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Homogeneous cooling state for a granular mixture

Vicente Garzo´* and James Dufty
Department of Physics, University of Florida, Gainesville, Florida 32611

~Received 22 April 1999!

The homogeneous cooling state for a binary mixture of inelastic hard spheres is studied using the Enskog
kinetic theory. In the same way as for the one-component fluid, we propose a scaling solution in which the time
dependence of the distribution functions occurs entirely through the temperature of the mixture. A surprising
result is that the~partial! temperatures of each species are different, although their cooling rates are the same.
Approximate forms for the distribution functions are constructed to leading order in a Sonine polynomial
expansion showing a small deviation from Maxwellian, similar to that for the one-component case. The
temperatures and overall cooling rate are calculated in terms of the restitution coefficients, the reduced density,
and the ratios of mass, concentration, and sizes.@S1063-651X~99!00211-1#

PACS number~s!: 81.05.Rm, 05.20.Dd, 51.10.1y, 47.20.2k
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I. INTRODUCTION

Many features of granular media, particularly those as
ciated with dissipation, can be represented by a fluid of h
spheres with inelastic collisions. The analysis of on
component systems via kinetic theory for such a fluid h
been an active field of research in recent years. One im
tant objective has been the derivation of fluid dynamic eq
tions and corresponding expressions for the transport co
cients. For a given kinetic equation~e.g., the Boltzmann
equation at low density or the revised Enskog equation
finite densities@1#! a ‘‘normal’’ solution is obtained approxi-
mately using the Chapman-Enskog method adapted to
case of inelastic collisions@2,3#. By ‘‘normal’’ solution is
meant one whose space and time dependence occurs en
through the hydrodynamic fields. For elastic collisions t
solution is obtained as an expansion about the local M
wellian, while for inelastic collisions the reference state is
local ‘‘cooling’’ solution with an inherent time dependenc
of the temperature due to the loss of energy in the collisio
For spatially homogeneous states the latter is referred t
the homogeneous cooling state~HCS!. It qualifies as a nor-
mal solution since all time dependence appears only thro
the temperature. The distribution function is no longer Ma
wellian but its form in the one-component case has b
determined to a very good approximation@4#. The objective
here is to extend this analysis of the HCS to the case
binary mixture. Such an analysis is the essential first s
needed for the derivation of hydrodynamic equations
mixtures, which will be discussed elsewhere.

It might appear that the extension from one to two co
ponents is simply a matter of increased complexity and
ditional parameters differentiating the two species. In fa
there are qualitative differences due to the cooling effects
the inelastic collisions. In the context of a normal solutio
the distribution functions for the two species are defined s
that all time dependence occurs through the overall temp
ture of the mixture. Nevertheless, due to the inelastic

*Permanent address: Departamento de Fı´sica, Universidad de Ex-
tremadura, 06071 Badajoz, Spain.
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these distributions yield twodifferent partial temperatures
with the same cooling rates. This surprising result is con
tent with recent studies of tracer dynamics@5# and Brownian
motion@6# with inelastic collisions, where the temperature
the tagged particle distribution was found to be differe
from the surrounding bath. This effect is generic for mul
component systems and is illustrated in detail here. So
important consequences for hydrodynamics are discusse
the final section. The analysis is based on the Enskog kin
equation, which for homogeneous states is the same as
more accurate revised Enskog equation@1#. The coupled set
of kinetic equations is recalled in Sec. II, the homogene
cooling solutions are defined, and the condition of eq
cooling rates is deduced. An approximate solution is o
tained in Sec. III by expanding the distribution functions in
complete set of polynomials. Since quite accurate results
obtained in the one component case by truncation at
order, a similar approximation is considered here. The glo
temperature~which is the relevant one at a hydrodynam
level! and those for the two species are determined as a fu
tion of the restitution coefficients, mass ratio, compositio
density, and ratio of hard-sphere diameters. The descrip
applies for an arbitrary degree of inelasticity and it is n
restricted to specific values of particle masses, molar fr
tions, and/or particle sizes. The results are discussed in
IV and the relationship to previous work on mixtures@7–9#
is also given there.

