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Abstract: We give a general procedure, in the group field theory (GFT) formalism for

quantum gravity, for constructing states that describe macroscopic, spatially homogeneous

universes. These states are close to coherent (condensate) states used in the description

of Bose-Einstein condensates. The condition on such states to be (approximate) solu-

tions to the quantum equations of motion of GFT is used to extract an effective dynamics

for homogeneous cosmologies directly from the underlying quantum theory. The resulting

description in general gives nonlinear and nonlocal equations for the ‘condensate wavefunc-

tion’ which are analogous to the Gross-Pitaevskii equation in Bose-Einstein condensates.

We show the general form of the effective equations for current quantum gravity mod-

els, as well as some concrete examples. We identify conditions under which the dynamics

becomes linear, admitting an interpretation as a quantum-cosmological Wheeler-DeWitt

equation, and give its semiclassical (WKB) approximation in the case of a kinetic term that

includes a Laplace-Beltrami operator. For isotropic states, this approximation reproduces

the classical Friedmann equation in vacuum with positive spatial curvature. We show how

the formalism can be consistently extended from Riemannian signature to Lorentzian sig-

nature models, and discuss the addition of matter fields, obtaining the correct coupling

of a massless scalar in the Friedmann equation from the most natural extension of the

GFT action. We also outline the procedure for extending our condensate states to include

cosmological perturbations. Our results form the basis of a general programme for extract-

ing effective cosmological dynamics directly from a microscopic non-perturbative theory of

quantum gravity.
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1 Introduction

One of the central challenges faced by any proposed theory of quantum gravity is the deriva-

tion, from a fundamental theory describing the degrees of freedom presumably relevant at

the Planck scale, of effective physics at scales large enough to be relevant for observation

and for the connection to other areas of physics. Any such effective large-scale description,

describing physical regimes where quantum-gravity effects are not directly relevant, must

be consistent with the predictions of General Relativity, with the standard model of par-

ticle physics and with cosmological observations such as those done recently in WMAP [1]

and Planck [2]. It should also suggest new phenomena or new explanations for existing

observations. This challenge, of course, is independent from the similarly fundamental

challenge of showing that the proposed theory is in itself mathematically consistent.
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In background-independent approaches to quantum gravity this task is particularly

challenging: in such theories, the most natural notion of a fundamental vacuum state is

one that describes no spacetime at all. Macroscopic, approximately smooth geometries

corresponding to physically interesting solutions of General Relativity are thought of as

states with a very large number of quantum-geometric excitations [3–12], at least if one

allows for fluctuations beyond those with very large wavelengths (which are necessary to

be able to speak of a smooth geometry at all).

In understanding the predictions of the theory for such geometries, one faces two

basic issues.

The first issue is the definition and interpretation of appropriate states within the

structures of the given theory, such that one can associate (at least in an approximate sense)

a spacetime metric description to them. This involves at least two kinds of approximations,

a priori independent from one another: one has to map the fundamental degrees of freedom,

often thought of as discrete spacetime structures, to a continuum field on a differentiable

manifold, and one has to describe states that are sufficiently semiclassical to be associated

to a classical geometric configuration, again at least in an approximate sense.

The second issue is the dynamical description of these states in the quantum theory,

at some effective continuum level. In order to be compatible with what we know, this

should reproduce, at least in some low-energy regime, i.e. up to possible corrections at

short distances, the dynamics of General Relativity. This issue is at least as important as

the first, lest one would be constrained to a purely kinematical description of spacetime

within quantum gravity.

In this paper, we describe in some detail the different steps of a generic procedure that

can address both of these issues in the group field theory (GFT) formalism for quantum

gravity, at least as far as spatially homogeneous geometries are concerned, as shown already

in [13]. We work in a Fock space picture in which the quantum GFT fields create and anni-

hilate elementary building blocks of space (interpreted as (d− 1)-simplices in d spacetime

dimensions) with a finite number of degrees of freedom encoding discrete geometric data.

These states have an equivalent description in terms of the spin network states of loop

quantum gravity [14–16], and their dynamics is encoded, at the perturbative GFT level, in

spin foam amplitudes and simplicial gravity path integrals as in the covariant formulation

of the same theory [17, 18]. We use the physical intuition from Bose-Einstein condensation,

where one faces a similar problem of relating the microscopic quantum dynamics of atoms

to an effective large-scale description of the condensate as a quantum fluid. The picture

we propose is indeed that of a condensate of elementary GFT quanta which make up a

continuum, approximately smooth and spatially homogeneous spacetime. This picture can

be put on firm footing using the geometric interpretation of the GFT Fock space in terms

of elementary parallel transports (giving a discretised spin connection) or simple bivectors

(giving a discretised metric) which derives from interpreting the same data in loop quan-

tum gravity or spin foam models. We are able to give a general reconstruction procedure

which maps a given configuration of N such building blocks to an approximate continuum

geometry given in terms of a metric on a differentiable manifold. While a finite number of

such building blocks can only contain finite information about the reconstructed metric,
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in the quantum theory we can consider arbitrarily high numbers of quantum-gravitational

quanta of space, to improve arbitrarily the same approximation. We give a criterion for the

reconstructed metric to be spatially homogeneous, the most relevant case for cosmology.

In the quantum physics of Bose-Einstein condensates, the simplest states one consid-

ers are coherent states that are eigenstates of the field operator. This property allows the

derivation of an effective dynamics for the condensate wavefunction directly from the un-

derlying microscopic dynamics of the atoms. This dynamics, given by the Gross-Pitaevskii

equation, has a direct hydrodynamic interpretation, and provides the kind of effective

macroscopic physics that we seek to derive for the case of gravity. The states we consider

are such coherent states, but have to satisfy the additional property of being consistent

with the gauge invariance of GFT under local Lorentz transformations (or rotations in Rie-

mannian signature). A central conceptual issue in drawing this analogy is the adaptation of

the very notion of a hydrodynamic interpretation to the background-independent context:

we cannot expect to obtain a description in terms of a ‘fluid’ on spacetime; instead a field

capturing some effective degrees of freedom of quantum geometry is defined on the config-

uration space for gravity, i.e. superspace, the space of geometries [19]. A natural possibility

is to view the collective wavefunction appearing in the definition of a condensate state as a

wavefunction à la Wheeler-DeWitt quantum cosmology. This interpretation is consistent

with the geometric content of the states we consider, but the collective wavefunction will

satisfy in general a non-linear and non-local (on minisuperspace) extension of the usual

equations of quantum cosmology. This general feature calls for a rethinking of the relation

between quantum cosmology and full quantum gravity, and possibly of the interpretation

and use of quantum cosmology itself. However, it is not totally unheard of; in fact, a

nonlinear extension of quantum cosmology has been suggested, for example, in the loop

quantum cosmology context in [20].

We proceed as follows. In section 2, we give an introduction to the group field theory

(GFT) formalism, emphasising a Fock construction of the kinematical Hilbert space and

its interpretation in terms of discrete geometries. As we show in detail, this construction

is a reformulation of the basic structure of loop quantum gravity and spin foam models,

introducing a second-quantised language that will allow us to directly define condensate

states describing macroscopic universes. In section 3, we outline the general procedure

for associating to a given discrete geometry, of the type described by states in the GFT

Fock space, a reconstructed metric geometry on a manifold that can be interpreted as a

spatial hypersurface in canonical gravity. We focus on the case of spatial homogeneity,

in which our procedure requires no additional input beyond a choice of 3-dimensional Lie

group G acting on the space manifold with respect to which the reconstructed metric

can be homogeneous. This essentially classical discussion is then used in section 4 to

motivate the definition of condensate states in group field theory. We consider two types

of condensates, both possessing the right type of (pre-)geometric data: ‘single-particle’

condensates, which are particularly simple to construct, and ‘dipole’ condensates which

are automatically gauge-invariant (with respect to local (Lorentz) rotations). We discuss

properties of these states, comparing them to coherent and squeezed states used in quantum

optics, looking at correlation functions and their interpretation as exact vacuum states of
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GFT. In section 5, we look at the dynamics of these condensate states. In order to be exact

solutions to the equations of motion, an infinite number of expectation values must vanish

for these states. We focus on two of them which we express as conditions on the collective

wavefunction defining the condensate. This defines an effective dynamical equation for such

collective, cosmological wavefunctions. We write down the general form of this equation,

which holds for any of the current models of 4d quantum gravity in the GFT or spin

foam formulation, with special care in ensuring that simplicity constraints are imposed.

Then, we specify some conditions in which this becomes a linear differential equation. We

give its semiclassical (WKB) approximation for a Laplacian kinetic operator and show

that it reduces to the classical Friedmann equation in the isotropic case. We then extend

the formalism to Lorentzian signature. We find that the semiclassical analysis done for

Riemannian signature can be done analogously and results in equations that are ‘analytic

continuations’ of the previous ones, i.e. they contain the sign changes corresponding to a

change in the metric signature.

The last part of the paper, section 6, deals with extensions of this formalism beyond

the simple case of homogeneous universes without matter: adding matter fields and per-

turbations. In a simple example where a massless scalar field is incorporated into the GFT

field as an additional argument (corresponding to an additional dimension in superspace),

a natural choice of kinetic term on the extended configuration space leads directly to the

right coupling of a massless scalar field to gravity, again in the isotropic and WKB approx-

imation. We present ideas for introducing inhomogeneities (which require extending the

class of states we have been considering) by adding fluctuations over the exact condensate.

We discuss the possibility of identifying arguments of the perturbation field with coordi-

nates in the background geometry defined by a GFT condensate, which could be used to

develop a systematic cosmological perturbation theory.

For the convenience of the reader, we discuss divergences arising for Lorentzian models

that are associated with the infinite volume of the gauge group, the classical dynamics of

Bianchi IX universes, as well as some facts about the geometry of the homogeneous space

SL(2,C)/SU(2) in the appendix.

To summarise, in this paper we give a general procedure for extracting cosmology from

quantum gravity, that can be applied to any GFT or spin foam model incorporating data

interpretable as a discrete metric or connection. Our examples show that it can give the cor-

rect semiclassical limit corresponding to a classical theory of gravity, which is very promis-

ing, but clearly more work is needed to apply this procedure to various models discussed

in the literature. This paper is a first step in a programme for deriving effective dynamics

for an emergent spacetime geometry from a theory of pre-geometric degrees of freedom.

2 Group field theory

Group field theories (GFT) are field theories over a group manifold Gd, not interpreted

as spacetime, for models of d-dimensional gravity (where we will be only interested in

d = 4), where G is the Lorentz group, its Riemannian counterpart, or some appropriate

subgroup (usually SU(2)). In this, they can be viewed both as a generalisation of matrix
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models, and as an enrichment of tensor models through the addition of group-theoretic

data interpreted as pre-geometric or geometric degrees of freedom. The basic variable in

GFT is a complex field ϕ(g1, . . . , gd) and the dynamics is encoded in an action, S[ϕ, ϕ̄] =

K[ϕ, ϕ̄] +
∑

i λiVi [ϕ, ϕ̄], for a kinetic (quadratic) term K and interaction (higher order)

polynomials Vi weighted by appropriate coupling constants.

Let us first define the basic structures of GFT, and then motivate them from loop

quantum gravity and spin foam models. The classical field ϕ is a function Gd → C usually

endowed with the invariance

ϕ(g1, . . . , gd) = ϕ(g1h, . . . , gdh) ∀h ∈ G , (2.1)

corresponding to local gauge transformations (Lorentz transformations for G = SL(2,C))

in gravity.

The quantum field theory can be defined in operator language by imposing the basic

(non-relativistic) commutation relations which are consistent with (2.1),

[
ϕ̂(gI), ϕ̂

†(g′I)
]
= IG(gI , g

′
I) ,

[
ϕ̂(gI), ϕ̂(g

′
I)
]
=
[
ϕ̂†(gI), ϕ̂

†(g′I)
]
= 0 , (2.2)

where IG(gI , g
′
I) is the identity operator on the space of gauge-invariant fields. For compact

group G, this can be defined by IG(gI , g
′
I) =

∫
G dh

∏d
I=1 δ(gIh(g

′
I)

−1); for non-compact G

one has to be more careful to avoid divergences, as we will discuss in detail in appendix A.

One can now proceed to expand the field in a basis of functions on L2(Gd/G) (indexed

by some set of labels ~χ) and promote the expansion coefficients to creation and annihilation

operators,

ϕ̂(g1, . . . , gd) ≡ ϕ̂(gI) =
∑

~χ

ĉ~χ ψ~χ(gI) , ϕ̂†(g1, . . . , gd) ≡ ϕ̂†(gI) =
∑

~χ

ĉ†~χ ψ
∗
~χ(gI) , (2.3)

which will satisfy [
ĉ~χ, ĉ

†
~χ′

]
= δ~χ,~χ′ ,

[
ĉ~χ, ĉ~χ′

]
=
[
ĉ†~χ, ĉ

†
~χ′

]
= 0 (2.4)

for an appropriate normalisation of the basis functions ψ~χ(gI). These operators can be

used to define a Fock space starting from a vacuum state |0〉 annihilated by all ĉ~χ; they

will act as

ĉ~χ|n~χ〉 =
√
n~χ|n~χ − 1〉 , ĉ†~χ|n~χ〉 =

√
n~χ + 1|n~χ + 1〉 . (2.5)

The field operator ϕ̂†(gI) itself creates a “particle” with data {gI}, or more precisely the

equivalence class [{gI}] = {{gIh}, h ∈ G}, when acting on |0〉. This particle is interpreted

as an elementary building block of simplicial geometry, a (d−1)-simplex with the group ele-

ments gI corresponding to elementary parallel transports of a (gravitational) G-connection

along the links dual to the d faces (i.e. (d− 2)-subsimplices). Local gauge transformations

act on the vertex where these links meet as simultaneous right multiplication of all gI by

a common element h of G, which is the motivation for requiring (2.1) to make the theory

gauge-invariant.

At least for finite-dimensional G, there is a well-defined notion of non-commutative

Fourier transform which takes functions on the group to functions on its Lie algebra g [21].
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This can be used to define the equivalent “momentum space” representation of the same

theory. The non-commutativity of multiplication of the group (and of the Lie algebra) is

reflected in the introduction of a ⋆-product in this dual representation. The dual variables

BI , which are elements of g, are interpreted as bivectors associated to the faces, corre-

sponding to
∫
e ∧ . . . ∧ e for a d-bein e in the case of gravitational models. A basic issue

of the spin foam and GFT approach, as far as the construction of gravitational models is

concerned, is to restrict the generic Lie algebra variables BI to those that can be written

in this form, at the quantum level. We will come back to that later.

What we have described so far is a self-contained formulation of a quantum field theory,

and in fact contains everything that will be required for the constructions in the rest of

the paper. However, to understand better the motivation of the GFT approach, let us

explain more closely the relation of group field theories [22–28] to loop quantum gravity

(LQG) [14–16] and specifically its spin foam corner [17, 18], which has in fact provided the

impetus for the development of group field theories. More details on this are given in a

separate publication [29] but we illuminate the most important points here.

There is a very close relation between group field theories and spin foam models,

which are a proposal for defining a discrete and algebraic sum-over-histories formulation

for quantum gravity, based on the variables and states used in loop quantum gravity.

