f ∗K holds for all f ∈ X
p

0 .

Proof. We pick a real-valued C∞
c -function k on R

+ that is identically 1 on the support of ψ̂0,
and let K be the associated distribution kernel to k(L). Then ψ∗

0 = ψ∗
0 ∗K, whence f = f ∗K

follows, for all f ∈ X0.

Lemma 5.9. Let K be a Schwartz function. For every ǫ > 0, there exists a compact neighborhood U
of the unit element such that ‖oscU(K)‖1 < ǫ.

Proof. First observe that, by continuity, oscU(K) → 0 pointwise, as U runs through a
neighborhood base at the identity element. Thus by dominated convergence it suffices to
prove ‖oscV (K)‖1 < ∞, for some neighborhood V .

Let V = {x ∈ G : |x| < 1}. A straightforward application of the mean value theorem
[19, Theorem 1.33] yields

oscV (K)(x) ≤ C sup
|z|≤β,1≤i≤n

|YiK(xz)|. (5.23)

Here C and β are constants depending onG. The Sobolev estimate [22, (5.13)] for p = 1 yields
that for all z with |z| < β

|YiK(xz)| ≤ C′
∑

Y

∫

xW

∣∣YK
(
y
)∣∣dy, (5.24)

where Y runs through all possible Y I with d(I) ≤ Q + 1, including the identity operator
corresponding to I = (0, . . . , 0). Furthermore, W = {x ∈ G : |x| < β}, and C′ > 0 is a constant.
Now integrating against Haar-measure (which is two-sided invariant) yields

∫

G

oscV (K)(x)dx ≤ C
∑

Y

∫

G

∫

xW

∣∣YK
(
y
)∣∣dy dx

= CC′
∑

Y

∫

G

∫

W

∣∣YK
(
xy
)∣∣dy dx

= |W |CC′
∑

Y

∫

G

|YK(x)|dx,

(5.25)

and the last integral is finite because K is a Schwartz function.

Now Lemma 5.6 is a direct consequence of Proposition 5.7 and Lemmas 5.8 and 5.9.
Note that the tightness in Proposition 5.7 converges to 1, as U runs through a neighborhood
of the identity. This property is then inherited by the norm estimates in Theorem 5.4.

6. Banach Wavelet Frames for Besov Spaces

In Hilbert spaces a norm equivalence such as (5.5) would suffice to imply that the wavelet
system is a frame, thus entailing a bounded reconstruction from the discrete coefficients. For
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Banach spaces one needs to use the extended definition of frames [23], that is, to show the
invertibility of associated frame operator. In this section we will establish these statements
for wavelet systems in Besov space. We retain the assumption that the wavelet ψ was chosen
according to Lemma 3.7.

We first prove that any linear combination of wavelet systems with coefficients in
ḃsp,q converges unconditionally in Ḃs

p,q, compare [12, Theorem 3.1]. We then show that for

all sufficiently dense choices of the sampling set Γ, the wavelet system {2−jQψj,γ} constitutes
a Banach frame for Ḃs

p,q.
Recall that the sampled convolution products studied in the previous sections can be

read as scalar products

f ∗ ψ∗
j

(
2jγ
)
=
〈
f, ψj,γ

〉
, (6.1)

where ψj,γ(x) = 2jQψ(γ−1 · 2jx) denotes the wavelet of scale 2−j at position 2−jγ . In the
following, the wavelet system is used for synthesis purposes, that is, we consider linear
combinations of discrete wavelets. The next result can be viewed in parallel to synthesis
results, for example, in [7]. It establishes synthesis for a large class of systems. Note in
particular that the functions gj,γ need not be obtained by dilation and shifts from a single
function g.

Theorem 6.1. Let Γ ⊂ G be a regular sampling set. Let 1 ≤ p, q < ∞.