II. KINETIC THEORY AND HOMOGENEOUS COOLING
STATE

Consider a binary mixture of smooth hard spheres
massesm1 and m2 and diameterss1 and s2. In general,
collisions among all pairs are inelastic and are character
by three independent constant coefficients of normal res
tion a11, a22, and a125a21, where a i j is the restitution
coefficient for collisions between particles of speciesi and j .
For spatially homogeneous isotropic states, the set of non
ear Enskog kinetic equations determines the velocity dis
bution functionsf i(v1 ;t) for i 51,2,
5706 © 1999 The American Physical Society
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] t f i~v1 ;t !5(
j

Ji j @v1u f i~ t !, f j~ t !#, ~1!

whereJi j @v1u f i , f j # is given by

Ji j @v1u f i , f j #[x i j s i j
2 E dv2E dŝ Q~ŝ•g12!~ŝ•g12!

3@a i j
22f i~v18! f j~v28!2 f i~v1! f j~v2!#. ~2!

Herex i j is the pair distribution function for particles of type
i and j when they are in contact, i.e., separated bys i j 5(s i

1s j )/2. Also, ŝ is a unit vector directed along the line o
centers from the sphere of speciesi to that of speciesj at
contact,Q is the Heaviside step function,g125v12v2, and
the precollisional velocitiesv18 andv28 are given by

v185v12m j i ~11a i j
21!~ŝ•g12!ŝ,

v285v21m i j ~11a i j
21!~ŝ•g12!ŝ, ~3!

wherem i j 5mi /(mi1mj ). The collision operators conserv
particle number for each species and the total momentu

E dv1Ji j @v1u f i , f j #50, (
i , j

E dv1miv1Ji j @v1u f i , f j #50.

~4!

However, the total energy is not conserved. It is conven
to discuss energy transfer in terms of the partial temperat
Ti , defined by

3

2
nikBTi5E dv1

1

2
miv1

2f i , ~5!

wherekB is the Boltzmann constant and

ni5E dv1f i ~6!

is the number density of speciesi. The temperature of the
mixture is defined as

T5
2

3nkB
(

i
E dv1

1

2
miv1

2f i5(
i

xiTi , ~7!

xi5ni /n being the concentration of speciesi and n5n1
1n2 is the total number density. Also, the ‘‘cooling rates
~fractional energy changes per unit time! for these tempera
tures are defined by

z i[2] t ln Ti , z[2] t ln T, z5T21(
i

xiTiz i , ~8!

where the last equality follows from the second equality
Eq. ~7!. The cooling rates are due to collisions, as follo
from the Enskog equation:

z i52
2

3niv0i
2 (

j
E dv1v1

2Ji j @v1u f i , f j #, ~9!
t
es

f

where v0i5(2kBTi /mi)
1/2 is the thermal velocity for par-

ticles of speciesi. The first term on the right side withi 5 j
represents the rate of energy loss from collisions by partic
of the same species. It vanishes for allf i in the elastic limit
but is nonzero for inelastic collisions. The second is nonze
in general, as it describes the transfer of energy between
different species which occurs for both elastic and inelas
collisions. However, in the special state of a Maxwellia
distribution for each speciesat the same temperaturethis last
term also vanishes in the elastic limit. This is due to detail
balance whereby the energy transfer between species is
cisely balanced by energy conservation for this state.

The analog of the special detailed balance state for inel
tic collisions is the homogeneous cooling state. Due to t
energy loss on collisions, thez i andz never vanish and the
temperatures are always time dependent. In the same wa
the single gas case, it is assumed that there is a special H
normal solution for which all of the time dependence o
f i(v1 ;t) is through the total temperatureT(t). It follows
from dimensional analysis thatf i(v1 ;t) has the form

f i~v1 ;t !5niv0
23~ t !F i„v1 /v0~ t !…, ~10!

where v0
2(t)52kBT(t)(m11m2)/(m1m2) is a thermal ve-

locity defined in terms of the temperatureT(t) of the mix-
ture. It follows directly from this assumption and the defin
tion of the partial temperature in Eq.~5! that all three
temperatures are proportional to each other and their ra
are all constant. One possibility is that all three temperatu
are equal, as in the case of elastic collisions. However, t
cannot be assumeda priori and the proportionality constants
must be determined from the solution to the kinetic equatio
It is found below that the temperatures are in fact different.
is sufficient to determine the constant temperature ratio
the two different speciesg5T1 /T2 as all three temperatures
are obtained from it via Eq.~7!,

g5
T1~ t !