In fact, spin foam models and group field theories are in one-to-one correspondence [30].

To any spin foam model assigning an amplitude to a given cellular complex (a possible

‘history’ of spin networks), there exists a group field theory, specified by a choice of field

and action, that reproduces the same amplitude for the GFT Feynman diagram dual to this

cellular complex. Conversely, any quantum GFT partition function also defines a spin foam

model by specifying uniquely the Feynman amplitudes associated to the cellular complexes

appearing in its perturbative expansion. In a formula,

Z =

∫
DϕDϕ̄ e−S[ϕ,ϕ̄] =

∑

σ

∏
i(λi)

Ni(σ)

Aut(σ)
Aσ , (2.6)

where σ are cellular complexes dual to the Feynman diagrams of the GFT model. Their

combinatorial structure depends on the model; writing the action in terms of kinetic (free)

part and interactions as S = Sk +
∑

i Vi, the possible interaction vertices are determined

by the combinatorial pattern of pairings of field arguments in the different terms Vi. Ni(σ)

is then the number of vertices of type i in the Feynman diagram dual to σ, and Aut(σ) is

the order of the automorphisms of σ. Aσ is the Feynman amplitude that the GFT model

assigns to σ and, generically, can be represented as a spin foam model (or, equivalently, as

a non-commutative discrete gravity path integral [31]).

Thus we see that group field theories not only encode the same dynamics of quantum

geometry as spin foam models, but that they do more than that. Unless a fundamental

theory of quantum gravity possesses a finite number of degrees of freedom, a spin foam

formulation of it cannot be based on a single cellular complex. A complete definition should

involve an infinite class of cellular complexes, in the same way in which the Hilbert space of

the canonical theory is defined over an infinite class of spin network graphs (appearing as

boundary states), and in particular a prescription for organising the amplitudes associated
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to all such complexes. Group field theory provides one such prescription1 as it generates a

sum over complexes, weighted by spin foam amplitudes and the coupling constants λi, as

a Feynman diagram expansion and thus with canonically assigned combinatorial weights.

Thus one can say that group field theory is actually a completion of the spin foam approach.

Spin foam models and loop quantum gravity are usually presented as covariant and

canonical formulations of the same quantum theory, but their exact correspondence is not

yet fully understood. A straightforward second quantisation of spin networks (both their

kinematics and dynamics), and thus of loop quantum gravity, leads however directly to

the GFT formalism, and this GFT/LQG correspondence defines in turn a correspondence

between the canonical LQG formulation and covariant spin foam dynamics. One advan-

tage of the GFT reformulation is that it provides the right tools to study the physics of

many LQG degrees of freedom, to bypass the need to deal explicitly with complicated

spin networks and spin foams, and to derive effective descriptions for collective variables

and features of the non-perturbative sector of the theory. All these are reasons for using

quantum field theory reformulations of many-body quantum physics in condensed matter

theory and particle physics, so it should come as no surprise that we encounter the same

advantages in quantum gravity. Our paper exemplifies this use of the GFT formalism: we

will indeed bypass the spin foam formulation of the dynamics, provide both a definition of

interesting, albeit very simple, non-perturbative quantum states of the theory, interpreted

as cosmological quantum spacetimes, and extract an effective cosmological dynamics for

them, using the second quantised features of the GFT formalism.

We now give some more details on this second quantised formalism, and on the link

between LQG and GFT, and thus the direct LQG relevance of our results. For a more

extensive treatment, see [29].

In first-quantised language, one has a Hilbert space H̃d of states associated to V d-

valent graph vertices (which includes particular states associated to both open and closed

graphs, of the type defining the Hilbert space of LQG). Each such vertex is a node with d

outgoing open links, and can be thought as dual to a polyhedron with d faces.2 V -particle

states are given by wavefunctions describing V vertices or their dual polyhedra, of the type

φ(gji ) = φ(g11, g
1
2, . . . , g

1
d; . . . ; g

V
1 , g

V
2 , . . . , g

V
d ) , (2.7)

where each open link outgoing from each vertex is associated a group element of the group

G (G = SU(2), Spin(4), or SL(2,C) in quantum gravity GFT models, and G = SU(2) in

standard LQG), with gauge invariance at vertices in V : φ(gji ) = φ(gji βj) for V elements βj
of G. The set of such functions (restricting to square-integrable ones) can be turned into

the Hilbert space L2(Gd·V /GV ) by defining the inner product via the Haar measure on the

group, or some right/left-invariant measure in the non-compact case.

1Another prescription could be some refinement procedure in the spirit of lattice gauge theory, with

associated coarse graining methods used to extract effective continuum physics. For this direction of inves-

tigation, see [32, 33].
2In this paper, we restrict attention to the simplicial case, in which d equals the spacetime dimension,

and each GFT quantum (or spin network vertex) is dual to a (d− 1)-simplex, i.e. a tetrahedron in d = 4.
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The Hilbert space for these functions, H̃d, includes as a special class of states the

usual LQG states associated to closed d-valent graphs Γ.3 There is a relation E(Γ) ⊂
({1, . . . , V }×{1, . . . , d})2 (satisfying [(i a) (i a)] 6∈ E(Γ)) which specifies the connectivity of

such a graph: if [(i a) (j b)] ∈ E(Γ), there is a directed edge connecting the a-th link at the

i-th node to the b-th link at the j-th node, with source i and target j. LQG wavefunctions

are then of the form ΨΓ({Gabij }), where the group elements Gabij ∈ G are assigned to each

link e := [(i a) (j b)] ∈ E(Γ) of the graph. These are labelled by two pairs of indices:

the first pair identifies the pair of vertices (ij) connected, while the second pair identifies

the outgoing edges (ab) of each vertex glued together to form the link. We assume the

gauge invariance ΨΓ({Gabij }) = ΨΓ({βiGabij β−1
j }), for any V group elements βi associated to

the vertices.

Given a closed d-valent graph Γ with V vertices (specified by E(Γ)), a wavefunction

ΨΓ associated to Γ can be obtained by group-averaging of any wavefunction φΓ of the

form (2.7) associated to the vertices of Γ,

ΨΓ({Gabij }) =
∏

e∈E(Γ)

∫

G
dαabij φΓ({αabij gai ;αabij gbj}) = ΨΓ({(gai )−1gbj}) , (2.8)

in such a way that each edge in Γ is associated with two group elements gai , g
b
j ∈ G. The

integrals over the α’s glue open spin network vertices corresponding to the function φ,

pairwise along common links, thus forming the spin network represented by the closed

graph Γ. The same construction can be phrased in the flux representation and in the spin

representation.

Let us denote by Hv the subspace of single-particle (single-vertex) states, i.e. elements

of H̃d with V = 1. A general V -particle state can be decomposed into products of ele-

ments of Hv,

φ(giI) = 〈giI |φ〉 =




V∏

i=1

∑

~χi


φ~χ1...~χV 〈g1I |~χ1〉 · · · 〈gVI |~χV 〉 , (2.9)

where the complete basis of single-vertex wave functions is given either by the spin network

wavefunctions for individual spin network vertices,

~χ =
(
~J, ~m, I

)
→ ψ~χ(gI) = 〈gI |~χ〉 =

[
d∏

I=1

DJI
mInI

(gI)

]
CJ1...Jd,In1...nd

, (2.10)

where I label a basis in the intertwiner space between the given group representations, or

by a product of non-commutative plane waves egI constrained by the (non-commutative)

closure condition for the fluxes,

~χ =

(
BI ∈ g |

∑

I

BI = 0

)
→ ψ~χ(gI) = 〈gI |~χ〉 =

[
d∏

I=1

egI (BI)

]
⋆ δ⋆

(
∑

I

BI

)
. (2.11)

3These are the cylindrical functions of LQG, where there is a notion of cylindrical consistency : a state

on a graph Γ is identified with states on Γ̃ ⊃ Γ that do not depend on the edges Γ̃\Γ. In the GFT setting

used here, cylindrical consistency is not imposed.
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Being quantum field theories, GFTs describe this Hilbert space in second quantised

language. Assuming bosonic statistics for the spin network vertices, and thus the symmetry

φ
(
g1I , g

2
I , . . . , g

i
I , . . . , g

j
I , . . . , g

V
I

)
= φ

(
g1I , g

2
I , . . . , g

j
I , . . . , g

i
I , . . . , g

V
I

)
, (2.12)

the corresponding Fock space is

F(Hv) =

∞⊕

V=0

(
H(1)
v ⊗H(2)

v ⊗ · · · ⊗ H(V )
v

)
(2.13)

where only symmetric elements ofHv⊗Hv⊗· · ·⊗Hv are included. The inner product on this

Fock space descends, for each summand in the direct sum, from the one on L2(Gd·V /GV ),

and is equivalent (at least for G = SU(2)) to the LQG inner product of states on a

fixed graph.

One moves to a labelling of quantum states by their “occupation numbers”, i.e. to

a new basis of the Hilbert space of a given (finite) number V of spin network vertices,

defined by

|n1, . . . , na, . . .〉 =
√
n1! . . . n∞!

V !

∑

{~χi|na}

V⊗

i=1

|~χi〉 (2.14)

where the label a runs over a basis of the single-particle Hilbert space Hv, and one only

sums over those configurations compatible with the labels {na}, i.e. many-particle states

where na particles are in the state a. For elements of F(Hv), we can then rewrite

φΓ̃
(
giI
)
=
∑

{~χi}

φ~χ1...~χV

Γ̃

V∏

i=1

〈giI |~χi〉 =
∑

{na}

V⊗

i=1

〈giI |


 ∑

{~χi}|{na}

φ~χ1...~χV

Γ̃

V⊗

j=1

|~χj〉




=
∑

{na}



√

V !

n1! . . . n∞!

∑

{~χi}|{na}

φ~χ1...~χV

Γ̃



(

V⊗

i=1

〈giI |
)
|n1, . . . , na, . . .〉

=:
∑

{na}

C̃ (n1, . . . , na, . . .)ψ{na}

(
giI
)

(2.15)

where we denote the coefficients of the new basis elements in the group representation

by ψ{na} (~gi) = 〈giI |n1, . . . , na, . . .〉, and C̃ (n1, . . . , na, . . .) are the coefficients of φ in the

occupation number basis. The states of the new basis, and thus all the states of the

Fock space of the theory, can be obtained in terms of the creation/annihilation operators

defined by
[
ĉ~χ, ĉ

†
~χ′

]
= δ~χ,~χ′ ,

[
ĉ~χ, ĉ~χ′

]
=
[
ĉ†~χ, ĉ

†
~χ′

]
= 0 ;

ĉ~χ|n~χ〉 =
√
n~χ|n~χ − 1〉 , ĉ†~χ|n~χ〉 =

√
n~χ + 1|n~χ + 1〉 . (2.16)

It is clear from this algebra that these fundamental operators create and annihilate LQG

network vertices. One can construct arbitrary spin networks of the type we are considering

by acting multiple times on the special state given by the Fock vacuum |0〉, which is

interpreted as the “no-space” (or “emptiest”) state in which no degree of freedom of
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quantum geometry is present. It is defined by the property that it is annihilated by

all annihilation operators, ĉ~χ|0〉 = 0 ∀~χ, and so all of its occupation numbers are zero,

|0〉 = |0, 0, . . . , 0〉.
From the linear superposition of creation and annihilation operators, it is then standard

to define the bosonic field operators

ϕ̂(g1, . . . , gd) ≡ ϕ̂(gI) =
∑

~χ

ĉ~χ ψ~χ(gI) , ϕ̂†(g1, . . . , gd) ≡ ϕ̂†(gI) =
∑

~χ

ĉ†~χ ψ
∗
~χ(gI) , (2.17)

satisfying the commutation relations (here we are using a suitable normalisation of the

basis functions ψ~χ(gI))

[
ϕ̂(gI), ϕ̂

†(g′I)
]
= IG(gI , g

′
I) ,

[
ϕ̂(gI), ϕ̂(g

′
I)
]
=
[
ϕ̂†(gI), ϕ̂

†(g′I)
]
= 0 , (2.18)

where IG(gI , g
′
I) is the identity operator on the space of gauge invariant fields. Hence we

recover and motivate the definition (2.2) from the perspective of spin networks in LQG.

These are the fundamental GFT field operators, expanded in modes either via Peter-

Weyl decomposition for ~χ = ( ~J, ~m, I) or via the non-commutative Fourier transform for

~χ = ( ~B ∈ g|∑d
I=1

~BI = 0). In the second case the formula has to be understood as involv-

ing a ⋆-multiplication between field modes (creation/annihilation operators) and single-

vertex wave functions.

The kinematical operators of GFTs are also obtained naturally from the canonical

LQG kinematics (or, equivalently, from quantum simplicial geometry).

Given a general ‘(n + m)-body operator’ Ôn+m, that is an operator acting on spin

network states formed by n spin network vertices and resulting in states with m spin

network vertices, one can define its matrix elements

〈~χ1, . . . , ~χm|Ôn+m|~χ′
1, . . . , ~χ

′
n〉 = On+m

(
~χ1, . . . , ~χm, ~χ

′
1, . . . , ~χ

′
n

)
(2.19)

and a corresponding operator on the GFT Fock space,

Ôn+m

[
ϕ̂, ϕ̂†

]
=

∫
(dg)d·m (dh)d·n On+m

(
g1I , . . . , g

m
I , h

1
I , . . . , h

n
I

) m∏

i=1

ϕ̂†(giI)
n∏

j=1

ϕ̂(hjI) . (2.20)

The quantum dynamics of spin networks can be encoded in a ‘projection’ operator onto

physical states (other possibilities can be considered as well), which encodes the action of

some Hamiltonian constraint operator. We take the condition on physical states to be of

the form

P̂ |Ψ〉phys = |Ψ〉phys . (2.21)

The operator P̂ will in general decompose into 2-body, 3-body, . . ., (n+m)-body operators,

i.e. into operators whose action involves 2, 3, . . ., (n+m) spin network vertices, and possibly

an infinite number of components, weighted by suitable coupling constants,

P̂ |Ψ〉phys =
[
λ2P̂2 + λ3P̂3 + . . .

]
|Ψ〉phys = |Ψ〉phys . (2.22)
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The second quantised counterpart of the quantum dynamics in the Fock space is then given

by an operator F̂ on the GFT Fock space that corresponds to the operator I − P̂ acting

on first quantised spin-network states. It is defined by

F̂ ≡
∑

~χ

ĉ†~χĉ~χ −
∞∑

n,m

λn+m
∑

{~χ,~χ′}

ĉ†~χ1
. . . ĉ†~χm

Pn+m
(
~χ1, . . . , ~χm, ~χ

′
1, . . . , ~χ

′
n

)
ĉ~χ′

1
. . . ĉ~χ′

n
(2.23)

=

∫
(dg)d ϕ̂†(gI)ϕ̂(gI)−

∞∑

n,m

λn+m



∫
(dg)d·m (dh)d·n Pn+m

(
giI , h

j
I

) m∏

i=1

ϕ̂†(giI)
n∏

j=1

ϕ̂(hjI)




and acts on states in F(Hv) = ⊕∞
V=0

(
H(1)
v ⊗H(2)

v ⊗ · · · ⊗ H(V )
v

)
.