(a) Suppose that one is given tempered distributions (gj,γ)j∈Z,γ∈Γ
satisfying the following decay

conditions: for all N,θ ∈ N, there exist constants c1, c2 such that for all j, l ∈ Z, γ ∈ Γ,
x ∈ G:

∣∣gj,γ ∗ ψ∗
l (x)

∣∣ ≤
{
c12

jQ2−(j−l)N
(
1 + 2l

∣∣2−jγ−1 · x
∣∣)−(Q+1)

for l ≤ j,

c22
jQ2−(l−j)θ

(
1 + 2j

∣∣2−jγ−1 · x
∣∣)−(Q+1)

for l ≥ j,
(6.2)

Then for all {cj,γ}j∈Z,γ∈Γ ∈ ḃsp,q(Γ), the sum

f =
∑

j,γ

cj,γgj,γ (6.3)

converges unconditionally in the Besov norm, with

∥∥f
∥∥
Ḃs
p,q

≤ c

⎛
⎝∑

j

(∑

γ

(
2j(s−Q/p)

∣∣cj,γ
∣∣
)p
)q/p

⎞
⎠

1/q

(6.4)

for some constant c independent of {cj,γ}j∈Z,γ∈Γ
. In other words, the synthesis operator

ḃsp,q(Γ) → Ḃs
p,q associated to the system (gj,γ)j,γ is bounded.

(b) The synthesis result in (a) holds in particular for

gj,γ(x) = ψj,γ(x) = 2jQψj

(
γ−1 ·

(
2jx
))

. (6.5)
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In order to motivate the following somewhat technical lemmas, let us give a short
sketch of the proof strategy for the theorem. It suffices to show (6.4) for all finitely supported
sequences; the rest follows by density arguments, using that Ḃs

p,q is a Banach space. Hence,
given a finitely supported coefficient sequence {cj,γ} and f =

∑
j,γ cj,γgj,γ , we need estimates

for the Lp-norms of

f ∗ ψl =
∑

j,γ

cj,γgj,γ ∗ ψl. (6.6)

These estimates are obtained by first looking at the summation over γ , with j fixed, and then
summing over j. In both steps, we use the decay condition (6.2).

The following lemma shows that (6.2) is fulfilled for gj,γ = ψj,γ and thus allows to
conclude part (b) of Theorem 6.1.

Lemma 6.2. There exists a constant C > 0 such that for any j, l ∈ Z, γ ∈ Γ, x ∈ G, the following
estimate holds:

∣∣ψj,γ ∗ ψ
∗
l (x)

∣∣ ≤
{
C2jQ

(
1 + 2j

∣∣(2−jγ−1
)
· x
∣∣)−(Q+1) ∣∣l − j

∣∣ ≤ 1

0 otherwise.
(6.7)

Proof. We first compute

(
ψj,γ ∗ ψ

∗
l

)
(x) =

∫

G

2jQψ
(
γ−1 · 2jy

)
2lQψ

(
2l
(
x−1 · y

))
dy

=

∫

G

ψ
(
γ−1 · y

)
2lQψ

(
2l
(
x−1 · 2−jy

))
dy

=

∫
ψ
(
y
)
2jQ2lQ

(
ψ2l−j

((
γ−1 · 2jx

)−1
· y
))

dy

= 2jQ
(
ψ ∗ ψ∗

l−j

)(
γ−1 · 2jx

)
.

(6.8)

In particular, (3.25) implies that the convolution vanishes if |j − l| > 1. For the other case, we
observe that the convolution products ψ ∗ ψl, for l ∈ {−1, 0, 1} are Schwartz functions, hence

∣∣ψj,γ ∗ ψ
∗
l (x)

∣∣ ≤ C2jQ
(
1 + 2j

∣∣∣2−jγ−1 · x
∣∣∣
)−Q−1

. (6.9)

For the convergence of the sums over Γ, we will need the Schur test for boundedness
of infinite matrices on ℓp-spaces.

Lemma 6.3. Let 1 ≤ p ≤ ∞. Let Γ be some countable set, and let A = (aλ,γ)λ,γ∈Γ denote a matrix of

complex numbers. Assume that, for some finite constantM,

sup
γ

∑

λ∈Γ

∣∣aλ,γ

∣∣ ≤ M, sup
λ

∑

γ∈Γ

∣∣aλ,γ

∣∣ ≤ M. (6.10)
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Then the operator

TA :
(
xγ

)
γ∈Γ

�−→

⎛
⎝∑

γ∈Γ

aλ,γxγ

⎞
⎠

λ∈Γ

(6.11)

is bounded on ℓp(Γ), with operator norm ≤ M.