T2~ t !
5const, ~11!

leading to

T1~ t !5
g

11x1~g21!
T~ t !, T2~ t !5

1

11x1~g21!
T~ t !.

~12!

An important further consequence of Eq.~11! is the equality
of the cooling rates defined by Eq.~8!,

z1~ t !5z2~ t !5z~ t !. ~13!

The problem is therefore to solve the Enskog equation fo
distribution function of the form~10! subject to the self-
consistency constraintz1(t)5z2(t).

In terms of the reduced velocityv1,2* 5v1,2/v0, the dimen-
sionless Enskog equations with Eq.~10! then become

1

2
z i*“v1*

•~v1* F i !5(
j

Ji j* @v1* uF i ,F j # ~14!

with “v1*
5]/]v1* , z i* 5z i /(ns12

2 v0) and
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Ji j* @v1* uF i ,F j #[
v0

2

nins12
2

Ji j @v1u f i , f j #

5xjx i j S s i j

s12
D 2E dv2* E dŝQ~ŝ•g12* !~ŝ•g12* !

3@a i j
22F i~v18* !F j~v28* !

2F i~v1* !F j~v2* !#. ~15!

Similarly, in dimensionless variables the cooling rates
given by

z i* @F i ,F j #52
2

3
l i(

j
E dv1* v1*

2Ji j* @v1* uF i ,F j #,

~16!

wherel i5(v0 /v0i)
25T/(Tim j i ). The use ofz i* instead of

z* in Eq. ~14! is permitted by Eq.~13!. This choice is con-
venient since then the moments of~14! with respect to 1,v,
and v2 are automatically verified without further specific
tion of F i . Next, noting thatg5(m12l2)/(m21l1), the con-
straint ~13! determines the temperature ratio

g5
T1~ t !

T2~ t !
5

(
j
E dv1*

1

2
m12v1*

2J1 j* @v1* uF1 ,F j #

(
j
E dv1*

1

2
m21v1*

2J2 j* @v1* uF2 ,F j #

.

~17!

OnceF1 andF2 have been determined from Eqs.~14!, the
integrals on the right side of Eq.~17! can be performed to
determine the temperatures.

In summary, the HCS, solution is defined by the tw
equations~14! and the condition that the temperature rat
Eq. ~17!, is time independent. These three equations mus
solved self-consistently for the two distribution functionsF i
and the temperature ratiog. An approximate solution is de
scribed in the next section.

III. APPROXIMATE SOLUTION

To solve the equations for the HCS, the distribution fun
tions first are expanded in a complete set of polynom
$Pq% with a Gaussian measure. The coefficientscq of such
an expansion are polynomial moments of the distribut
functions. In practice, Sonine polynomials are used. T
representation is then substituted into Eq.~14! and the equa-
tion is multiplied byPq(v1) and integrated overv1, giving
an infinite hierarchy of equations for the coefficientscq .
Approximate solutions are obtained by selecting a finite s
set of terms in the expansion. This approach is similar to
usual moment method for solving kinetic equations in
elastic case. It has been applied as well for inelastic co
sions in the one-component case where an excellent app
mation is obtained by retaining only the first two terms@4#.
A similar approximation is assumed here. The parameter
the Gaussian prefactor are chosen such that it is norma
to unity and provides the exact second moment~5!. In this
case it becomes a Maxwellian distribution at the tempera
Ti . This is consistent with the normal form~14! since
e

,
e
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Ti(t)/T(t) is a constant, and it has the advantage that
leading polynomial in the expansion is of degree 4. In t
dimensionless variables of Sec. II the approximate form
the solution is

F i~v1* !5S l i

p D 3/2

e2l iv1*
2F11

ci

4 S l i
2v1*

425l iv1*
21

15

4 D G
[F i

(0)~v1* !1ciF i
(1)~v1* !, ~18!

where the coefficientsci must be determined from the En
skog equation. These coefficients measure the deviatio
F i from the chosen reference Maxwellian.

