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Homogeneous Cosmological Models without Shear
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The paper presents some general differential relations on the dynamics of homogeneous
rotating cosmological models with nonvanishing pressure. It appears from these that such
models must in general be associated with shear if there be a linear relation between the pres-
sure and the density except perhaps in the case p=p/9.

§ 1. Introduction

) proved that a spatially homogeneous rotating and expanding

Schiicking’
universe filled with incoherent dust must necessarily have shear. We propose
now to investigate the case of nonvanishing pressure when the equation of state
1s

p=ap, e
« being a positive constant, which is 0 for dust, 1/3 for dilluse radiation and
1 for the extreme Zeldovich case.

Before taking up this problem in § 3, we shall first reduce some of the field
equations for a rotating universe filled with a perfect fluid to a convenient form.
We shall note that for a spatially homogeneous rotating universe the homogene-
ous varieties are not orthogonal to the world lines, so that although the pres-
sure is uniform over the homogeneous varieties the pressure gradient has a
nonvanishing component orthogonal to the world lines and this would lead to
a deviation of the world lines from geodesic paths. This is essentially due to
the noncoincidence of the two sets of 3-spaces: (1) the spaces defined by the
Killing vectors and (2) the local spaces orthogonal to the world lines. The
modification introduced by this in the acceleration equation of Raychaudhuri?
will be studied in the next section.

§ 2. Field equations

The homogeneous varieties are defined as the #constant spaces and the
time-lines are chosen along the world lines of matter (i.e. we introduce a comov-
ing coordinate system). In view of the above choice of the coordinate system
and homogeneity, 26/44 is at most a function of 7 alone and can be reduced to
unity by a suitable transformation of z  Therefore the line element is given by

A5 =d 29 udid e’ §daetd e . (2)

220z 1snbny 9| uo1senb Aq GZ08E61L/S9E/2/6E/e1oue/did/Wwoo dnoolwepede//:sdyy woly papeojumoq



366 S. Banerji
In this paper the latin indices run over the values 1 to 3 and the greek indices
run from 1 to 4. Some at least of the g, are nonvanishing because when ro-
tation is present the world lines do not form a normal congruence.

We now take the field equations in the form
R, —%+Rg,,=—8rT
ny 2 wy vty ‘
} ®
where T,.=(0+P)o,0,— 1Y

v* being the velocity vector of matter and is therefore in our case =0/

In this case the world lines of matter would not in general be geodesics.

The relation 7*; y=0 gives
(0+p)v vt +p, (V0" —g*) =0 (4)
and
y ~(0’~() =3 g , where G*=+ —¢. (5)
P

The dot denotes the time derivative.
Let us split up the vector p,/(p+p) into parts parallel and orthogonal

to v,:

=qu,+1I,, (6)

where a=p 0"/ (p-+0) and Il ,0"=0.
From Eqgs. (4) and (6) we obtain

][M =, LU= (z’,u,v — ‘l}y”u) v (7>

Equation (7) indicates that the deviation from the geodesic path is solely due
to the component of the pressure gradient orthogonal to the velocity vector.

Now in our coordinate system
Hi:gi4,4; II,=0. (721)

We define now the velocity vector, the shear and the scalar of expansion
respectively by (Gédel,” Ehlers”)

W =5 0,V (8)

(where 7***° is the permutation tensor), |
Cu=5 0t v =5 (G —v,0) 0" =5 (v, + 1Lv,), €))
0=2".,. (10)

From Eq. (3) we have ‘ '
R, 0" = —4z(p0+ 3p). 1)

Further we can write using Eqgs. (7) and (10)
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R,w“a”v"“—" (07 4o = 0", o) 0" =0 07— I, + 0, ;077 . (12)

Separating the symmetric and skewsymmetric parts of v,;, we obtain from Eq.

€))
Vyio = @re+ 5 (Jre = 0y0) 0+ 5 (0, + 1,0y) + 3 (V0 = Vasy) - (13)
Equation (8) gives
= P rye®* = F (Vo= Vo ) Vo 5 (Vs s — 00 ) Uy + 5 (005 — 0ys,) 0, (14)
Combining (13) and (14) we obtain

0= Oye T 5 (Jye = 0y0,) 0+ I, 00 =7 4yye "0 . (15)
Substituting this value in Eq. (12) we obtain finally
0,07 +%0P=1I",+20"—¢"— 4w (p+ 3p), (16)
where ¢,,0*0"= —o' and ¢,,¢* =¢".