Lemma 6.4. Let η, j ∈ Z, with η ≤ j and N ≥ Q + 1. Let Γ ⊂ G be separated. Then for any x ∈ G,
one has

∑

γ

2−jQ
(
1 + 2η

∣∣∣
(
2−jγ−1

)
· x
∣∣∣
)−N

≤ C2−ηQ, (6.12)

where the constant C depends only on N and Γ.

Proof. By assumption, there exists an open set W such that γW ∩ γ ′W = ∅, for γ, γ ′ ∈ Γ with
γ /= γ ′. In addition, we may assume W is relatively compact. Then,

∑

γ

2−jQ
(
1 + 2η

∣∣∣
(
2−jγ−1

)
· x
∣∣∣
)−N

≤
∑

γ

1

|W |

∫

2−j (γW)

(
1 + 2η

∣∣∣
(
2−jγ−1

)
· x
∣∣∣
)−N

dy. (6.13)

For y ∈ 2−j(γW), the triangle inequality of the quasi-norm yields

1 + 2η
∣∣∣y−1x

∣∣∣ ≤ 1 + 2ηC
(∣∣∣y−1

(
2−jγ

)∣∣∣ +
∣∣∣
(
2−jγ−1

)
x
∣∣∣
)

≤ 1 + C2η
(
2−j diam(W) +

∣∣∣
(
2−jγ−1

)
x
∣∣∣
)

≤ C′
(
1 + 2η

∣∣∣
(
2−jγ−1

)
x
∣∣∣
)
,

(6.14)

with the last inequality due to η ≤ j. Accordingly,

∑

γ

1

|W |

∫

2−j (γW)

(
1 + 2η

∣∣∣
(
2−jγ−1

)
· x
∣∣∣
)−N

dy ≤ C′′
∑

γ

∫

2−j (γW)

(
1 + 2η

∣∣∣y−1 · x
∣∣∣
)−N

dy

= C′′2−ηQ
∫

G

(
1 +

∣∣y
∣∣)−Ndy,

(6.15)

where the inequality used disjointness of the γW . For N ≥ Q + 1, the integral is finite.

The next lemma is an analog of [12, Lemma 3.4], which we will need for the proof of
Theorem 6.1.

Lemma 6.5. Let 1 ≤ p ≤ ∞ and j, η ∈ Z be fixed with η ≤ j. Suppose that Γ ⊂ G is a regular
sampling set. For any γ ∈ Γ, let fj,γ be a function on G. Assume that the fj,γ fulfill the decay estimate

∀x ∈ G, ∀η, j ∈ Z, ∀γ ∈ Γ :
∣∣fj,γ(x)

∣∣ ≤ C1

(
1 + 2η

∣∣∣
(
2−jγ−1

)
· x
∣∣∣
)−(Q+1)

, (6.16)
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with a constant C1 > 0. Define F =
∑

γ∈Γ cj,γfj,γ , where {cj,γ}γ ∈ lp(Γ). Then the series converges

unconditionally in Lp, with

‖F‖p ≤ C22
(j−η)Q2−jQ/p

∥∥{cj,γ
}∥∥

ℓp(Γ), (6.17)

with a constant C2 independent of j, γ , η, and of the coefficient sequence.

Proof. To prove the assertion, let W be a Γ-tile. Then,

‖F‖
p
p =

∑

α∈Γ

∫

2−j (αW)

∣∣∣∣∣
∑

γ

cj,γfj,γ(x)

∣∣∣∣∣

p

dx

≤ C
p

1

∑

α∈Γ

∫

2−j (αW)

∣∣∣∣∣
∑

γ

∣∣cj,γ
∣∣
(
1 + 2η

∣∣∣
(
2−jγ−1

)
· x
∣∣∣
)−(Q+1)

∣∣∣∣∣

p

dx.