It is useful at this point to see the implications of th
requirement of equal cooling rates, Eq.~13! or Eq. ~17!, by
estimatingF i asF i

(0) . This estimate is suggested by the fa
that it is correct in the elastic limit and is known to be a ve
good approximation for inelastic collisions in the on
component case. The integrals of Eq.~17! are readily evalu-
ated with this approximation, and the details are describe
Appendix A. The results provide an explicit expression f
g, which simplifies in the weak dissipation limit (12a i j
!1) to

T1~ t !

T2~ t !
→11

1

2m12m21
H ~m12x12m21x2!~12a12!

1
1

x12A2
F S s22

s12
D 2

x2x22Am12~12a22!

2S s11

s12
D 2

x1x11Am21~12a11!G J . ~19!

Here, m i j and xi are the reduced mass and concentrati
respectively, for speciesi. This shows that the assumption o
different temperatures for each species is in fact necess
except for mechanically equivalent particles or elastic co
sions. The three terms on the right side proportional to
2a i j ) represent three different types of inelastic collisio
providing independent mechanisms to enforce this temp
ture difference. A particularly simple example is the trac
limit for a single particle in a surrounding bath~i.e., x1
→0, x2→1), in which case Eq.~19! becomes

T1~ t !

T2~ t !
→12

1

2m12
~12a12!1

x22

2m21A2m12
S s22

s12
D 2

~12a22!.

~20!

This agrees with the weak dissipation limit of the exact
sults derived in the tracer particle problem@5# and in the
Fokker-Planck description@6#.

Returning to the solution~18!, the coefficientsci are de-
termined by substitution of Eq.~18! into the Enskog equa
tion, multiplying that equation byv1*

4, and integrating over
the velocity. From experience with the one-component ca
it is expected that theci are very small so that only linea
terms in ci are retained. The coupled set of equations
found to be
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2
15

2l i
2
z i* S 11

1

2
ci D5L i

(0)1L i i
(1)ci1L i j

(1)cj ~21!

with the definitions

L i
(0)5(

j
E dv1* v1*

4Ji j* @v1* uF i
(0) ,F j

(0)#, ~22!

L i i
(1)5E dv1* v1*

4$Jii* @v1* uF i
(1) ,F i

(0)#1Jii* @v1* uF i
(0) ,F i

(1)#

1Ji j* @v1* uF i
(1) ,F j

(0)#%, ~23!

L i j
(1)5E dv1* v1*

4Ji j* @v1* uF i
(0) ,F j

(1)#. ~24!

Similarly, the cooling rates can be evaluated from Eq.~16! as

z i* 5z i*
(0)1z i i*

(1)ci1z i j*
(1)cj , ~25!

with the definitions

z i*
(0)5

2

3
l i(

j
E dv1* v1*

2Ji j* @v1* uF i
(0) ,F j

(0)#, ~26!

z i i*
(1)5

2

3
l iE dv1* v1*

2$Jii* @v1* uF i
(1) ,F i

(0)#

1Jii* @v1* uF i
(0) ,F i

(1)#1Ji j* @v1* uF i
(1) ,F j

(0)#%,

~27!

z i j*
(1)5

2

3
l iE dvi* v i*

2Ji j* @v i* uF i
(0) ,F j

(1)#. ~28!

The condition for equal cooling rates is

z1*
(0)1z11*

(1)c11z12*
(1)c25z2*

(0)1z22*
(1)c21z21*

(1)c1 .
~29!

The problem now has been reduced to quadratures. All i
grals of Eqs.~22!–~24! and ~26!–~28! can be performed ex
actly as explicit functions ofg. The coupled set of linea
equations~21! is first solved forc1 and c2. Next, these are
substituted into Eq.~29! to get a nonlinear function deter
mining g. This provides entirely all parameters of the dist
bution functionsF i and the temperaturesTi . The analysis is
complex and is summarized in the Appendixes.