These are the GFT dynamical operator equations, which can be also encoded in the

Schwinger-Dyson equations for n-point functions. We have chosen here the normal or-

dering for creation and annihilation operators, as is customary in many-body quantum

physics. Different operator orderings would give quantum corrections to be absorbed in

the interaction kernels of the theory.

The identification of the corresponding GFT action, starting from the above quantum

dynamics expressed in canonical (second quantised) form, requires some assumption. We

consider a grandcanonical ensemble

Zg =
∑

s

〈s|ρ̂g|s〉 =
∑

s

〈s|e− (F̂ −µN̂)|s〉 (2.24)

where the sign of the ‘chemical potential’ µ selects quantum states with many or few

spin network vertices as dominant. In order to turn this expression into the GFT path

integral, we introduce then a second quantised basis of eigenstates of the GFT quantum

field operator, |ϕ〉 = exp
(∑

~χ ϕ~χĉ
†
~χ

)
|0〉 = exp

(∫
(dg)d ϕ(gI)ϕ̂

†(gI)
)
|0〉, satisfying

ĉ~χ|ϕ〉 = ϕ~χ |ϕ〉 , 〈ϕ|ĉ†~χ = ϕ~χ 〈ϕ| , (2.25)

or equivalently

ϕ̂(gI)|ϕ〉 = ϕ(gI) |ϕ〉 , 〈ϕ|ϕ̂†(gI) = ϕ(gI) 〈ϕ| , (2.26)

and a completeness relation as is usual for such coherent states,

I =

∫
Dϕ Dϕ e−|ϕ|2 |ϕ〉〈ϕ| , |ϕ|2 ≡

∫
(dg)d ϕ(gI)ϕ(gI) =

∑

~χ

ϕ~χ ϕ~χ . (2.27)

The functions ϕ and ϕ are indeed the classical GFT fields, and the measure over them

is the (formal) GFT path integral measure. Inserting the corresponding resolution of the

identity in the formula for the quantum partition function, one obtains

Zg =
∑

s

〈s|e− (F̂ −µN̂)|s〉 =

∫
Dϕ Dϕ e−Seff [ϕ,ϕ] (2.28)

in terms of an effective action

e−Seff [ϕ,ϕ] ≡ e−|ϕ|2 〈ϕ| e− (F̂ −µN̂) |ϕ〉 . (2.29)
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The effective action Seff is the quantum corrected version of the classical GFT action

S0 [ϕ,ϕ] =
〈ϕ|F̂ |ϕ〉
〈ϕ|ϕ〉 ; (2.30)

the chemical potential becomes a mass term in the effective action, rescaling the term

coming from the identity operator (which became the number operator in F̂ ) bym2 = 1−µ.
The same type of quantum corrections would have appeared from a different operator

ordering in the very definition of F̂ . Because of this, and because both sides of the two

possible definitions of the quantum partition functions would have anyway to be properly

defined, with a careful handling of such quantum corrections, one can just define the

quantum GFT theory starting from the above classical action. To give proper meaning to

the corresponding path integral and to the partition function, one has then to go through

the usual renormalisation and constructive procedures of quantum field theory.

The corresponding classical GFT action is then of the form

S [ϕ, ϕ̄] =

∫
(dg)d ϕ̄(g1, . . . , gd)ϕ(g1, . . . , gd) (2.31)

−
∞∑

n,m

λn+m



∫

(dg)d·m(dh)d·n Vn+m

(
giI , h

j
I

) m∏

i=1

ϕ̄(giI)
n∏

j=1

ϕ(hjI)


 ,

Vn+m

(
giI , h

j
I

)
= Pn+m

(
giI , h

j
I

)
.

The GFT interaction kernels (or spin foam vertex amplitudes) are thus nothing else than

the matrix elements of the canonical projection operator in the basis of (products of)

single-vertex states.

In this section we define the quantum GFT through the path integral. Later on, we will

use an operator formalism in which we impose the operator version of the Euler-Lagrange

equations δS/δϕ = δS/δϕ̄ = 0 on physical states. The relation between the two is given by

the Schwinger-Dyson equations, which give expectation values of general functionals of the

field from the path integral. We will come back to those in the discussion of the effective

GFT dynamics in section 5.

The GFT formalism as outlined above is quite general, and lends itself to different

constructions. In the following, we will consider models (the most studied ones) aiming

at describing 4d quantum gravity. These have been defined via a strategy inspired by the

formulation of gravity as a constrained topological BF theory, also known as the Plebanski

formulation. We will give more details at a later stage, when needed for explicit manipu-

lations. Now we only recapitulate some features of this strategy, only some of which have

a corresponding justification in the canonical LQG theory. The formulation of gravity as

a constrained BF theory suggests: 1) to choose for the group G the local gauge group of

gravity in 4d, G = SL(2,C) in Lorentzian signature and G = Spin(4) in the Riemannian

case; 2) to start from a GFT model describing topological BF theory, such as the Ooguri

model, and thus quantising only flat connections, and 3) to impose suitable conditions on

the Lie algebra-valued variables conjugate to such a flat connection (the B field of BF

theory) which enforce the geometric nature of them, i.e. force them to be a function of
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a tetrad field. In the continuum, classical theory, the result of such constraining is the

Palatini formulation of gravity. The corresponding GFT and spin foam construction takes

place at the discrete level, more precisely in a simplicial context. The basic objects of

the theory are combinatorial tetrahedra, labelled by the discrete counterpart of BF fields:

group elements or (conjugate) Lie algebra elements associated to the faces of the tetrahedra

(or links of the dual spin network vertices). These are the same variables used above to

label states and amplitudes in the GFT formalism. The interaction of these tetrahedra,

encoded in the GFT vertex, is given in terms of a 4-simplex having five of these tetrahedra

in the boundary. This corresponds to a specific choice of ‘locality principle’ in GFT. One

then imposes restrictions (“simplicity constraints”) on such algebraic data, intended as

discrete counterpart of the Plebanski geometricity conditions in the continuum. How to

do this imposition correctly is a main focus of activity in the spin foam/GFT literature,

and different models have been proposed. The general point is, however, that after such

conditions have been imposed, the Lie algebra elements labelling the faces of the tetrahe-

dron can be interpreted as derived from a discrete tetrad field associated to the 4-simplex,

with edge vectors associated to tetrahedron edges. In models incorporating the Immirzi

parameter, and aiming at a quantisation of the Plebanski-Holst formulation of gravity, the

same constraints imply that one can move from covariant SL(2,C) (or Spin(4)) variables

to SU(2) ones, with the detailed embedding of SU(2) data in the full group encoded in the

dynamics of the theory, i.e. in the details of the kinetic and/or interaction terms of the

GFT action.

Our strategy for the rest of the paper will be to use the Fock space construction

of GFT to define states that we can interpret geometrically as spatially homogeneous

macroscopic geometries, and that are comparably easy to manipulate in the quantum

theory. For the geometric interpretation, one can focus on either metric or connection

variables, corresponding to the Lie algebra or group representation of GFT, as we have

described.

GFT Fock states with N particles that could be interpreted purely in terms of bivector

data, with completely undetermined parallel transports, can be constructed out of basis

states of the form

|BI(m)〉 :=
1

N !

N∏

m=1

ˆ̃ϕ†(BI(m))|0〉 , (2.32)

where ˆ̃ϕ(BI) is the Fourier transform of the field operator ϕ̂(gI). For such a state, the

Lie algebra variables B specify the bivectors to be attached to each face, while there is

no information about the group elements to be attached to the dual links. Unlike in the

analogous case of scalar field theory on Minkowski space, and for compact G where a

non-commutative Fourier transform can be defined, the states (2.32) are normalisable.

A slightly more general construction allows for the N bosons to have general wave-

functions,

|Ψm〉 :=
∫
(dB)4N

N∏

m=1

Ψm(B1(m), . . . , Bd(m)) ⋆ |BI(m)〉 . (2.33)
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Such a state corresponds to a set of N tetrahedra with geometric data attached to its

faces and dual links according to the properties of the wavefunctions {Ψm}Nm=1, keeping

in mind that these are indistinguishable particles, so that there is no sense in which in-

dividual tetrahedra can be associated with particular wavefunctions Ψi. For states of the

form (2.33), requiring normalisability means that pairwise star-products of the functions

Ψm have to be integrable,

∫
(dB)4 Ψi(BI) ⋆Ψj(BI) <∞ . (2.34)

Of course, such states still form a rather small subset of general N -particle states in which

there would be a general function Ψ(B1(1), . . . , B4(N)) on so(4)4N which does not factorise

as a product.

If we use a smooth state like (2.33), and consider, for example, coherent states such as

the ones introduced in the LQG literature [3–9], the assignment of geometric data can be

visualised in terms of the position of the peak in the Lie algebra and in the group at the

same time, in a controlled way (i.e. with a given finite spread around the peak). In this way,

we can attach simultaneously intrinsic and extrinsic geometric data to each tetrahedron.

We next turn to a classical discussion of the type of discrete geometries corresponding

to GFT states, consisting of N building blocks (simplices) with certain pre-geometric data,

to identify the ones that are useful for cosmology.

3 Approximate geometries and homogeneity

As said, the Fock vacuum of group field theory represents the no-space state, containing

no geometry at all. In order to model a macroscopic geometry we need an excited state,

i.e. a state obtained from superpositions of states, possibly with a high occupation num-

ber. Among the various possibilities, we need to construct a class of states that is naturally

adapted to the concept of homogeneity. To understand what this entails, in this section

we first focus on classical discrete geometries, characterised by the data appearing in the

GFT Fock space (parallel transports and bivectors), like (2.32). Our goal is to select those

discrete geometries that correspond to macroscopic, spatially homogeneous metric geome-

tries. Here we focus on metric rather than connection variables, but this not essential for

the criterion of homogeneity which one could similarly give for the gravitational connection

instead of the metric.

The gauge invariance of the GFT field results, in the Lie algebra formulation, in a

multiplication by a (noncommutative) Dirac delta of the sum of the Lie algebra elements.

Because of this (closure) constraint
∑

I BI = 0, (2.32) is parametrized by 3N linearly

independent bivectors {Bi(m)} (i = 1, 2, 3, m = 1, . . . , N). Furthermore, we imagine we

can impose the simplicity constraints and ignore the discrete ambiguities in their solution;

we then take the independent bivectors to be of the form BAB
i = ǫi

jkeAj e
B
k for three R4

vectors eAi .
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On the space of bivectors, or alternatively the space of eAi(m), there is an action of

SO(4)N (or SO(3, 1)N in the Lorentzian case),

Bi(m) 7→
(
h(m)

)−1
Bi(m)h(m) , ei(m) 7→ ei(m)h(m) . (3.1)

This group of transformations is a gauge symmetry of gravity, corresponding to local frame

rotations.

The resulting gauge-invariant configuration space for each tetrahedron is six-dimen-

sional and may be parametrised by the quantities

gij(m) = eAi(m) eAj(m) (3.2)

which can be interpreted, in light of the discrete geometric meaning of the variables e and

B, as defining discrete metric coefficients. We will shortly justify further this interpretation.

These metric coefficients can be expressed directly in terms of the bivectors alone:

gij =
1

8 tr(B1B2B3)
ǫi
klǫj

mnB̃kmB̃ln , B̃ij := BAB
i Bj AB . (3.3)

This formula bears some resemblance to the well known Urbantke metric, a spacetime met-

ric constructed out of a triple of spacetime two-forms, but the two are not obviously related.

The coefficients gij are precisely the gauge-invariant data that we are interested in in

the construction of the states. Since the gij have been constructed from the bivectors B

which are invariant under coordinate transformations (being integrals of a 2-form over the

faces), they must be scalars under diffeomorphisms, and hence cannot be interpreted as

metric coefficients in a coordinate basis. Instead, as we will see below, they are naturally

interpreted as giving the metric in a given fixed frame that transforms covariantly under

diffeomorphisms. Indeed, the gij are the gauge-invariant content of states for a single

tetrahedron; the remaining information can be understood as specifying a choice of local

frame, removed by the condition of invariance under (3.1).

The next step is to relate classical discrete quantities given by {gij(m)}, for 1 ≤ m ≤ N ,

with continuum geometries. The problem of reconstructing continuum geometries from

discrete data has been discussed several times in the past and remains, in its full generality,

largely open. In particular, for LQG, which uses the variables that we are manipulating

here, see [3–12].

Such discrete geometries can be seen as a sampling of a continuous geometry at N

different points. Furthermore, given the interpretation of the geometric data, this geome-

try is only a spatial slice of a four-dimensional manifold (information about the extrinsic

curvature, and hence the embedding of the slice, is given by the conjugate connection vari-

ables). Clearly, without further instructions, it is impossible to associate to a finite set of

numbers (3.2) a unique smooth continuous geometry.

We are interested here in those spatial geometries that correspond to three-dimensional

homogeneous spaces. We must be able to characterise a certain discrete geometry given by

{gij(m)} in such a way that it is clear whether it is compatible with a homogeneous spatial

geometry or not. In order to do this we need to construct an embedding of the discrete

geometry, such that a comparison with a homogeneous continuum geometry is possible.
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Let us recall, first, that homogeneity of a Riemannian geometry on M is defined with

respect to a Lie group of isometries G, acting transitively on M. In fact, homogeneous

manifolds can be classified in terms of their isometry group G [34]. For our purposes,

we assume that M ≃ G/X, where X ⊂ G is a discrete subgroup of a three-dimensional

Lie group G.

We proceed as follows. Each of the tetrahedra (corresponding to a GFT quantum)

can be embedded into a three-dimensional topological manifold M, our spatial slice. The

embedding of each tetrahedron requires a sufficiently smooth function, mapping each point

of the tetrahedron (boundary and bulk) to our manifold. Given the structure of the tetra-

hedron, the embedding can be completely determined once we specify the point xm ∈ M
at which one of the vertices is embedded, and the three tangent vectors vi(m) ∈ TxmM
emanating from it, corresponding to the three edges incident at the given vertex. The expo-

nential map naturally defined by the Maurer-Cartan connection on G, pulled back on M,

allows us to embed the whole tetrahedron, since any point in it can be represented in terms

of a linear combination of the three independent vectors v which is then exponentiated.4

With the construction described above, we are able to interpret data of the form

{gij(m)} for 1 ≤ m ≤ N in terms of a discrete sampling of continuum geometric data

defined on M, in correspondence with the embedded tetrahedra

,m 7→
{
xm ∈ M,

{
v1(m),v2(m),v3(m)

}
⊂ TxmM

}
. (3.4)

The exact translation of the data associated to each tetrahedron (bivectors, tetrads,

or parallel transports) to continuum fields on the manifold M requires however some extra

care. We want to interpret all the above pre-geometric quantities as resulting from con-

tinuum geometric fields integrated over domains of finite size. Furthermore, being gauge

variant, such integrations require the use of appropriate parallel transports with the con-

tinuum connection (see for example the construction in [12] and references therein).