(6.18)

On each integration patch 2−j(αW), the triangle inequality of the quasi-norm yields the
estimate

1 + 2η
∣∣∣2−j

(
γ−1α

)∣∣∣ ≤ C′
(
1 + 2η

∣∣∣
(
2−jγ−1

)
x
∣∣∣
)
, (6.19)

compare the proof of Lemma 6.4, and thus the integrand can be estimated from above by the
constant

∣∣∣∣∣
∑

γ

∣∣cj,γ
∣∣
(
1 + 2η

∣∣∣2−j
(
γ−1α

)∣∣∣
)−(Q+1)

∣∣∣∣∣

p

(6.20)

whence

∑

α∈Γ

∫

2−j (αW)

∣∣∣∣∣
∑

γ

∣∣cj,γ
∣∣
(
1 + 2η

∣∣∣
(
2−jγ−1

)
· x
∣∣∣
)−(Q+1)

∣∣∣∣∣

p

dx

≤ C′
∑

α∈Γ

2−jQ
(∑

γ

∣∣cj,γ
∣∣
(
1 + 2η

∣∣∣2−j
(
γ−1α

)∣∣∣
)−(Q+1)

)p

= C′
∑

α∈Γ

2−jQ
(∑

γ

∣∣cj,γ
∣∣aα,γ

)p

.

(6.21)
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Here aα,γ = (1 + 2η|2−j(γ−1α)|)
−(Q+1)

. Now Lemma 6.4 yields that the Schur test is fulfilled for
the coefficients {aα,γ} with M = 2Q(j−η) (observe in particular that the right-hand side of the
estimate above is independent of x), thus Lemma 6.3 yields

‖F‖p ≤ C′′2−jQ/p

(∑

α∈Γ

(∑

γ

∣∣cj,γ
∣∣aα,γ

)p)1/p

≤ C22
−jQ/p2(j−η)Q

∥∥∥
{
cj,γ
}
γ

∥∥∥
ℓp
, (6.22)

as desired.

Proof of Theorem 6.1. We still need to prove part (a) of the theorem, and here it is sufficient
to show the norm estimate for all finitely supported coefficient sequences {cj,γ}j,γ . The full

statement then follows by completeness of Ḃs
p,q and from the fact that the Kronecker-δs are an

unconditional basis of ḃsp,q (here we need p, q < ∞).
Repeated applications of the triangle inequality yield

∥∥f
∥∥
Ḃs
p,q

=

∥∥∥∥∥∥∥

⎧
⎪⎨
⎪⎩
2ls

∥∥∥∥∥∥
∑

j,γ

cj,γgj,γ ∗ ψ
∗
l

∥∥∥∥∥∥
p

⎫
⎪⎬
⎪⎭

l

∥∥∥∥∥∥∥
ℓq(Z)

≤

∥∥∥∥∥∥

⎧
⎨
⎩2ls

l−1∑

j=−∞

∥∥∥∥∥
∑

γ

cj,γgj,γ ∗ ψ
∗
l

∥∥∥∥∥
p

⎫
⎬
⎭

l

∥∥∥∥∥∥
ℓq(Z)

+

∥∥∥∥∥∥

⎧
⎨
⎩2ls

∞∑

j=l

∥∥∥∥∥
∑

γ

cj,γgj,γ ∗ ψ
∗
l

∥∥∥∥∥
p

⎫
⎬
⎭

l

∥∥∥∥∥∥
ℓq(Z)

.

(6.23)

PickN,θ ∈ N such that N > Q − s + 1 and θ > s + 1. Define

dj := 2j(s−Q/p)
∥∥{cj,γ

}∥∥
ℓp
. (6.24)

For j < l, assumption (6.2) yields

∣∣(gj,γ ∗ ψ∗
l

)
(x)
∣∣ ≤ C2jQ2−(l−j)θ

(
1 + 2j

∣∣∣
(
2−jγ−1

)
x
∣∣∣
)−Q−1

, (6.25)

and thus, by Lemma 6.5,

∥∥∥∥∥∥
∑

γ∈Γ

cj,γgj,γ ∗ ψ
∗
l

∥∥∥∥∥∥
p

≤ C′2jQ2−(l−j)θ2−jQ/p
∥∥∥
{
cj,γ
}
γ

∥∥∥
ℓp
. (6.26)