Before studying the general dependence ofci and g on
the parameters of the problem, it is instructive to consi
some special limit cases. In the elastic limita115a225a12
51, the general results lead tog51 andc15c250 corre-
sponding to Maxwellians at the same temperature for
homogeneous equilibrium state@10#. In the case of mechani
cally equivalent particles (m15m2 ,a115a225a12[a,s11
5s22), the results of the single gas are recovered@4#,
namely,g51 and

c15c25
32~12a!~122a2!

81217a130a2~12a!
. ~30!
e-

r

e

Also, in the tracer limit (x1!x2) with a2251, the solution is
c150 and

g5
11a12

21~12a12!~m21/m12!
~31!

which agrees with the results derived in Ref.@5#. Finally, in
the Fokker-Planck limit (x1!x2 and m2!m1), the results
obtained in Ref.@6# follow from the present results. All this
shows the self-consistency of the present description.

A full presentation of the results is difficult as there a
many characteristic parameters:a i j , m1 /m2 , x1 /x2 ,
s11/s22, andn* 5ns12

3 . For the sake of concreteness, co
sider the casea115a225a12[a. The velocity dependence
of the distribution functions is given explicitly by Eq.~18!
but is parametrized byc1 , c2 , andg. The primary feature of
c1 andc2 is that they remain small for all relevant values
a, as illustrated in Fig. 1 for the typical casem1 /m252,
x1 /x251, s115s22, andn* 50. Also shown is the corre-
sponding result for a one-component system~mechanically
equivalent particles!. The small values of these coefficien
support the assumption of a low-order truncation in the po
nomial expansion of the distribution function. Further deta
of c1 and c2 will not be considered here. Instead, it is
interest to see the dependence of the temperature ratiog on
dissipationa. Figure 2 shows the dependence ofg on a for
x1 /x252, s115s22, and n* 50 for several values of the
mass ratio. For large differences in the mass ratio the t
perature differences are significant, even for moderate d
pation~saya'0.9). The temperature of the excess partic
is larger~smaller! than that of the defect particles when th
excess species is heavier~lighter! than the defect species
The influence of the concentration ratio on the temperat
ratio is not as strong as that observed with the mass ratio
is shown in Fig. 3, but is still quite important. Finally, in Fig
4, g(a,n* )/g(a,0) is plotted as a function of the reduce
densityn* for m1 /m252, x1 /x250.5, s1152s22, and for
a50.8 and 0.6. For a given value of the density, the relat
temperature ratio decreases as the degree of inelasticit

FIG. 1. Plot of the coefficientsci versus the restitution coeffi
cienta[a115a225a12 for n* 50, s115s225s12, x1 /x251, and
m1 /m252. The solid line refers toc1 while the dashed line corre
sponds toc2. The dotted line is the common value in the sing
component case.
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5710 PRE 60VICENTE GARZÓ AND JAMES DUFTY
creases. In this last figure the extended Carnahan-Sta
approximation forx i j as a function ofn* has been used@11#,

x i j 5
1

12n
1

3

2

j

~12n!2

s i i s j j

s i j
1

1

2

j2

~12n!3 S s i i s j j

s i j
D 2

,

~32!

wherej5(pn/6)( ixis i i
2 , andn5(pn/6)( ixis i i

3 is the vol-
ume packing fraction.

IV. DISCUSSION

The homogenous cooling state~HCS! for a binary mixture
has been defined in Sec. II and evaluated to good appr
mation in Sec. III for a general degree of dissipation, co
position, mass ratio, particle diameter, and a wide range
density~i.e., an expected accuracy comparable to that of
RET for elastic collisions!. The distribution functions for
each species have a scaling form with the time depende

FIG. 2. Plot of the temperature ratiog5T1 /T2 versus the res-
titution coefficienta[a115a225a12 for n* 50, s115s225s12,
x1 /x252, and three different values of the mass ratio:m1 /m2

50.1 ~solid line!, m1 /m252 ~dashed line!, andm1 /m2510 ~dotted
line!.