For example, in order to reconstruct an approximate tetrad, and hence the metric,

as it is induced on M by the embedding of the tetrahedra, we need to assume that the

associated reconstructed curvature is small over the size of the same tetrahedra, so that

we can approximate their interior as flat and regard the needed parallel transports as act-

ing trivially. More precisely, the linear size of each tetrahedron has to be much smaller

than different possible curvature radii inferred using the reconstructed metric and connec-

tion on M. This is a condition on our procedure to be self-consistent in its geometric

interpretation.

4We stress that we do not have to make reference to any notion of sprinkling of points in a given manifold

by using a Poisson process, as it is customarily done in these contexts, e.g. for discrete geometries with

LQG-type data [12], or in the causal set approach [35]. Defining a Poisson process requires a choice of

measure, associating a volume to a given region, and while the group action of G on M provides a natural

measure (fix a volume form at one point x ∈ M and define it everywhere else by the pull-back of the group

action) that could be used, we regard this measure as a fiducial background structure: only the dynamical

geometric variables derived from (3.3), such as the determinant of gij , should be used to make statements

about densities and volumes. We hence consider arbitrary embeddings, while ensuring that our statements

about spatial homogeneity do not depend on this arbitrary choice. Once this is guaranteed, everything we

say will also hold if one chooses to restrict to sprinklings which are a subset of all possible embeddings.
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This approximation is the first source of error in our discussion which has to be taken

into account, especially in the construction of an effective dynamics. Indeed, an effective

dynamics predicting a regime of very high curvature compared to the scale of the embedded

tetrahedra would make the above geometric interpretation less reliable, as the approxima-

tion on which it hinges breaks down. In this case the corresponding state could not be

trusted to have such simple geometric interpretation, and will have to be replaced with a

better guess, or be reanalysed in terms of a more subtle geometric reconstruction procedure

and interpretation (see also the related work on loop quantum cosmology [36–38]).

Now assuming that the approximation of near-flatness holds, we interpret the R4 vec-

tors eAi(m) associated to a tetrahedron as physical tetrad vectors integrated along the edges

specified by vi(m), a natural choice for which is a basis of left-invariant vector fields on G:

vi(m) = ei(xm), where {ei} are the vector fields on M obtained by push-forward of a basis

of left-invariant vector fields on G. Fixing a G-invariant inner product in the Lie algebra

g of G, such a basis is unique up to a global action of O(3).

If we did not make such a choice but left the vectors vi(m) unspecified, even two

embeddings in which all tetrahedra are embedded at the same points xm, but with different

tangent vectors vi(m), would lead to physically distinct reconstructed metrics, as a local

GL(3) transformation on gij in general cannot be undone by a diffeomorphism. We could

have chosen a different set of vector fields and assume that all tetrahedra are embedded with

such tangent vectors, of course, but the existence of a group action on space M provides

us with a natural, canonical way of fixing vi(m), avoiding such issues: the tetrahedra are

always oriented along the local frame given by the left-invariant vector fields.

Within the approximation of near-flatness, we can approximate the integral of the 1-

form eA representing the physical tetrad over an edge by its value at the point xm. This

implies we assume the edges to be of unit coordinate length, which is a statement about

the coordinate system we are expressing the metric in. Some choice of this sort is always

required when passing from diffeomorphism-invariant to diffeomorphism-variant quantities.

We then have the following relation between the vectors eAi(m) and the physical tetrad:

eAi(m) = eA(xm)(ei(xm)) . (3.5)

For the gauge-invariant quantities gij , this implies that

gij(m) = g(xm)(ei(xm), ej(xm)) , (3.6)

and thus gij(m) are the metric components in the frame of the left-invariant vector

fields {ei}.
Clearly, if the spatial geometry was homogeneous, these coefficients would be constant

in space. We are interested in the converse question: given the coefficients gij(m), is the

underlying metric geometry compatible with spatial homogeneity? At this stage, any

positive answer to this question can only hold in the approximate sense where one looks at

only N points in the manifold. This is indeed our second main source of approximation.

The larger N is, the more confident we can be of the association between our discrete data

and a continuum geometry.

– 17 –



J
H
E
P
0
6
(
2
0
1
4
)
0
1
3

Within this approximation, the criterion for which a state like (2.32) or (2.33) can be

interpreted as a discrete N -point sampling of a homogeneous geometry M is clear. With

the embedding discussed above, making use of the action of the group G on M, we can

say that the state is compatible with spatial homogeneity if

gij(m) = ḡij , ∀m = 1, . . . N. (3.7)

Again we should stress that we focussed the discussion only on the intrinsic geometry

(the three-dimensional metric) but a perfectly analogous discussion holds for the connection

(which includes, in the Ashtekar formulation, the extrinsic curvature), or in fact for any

other field, such as matter degrees of freedom added to the GFT configuration space as

additional data characterising the elementary tetrahedra (see section 6).5 For a scalar field,

the criterion of homogeneity would simply be that its value be the same for all tetrahedra;

fields with tensor indices would be interpreted as given in the frame of left-invariant vector

fields, so that a criterion analogous to (3.7) results. In the next section, we will also lift this

homogeneity criterion to the quantum setting, as a condition of wavefunctions for quantum

states, and thus to probability distributions over the space of discrete geometric data.

As we have said, the procedure is subject to some self-consistency conditions. First,

one has to ensure that the flatness condition (small curvature with respect to the size of

the tetrahedra) is satisfied. Second, while in principle the group G is unspecified and its

choice provides an additional input, the effective dynamics coming from a particular GFT

model can provide conditions on the possible consistent choices for G: we shall see later

on that, for a special choice of GFT action and quantum state representing an isotropic

homogeneous geometry, the semiclassical regime of the effective dynamics corresponds to

a positively curved 3-geometry, which suggests that G = SU(2) for consistency.

In general the reconstructed continuum geometries can be arbitrary anisotropic homo-

geneous metrics, corresponding to all possible Bianchi types. It is a dynamical question

whether an approximately isotropic geometry emerges from the GFT dynamics, just like

in classical general relativity.

Let us summarise the conditions on GFT states to have an interpretation as describ-

ing macroscopic homogeneous spatial geometries. The first is the criterion of homogeneity,

which at the classical level corresponds to the condition (3.7), i.e. the microscopic geometric

data must be the same for all tetrahedra. This is our primary motivation for considering

condensate states, characterised by just a single macroscopic ‘wavefunction’ for many ele-

mentary building blocks. The second condition is that of near-flatness of the elementary

tetrahedra: the components of the curvature, given by appropriate gauge-covariant com-

binations of elementary parallel transports, must be small, i.e. close to the identity in the

gauge group (SO(4) in what we have considered so far — in the GFT formalism one usu-

ally considers the universal covering group, Spin(4) in this case). In the quantum theory

5Note also that we had only to specify a homogeneity criterion for the gauge-invariant quantities gij
because we had previously fixed a unique reference frame for all our tetrahedra as part of our embedding

and reconstruction procedure. Had we not done this, an additional criterion for homogeneity would have

been to require exactly that the local frame in which the metric quantities were expressed was the same for

all tetrahedra.
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this must be phrased in terms of expectation values: the condensate wavefunction must be

peaked around small values of elementary curvatures (recall that these represent geomet-

ric quantities integrated over the size of the tetrahedra). The third condition is that the

sampling size N should be reasonably large, and the larger the better the approximation of

the continuum. The fourth condition is semiclassicality : at least in some regime, in order

to be able to speak about a classical universe emerging from a given quantum state, the

state must have semiclassical properties. The standard choice would be to use coherent

states [3–8, 10–12], as done for example in [39]. In the context of this paper, we will extract

semiclassical physics from the quantum dynamics by means of a WKB approximation; the

condition is then to be in a regime where this approximation is valid. This is a standard

procedure in quantum cosmology to discuss spacetime histories emerging from a quantum

state, see e.g. [40].6 The problem of emergence of classical physics from a quantum theory

is of course a major one [41], which we do not really tackle in its generality in this paper.

4 GFT condensates as continuum homogeneous geometries

In this section we will describe continuum homogeneous geometries as GFT states, lifting

to the quantum level the classical considerations of the previous section. We work first

in the Riemannian context where the gauge group is Spin(4). The immediate quantum

version of the homogeneity criterion (3.7) is easy to identify. Working in the Lie algebra

representation, for example, thus using B variables to label our states (assumed to satisfy

simplicity conditions, so to be interpretable in geometric terms), as in (2.33), one can

consider special states of the product type

|ΨN 〉 :=
1

N !

(∫
(dB)4Ψ(B1, . . . , B4) ⋆ ˆ̃ϕ†(B1, . . . , B4)

)N
|0〉 , (4.1)

containing N quanta each associated to the same wavefunction. These can be given an in-

terpretation in terms of discrete geometries that naturally approximate homogeneous (and

possibly anisotropic) spatial slices. The classical homogeneity criterion (3.7) of identical

geometric data for all tetrahedra (in the appropriate local frame) becomes, at the quan-

tum level, the requirement of identical distribution over the space of geometric data for all

tetrahedra. Notice that this requirement does not refer to the shape of the wavefunction

Ψ(B1, . . . , B4), or to whether it represents a semiclassical state (e.g. a heat kernel) or not

(e.g. a Dirac-delta-like distribution in the Lie algebra variables): at the end of section 3,

we distinguished the independent conditions of homogeneity and semiclassicality. We will

discuss specific conditions on the choice of wavefunction Ψ within the more general class

of condensate states in section 4.1.

6Notice that, along the way from the microscopic description of the quantum spacetime degrees of

freedom to the effective macroscopic cosmological ones, the semiclassical approximation can be taken at

various points. The specific stage at which one takes it will in general affect the result. In our procedure,

since the notion of quantum condensate is needed to obtain a cosmological approximation, the semiclassical

approximation cannot be taken until the very end. In fact, we will obtain quantum cosmology-like effective

equations, and it is on these final equations (better, on the corresponding cosmological wavefunction, here

arising as the collective variable for the GFT condensate) that we will use the semiclassical approximation.
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Again, there are two sources of approximations. First, the flatness condition, i.e. the

smallness of the ratio between the size of the tetrahedra and the radius of curvature.

Second, the value of N , giving the size of the sampling. We ignore the condition of semi-

classicality for this discussion, focussing on the GFT quantum dynamics first.

Having a Fock space structure for our states gives a straightforward way to go beyond

a formalism in which the number of quanta is fixed, and consider superpositions of states

with different particle numbers. In addition, the structure of the Fock space allows us also

to take states with an infinite number of particles, e.g.

|Ψ〉 :=
∞∑

N=0

cN
N !

(∫
(dB)4Ψ(B1, . . . , B4) ⋆ ˆ̃ϕ†(B1, . . . , B4)

)N
|0〉 . (4.2)

To summarise, we assume that the underlying continuum geometry describes a compact

region in space, which can be all of space if M is compact, as will be the case later on

(where M is a three-sphere). One can associate a length scale L to this region, e.g. by

setting L = V 1/3 where V is the total volume with respect to some arbitrary fixed measure

(such as the left-invariant measure on M mentioned before). Then, probing the geometry

of this region by N tetrahedra at N different points can be understood as a restriction to

wavelengths longer than L/N1/3 in the reconstructed geometry. Sending N to infinity, we

take this approximation scale associated to the discrete sampling to zero. In this way, a

second-quantised state will allow us to approximate continuous discrete geometries, with

the only source of error encoded in the flatness condition. Since this condition refers only to

the discrepancy between the continuum geometric quantities and the discrete ones, we can

say that sending N to infinity will allow us to recover homogeneity to arbitrary accuracy.

We will call these states GFT condensates, since they correspond to particular second-

quantised states having macroscopic occupation numbers for given modes, controlled by

the wavefunction Ψ, thus following the standard terminology used in condensed matter

theory [42–44].

The above definition of condensate states can be generalised. Indeed, there are many

ways to construct states that, as many-body states, can be interpreted as a condensate of

a given building block. Besides the obvious freedom to choose the coefficients cN in (4.2),

one can imagine to consider more general states that include correlations between particles.

One possibility is to consider states of the form

|Ψ〉 :=
∞∑

N=0

cN
N !

(∫
(dB)4(dB′)4Ψ(B1, . . . , B4, B

′
1, . . . , B

′
4) ⋆ ˆ̃ϕ†(BI) ˆ̃ϕ

†(B′
I)

)N
|0〉 . (4.3)

Such states are used, for instance, in the discussion of the Bogoliubov approximation of

the dynamics of Bose-Einstein condensates [42–44].

In principle, nothing prevents us from considering states that are built out of larger

elementary building blocks, i.e. states that are encoding correlations among a larger and

larger number of quanta, or even combinations of them, and possibly depending on a

slightly larger set of pre-geometric data. These may not be exactly homogeneous geometries

according to our simple criterion (3.7), but could be more physically appropriate to describe

– 20 –



J
H
E
P
0
6
(
2
0
1
4
)
0
1
3

approximately homogeneous (and thus more realistic) geometries or correspond to the

outcome of a more refined reconstruction procedure. The information about the best

state that encodes the appropriate physical properties that our system, a macroscopic

homogeneous universe, possesses, should come from elsewhere. For instance, a better

control on the properties of the GFT phase transition leading to condensation of the GFT

quanta might give hints.

In this paper, we will focus on just two of these possible states. These are the simplest

possible choices that will allow us to work with states that contain the idea of sampling a

continuous homogeneous geometry in the sense specified in the previous section. Therefore,

for our purposes, the only restriction that we are going to impose is that the state contains

exactly the geometric data of a tetrahedron. Consequently, besides the gauge invariance

of GFT fields, it has to include the gauge symmetry (3.1).

We model the states after coherent states for single-particle modes and for pairs, con-

straining the coefficients cN appearing in (4.2) and (4.3) to define exponential operators

(giving the desired coherence properties), and reducing the freedom in the definition of the

state to the choice of a single function.

The simplest class of states is a ‘single-particle’ condensate,

|σ〉 := N (σ) exp (σ̂) |0〉 with σ̂ :=

∫
(dg)4 σ(g1, . . . , g4)ϕ̂

†(g1, . . . , g4) (4.4)

where we require σ(kg1, . . . , kg4) = σ(g1, . . . , g4) ∀k ∈ Spin(4), and N (σ) is a normalisa-

tion factor,

N (σ) := exp

(
−1

2

∫
(dg)4 |σ(g1, . . . , g4)|2

)
. (4.5)

At least for the ‘single-particle’ condensate, the requirement of normalisability, i.e. of ob-

taining an element of the GFT Fock space, is equivalent to a finite expectation value for

the number operator. Hence, while involving a superposition with states of arbitrarily high

particle number, the condensate always has a finite average number of GFT quanta. It is

only in the first sense that the limit of infinite particle number N → ∞ is taken.

Despite the fact that, strictly speaking, these states do not correspond to a system

with infinite number of particles, for sufficiently large particle number, acting on them

with creation and annihilation operators (that is, adding and removing a relatively small

number of quanta) does not change their shape in an essential way. In this sense they

capture part of the thermodynamic limit, while still allowing the use of the original Fock

space. This is the reason why coherent states are extensively used to describe weakly

interacting Bose-Einstein condensates, where the number of atoms will be finite for any

particular condensate state (as dictated by the fact that the system has a large but finite

size, typically of 103 bosons), although the formal thermodynamic limit N → ∞ is often

useful as an approximation.