But then

2ls
l−1∑

j=−∞

∥∥∥∥∥∥
∑

γ∈Γ

cj,γgj,γ ∗ ψ
∗
l

∥∥∥∥∥∥
p

≤ C′
l−1∑

j=−∞

2−(l−j)(θ−s)2j(s−Q/p)
∥∥∥
{
cj,γ
}
γ

∥∥∥
ℓp

= C′
(
b∗Z

{
dj

}
j

)
(l) ,

(6.27)



Journal of Function Spaces and Applications 35

where ∗Z denotes convolution over Z, and

b
(
j
)
= 2−j(θ−s)χN

(
j
)
. (6.28)

By choice of θ, b ∈ ℓ1(Z), and Young’s inequality allows to conclude that

∥∥∥∥∥∥

⎧
⎨
⎩2ls

l−1∑

j=−∞

∥∥∥∥∥
∑

γ

cj,γgj,γ ∗ ψ
∗
l

∥∥∥∥∥
p

⎫
⎬
⎭

l

∥∥∥∥∥∥
ℓq(Z)

≤ C′′
∥∥∥
{
dj

}
j

∥∥∥
ℓq

= C′′
∥∥∥
{
cj,γ
}
j,γ

∥∥∥
ḃsp,q

. (6.29)

For j ≥ l, assumption (6.2) provides the estimate

∣∣(gj,γ ∗ ψ∗
l

)
(x)
∣∣ ≤ C2jQ2−(l−j)θ

(
1 + 2j

∣∣∣
(
2−jγ−1

)
x
∣∣∣
)−Q−1

. (6.30)

Here, Lemma 6.5 and straightforward calculation allow to conclude that

2ls
l−1∑

j=−∞

∥∥∥∥∥∥
∑

γ∈Γ

cj,γgj,γ ∗ ψ
∗
l

∥∥∥∥∥∥
p

≤ C′
(
b̃∗Z

{
dj

}
j

)
(l), (6.31)

with

b̃
(
j
)
= 2−j(s+N−Q)χN

(
j
)
. (6.32)

Hence, Young’s theorem applies again and yields

∥∥∥∥∥∥

⎧
⎨
⎩2ls

l−1∑

j=−∞

∥∥∥∥∥
∑

γ

cj,γgj,γ ∗ ψ
∗
l

∥∥∥∥∥
p

⎫
⎬
⎭

l

∥∥∥∥∥∥
ℓq(Z)

≤ C′′
∥∥∥
{
cj,γ
}
j,γ

∥∥∥
ḃsp,q

, (6.33)

and we are done.

We conclude this section by showing that wavelets provide a simultaneous Banach
frame for Ḃs

p,q, for all 1 ≤ p, q < ∞ and s ∈ R; see [24] for an introduction to Banach frames. In
the following, we consider the frame operator associated to a regular sampling set Γ, given
by

Sψ,Γ

(
f
)
=

∑

j∈Z,γ∈Γ

2−jQ
〈
f, ψj,γ

〉
ψj,γ . (6.34)

By Theorems 6.1 and 5.4, Sψ,Γ : Ḃs
p,q(G) → Ḃs

p,q(G) is bounded, at least for sufficiently dense
sampling sets Γ. Our aim is to show that, for all sufficiently dense regular sampling sets,
the operator Sψ,Γ is in fact invertible, showing that the wavelet system is a Banach frame
for Ḃs

p,q(G). The following lemma contains the main technical ingredient for the proof. Once
again, we will rely on oscillation estimates.
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Lemma 6.6. Let f = u ∗ ψ∗
j , with u ∈ S′(G)/P, such that f ∈ Lp(G), for some 1 ≤ p < ∞. For

ǫ > 0, there exists a neighborhood U of the identity such that, for all U-dense regular sampling sets
Γ ⊂ G and all Γ-tilesW ⊂ G, one has

∥∥∥∥∥∥
f ∗ ψj −

∑

γ∈Γ

|W |2−jQ
〈
u, ψj,γ

〉
ψj,γ

∥∥∥∥∥∥
p

≤ ǫ
∥∥f ∗ ψj

∥∥
p
. (6.35)