FIG. 3. Plot of the temperature ratiog5T1 /T2 versus the res-
titution coefficienta[a115a225a12 for n* 50, s115s225s12,
m1 /m254, and three different values of the concentration ra
x1 /x250.25 ~solid line!, x1 /x251 ~dashed line!, and x1 /x254
~dotted line!.
ng

xi-
-
of
e

ce

determined by the temperature of the mixtureT(t), as re-
quired for a normal solution. A consequence of this scal
form is that all temperatures are proportional to each ot
with the same cooling rate. This does not imply that t
temperatures themselves are the same, and indeed the a
sis shows they are different. The present work extends
vious analyses made in the limits of tracer dynamics@5# and
Brownian motion@6#.

The detailed mechanisms responsible for the resul
temperature differences are complex in general. Howe
some qualitative understanding can be obtained from the
plicit weak dissipation expression~19!. The cross-collisional
contribution, proportional to 12a12, tends to increase the
temperature of the species with the greater mass density
tive to that for the lower mass density. The self-collision
contributions tend to yield a higher temperature for the s
cies with the weaker dissipation, larger particle size, lar
concentration, and/or smaller mass. The number of varia
parameters is large so thata priori prediction of the domi-
nant mechanism controlling the temperature ratio is sim
only in specific limiting cases.

The distribution function for each species is close to
Maxwellian at the temperature for that species. The corr
tions calculated within a first-order Sonine polynomial e
pansion are small and qualitatively similar to the small c
rections found in the one-component case. However,
reference Maxwellians for the two species can be quite
ferent due to the temperature differences. This leads to in
esting new consequences for hydrodynamics. The Chapm
Enskog method for states with small spatial gradients
based on an expansion about thelocal HCS @2,3#. This is
obtained from the HCS by replacing the temperature, de
ties, and flow velocity by their actual nonequilibrium value
e.g.,

f i ,l ~r ,v1 ;t !5ni~r ,t !v0
23

„T~r ,t !…F i~V1 /v0„T~r ,t !…!,
~33!

where V15v12U(r ,t), U being the flow velocity of the
mixture. The interesting new feature is an additional dens

:

FIG. 4. Plot of the reduced temperature ratiog(a,n* )/g(a,0)
as a function of the reduced densityn* for s1152s22, m1 /m2

52, x1 /x250.5, and for two different values of the restitutio
coefficient:a50.8 ~solid line! anda50.6 ~dashed line!.
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dependence due to the fact that the temperature ratio dep
on the densities~or concentrations!, i.e., for instance,

l1~r ,t !5m21
21 T~r ,t !

T1~r ,t !
5m21

21@x1~r ,t !1g21~r ,t !x2~r ,t !#,

~34!

where the space and time dependence ofg(r ,t) is through its
dependence on the hydrodynamic variables@see Eq.~19! as a
special example#. In the Chapman-Enskog expansion, spa
gradients off i ,l (r ,v1 ;t) occur so that completely new den
sity gradient effects are generated by the dependence
l i(r ,t). The details of this have not been investigated yet
it is expected to lead to interesting additional contributions
the transport coefficients. A study of these effects on mu
diffusion is in progress.

It is appropriate to comment at this point on the relatio
ship of this work to previous studies of granular mixture
There is no other study devoted to the homogeneous coo
state of which we are aware. There are related attemp
deriving hydrodynamic equations that implicitly assume
reference HCS@7,9#. In these cases the analysis was limit
to asymptotically weak dissipation and the assumption o
local Maxwellian reference state. In addition, it is assum
that the reference states for both species are at the s
global temperature. The analysis here applies for an arbit
degree of dissipation and shows that the assumption
common reference temperature is not justified even at w
dissipation. This suggests that the derivation of hydro
namic equations and transport coefficients for granular m
tures should be revisited to account for these qualitativ
new features.