Since (2.1) imposes automatically that σ(g1k
′, . . . , g4k

′) = σ(g1, . . . , g4) ∀k′ ∈ Spin(4),

we have two restrictions telling us that the function σ effectively depends on less arguments.
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Defining the Fourier transform of σ,

σ̃(B1, . . . , B4) =

∫
(dg)4

4∏

I=1

egI (BI)σ(g1, . . . , g4), (4.6)

the invariances that we impose imply that first σ̃(B1, . . . , B4) = ek (
∑

I BI)⋆ σ̃(B1, . . . , B4)

so that integrating over k we obtain

σ̃(B1, . . . , B4) = δ⋆

(
∑

I

BI

)
⋆ σ̃(B1, . . . , B4) (4.7)

and the closure constraint is satisfied; from σ(g1, . . . , g4) = σ(k−1g1k, . . . , k
−1g4k) we

obtain

σ̃(B1, . . . , B4) =

∫
(dg)4

4∏

I=1

ek−1gIk(BI)σ(g1, . . . , g4)

=

∫
(dg)4

4∏

I=1

egI (kBIk
−1)σ(g1, . . . , g4)

= σ̃(kB1k
−1, . . . , kB4k

−1) (4.8)

which takes care of (3.1). Here we have used some elementary properties of the plane

waves eg and of the corresponding non-commutative Fourier transform [21, 31].

We see that the wavefunction σ stores exactly and only the gauge-invariant data needed

to reconstruct the metric from the bivectors, as in (3.3). This is indeed the simplest

choice of quantum states that possesses all the properties we identified as corresponding

to continuum quantum homogeneous geometries.

The second class of states that we are considering is

|ξ〉 := N (ξ) exp
(
ξ̂
)
|0〉 with (4.9)

ξ̂ :=
1

2

∫
(dg)4(dh)4 ξ(g−1

1 h1, . . . , g
−1
4 h4)ϕ̂

†(g1, . . . , g4)ϕ̂
†(h1, . . . , h4) , (4.10)

where, thanks to (2.1) and [ϕ̂†(gI), ϕ̂
†(hI)] = 0, the function ξ automatically satisfies

ξ(gI) = ξ(kgIk
′) ∀k, k′ ∈ Spin(4) and ξ(gI) = ξ(g−1

I ), and N (ξ) is a normalisation factor

ensuring the state |ξ〉 has unit norm in the Fock space. Using the fundamental commutation

relations and a bit of combinatorics, one can show that

〈0| exp(ξ̂†) exp(ξ̂)|0〉 = exp


∑

k≥1

1

2k
〈|ξ|2k〉


 = 1+

1

2
〈|ξ|2〉+ 1

8
〈|ξ|2〉2+ 1

4
〈|ξ|4〉+ . . . (4.11)

where

〈|ξ|2k〉 :=
∫
(dg)4k(dh)4k

k∏

p=1

ξ(g−1
4p−3h4p−3, . . . , g

−1
4p h4p) ξ(h

−1
4p−3g4p+1, . . . , h

−1
4p g4p+4) (4.12)
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and for p = k in the product it is understood that g4k+i = gi in the arguments of ξ. In

order for the state exp(ξ̂)|0〉 to be in the Fock space, these moments of the profile function

ξ must go to zero fast enough so that the argument of the exponential in (4.11) is finite,∑ 1
2k 〈|ξ|2k〉 < ∞, which is expected to be a rather strong constraint. If it is satisfied, we

can set

N (ξ) := exp


−

∑

k≥1

1

4k
〈|ξ|2k〉


 . (4.13)

Following recent work [45, 46], we call ξ a ‘dipole’ function on the gauge-invariant

configuration space of a single tetrahedron. This second class of states, while possessing

the same gauge invariance and the same geometric data as (4.4), provides two kinds of

improvements: first, invariance under (3.1) is imposed in a natural way, without any further

external restriction. Second, the state encodes some very simple two-particle correlations,

a feature that should be expected to be necessary in the true vacuum state of the system,

due to its highly interacting nature.

It would be straightforward to define, along the same lines, condensate states whose

elementary building blocks are more complicated multi-particle states in the GFT Fock

space. For instance, in similar contexts in discrete geometry one often thinks of cubical

graphs, where the elementary cell is a “cube” that can be thought of as composed of several

tetrahedra. Most notably, recent work in loop quantum gravity [47, 48] aims at deriving

cosmological dynamics from LQG using cubulations of space. A condensate of cubes would

represent the closest analogue to such a construction in our setting, and could be used to

compare our approach with the work of [47, 48] in more detail.

According to our previous analysis, the GFT condensate states |σ〉 and |ξ〉 encode

continuous homogeneous (but possibly anisotropic) quantum geometries. The distribution

of geometric data is encoded in the functions σ or ξ, which can be seen as functions over

the minisuperspace of homogeneous geometries. Let us stress at this point that there is

a difference with the standard minisuperspace approach. These states are not states of a

symmetry reduced theory. Rather, they are symmetry reduced states of the full theory.

Furthermore, given the sum over samplings, they are independent of a chosen reference

lattice structure, or fixed discretisation of space, and in particular they support arbitrary

perturbations over homogeneous geometries.

Despite being general enough to encode all the Bianchi cosmologies, the above states

are simple enough to lead to explicit calculations and allow the extraction of an effective

cosmological dynamics, as we will see in the following.

4.1 Self-consistency conditions

Before moving on to the extraction of the effective cosmological dynamics, let us make a

bit more precise the approximations mentioned above that are necessary for the geometric

interpretation of the above states, according to our simple reconstruction procedure. A

detailed analysis of the geometric conditions that can or should be imposed on our quantum

states to ensure the correct geometric interpretation is left for future work. This should

entail a refined version of the reconstruction procedure we outlined in section 3, possibly
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reproducing and extending to the full quantum theory (here, in its GFT formulation), the

kinematical set-up of loop quantum cosmology [36–38]. The same reconstruction procedure

should be generalised beyond the homogeneous case, using previous results on semiclassical

quantum geometry states [3–12]. Also, the geometric conditions so identified should then

be incorporated into the quantum theory at the dynamical level, i.e. as a choice of quantum

ensemble being considered, and thus in the fundamental dynamics of the theory. Here, we

limit ourselves to a basic discussion of the form that such geometric condition should take,

for the class of states we consider, in a second quantised formulation.

Following the arguments of section 3, we expect one of the first sources of error for the

effective theory that we are going to derive from these states to consist in the discretisation

error associated to the approximation of a continuum manifold in terms of (a large number

of) discrete constituents. Once the states have been specified, this error can be expressed

in terms of expectation values of certain operators in the given state. For simplicity, we

will consider just the simple condensates (4.4).

The number of tetrahedra contained in the state can be obtained as the expectation

value of the one-body operator

N̂
,

=

∫
(dg)4 ϕ̂†(g1, . . . , g4)ϕ̂(g1, . . . , g4) , (4.14)

which is

N
,

= 〈σ|N̂
,

|σ〉 =
∫
(dg)4 |σ(g1, . . . , g4)|2 . (4.15)

Similar one-body operators can be used to extract other geometric observables. For

instance, the total volume encoded by the state is

Vtot =

∫
(dg)4(dg̃)4 〈σ| ϕ̂†(g̃1, . . . , g̃4)V (g̃1, . . . , g̃4; g1, . . . , g4)ϕ̂(g1, . . . , g4) |σ〉

=

∫
(dg)4(dg̃)4 σ(g̃1, . . . , g̃4)V (g̃1, . . . , g̃4; g1, . . . , g4)σ(g1, . . . , g4) (4.16)

where, for G = SU(2), V (g̃1, . . . , g̃4; g1, . . . , g4) is the matrix element of the volume operator

in LQG between two spin network nodes with geometric data specified by g̃1, . . . , g̃4 and

g1, . . . , g4. Its form can be obtained from a Peter-Weyl decomposition into the familiar

representations in terms of spins. As we have already said, we have to ask that the volume

of each tetrahedron is small compared to the total volume of the spatial slice captured by

the state,
V
,

Vtot
:=

1

N
,

≪ 1 . (4.17)

The volume of a tetrahedron defines the typical scale at which we are probing geometry,

L ∼ (V
,

)1/3 . (4.18)

This scale uses only the geometric information encoded in the quantum state, and is not

fixed externally. These very simple considerations are consistent with the intuition that

the continuum limit can be seen as a thermodynamic limit for this gas of tetrahedra. At
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this stage it is not clear what L should be, or how it is related to fundamental (Planck-

ian) units. To understand physically how a particular scale L emerges, one must use the

GFT dynamics. One possibility is that a condensation of tetrahedra of the type proposed

only occurs within a certain range of values for L, which can be derived from the theory,

instead of being put into the definition of the states. One can also try to constrain L by

changing the type of ensemble one is considering, e.g. by adding a thermodynamic variable

conjugate to the extensive quantity ‘volume’. Understanding the precise nature of these

constraints is crucial for clarifying the relation between the microscopic GFT dynamics

and the resulting effective cosmological scenario and goes together with a more detailed

analysis of the kinematical reconstruction procedure to be applied to our quantum states.

Another condition that is needed to ensure that the treatment is self-consistent comes

from the fact that the tetrahedra have to be close to flat. Therefore, the curvature of the

connection that they encode (including the extrinsic curvature) has to be small on the scale

of the tetrahedra themselves.

Information about the connection can be extracted from expectation values of suitable

operators, for instance

χtot[σ] =

∫
(dg)4 〈σ| ϕ̂†(g1, . . . , g4)χ(g1, . . . , g4)ϕ̂(g1, . . . , g4) |σ〉

=

∫
(dg)4 |σ(g1, . . . , g4)|2 χ(g1, . . . , g4) , (4.19)

where χ can be seen as a character of a suitable product of group elements. In the case

of G = SU(2), for instance, taking χ to be the trace in the j = 1
2 representation, the

functions χij := χ(gig
−1
4 gjg

−1
4 ) give a complete set of functions on SU(2)4 that are invariant

under gI 7→ gIk and gI 7→ k′gI , which motivates their identification with components of

the curvature for a single tetrahedron. In order to measure correlations between different

tetrahedra, one has to go beyond using a one-body operator as in (4.19). The interpretation

of χtot[σ] is that of a sum of curvature components (defined by χ) for all tetrahedra in

the condensate. In general, our flatness condition then can be stated as a condition on

the deviation of the curvature expectation values per tetrahedron from their values at

the identity,
χ
,

[σ]

χ(e)
− 1 =

1

χ(e)

χtot[σ]

N
,

− 1 ≪ 1 . (4.20)

In terms of the scales defined by the tetrahedron, these conditions are nothing else than

the observation that the curvature scale Lc should be much larger than the typical length

scale of the tetrahedron L, L/Lc ≪ 1.

In fact, this condition might involve not only a statement about the expectation values

of connection-related operators, but also conditions on the fluctuations around the mean

values. It is clear that if the fluctuations around the flat connection are too large, the

flatness requirement is not satisfied. One can then expect that the relevant states should

be rather peaked in the connection variables, albeit not necessarily semiclassical in the Lie

algebra variables.

This reasoning can be exported to the case of more general states, with the appropriate

modifications. They will be expressed as restrictions on certain functionals of the wave-
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functions (e.g. σ or ξ) that are used in the parametrisation of the states. In turn, these

functions are determined dynamically by the equations of motion. In particular, since

these equations are nonlinear, the average number of tetrahedra N
,

in the state cannot

be tuned by hand. Therefore, these conditions represent truly nontrivial constraints to be

imposed on the resulting effective dynamics, for its continuum geometric interpretation to

be trusted. They contain information about the dynamics of the condensate as a whole

that cannot be captured by properties of the individual tetrahedra alone.

4.2 GFT condensates vs. coherent and squeezed states

Next, it is worth stressing some further properties of the quantum states (4.4) and (4.10),

especially in their relationship with states commonly used in quantum optics and in the

physics of quantum fluids.

The states of the form (4.4) are coherent states, i.e. eigenstates of the field annihilation

operator, as a straightforward calculation shows. Therefore, they represent a natural class

of states for a sort of Hartree-Fock or mean field approximation in which the GFT field

acquires a nontrivial vacuum expectation value,

ϕ̂(gI)|σ〉 = σ(gI)|σ〉. (4.21)

As said, this state does not encode multiparticle correlations; it gives rise to correlation

functions that are products and convolutions of a single one-point correlation function, the

mean field.

The second class of states, dipole condensates, are coherent states only in a rough

sense. In fact, the states |ξ〉 are more similar to squeezed states [49].

For a single mode, a squeezed state is defined as

|w〉 = Ŝ(w)|0〉, Ŝ(w) = exp

(
w

2
â†â† − w

2
ââ

)
(4.22)

where w is a complex number, â, â† are ladder operators and the unitary operator Ŝ(w) is

the so-called squeezing operator. It follows from the definitions that

exp
(z
2
â†â†

)
|0〉 ∝ |f(z)〉 , f(z) = − z

|z| sinh
−1

(
|z|√

1− |z|2

)
. (4.23)

Indeed, using the properties of the ladder operators, one sees that

(â− zâ†) exp
(z
2
â†â†

)
|0〉 = 0 . (4.24)

With a simple rescaling we can complete the Bogoliubov transformation and define the

ladder operator

b̂ =
â− zâ†√
1− |z|2

, (4.25)

provided that7 |z|2 < 1. The state exp
(
z
2 â

†â†
)
|0〉 is annihilated by it, and hence it is

proportional to the corresponding Fock vacuum. A general Bogoliubov transformation can

7We mention, for completeness, that in the case of |z| = 1 the two would-be ladder operators commute,

while for |z|2 > 1 the role of annihilation and creation operators is exchanged.
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be expressed as

b̂ = S(w)âS(w)† = cosh(|w|)â+ w

|w| sinh(|w|)â
† ; (4.26)

comparing (4.25) and (4.26) we get the desired (4.23).

We would like to show that our states (4.10) are squeezed states, i.e. to write down

squeezing operators that correspond to a Bogoliubov transformation of the ladder oper-

ators, presumably requiring appropriate conditions on ξ. A proof of such a statement,

however, is not straightforward at all. An alternative path is to use the characterisation of

squeezed states as Fock vacua of Bogoliubov rotated annihilation operators, and to show

that these states are annihilated by an appropriate linear combination of ladder operators

ϕ̂, ϕ̂†, corresponding to another annihilation operator. It is easy to see that

[ϕ̂(gI), ξ̂] =

∫
(dh)4 ξ(g−1

1 h1, . . . , g
−1
4 h4)ϕ̂

†(h1, . . . , h4) =: ξ̂gI , (4.27)

[ϕ̂(gI), (ξ̂)
n] = nξ̂gI (ξ̂)

n−1 , [ϕ̂(gI), exp(ξ̂)] = ξ̂gI exp(ξ̂) . (4.28)

Notice that ξ̂gI is linear in the creation operator field ϕ̂†. As a consequence of this,
(
ϕ̂(gI)− ξ̂gI

)
|ξ〉 = 0 , (4.29)

and so the states |ξ〉 are squeezed states if the operators ϕ̂(gI) − ξ̂gI and their Hermi-

tian conjugates satisfy the (suitably gauge-invariant) algebra of creation and annihilation

operators,

[ϕ̂(gI)− ξ̂gI , ϕ̂
†(hI)− ξ̂†hI ] ∝ δSpin(4)3(g

−1
I hI) ≡

∫
dk δ4(kg−1

I hI) , (4.30)

which will in general only be true for specific choices of ξ. Evaluating the commutator we

find that

[ϕ̂(gI)− ξ̂gI , ϕ̂
†(hI)− ξ̂†hI ] = δSpin(4)3(g

−1
I hI) +

∫
(dk)4 ξ(g−1

I kI)ξ(k
−1
I hI) . (4.31)

Therefore, the states (4.10) can be interpreted as squeezed states only if the function ξ,

convoluted with its complex conjugate, is proportional to a Dirac delta distribution on the

group manifold. A trivial case of this is that ξ is itself proportional to a group-averaged

delta function, ξ(gI) ∝ δSpin(4)3(gI), but more generally ξ has to be the infinite-dimensional

analogue of a unitary symmetric matrix for |ξ〉 to be a squeezed state.