Proof. We first consider the case j = 0. LetW denote a Γ-tile. We define the auxiliary function

h =
∑

γ∈Γ

f
(
γ
)
LγχγW = TRΓf, (6.36)

using the notation of the proof of Proposition 5.7. By the triangle inequality,

∥∥∥∥∥∥
f ∗ ψ0 −

∑

γ∈Γ

|W |
〈
u, ψ0,γ

〉
ψ0,γ

∥∥∥∥∥∥
p

≤
∥∥(f − h

)
∗ ψ0

∥∥
p
+

∥∥∥∥∥∥
h ∗ ψ0 −

∑

γ∈Γ

|W |
〈
u, ψ0,γ

〉
ψ0,γ

∥∥∥∥∥∥
p

. (6.37)

Now Young’s inequality, together with the proof of Proposition 5.7, implies that for all
sufficiently dense Γ,

∥∥(f − h
)
∗ ψ0

∥∥
p
≤
∥∥f − h

∥∥
p

∥∥ψ0

∥∥
1
≤

ǫ
∥∥f
∥∥
p

2
. (6.38)

For the second term in the right hand side of (6.37), we first observe that 〈u, ψ0,γ〉 = f(γ), and
thus using the tiling G =

⋃
γ∈Γ γW ,

∣∣∣∣∣∣

⎛
⎝∑

γ∈Γ

|W |f
(
γ
)
ψ0,γ − h ∗ ψ0

⎞
⎠(y

)
∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

γ∈Γ

|W |f
(
γ
)
ψ
(
γ−1y

)
−
∑

γ∈Γ

∫

γW

f
(
γ
)
ψ0

(
x−1y

)
dx

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

γ∈Γ

∫

γW

f
(
γ
)(

ψ0

(
γ−1y

)
− ψ0

(
x−1y

))
dx

∣∣∣∣∣∣

≤
∑

γ∈Γ

∫

γW

∣∣f
(
γ
)∣∣
∣∣∣ψ0

(
γ−1y

)
− ψ0

(
x−1y

)∣∣∣dx.

(6.39)

Since x ∈ γW if and only if y−1γ ∈ y−1xW−1, it follows that

∣∣∣ψ0

(
γ−1y

)
− ψ0

(
x−1y

)∣∣∣ ≤ oscW−1

(
ψ0

)(
y−1x

)
, (6.40)
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thus we can continue the estimate by

(6.39) ≤
∑

γ∈Γ

∫

γW

∣∣f
(
γ
)∣∣oscW−1

(
ψ0

)(
y−1x

)
dx

= |h| ∗
(
oscW−1

(
ψ0

))∼(
y
)
,

(6.41)

leading to

∥∥∥∥∥∥
h ∗ ψ0 −

∑

γ∈Γ

|W |
〈
u, ψ0,γ

〉
ψ0,γ

∥∥∥∥∥∥
p

≤ ‖h‖p
∥∥oscW−1

(
ψ0

)∥∥
1
<

ǫ
∥∥f
∥∥
p

2
, (6.42)

using ‖h‖p ≤ 2‖f‖p as well as ‖oscW−1(ψ0)‖1 < ǫ/4, both valid for sufficiently dense Γ, by the
proof of Proposition 5.7, and by Lemma 5.9, respectively.

Thus (6.35) is established for j = 0. The statement for general j ∈ Z now follows by
dilation, similar to the proof of Lemma 5.6. We write f = u ∗ ψ∗

j = (vj ∗ ψ∗
0) ◦ δ2j , where

vj = u ◦ δ2−j . Hence, for

g =
∑

γ∈Γ

|W |2−jQ
〈
u, ψj,γ

〉
ψj,γ , (6.43)

we obtain that

∥∥f ∗ ψj − g
∥∥
p
=
∥∥∥
(
vj ∗ ψ∗

0 ∗ ψ0

)
◦ δ2j − g

∥∥∥
p

=
∥∥∥
(
vj ∗ ψ∗

0 ∗ ψ0 − g ◦ δ2−j
)
◦ δ2j

∥∥∥
p

= 2−jQ/p
∥∥∥vj ∗ ψ∗

0 ∗ ψ0 − g ◦ δ2−j
∥∥∥
p
.