The predicted temperature difference has a specific
pendence on many parameters and is therefore susceptib
precise testing by Monte Carlo simulation of the RET and
molecular-dynamics simulations. We are not aware of a
such studies of the HCS published to date~although simula-
tions of driven mixtures appear to be underway by so
groups! and hope that the present work will provide som
motivation for both types of simulations. Such simulatio
would also provide important information about the stabil
of this state. This is important since it is known that the HC
for a one-component system is unstable to long-wavelen
perturbations. Until the hydrodynamics for the binary m
ture, described above, has been worked out, it will not
possible to say theoretically whether the mixture will
more or less stable and whether there are new mechan
active~e.g., segregation!. These interesting questions shou
be answered in the near future.
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APPENDIX A: COOLING RATES

In this appendix the cooling ratesz i* given by Eq.~16! are
evaluated by using the first Sonine polynomial approxim
nds
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tion ~18!. In this appendix and the following one, it is unde
stood that the dimensionless quantities of Sec. II are u
and the asterisk is deleted to simplify the notation. Mome
of the collision integrals are evaluated using the identity

E dv1v1
l Ji j @v1uF i ,F j #

5xjx i j S s i j

s12
D 2E dv1dv2E dŝQ~ŝ•g12!

3~ŝ•g12!F i~v1!F i~v2!@v19
l 2v1

l #, ~A1!

with

v195v12m j i ~11a i j !~ŝ•g12!ŝ. ~A2!

Use of Eqs.~A1! and ~A2! in Eq. ~16! allows the angular
integrals to be performed. The calculation is straightforwa
but lengthy and only the result is given,

z i5~12a i i
2 !

1

12
pl i S s i i

s12
D 2

xix i i E dv1dv2 g12
3 F i~v1!F i~v2!

1~12a i j
2 !

1

3
pl im j i

2 xjx i j E dv1dv2 g12
3 F i~v1!F j~v2!

1~11a i j !
2

3
pl im j i xjx i j

3E dv1dv2 g12~g12•Gi j !F i~v1!F j~v2!, ~A3!

where it is understood thatj Þ i andGi j [m i j v11m j i v2. This
expression forz i is still exact.

The leading contributionz i
(0) is obtained by the replace

mentF i→F i
(0) ,

F i
(0)~v1!5S l i

p D 3/2

e2l iv1
2
, ~A4!

to get

z i
(0)5~12a i i

2 !
1

12
p22S s i i

s12
D 2

xix i i l i
21/2

3E dv1dv2 g12
3 e2(v1

2
1v2

2)

1~12a i j
2 !

1

3
p22m j i

2 xjx i j l j
21/2l i

l j

3E dv1dv2u~l j /l i !
1/2v12v2u3e2(v1

2
1v2

2)

1~11a i j !
2

3
p22m j i xjx i j l j

21/2l i

l j

3E dv1dv2u~l j /l i !
1/2v12v2u ~A5!

3@~l j /l i !
1/2v12v2#•@~l j /l i !

1/2m i j v11m j i v2#

3e2(v1
2
1v2

2). ~A6!
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The first integral is performed by transforming to relati
and center-of-mass variables. The second two integrals
be performed by the change of variables

x5S l j

l i
D 1/2

v12v2 , ~A7!

y5S l j

l i
D 21/2

v12v2 , ~A8!

with the Jacobian@(l j /l i)
1/21(l j /l i)

21/2#3. The final re-
sult for z (0) is

z1
(0)→ 2

3
A2pS s11

s12
D 2

x1x11l1
21/2~12a11

2 !

1
4

3
Apx2x12m21S 11h

h D 1/2

~11a12!l2
21/2

3@22m21~11a12!~11h!#, ~A9!

where h5l1 /l25m12/(m21g). The result forz2
(0) is ob-

tained from Eq.~A9! by interchanging 1 and 2, andh
→h21. The estimate ofg given by Eq.~19! is obtained by
equating z1

(0)5z2
(0) and evaluatingg to first order in (1

2a i j ).
The expression for the coefficient ofci , z i i

(1) , is given by
Eq. ~27!. This is identified from Eq.~A3! as

z i i
(1)5~12a i i

2 !
1

12
pl i S s i i

s12
D 2

xix i i

3E dv1dv2 g12
3 @F i

(0)~v1!F i
(1)~v2!

1F i
(1)~v1!F i

(0)~v2!#1~12a i j
2 !

3
1

3
pl im j i

2 xjx i j E dv1dv2 g12
3 F i

(1)~v1!F j
(0)~v2!

1~11a i j !
2

3
pl im j i xjx i j

3E dv1dv2 g12~g12•Gi j !F i
(1)~v1!F j

(0)~v2!.