4.3 Correlation functions

The particular form of the state chosen as a trial vacuum state of our quantum gravity

system implies specific properties of the correlation functions of the group field theory,

which are the true encoding of the fundamental quantum dynamics.

For the single-particle condensate (4.4), the correlation functions are simply factorised

in terms of the one-point correlation function, as we anticipated. This is just the Hartree

approximation,

G(n,m)(g1I , . . . g
n
I ;h

1
I . . . h

m
I )=〈σ| ϕ̂†(g1I ) . . . ϕ̂

†(gnI )ϕ̂(h
1
I) . . . ϕ̂(h

m
I ) |σ〉=

n∏

i=1

σ(giI)
m∏

j=1

σ(hjI) .

(4.32)
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As said, this particular class of states ignores correlations among the different quanta.

Furthermore, the result immediately leads to the conclusion that any equation or condition

imposed upon the field operators, when considered in terms of its expectation value on such

a state, would lead to the corresponding equation for the field σ, with the straightforward

replacement ϕ̂→ σ.

Therefore, the mean field theory encoded in the state (4.4) is just provided by the

classical GFT equations, with an additional symmetry imposed on the classical field con-

figurations.

This is a crucial point, because such equations are obviously provided by the very

definition of the fundamental GFT model to be used. Therefore, this simple class of states

offers an immediate and straightforward way to obtain an effective cosmological dynamics

from any given GFT definition of fundamental quantum gravity dynamics.

In the case of dipole condensate states, all the correlation functions are written in terms

of the two-point function, parametrised by ξ. In this case, all correlation functions con-

taining an odd number of arguments simply vanish; the only non-zero correlation functions

are of the form

G(n,m)(g1I , . . . g
n
I ;h

1
I . . . h

m
I ) , n+m = 2k . (4.33)

Closed expressions for the general case are rather complicated, and we just limit ourselves

to the cases of the two-point and four-point functions G2 ≡ G(0,2), G4 ≡ G(0,4) which enter

the calculations for the 4d GFT models we are most interested in. Using (4.28), it is easy

to see that G2(gI , hI) ≡ 〈ξ|ϕ̂(gI)ϕ̂(hI)|ξ〉 satisfies

G2(gI , hI) =

∫
(dk)4ξ(h−1

I kI)G
(1,1)(gI , kI)

= ξ(g−1
I hI) +

∫
(dk)4(dk′)4 ξ(g−1

I k′I)ξ(h
−1
I kI)G2(k′I , kI) . (4.34)

Hence, G2 does not in general coincide with ξ, unless this function satisfies the condition
∫
(dk)4(dk′)4 ξ(g−1

I k′I)ξ(h
−1
I kI)ξ(k

−1
I k′I) = 0. (4.35)

This means that, while the function ξ encodes the geometric data that we need, it does

not immediately correspond to the two-point function of GFT in the given state. Instead,

we have

G2(gI , hI) ≈ ξ(g−1
I hI) +

∫
(dk)4(dk′)4 ξ(g−1

I k′I)ξ(h
−1
I kI)ξ(k

−1
I k′I) , (4.36)

ξ(g−1
I hI) ≈ G2(gI , hI)−

∫
(dk)4(dk′)4 G2(gI , k

′
I)G

2(hI , kI)G2(kI , k′I) (4.37)

where we are neglecting terms built with convolutions of five or more kernels.

The analysis of the four-point correlation function is slightly more involved, but shows

the general pattern of the calculations. By definition,

G4(gaI , g
b
I , g

c
I , g

d
I )=〈ϕ̂(gaI )ϕ̂(gbI)ϕ̂(gcI)ϕ̂(gdI )〉∝〈0| eD†

[ϕ̂(gaI ), [ϕ̂(g
b
I), [ϕ̂(g

c
I), [ϕ̂(g

d
I ), e

D]]]] |0〉
(4.38)
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where we are using D instead of ξ̂ to emphasise that the calculation that follows is totally

general and is valid (with appropriate modifications) in the case of general N -particle

coherent states.

It is convenient to introduce the notation Dga
I
= [ϕ̂(gaI ),D], Dga

I
gb
I
= [ϕ̂(gaI ), [ϕ̂(g

b
I),D]]

etc. In the case of the dipole where D = ξ̂ and Dga
I
gb
I
= ξ((gaI )

−1gbI) all higher commutators

vanish. Then

[ϕ̂(gaI ), [ϕ̂(g
b
I), [ϕ̂(g

c
I), [ϕ̂(g

d
I ), e

D]]]] = [ϕ̂(gaI ), [ϕ̂(g
b
I), [ϕ̂(g

c
I), Dgd

I
eD]]] (4.39)

= [ϕ̂(gaI ), [ϕ̂(g
b
I), (Dgc

I
gd
I
+Dgc

I
Dgd

I
)eD]]

= [ϕ̂(gaI ), (Dgb
I
Dgc

I
gd
I
+ permut. + Dgb

I
Dgc

I
Dgd

I
+Dgb

I
gc
I
gd
I
)eD]

=
(
Dga

I
gb
I
Dgc

I
gd
I
+ permut. + Dga

I
gb
I
Dgc

I
Dgd

I
+ permut.

+Dga
I
Dgb

I
Dgc

I
Dgd

I
+Dga

I
Dgb

I
gc
I
gb
I
+ permut. + Dga

I
gb
I
gc
I
gd
I

)
eD

in general. For D = ξ̂, the last two contributions vanish, Dga
I
= ξ̂ga

I
, Dga

I
gb
I
= ξ((gaI )

−1gbI)

and the four-point function is the solution to the following equation:

G4(gaI , g
b
I , g

c
I , g

d
I ) = ξ((gaI )

−1gbI)ξ((g
c
I)

−1gdI ) + permut.

+ ξ((gaI )
−1gbI)

∫
(dh)4(dk)4 ξ(h−1

I gcI)ξ(k
−1
I gdI )G

2(hI , kI) + permut.

+

∫
(dh)4(dh′)4(dk)4(dk′)4 ξ(h−1

I gaI )ξ(k
−1
I gbI)ξ((h

′
I)

−1gcI)ξ((k
′
I)

−1gdI )×

×G4(hI , kI , h′I , k
′
I) . (4.40)

As in the case of the two-point functions, regarded as functionals of ξ the four-point

correlation functions are given only implicitly and, in absence of further conditions, do

not correspond simply to bilinears in ξ. However, it is also clear that all the correlation

functions are given in terms of the two-point function alone.

To the same order of approximation used above for the two-point function, the four-

point function is

G4(gaI , g
b
I , g

c
I , g

d
I ) = G2(gaI , g

b
I)G

2(gcI , g
d
I ) + permut.︸ ︷︷ ︸

Gaussian-like

+O((G2)6) . (4.41)

Therefore, at least at leading order in the expansion, the state is quadratic in the

sense that we can express the correlation functions in terms of the two-point function,

itself determined by the function ξ in a highly nonlinear way.

In absence of an accurate analysis of the critical limit of the recursion relations among

GFT correlators, it is hard to say much more. However, one can still try to estimate

the theoretical error of a truncation of the tower of correlation functions to only a few

representatives in terms of a Ginzburg-like criterion. Indeed, following standard procedures,
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one can split the correlation functions in terms of mean fields and fluctuations,

〈ϕ̂(gaI )〉=: φ(gaI ) , (4.42)

G2(gaI , g
b
I) = 〈(ϕ̂(gaI )− φ(gaI ) + φ(gaI ))(ϕ̂(g

b
I)− φ(gbI) + φ(gbI))〉

=: φ(gaI )φ(g
b
I) +G2(c)(gaI , g

b
I) , (4.43)

G3(gaI , g
b
I , g

c
I) =:G3(c)(gaI , g

b
I , g

c
I) + φ(gaI )G

2(c)(gbI , g
c
I)+permut.+φ(gaI )φ(g

b
I)φ(g

c
I) , (4.44)

G4(gaI , g
b
I , g

c
I , g

d
I ) =: φ(gaI )φ(g

b
I)φ(g

c
I)φ(g

d
I ) + φ(gaI )φ(g

b
I)G

2(c)(gcI , g
d
I ) + permut.

+G2(c)(gaI , g
b
I)G

2(c)(gcI , g
d
I )+permut.+φ(gaI )G

3(c)(gbI , g
c
I , g

d
I )+permut.

+G4(c)(gaI , g
b
I , g

c
I , g

d
I ) , (4.45)

and so on. Then the truncation of the tower of equations, as deduced from the Schwinger-

Dyson equation, to a given order leads to a theoretical error in the resulting effective

theory that can be estimated by the magnitude of the neglected terms. For instance, in the

case of a Hartree-Fock mean field approximation to the hydrodynamics of Bose-Einstein

condensates, the breakdown of the Gross-Pitaevskii equation is signalled not necessarily by

a singularity of the particular solution itself, but rather by the large value of the fluctuation

with respect to the mean field associated to the particular quantum state considered.

These considerations allow us to at least estimate how reliable the approximation

encoded in the use of the simple states (4.4) and (4.10) is.

It is clear from the analysis of the states (4.4) and (4.10) that conditions on them to

be good approximations to physically relevant states can be rephrased in an equivalent

form in terms of the properties of the correlation functions. While less clear in terms of

the GFT condensate interpretations, correlation functions (and their relations encoded in

the Schwinger-Dyson equations) might be more accessible from the point of view of the

analysis of the perturbative (spin foam) expansion of GFTs. Consequently, the validity of

the ansatz (4.4) or (4.10) might be directly verified once the relations between correlation

functions are investigated in the critical limit. For instance, in the case of matrix models

for 2d gravity it has been shown that correlation function do factorise in the large N

limit [50, 51]. This behaviour would be matched by the simple condensates.

4.4 Condensate states as exact GFT vacua?

As we discussed above, GFT condensates of the simple type we defined can at most be

approximations to the true vacuum state of the quantum gravity system, even if one believes

that something akin to a GFT condensation is what determines such a true vacuum state

for our quantum universe. We have also seen that we can estimate the theoretical error

made in using such approximation by analysing the n-point functions of the theory.

In some cases, however, one can do even more, and show that specific condensate states

(slightly more involved than the ones presented above and used in the following) are exact

solutions to the microscopic quantum dynamics, and thus true vacuum states. We show

here one example.

– 30 –



J
H
E
P
0
6
(
2
0
1
4
)
0
1
3

In the case in which the quantum equation of motion involves a trivial kinetic term

and a (non-Hermitian) potential term that depends only on the creation operators,

(
ϕ̂(g1, . . . , g4) + λ

δV̂[ϕ̂†]

δϕ̂†(g1, . . . , g4)

)
|ψ〉 = 0 , (4.46)

the special state

|E〉 = N−1 exp
(
−λV̂ [ϕ̂†]

)
|0〉 (4.47)

is an exact solution to the interacting operator field equations.

Applying Wick’s theorem to the each term in 〈E |E〉 = 1, it turns out that N is the

square root of the GFT partition function.8 In the case of Boulatov-Ooguri theories, this

state can be seen as a condensate of five tetrahedra glued to one another to form a 3-sphere

topology, in the combinatorial pattern of the boundary of a 4-simplex.

It will be interesting to investigate further the properties of such states, as well the

existence of other exact solutions of the GFT dynamics for other models, obtained in a

similar fashion.

5 Effective cosmological dynamics

In the previous section we have constructed and discussed a class of states representing

homogeneous spatial geometries. At this stage, these states are kinematical. While we have

ensured that they are invariant under local frame rotations, and they represent geomet-

ric data invariant under spatial diffeomorphisms by construction, they do not yet satisfy

any form of dynamical equation that would correspond to the Hamiltonian constraint in

geometrodynamics, or to an appropriate generalisation of the Friedmann equation in the

cosmological setting.

The dynamics of a given GFT action provides us with precisely such an equation. We

start with a general action that we only assume to consist of a quadratic (kinetic) part and

an interaction,

S[ϕ, ϕ̄]=

∫
(dg)4(dg′)4 ϕ̄(g1, . . . , g4)K(g1, . . . , g4, g

′
1, . . . , g

′
4)ϕ(g

′
1, . . . , g

′
4) + λV [ϕ, ϕ̄] , (5.1)

where K is in general a differential operator, but can also be a delta distribution in some

models which simply identifies the arguments of ϕ and ϕ̄. Assuming the action to be real,

there is one independent classical field equation,

δS[ϕ, ϕ̄]

δϕ̄(g1, . . . , g4)
=

∫
(dg′)4 K(g1, . . . , g4, g

′
1, . . . , g

′
4)ϕ(g

′
1, . . . , g

′
4) + λ

δV [ϕ, ϕ̄]
δϕ̄(g1, . . . , g4)

= 0 , (5.2)

8To see this, it suffices to take the norm of the state exp(λV̂ [ϕ̂†]) |0〉) and to insert an identity written

as a (formal) integral over single field coherent states,

I =
1

Z0

∫
DσDσ |σ〉 〈σ| exp(−|σ|2) ,

where Z0, needed for the normalisation of the integral, is itself a divergent quantity, being the partition

function for a Gaussian ensemble.
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which we can associate with the corresponding operator in the quantum theory,

Ĉ(gI) :=
∫
(dg′)4 K(g1, . . . , g4, g

′
1, . . . , g

′
4)ϕ̂(g

′
1, . . . , g

′
4) + λ

δV̂[ϕ̂, ϕ̂†]

δϕ̂†(g1, . . . , g4)
. (5.3)

For a general classical potential term depending both on ϕ and its complex conjugate, (5.3)

requires a choice of operator ordering, given that in general [ϕ̂(gI), ϕ̂
†(g′I)] 6= 0. The

usual procedure is to adopt a normal ordering prescription and we also adopt this

standard choice.9

As we have mentioned in section 2, the connection of operator equations of motion and

the path integral is given by Schwinger-Dyson equations. These can be formally derived

by using the “fundamental theorem of functional calculus” and assuming that there is no

boundary term, so that

0 =

∫
Dϕ Dϕ̄ δ

δϕ̄(gI)

(
O[ϕ, ϕ̄] e−S[ϕ,ϕ̄]

)
=

〈
δO[ϕ, ϕ̄]

δϕ̄(gI)
−O[ϕ, ϕ̄]

δS[ϕ, ϕ̄]

δϕ̄(gI)

〉
(5.4)

for any functional of the field and its complex conjugate. The expectation value is to be

interpreted as taken in the “vacuum state” specified by the boundary conditions of the

path integral. Hence, the resulting equations are to be imposed on any state in the Fock

space that is assumed to play the role of “ground state”, not necessarily the Fock vacuum.