(6.44)

Now

g ◦ δ2−j =
∑

γ∈Γ

|W |2−jQ
〈
u, ψj,γ

〉(
ψj,γ ◦ δ2−j

)

=
∑

γ∈Γ

|W |
(
u ∗ ψ∗

j

)(
2−jγ

)
ψ0,γ

=
∑

γ∈Γ

|W |
(
vj ∗ ψ∗

0

)(
γ
)
ψ0,γ .

(6.45)
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Thus, by the case j = 0,

2−jQ/p
∥∥∥vj ∗ ψ∗

0 ∗ ψ0 − g ◦ δ2−j
∥∥∥
p
= ǫ2−jQ/p

∥∥∥vj ∗ ψ∗
0 ∗ ψ0

∥∥∥
p

= ǫ
∥∥∥u ∗ ψ∗

j

∥∥∥
p
,

(6.46)

as desired.

Now, invertibility of the frame operator is easily established. In fact, we can even show
the existence of a dual frame and an atomic decomposition for our homogeneous Besov
spaces. Note however that the notation of the following theorem is somewhat deceptive.
The dual wavelet frame might depend on the space Ḃs

p,q, whereas the well-known result for
wavelet bases in the Euclidean setting allows to take ψ̃j,k = ψj,k, regardless of the Besov space
under consideration.

Theorem 6.7 (Atomic decomposition). Let 1 ≤ p, q < ∞. There exists a neighborhood U of
the identity such that, for all U-dense regular sampling sets Γ ⊂ G, the frame operator Sψ,Γ is an
automorphism of Ḃs

p,q(G).

In this case, there exists a dual wavelet family {ψ̃j,γ}j,γ ⊂ Ḃs∗
p,q, such that for all f ∈ Ḃs

p,q(G),

one has

f =
∑

j∈Z,γ∈Γ

2−jQ
〈
f, ψ̃j,γ

〉
ψj,γ , (6.47)

and in addition

∥∥f
∥∥
Ḃs
p,q

≍

⎛
⎜⎝
∑

j∈Z

⎛
⎝∑

γ∈Γ

2j(s−Q/p)p
∣∣〈f, ψ̃j,γ

〉∣∣p
⎞
⎠

q/p
⎞
⎟⎠

1/q

. (6.48)

Proof. Fix 0 < ǫ < 1, and choose the neighborhood U according to the previous lemma, with
ǫ replaced by

ǫ0 =
ǫ

(2−sq + 1 + 2sq)1/q3(q−1)/q
∥∥ψ0

∥∥
1

. (6.49)

Let Γ be a U-dense regular sampling set, and let W denote a Γ-tile. Let f ∈ D, where
D ⊂ Ḃs

p,q(G) is the dense subspace of functions for which

f =
∑

j∈Z

f ∗ ψ∗
j ∗ ψj (6.50)
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holds with finitely many nonzero terms; see Remark 3.13. For l ∈ Z, we then obtain from
(3.25) that

∥∥f − |W |Sψ,Γf
∥∥
p
=

∥∥∥∥∥∥
∑

|j−l|≤1

⎛
⎝f ∗ ψ∗

j ∗ ψj −
∑

γ∈Γ

2−jQ|W |
〈
f, ψj,γ

〉
ψj,γ

⎞
⎠ ∗ ψ∗

l

∥∥∥∥∥∥
p

≤
∑

|j−l|≤1

ǫ0
∥∥∥f ∗ ψ∗

j

∥∥∥
p

∥∥ψ0

∥∥
1
,

(6.51)

where the inequality used Lemma 6.6 and Young’s inequality. But then it follows that

∥∥f − |W |Sψ,Γf
∥∥q
Ḃs
p,q

=
∑

l∈Z

2lsq
∥∥f − |W |Sψ,Γf

∥∥q
p

≤
∑

l∈Z

2lsq

⎛
⎝ ∑

|j−l|≤1

ǫ0
∥∥∥f ∗ ψ∗

j

∥∥∥
p

∥∥ψ0

∥∥
1

⎞
⎠

q

≤
∑

l∈Z

2lsq
∑

|j−l|≤1

3q−1ǫ
q

0

∥∥ψ0

∥∥q
1

∥∥∥f ∗ ψ∗
j

∥∥∥
q

p

=
∑

j∈Z

2jsq
∥∥∥f ∗ ψ∗

j

∥∥∥
q

p
3q−1ǫ

q

0

(
2−sq + 1 + 2sq

)

= ǫq
∥∥f
∥∥q
Ḃs
p,q
.