In our coordinate system

)_z

0.0+ Lp=3C. a7
3 G
Using Eqs. (6), (16) and (17) we have
G 1 ‘— P 3 ] 2 2
3 Ta= — G 0~ — gt -0 — ¢t — 47 - 34) . 164
G G Lot @ =97 | 20" = ¢ —4m(0+3p) (16a)

Equation (16a) is a generalization of the acceleration equation obtained by

Raychaudhuri.”

Besides the usual occurrence of (p+3p) instead of p in the
source term, there is the new term involving the time derivative of » coupléd
with a characteristic factor, which vanishes when the homogeneous varieties are
orthogonal to the world lines.

It is interesting to examine this term a little more closely. Using Eq. (5)
one can reduce this term to

y G G dp d [) >\
1—g* [ j 42 = } b+ — }
1-9* P (G> o , p)(G’)

d[’ 44 3 (ZZ') G 1403
o :(9)4 s dpG(g ),i

so that one can write (16a)

a-g9 =] @)= Ao,
G 3 3

+ terms involving G/G, dp/dp and d*p/dp® but not involving G/G. In general
owing to the negative delinite character of the space metric ¢ — 919w, 9¥<1
and vanishes if the homogencous variety has null lines, and when the homogene-
ous varieties have time-like lines 9" becomes negative. Thus according as g"
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is positive, zero or negative, the pressure gradient which is orthogonal to the
homogeneous varieties is a time-like, null or space-like vector respectively. When
9" becomes negative the possibility exists that with high enough values of pres-
sure, the coefficient of G/G may become negative. Under such circumstances
the role of rotation, energy density and pressure may be quite the opposite of
what one usually gets.

It is interesting to consider the Godel solution. Here the coefficient of G/G
turns out to be —1 (as the Goédel universe may alternatively be supposed to
have a pressure p=p and cosmological constant A=0), so that if one considers
a universe starting out slowly from the Goédel state (G/G small) the tendency
of the (p+3p) term would be to accelerate an expansion while the rotation
would try to arrest an expansion. This is exactly the opposite of what one
would expect, say, in the case of perturbations of an Einstein universe.

Again we have from Eq. (3)
R, v = —drv" (p--3p) (18)
and obtain after a similar calculation as before
R, v*=0 (% 97+ 4 0"v") — "+ L1 0%0" —II*, 0"
L7 — 20707 — P (0, g0, — 20,0,0T ) . (19)

We can further simplify this equation by using Eqs. (16), (18) and (6):

i 0.,(977—20"0") =¢". 4+ 7P ;- ™07 + 9 F7 ((l)”,/ﬂ),, —2m,0, /)f > . (20)
: \ p+o

Equations (16) and (20) are not quite new as similar equations appear in Ehlers’
paper.

o

3. Special case: p=ap, ¢'=0

Applying the condition of homogenecous density to Eq. (6) we have as in

Schiicking’s paper

G=8")W(xh). (21)
The condition of shearfree expansion, ie. ¢, =0 gives from Eq. (9)
Ti=Yu— sl = G (") Pz, (&) , (22)

if we remember Eq. (7a).
Combining Iigs. (21) and (22) we have

Ju= N <L4> &—zk (Ij) > Sz_zk = “’72‘,/%1; . | (23)
, we have
ykl — S« 2 <:(:4) {b“kz, . (ka(zk[ —

Now we have the relations

Defining 7%7,.=0,"

)

. o (24)
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9t 9= 0y (25)
and .
g = = 9 - (26)
From Egs. (25) and (26) we obtain
9 (G = Guds) = 97T =0 - (27)
Therefore from the delinition of 7% we have '
7i=g". ‘ (28)

Using Egs. (1), (6) and (7a) and remembering that p ;=0 we obtain in view
of homogeneity