In our setting, we will choose this state to be one of our condensate states, |σ〉 or |ξ〉.
The task will be to use the Schwinger-Dyson equations to extract an equation for the

profile functions σ or ξ appearing in the definition of these states, which would encode the

requirement that the corresponding states are approximate solutions of the full quantum

dynamics. In a systematic treatment, one would have to prove that solutions to the simplest

Schwinger-Dyson equations already approximate a fully dynamical solution to all of them.

For our present purposes, this is a working assumption which can be justified to an extent

from an analysis of the n-point functions of the theory, as we have outlined in section 4.3.

In the simplest case of the single-particle condensate, for example, we saw in (4.32) that all

n-point functions are just products of the condensate wavefunction σ and its complex conju-

gate σ̄. This implies that the tower of Schwinger-Dyson equations involving all n-point func-

tions just reduces to a set of (nonlinear) equations for σ. We are first looking for solutions

to the simplest ones; all the higher-order equations would then be consistency conditions.

The simplest case occurs for O = 1 in which we obtain the requirement that

〈Ĉ(gI)〉ψ := 〈ψ|Ĉ(gI)|ψ〉 = 0 , (5.5)

where |ψ〉 is one of the condensate states we are considering.

9This does not suffice, of course, to make the equation well defined as an operator equation on the

Fock space, from the rigorous functional analytic point of view. If the field operator is to be interpreted

as an operator-valued distribution, in usual interacting quantum field theories one would not expect the

operator V̂ or its functional derivative to be mathematically well-defined on the Fock space of the free

theory without regularisation. We note however that relativistic QFT, where this would be the case, rests

on Poincaré invariance and causality whose role in GFT is unclear, so that we cannot delve into a more

detailed mathematical analysis here. Our discussions in this section are understood to implicitly assume

that an appropriate regularisation has been chosen.
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For the single-particle condensate defined in (4.4), (5.5) takes a particularly simple

form. As we have noted in section 4.2, the states |σ〉 are eigenstates of the field operator

ϕ̂. Then, using the normal ordering prescription for V̂ in which all ϕ̂† are to the left of all

ϕ̂, the condition 〈σ|Ĉ(gI)|σ〉 = 0 reduces to (using that 〈σ|σ〉 > 0)

∫
(dg′)4 K(g1, . . . , g4, g

′
1, . . . , g

′
4)σ(g

′
1, . . . , g

′
4) + λ

δV [ϕ, ϕ̄]
δϕ̄(g1, . . . , g4)

∣∣∣
ϕ→σ,ϕ̄→σ̄

= 0 . (5.6)

Hence the expectation value of the quantum equation of motion reduces to the classical field

equation, to be satisfied by the ‘condensate wavefunction’ σ. This is the direct analogue

in the group field theory context of the Gross-Pitaevskii equation for real Bose-Einstein

condensates. For a general potential V (and specifically for the type of potentials typi-

cally considered in the GFT literature), this equation is nonlinear in σ, and nonlocal on

the minisuperspace of homogeneous geometries (recall the interpretation of the domain of

definition of σ as implied by the reconstruction procedure of section 3). It bears close

similarity to the equations studied in the nonlinear extension of loop quantum cosmology

in [20] and in the simplified ‘group field theory’ model of [52].

We interpret σ as defining a probability distribution on the space of homogeneous spa-

tial geometries, as anticipated. Again, this is analogous to Bose-Einstein condensates where

the condensate wavefunction can directly be associated with particle density and momen-

tum density as functions on space. Even though our equation is nonlinear in σ, this does

not lead to any immediate issue with unitarity; Ĉ has the interpretation of an initial-value

constraint, not an evolution equation giving any notion of ‘time evolution’ under which an

inner product would have to be preserved. The nonlinearity will of course break the super-

position principle of quantum mechanics that would be expected if σ, ξ, etc. are interpreted

as wavefunctions. Linear combination of solutions of the Gross-Pitaevskii-like equations

of motion will not be solutions themselves, in general. This is not an inconsistency, but

it does prevent any straightforward interpretation of the equation as a standard quantum

cosmology equation, as it would follow from the canonical quantisation of minisuperspace

geometries. Rather, again in analogy with the theory of Bose-Einstein condensates, it

suggests a re-interpretation of quantum cosmology itself as a form of hydrodynamics for

quantum spacetime.

The vanishing of the expectation value of Ĉ is clearly just one condition to be satisfied

by a genuine physical state. Any other condition of the form

〈Ô[ϕ̂, ϕ̂†]Ĉ(gI)〉ψ =

〈
δÔ[ϕ̂, ϕ̂†]

δϕ̂†(gI)

〉

ψ

, (5.7)

for an arbitrary operator Ô, could be equivalently used to derive conditions on the profile

functions σ or ξ. Clearly, since there is an infinity of such conditions, one would have to

show that not all of them are independent. Here we content ourselves with the approxima-

tion to the full quantum dynamics represented by the equation (5.6) and with the estimate

of the theoretical error obtained from the study of the n-point functions in the case of

simple condensates.
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The philosophy followed for |σ〉 in deriving the analogue of the Gross-Pitaevskii equa-

tion can also be applied to the dipole condensate and its profile function ξ. Again, we start

off by computing the expectation value (5.5), here in the state |ξ〉, obtaining
∫
(dg′)4 K(g1, . . . , g4, g

′
1, . . . , g

′
4)〈ϕ̂(g′1, . . . , g′4)〉ξ + λ

〈
δV̂[ϕ̂, ϕ̂†]

δϕ̂†(g1, . . . , g4)

〉

ξ

= 0 . (5.8)

But the one-point function for |ξ〉 vanishes, leading us to conclude that

〈
δV̂[ϕ̂, ϕ̂†]

δϕ̂†(g1, . . . , g4)

〉

ξ

= 0 . (5.9)

Similarly, we can compute an expectation value (5.7) with Ô taken to be the field ϕ̂,

yielding (we use δϕ/δϕ̄ = 0)

∫
(dg′)4 K(gI , g

′
I)〈ϕ̂(g′′1 , . . . , g′′4)ϕ̂(g′1, . . . , g′4)〉ξ + λ

〈
ϕ̂(g′′1 , . . . , g

′′
4)

δV̂[ϕ̂, ϕ̂†]

δϕ̂†(g1, . . . , g4)

〉

ξ

= 0 .

(5.10)

As shown in section 4.3, the two-point function in the state |ξ〉 satisfies

〈ϕ̂(gI)ϕ̂(hI)〉ξ = ξ(h−1
I gI) +

∫
(dg′)4(dh′)4ξ(g−1

I g′I)ξ(h
−1
I h′I)〈ϕ̂(g′I)ϕ̂(h′I)〉ξ , (5.11)

so that (5.10) becomes

0 =

∫
(dg′)4 K(gI , g

′
I)ξ((g

′
I)

−1g′′I ) (5.12)

+

∫
(dg′ dhdh′)4 ξ(h−1

I g′′I ) 〈ϕ̂(hI)ϕ̂(h′I)〉ξ K(gI , g
′
I)ξ((h

′
I)

−1g′I) + λ

〈
ϕ̂(g′′I )

δV̂[ϕ, ϕ̄]
δϕ̂†(gI)

〉

ξ

.

Without explicit expressions for general n-point functions, this equation cannot directly

be written as a condition on ξ. A simplification occurs if we assume that the interaction

V is of odd order, as is indeed the case in many GFT models of 4d quantum gravity. Then

the last term that depends on V vanishes since it only contains (2n + 1)-point functions

of ξ. If then, in addition, the kinetic operator K is invertible, no condensation of ‘dipoles’

is possible; from (5.10) and the invertibility of K, the two-point function in the state |ξ〉
vanishes, but then (5.12) states that ξ must itself vanish.

Let us assume that while the interaction is of odd order so that it does not contribute

to (5.12), the operator K has a nontrivial kernel. Then the equation to be satisfied is
∫
(dg′)4 K(gI , g

′
I)〈ϕ̂(g′1, . . . , g′4)ϕ̂(g′′1 , . . . , g′′4)〉ξ = 0 . (5.13)

Using the relation (5.11), by recursion, one finds that the two-point function 〈ϕ̂(gI)ϕ̂(hI)〉
can be expressed in terms of a power series in ξ and its complex conjugate:

〈ϕ̂(gI)ϕ̂(hI)〉 = ξ(g−1
I hI) +

∫
(dg′)4ξ(g−1

I g′I) Ξ[ξ, ξ](g
′
I , hI) . (5.14)
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Following the same idea, one can rewrite (5.11) as

ξ(g−1
I hI) = 〈ϕ̂(gI)ϕ̂(hI)〉ξ −

∫
(dg′)4(dh′)4ξ(g−1

I g′I)ξ(h
−1
I h′I)〈ϕ̂(g′I)ϕ̂(h′I)〉ξ (5.15)

and replace each of the ξ in the right-hand side of (5.15) with the expression given by (5.15)

to get a representation of ξ as a power series in the two-point function and its complex

conjugate,

ξ(g−1
I hI) = 〈ϕ̂(gI)ϕ̂(hI)〉ξ +

∫
(dh′)4〈ϕ̂(gI)ϕ̂(h′I)〉ξ Γ[〈ϕ̂ϕ̂〉, 〈ϕ̂ϕ̂〉](h′I , hI)

=: Φ[〈ϕ̂ϕ̂〉, 〈ϕ̂ϕ̂〉](gI , hI) . (5.16)

Eq. (5.11) is a quadratic equation for ξ and there is a second branch of solutions for ξ in

terms of the two-point function. Namely, if there is an inverse K for 〈ϕ̂(gI)ϕ̂(hI)〉, in the

sense that ∫
(dg′)4K(gI , g

′
I)〈ϕ̂(g′I)ϕ̂(hI)〉 =

∫
dk δ(gIkh

−1
I ) , (5.17)

with K(gI , hI) = K(hI , gI) and K(gI , hI) = K(gI , hIk), one can verify that

ξ(g−1
I hI) = −K(gI , hI)− Φ[〈ϕ̂ϕ̂〉, 〈ϕ̂ϕ̂〉](gI , hI) (5.18)

solves (5.15) if Φ does. Therefore, already without investigating issues of convergence of

the power series (5.16), we see that the relation between the dipole wavefunction ξ and the

two-point functions is not one to one. The second branch (5.18) describes non-perturbative

condensate states that behave non-analytically when the condensate is diluted. A rescaling

of the function ξ, ξ → ǫ ξ, leads to a different normalisation (4.13), but this constant drops

out of expectation values. It corresponds to a dilution of the condensate, as can be seen

from looking at the expectation value of the total particle number

N̂
,

=

∫
(dg)4 ϕ̂†(g1, . . . , g4)ϕ̂(g1, . . . , g4) . (5.19)

When ξ is rescaled in this way, the relative contribution of the nonlinear term in (5.11)

becomes smaller and smaller, but only if we assume the two point-function not to grow

faster than 1
ǫ for small ǫ. On the second branch of solutions (5.18), the relation between ξ

and 〈ϕ̂ϕ̂〉 is not analytic, and the two-point function blows up when ξ goes to zero. This

branch of solutions is not connected to the Fock vacuum, and we would be inclined to

consider it as spurious: we expect that, if we deform the operator ξ̂ to include different

powers of ϕ̂†, the structure of the equation relating the kernels to 〈ϕ̂ϕ̂〉 would change,

leading to the disappearance of (5.18).

Focussing on the first branch of solutions (5.16) we see that

∫
(dg′)4 K(gI , g

′
I)ξ((g

′′
I )

−1g′I) =

∫
(dg′)4

(
K(gI , g

′
I)〈ϕ̂(g′I)ϕ̂(g′′I )〉ξ (5.20)

+

∫
(dh′)4K(gI , g

′
I)〈ϕ̂(g′I)ϕ̂(h′I)〉ξ Γ[〈ϕ̂ϕ̂〉, 〈ϕ̂ϕ̂〉](h′I , g′′I )

)
,

– 35 –



J
H
E
P
0
6
(
2
0
1
4
)
0
1
3

and so it follows that for the quantum equation of motion (5.13) to hold, ξ must satisfy

the linear differential equation

∫
(dg′)4 K(gI , g

′
I)ξ((g

′′
I )

−1g′I) = 0 . (5.21)

For GFT models with a K that has a nontrivial kernel, (5.21) becomes a Wheeler-DeWitt-

type equation for a function ξ which can then be interpreted as a quantum cosmology

wavefunction, encoding some part of the full GFT quantum dynamics.

This is our key dynamical equation, under the approximations and assumptions made,

for a quantum universe described by our dipole condensate.

For the second branch (5.18) this is no longer true, as we would in general have

∫
(dg′)4 K(gI , g

′
I)ξ((g

′′
I )

−1g′I) = −
∫
(dg′)4 K(gI , g

′
I)K(g

′
I , g

′′
I ) 6= 0 . (5.22)

In the following, for the reasons explained, we focus on (5.21).

5.1 Simplicity constraints

So far we have examined only the general structure of the equations of motion, and the

related problems, when restricted to the case of GFT condensates. However, before being

able to do the calculation for concrete models, we need to discuss the last important

ingredient in the construction of spin foam and GFT models for quantum gravity, the

geometricity or simplicity constraints implemented in the definition of current spin foam

and GFT models for 4d quantum gravity.

The construction of spin foam models follows the interpretation of general relativity as

a topological BF theory with constraints. This is motivated by the fact that the quantisa-

tion of BF theories is under control, and they can be easily discretised. The GFT actions

proposed by Boulatov [53] and Ooguri [54] are indeed designed to provide a quantisation

of BF theories.

In order to turn these models into candidate theories for quantum gravity, one has

to find a way to impose the simplicity constraints at the quantum level. The qualitative

picture is that the classical simplicity constraints, suitably discretised, will be translated

into restrictions on the labels of the GFT Feynman amplitudes (or spin foams). The sum

over Feynman amplitudes will then be converted to the sum of the terms that admit a

geometric interpretation in terms of simplicial geometric variables, and only them.

The precise translation of the simplicity constraints of the continuum theory into the

language of discrete models like spin foams is a delicate issue. A recent review, containing

a detailed discussion of the construction of some models can be found in [17, 18]; other

constructions are in [55–60].

In the language of GFT, the imposition of the simplicity constraints can be achieved

with a modification of the action such that the Feynman expansion of the partition function

involves the summation over geometric configuration only. There are several ways to do

this. One way is to start with the GFT for BF theory for Spin(4) (or SL(2,C) for Lorentzian

models) and modify the action with a suitable constraint operator S acting on the field,
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Sϕ̂. The choice of the precise form of the constraint operator (which can be given in terms

of so-called fusion coefficients) distinguishes the specific features encoded by the model at

hand [55–60]. Furthermore, for fixed form of the operator S, we still have the freedom to

decide where to apply it in the action: only in the kinetic term, only in the interaction

term, or in both. These three choices are not completely equivalent, since S, in general, is

not a projector. In addition, one might still have to worry about the contributions to the

sum over amplitudes of the configurations annihilated by S.