(6.52)

Since Sψ,Γ is bounded, the estimate extends to all f ∈ Ḃs
p,q. Therefore, the operator SΓ,ψ is

invertible by its Neumann series on Ḃs
p,q, for all sufficiently dense quasi-lattices Γ. In this case,

we define the dual wavelet frame by

〈
f, ψ̃j,γ

〉
=
〈
S−1
ψ,Γ

(
f
)
, ψj,γ

〉
. (6.53)

ψ̃j,γ ∈ Ḃs∗
p,q, since S

−1
ψ,Γ is bounded and ψj,γ ∈ Ḃs∗

p,q.

Let f ∈ Ḃs
p,q. By Theorem 5.4, S−1

ψ,Γ(f) ∈ Ḃs
p,q implies {〈f, ψ̃j,γ〉}j,γ ∈ ḃsp,q. Theorem 6.1

then implies that

f = Sψ,Γ

(
S−1
ψ,Γ

(
f
))

=
∑

j∈Z,γ∈Γb

2−jQ
〈
S−1
ψ,Γ

(
f
)
, ψj,γ

〉
ψj,γ =

∑

j∈Z,γ∈Γ

2−jQ
〈
f, ψ̃j,γ

〉
ψj,γ (6.54)
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with unconditional convergence in the Besov norm. Furthermore, Theorems 6.1 and 5.4 yield
that

∥∥f
∥∥
Ḃs
p,q

≤

⎛
⎝∑

j

(∑

γ

2j(s−Q/p)p
∣∣〈f, ψ̃j,γ

〉∣∣p
)q/p

⎞
⎠

1/q

≤
∥∥∥S−1

ψ,Γ

(
f
)∥∥∥

Ḃs
p,q

≤
∥∥f
∥∥
Ḃs
p,q
, (6.55)

up to constants depending on p, q, s, but not on f . This completes the proof.

Remark 6.8. We wish to stress that an appropriate choice of Γ provides a wavelet frame in
Ḃs
p,q, simultaneously valid for all 1 ≤ p, q < ∞ and all s ∈ R. As the discussion in Section 5

shows, the tightness of the oscillation estimates converges to one with increasing density of
the quasi-lattices. As a consequence, the tightness of the wavelet frame in Ḃs

p,q converges to
one also, at least when measured with respect to the Besov norm from Definition 3.9, applied
to the same window ψ. However, the tightness will depend on p, q, and s.

Remark 6.9. We expect to remove the restriction on p and q in our future work and prove the
existence of (quasi)Banach frame for all homogeneous Besov spaces Ḃs

p,q with 0 < p, q ≤ ∞

and s ∈ R.

Remark 6.10. Our treatment of discretization problems via oscillation estimates is heavily
influenced by the work of Feichtinger and Gröchenig on atomic decomposition, in particular
the papers [23, 25] on coorbit spaces. A direct application of these results to our problem
is difficult, since the representations underlying our wavelet transforms are not irreducible
if the group G is noncommutative, whereas irreducibility is an underlying assumption in
[23, 25]. However, the recent extensions of coorbit theory, most notably [26], provide a unified
approach to our results (see [27]).
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de France, vol. 117, no. 2, pp. 211–232, 1989.

[12] M. Frazier and B. Jawerth, “Decomposition of Besov spaces,” Indiana University Mathematics Journal,
vol. 34, no. 4, pp. 777–799, 1985.

[13] I. Pesenson, “Sampling of Paley-Wiener functions on stratified groups,” The Journal of Fourier Analysis
and Applications, vol. 4, no. 3, pp. 271–281, 1998.
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