Jia=G"(x") Pss (x7) =S Psu(@),  hoa=W"u . (29)
From Eqgs. (22) and (29) we have
9ix= SV +S" P - (30)
From Egs. (24), (26), (28) and (29) we have
gl — SRR (31)
Again
gH=1—9"gu=1+ S‘*‘”{b"”"‘{/?iﬂm . (32)

Now for shear-free expansion (¢*=0), Eqs. (16a) and (20) reduce to

3 CG;_: (1—g") [5 {G +2<G>2} dp _g cZ/) C(pH0) <G>°]

G G/ ) dp

d[)> G " 3 dp G s ' .
_3<W, Gy, - o i 207 — 4w (03 - (16b

o G(J ), G do G(g )i 20" —4n (0 3p) (16b)

and

2 o 5 TN v Y P

20, (F7T = 00T) =T (0, 50, — 20,0, TP ). (20a)

3 - p+o

We can now use LEgs. (21), (24), (28)-(32) to express all the terms in
(16b) and (20a) as products of a time dependent and a space dependent part.
The results are given below:

1 Saa--s

o' = 5 Ei‘“””g—/)_—l,,h.,Z , [e#r7=] evi-Civila tensor density ] (33a)
1 S6a~3 e . . "
(04 == 2 IVB E4Jld¢4j€b4k’[‘l y ) (ng))b)
. '1 R Y6cr - 4 . o =
—t == e EL.UDI'E"Mnrxbimﬁl}d,k,ﬂblin, » (33(’>
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Since ®?® is a scalar quantity, it must be a function of # alone in a spatially
homogeneous universe. IHence

3 By . .. o
o= A8, A being a positive constant. (34)

Using (34), Eq. (16a) becomes
s

- QA8 L BS AW = 3(1/97"{[)14{17“[k.'ﬁ“”"S 4GSt 453]

2
9

F3aS*ESW (WG ),
where 0+ 3p=BS " B being a positive constant. Since the left-hand side
is a function of ¢ alone, ¢*¢u¢r and W (W*$™P,.) ., must both be constants.
Therefore

‘.)S
O -

~

2AS A 4 4z BS O = 8% 38 o 6 0SS - DS (35)

where C= —3a¢ ;01 and D=3aW*(W*@ ™)) ;. - The fourth equation of (20a)

(y=4) becomes similarly

(R , I being a constant, 36
k(; kg AS*Z " ’ ( )

- i7ks comdnw T T T 8 TR T T . .
where L= ey AW G ban ot /AW ($* Qi)  The above equation gives
on a single integration

52 Q2 ~ .
S'=I8-1I, (37)
where I is a constant ol integration.
Substituting this value in (35) we have

3F—S% 4(2A —6aCE) +4nBS™*¢H®

) N 12
— (CF+6aCF) S+ DV T s«=(1— £ )" (38)
Fs’

If F=~0 we should have another term involving S° to balance it. Considering
the different possibilities we can show that this is impossible for nonvanishing

density and spin. Using IF'=0 we obtain the solution
S=. —FEz. (39)

Substituting this value in (35) we find that if B0 (i.e. 0+0) then the
only two possibilities are =0, §. The first case has already been considered

by Schiicking. For «=§ we have the conditions ’
D=0, i.c. (W™ ) =0, ic. (9"G%,;=0 (40)
and 3A-CE=0nDB
e, €M em WG (W GimBun, )5 — W  Ginhas 1iin, ] = T2100 . (41)

Further from LEq. (39) it follows that
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Homogencous Cosmological Models without Shear 371

E<O. (42)

These three conditions must be satisfied if a spatially homogeneous rotating and
expanding universe without shear exists for »=3%0p. We find no inconsistency
in this case. Thus apparently a spatially homogeneous rotating universe must
necessarily have shear except when p=4%p. However, the complete set of field
equations has not been considered because the other equations are too compli-
cated. Hence the possibility remains that the case p=3%p may also be ruled
out, which seems not unlikely.

The author is indebted to Professor A. K. Raychaudhuri of Presidency Col-
lege, Calcutta for his guidance and useful suggestions. Thanks are also due to
the referees for some useful suggestions regarding presentation.
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