~A10!

These are Gaussian integrals of polynomials similar to th
of Eq. ~A5! and can be performed in the same way. T
result forz11

(1) is

z11
(1)5

1

8
Ap

2 S s11

s12
D 2

x1x11l1
21/2~12a11

2 !

1
1

12
Apx2x12m21

~11h!23/2

h1/2
~11a12!l2

21/2

3@2~314h!23m21~11a12!~11h!#. ~A11!

In the same wayz12
(1) is given by
an

e
e

z12
(1)52

1

12
Apx2x12m21S 11h

h D 23/2

~11a12!l2
21/2

3@213m21~11a12!~11h!#. ~A12!

The expressions forz22
(1) andz21

(1) can be easily obtained from
Eqs.~A11! and ~A12!.

APPENDIX B: COLLISION INTEGRALS

The collision integrals~22!–~24! are evaluated in this ap
pendix. Consider first the general expression

L i5(
j
E dv1v1

4Ji j @v1uF i ,F j #

5(
j

xjx i j S s i j

s12
D 2E dv1dv2E dŝQ~ŝ•g12!

3~ŝ•g12!F i~v1!F j~v2!@v19
42v1

4#, ~B1!

where the identity~A1! has been used. Substitution of E
~A2! into Eq. ~B1! allows the angular integral to be pe
formed with the result

L i5(
j

xjx i j S s i j

s12
D 2E dv1dv2F i~v1!F j~v2!Fi j ~g12,Gi j !,

~B2!

Fi j ~g12,Gi j !52
p

3
~12a i j

2 !m j i
4 ~21a i j

2 !g12
5 1p~11a i j !

3F2

3
m j i

2 ~2a i j 21!g12
3 Gi j

2

22m j i g12Gi j
2 ~g12•Gi j !1m j i

2 ~a i j 23!

3g12~g12•Gi j !
22

2

3
m j i

3 ~423a i j 12a i j
2 !

3g12~g12•Gi j !
2G . ~B3!

The collision integrals~22!–~24! can now be identified as

L i
(0)5(

j
xjx i j S s i j

s12
D 2E dv1dv2

3F i
(0)~v1!F j

(0)~v2!Fi j ~g12,Gi j !, ~B4!

L i i
(1)5xix i i S s i i

s12
D 2E dv1dv2@F i

(0)~v1!F i
(1)~v2!

1F i
(1)~v1!F i

(0)~v2!#Fii ~g12,Gi i !, ~B5!

L i j
(1)5xjx i j E dv1dv2F i

(0)~v1!F j
(1)~v2!Fi j ~g12,Gi j !.

~B6!

These are Gaussian integrals that can be calculated by
same method as described in Appendix A. The integrati
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can be done quite efficiently by using a computer packag
symbolic calculation. Here, we have usedMATHEMATICA

@12#. The results are

L1
(0)52A2pl1

25/2H x1x11S s11

s12
D 2 912a11

2

2
~12a11

2 !

2A2x2x12~11h!21/2m21~11a12!@22~615h!

1m21~11a12!~11h!~1415h!28m21
2 ~11a12!

2

3~11h!212m21
3 ~11a12!

3~11h!3#J , ~B7!

L11
(1)52A2pl1

25/2H x1x11S s11

s12
D 2F11a111

3

64
~69110a11

2 !

3~12a11
2 !G2

A2

16
x2x12~11h!25/2m21~11a12!

3@22~901231h1184h2140h3!13m21~11a12!
. E

s

of 3~11h!~701117h144h2!224m21
2 ~11a12!

2

3~11h!2~514h!130m21
3 ~11a12!

3~11h!3#J ,

~B8!

L12
(1)5

Ap

8
x2x12l1

25/2h2~11h!25/2m21~11a12!@2~215h!

13m21~11a12!~11h!~215h!224m21
2 ~11a12!

2

3~11h!2130m21
3 ~11a12!

3~11h!3#. ~B9!

The corresponding expressions forL2
(0) , L22

(1) , andL21
(1) can

be easily inferred from Eqs.~B7!–~B9! by interchanging 1
and 2 and settingh→h21.
t
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