As a result, different models will result also in different effective equations for cosmol-

ogy. Given the very simple correspondence between the microscopic equations of motion

of GFT and the macroscopic cosmological dynamics that we have described, it is possible

however to give a specific correspondence between the choice of constraint operator S and

the modifications to the effective dynamics.

Let us consider first the Riemannian case. The (linear) operator S restricts the sum-

mation over representations by turning the field into a field over SU(2)4/SU(2)diag,

S : L2(Spin(4)4/Spin(4)diag) → L2(SU(2)4/SU(2)diag) , (5.23)

in the case of finite Immirzi parameter (the case of infinite Immirzi parameter has a different

structure, but can be easily obtained via a limiting procedure [55–61]). Since we are using

two different groups, to make the notation more transparent, in this section we will write

elements of SU(2) in lower case, and elements of Spin(4) or SL(2,C) in upper case.

The general form of S can be described by its action on a basis of functions. Generic

functions in the domain of S can be written in terms of a Peter-Weyl decomposition as

ϕ(GI)=
∑

{(j+
I
,j−
I
)}

∑

i+i−

∑

{(p+
I

,p
−
I

)}

{(q+
I

,q
−
I

)}

ϕ
i+i−(j+1 ,j

−
1 ),...,(j+4 ,j

−
4 )

(q+1 ,q
−
1 ),...,(q+4 ,q

−
4 )

I
i+i−(j+1 j

−
1 )...(j+4 j

−
4 )

(p+1 ,p
−
1 ),...,(p+4 ,p

−
4 )

4∏

I=1

dj+
I
dj−

I
D(j+

I
,j−
I
)

q+
I
q−
I
p+
I
p−
I

(GI)

(5.24)

where we are using the splitting of the representation matrices D into representations of

SU(2) using Spin(4) = SU(2) × SU(2), I is a four-valent Spin(4) intertwiner and i± are

additional angular momenta labelling it. Similarly, functions in L2(SU(2)4/SU(2)diag) can

be decomposed as

ψ(gI) =
∑

{JI}

∑

J,{MI ,NI}

ψJJ1...J4M1...M4
ιJJ1...J4N1...N4

4∏

I=1

dJID
JI
MINI

(gI) . (5.25)

The operator S can be then specified in terms of its action on a basis, i.e. by the coefficients

S
Ji+i−J1...J4(j

+
1 ,j

−
1 ),...,(j+4 ,j

−
4 )

M1...M4(q
+
1 ,q

−
1 ),...,(q+4 ,q

−
4 )

(5.26)

required to map between the coefficients of the expansions of the gauge invariant field

functions in representations. The simplicity constraints, translated in the language of

representation theory, determine the coefficients S. They are, in principle, four independent

constraints on the different arguments of the field, and hence can be defined in terms of
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a map S from the space of square integrable functions on a single copy of Spin(4) to the

space of functions on SU(2). However, we must also take into account gauge invariance,

i.e. the fact that the field lives on a quotient space in (5.23), by contracting indices of the

representation matrices with four-valent intertwiners.

This means that the coefficients S imposing simplicity constraints can be written as

S
Ji+i−J1...J4(j

+
1 ,j

−
1 ),...,(j+4 ,j

−
4 )

M1...M4(q
+
1 ,q

−
1 ),...,(q+4 ,q

−
4 )

=
∑

{NI},{(p
+
I
,p−

I
)}

ιJJ1...J4N1...N4
I
(i+i−)(j+1 j

−
1 )...(j+4 j

−
4 )

(p+1 ,p
−
1 ),...,(p+4 ,p

−
4 )

4∏

I=1

S
JI(j

+
I
j−
I
)

MINIq
+
I
q−
I
p+
I
p−
I

,

(5.27)

where ι is a four-valent SU(2) intertwiner and I a four-valent Spin(4) intertwiner, and the

coefficients of S determine how simplicity is imposed.

For instance, with the EPRL prescription of embedding SU(2) representations into

Spin(4) ones we get

S
J(j+j−)
MNq+q−p+p−

= δ
j+,

(1+γ)
2

J
δ
j−,

(1−γ)
2

J
CJj

+j−

Mq+q−
CJj

+j−

Np+p−
, (5.28)

with C being Clebsch-Gordan coefficients and γ the Immirzi parameter. Plugging these

coefficients into (5.27) one obtains

S
Ji+i−J1...J4(j

+
1 ,j

−
1 ),...,(j+4 ,j

−
4 )

M1...M4(q
+
1 ,q

−
1 ),...,(q+4 ,q

−
4 )

=

(
4∏

I=1

C
JIj

+
I
j−
I

Mq+
I
q−
I

)
f
J(i+,i−)

J1...J4(j
+
1 j

−
1 )...(j+4 j

−
4 )
, (5.29)

where the coefficients f are known as the fusion coefficients. Their expression is

f
J(i+,i−)

J1...J4(j
+
1 j

−
1 )...(j+4 j

−
4 )

=
∑

{NI},{(p
+
I
,p−

I
)}

ιJJ1...J4N1...N4
I
(i+i−)(j+1 j

−
1 )...(j+4 j

−
4 )

(p+1 ,p
−
1 ),...,(p+4 ,p

−
4 )

4∏

I=1

δ
j+
I
,
(1+γ)

2
JI
δ
j−
I
,
(1−γ)

2
JI
C
JIj

+
I
j−
I

NIp
+
I
p−
I

.

(5.30)

If we impose the simplicity constraints in a different way [55–60] to define other models,

we obtain for the coefficients of S a similar expression, with different weights for the rep-

resentations. It is then straightforward to obtain the corresponding explicit expression of

the effective equations for other models. A similar formula holds also in the case in which

Spin(4) is replaced with SL(2,C), provided that one deals with the regularisation issues

appearing due to the noncompactness of the group (which we discuss in appendix A).

The case of infinite Immirzi parameter, associated to the Barrett-Crane model, is again

slightly different, and one has to replace SU(2) with SL(2,C)/SU(2) ≃ H3. Apart from

this, this case can be treated in exactly the same way.

Looking at the construction for condensate states describing homogeneous cosmologies,

there are now several possible choices in the construction: one can insert the constraint

operators (in the appropriate form) in the states, in the kinetic term of the action, in the

interaction term, or in combinations. Each choice will lead to slightly different theories,

with different Feynman rules. Therefore, even with the same choices for K and V , different
ways to implement the simplicity constraints (not only Ŝ, but also where it is inserted) will

in general change the effective dynamics.
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To make the analysis more concrete and easy to follow, we will consider only the case

of simple condensates (4.4). A first possibility is to insert the constraint operator only in

the interaction term of the GFT action,

S[ϕ, ϕ̄] = K[ϕ,ϕ] + λV [Ŝϕ, Ŝϕ] . (5.31)

The insertion of the constraint operator ensures that the constraints are imposed at the

level of the dynamics.10 Then, the arguments of the function σ cannot be interpreted

immediately in terms of geometric variables, since the simplicity constraints have not yet

been implemented. In other words, σ cannot be interpreted immediately as a distribution

over minisuperspace. Only after the implementation of the (approximate) dynamics, and

thus of the simplicity constraints, this interpretation will be allowed.

The quantum equation of motion is

(∫
(dG′)4 K(G1, . . . , G4, G

′
1, . . . , G

′
4)ϕ̂(G

′
1, . . . , G

′
4) + λ

δV̂[Ŝϕ, Ŝϕ]
δϕ̂†(G1, . . . , G4)

)
|ψ〉 = 0 ; (5.32)

choosing |ψ〉 = |σ〉 and multiplying with 〈σ| as before, this means that in terms of σ,

∫
(dG′)4 K(G1, . . . , G4, G

′
1, . . . , G

′
4)σ(G

′
1, . . . , G

′
4) + λ

δV [Ŝσ, Ŝσ]
δσ(G1, . . . , G4)

= 0 . (5.33)

It is important to stress that (5.33) is a general result: it does not depend on the

particular form of the simplicity constraint operator Ŝ. Consequently, it is applicable

to all the models for (Riemannian and Lorentzian) quantum gravity defined so far, with

the only restriction being the special form of the quantum state. It is the general effective

cosmological dynamics extracted from the fundamental quantum gravity dynamics (at least

in the approximate sense clarified above) for a generic 4d GFT (thus spin foam) model.

As an example, consider GFT models with a trivial kinetic term, K(gI , g
′
I) = δ(g−1

I g′I),

plus a general potential. The effective equation (5.33) simplifies to

σ(G1, . . . , G4) + λ
δV [Ŝσ, Ŝσ]

δσ(G1, . . . , G4)
= 0 . (5.34)

Non-geometric tetrahedra are not allowed dynamically. Splitting the function σ on (5.34)

as σ = σK + σ̃ where σK is the component of σ in the kernel of S, we find that

σK(G1, . . . , G4) = 0 (5.35)

as the potential in (5.34) only depends on σ̃: geometric and non-geometric configurations

decouple.

10Notice that, for consistency with the definition of S, we are using interactions for what would be an

SU(2) GFT.
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For instance, we can take a simplicial interaction term. For generic fusion coefficients,

the equation in components gives:

0 =σ
(i+1 i

−
1 )(j+1 ,j

−
1 )(j+2 ,j

−
2 )(j+3 ,j

−
3 )(j+4 ,j

−
4 )

(q+1 ,q
−
1 )(q+2 ,q

−
2 )(q+3 ,q

−
3 )(q+4 ,q

−
4 )

+ λ
∑

{J,q+,q−,i+,i−,j+,j−}

{15j}SU(2)

∏

τ

f(τ)×

σ
(i+2 i

−
2 )(j+5 ,j

−
5 )(j+6 ,j

−
6 )(j+7 ,j

−
7 )(j+8 ,j

−
8 )

(q+5 ,q
−
5 )(q+6 ,q

−
6 )(q+7 ,q

−
7 )(q+8 ,q

−
8 )

σ
(i+3 i

−
3 )(j+9 ,j

−
9 )(j+10,j

−
10)(j

+
11,j

−
11)(j

+
12,j

−
12)

(q+9 ,q
−
9 )(q+10,q

−
10)(q

+
11,q

−
11)(q

+
12,q

−
12)

×

σ
(i+4 i

−
4 )(j+13,j

−
13)(j

+
14,j

−
14)(j

+
15,j

−
15)(j

+
16,j

−
16)

(q+13,q
−
13)(q

+
14,q

−
14)(q

+
15,q

−
15)(q

+
16,q

−
16)

σ
(i+5 i

−
5 )(j+17,j

−
17)(j

+
18,j

−
18)(j

+
19,j

−
19)(j

+
20,j

−
20)

(q+17,q
−
17)(q

+
18,q

−
18)(q

+
19,q

−
19)(q

+
20,q

−
20)

×

ι
J1j

+
1 j

−
1 j

+
20j

−
20

q+1 q
−
1 q

+
20q

−
20

ι
J2j

+
2 j

−
2 j

+
15j

−
15

q+2 q
−
2 q

+
15q

−
15

ι
J3j

+
3 j

−
3 j

+
10j

−
10

q+3 q
−
3 q

+
10q

−
10

ι
J4j

+
4 j

−
4 j

+
5 j

−
5

q+4 q
−
4 q

+
5 q

−
5

ι
J5j

+
6 j

−
6 j

+
19j

−
19

q+6 q
−
6 q

+
19q

−
19

×

ι
J6j

+
7 j

−
7 j

+
14j

−
14

q+7 q
−
7 q

+
14q

−
14

ι
J7j

+
8 j

−
8 j

+
9 j

−
9

q+8 q
−
8 q

+
9 q

−
9

ι
J8j

+
11j

−
11j

+
18j

−
18

q+11q
−
11q

+
18q

−
18

ι
J9j

+
12j

−
12j

+
13j

−
13

q+12q
−
12q

+
13q

−
13

ι
J10j

+
16j

−
16j

+
17j

−
17

q+16q
−
16q

+
17q

−
17

, (5.36)

where
∏
τ f(τ) denotes the product of the fusion coefficients associated to the labels of

the five tetrahedra of the single four-simplex associated to the GFT vertex. Once the

specific values of the fusion coefficients has been given, and thus a specific model chosen,

one can then try to solve this equation, obtaining the effective dynamics for geometric

configurations.

There is a second way to impose the constraints, which makes the correspondence

with the spin foam models treated in the literature more clear, and the correspondence

with geometric data more direct. In a certain sense, this might be seen as the imposition of

the constraints directly in the kinetic term, and, automatically, in the states used. Instead

of working with a map like the one described above, which has the net effect of reducing

the Spin(4) (or SL(2,C)) theory to an SU(2) theory, one can start with a group field

theory defined over four copies of SU(2) and embed it into a covariant theory for Spin(4)

(or SL(2,C)) .

This can be done using a suitable map11

̟ : L2(SU(2)4/SU(2)diag) → L2(G4/Gdiag) , (5.37)

where G is either Spin(4) or SL(2,C), according to the case that one wants to consider. This

map can be constructed in the same way in which S has been constructed. In fact, ̟ can

be seen as the transpose of S, embedding directly the simple components, identified with

representations of SU(2), into the full representations of the four-dimensional gauge group.

There are two advantages in this second approach. First, the theory is defined directly

in terms of the geometric variables (i.e. simple bivectors), with no room for additional

degrees of freedom, whether they are decoupled from the geometric ones or not. Second,

it makes straightforward the comparison with the amplitudes in terms of which spin foam

models are defined, i.e. in terms of amplitudes of Spin(4) (SL(2,C)) BF theories modified

by the insertion of the simplicity constraints.

The model then can be constructed in terms of a GFT over SU(2)4 (or (SL(2,C)/

SU(2))4 for Barrett-Crane-like models), involving some field ϕ : SU(2)4/SU(2)diag → C,

11In the case of Barrett-Crane models, one needs to replace SU(2) with the homogeneous space

SL(2,C)/SU(2), see the discussion in section 5.3.
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with the interactions now being the interaction terms for a GFT for the full four-

dimensional gauge group, evaluated on the embedded field (̟ϕ)(GI), where GI are Spin(4)

or SL(2,C) group elements:

S[ϕ, ϕ̄] = KSU(2)[ϕ,ϕ] + λVH [̟ϕ,̟ϕ] , (5.38)

where H denotes Spin(4) or SL(2,C) according to the signature chosen.

The operator equation of motion is analogous to what we had before,

(∫
(dg′)4 K(g1, . . . , g4, g

′
1, . . . , g

′
4)ϕ̂(g

′
1, . . . , g

′
4) + λ

δV̂[̟ϕ,̟ϕ]
δϕ̂†(g1, . . . , g4)

)
|ψ〉 = 0 . (5.39)

Considering again only the case of the expectation value of the operator appearing in this

equation in the state |σ〉, we obtain the equation (in Riemannian signature)

0 = σi1J1...J4M1...M4
+ λ

∑

J5...J10,i1,...i5

(
5∏

τ=1

f(τ)

)


10∏

f=1

Af




×σi2J4J5J6J7M4M5M6M7
σi3J7J3J8J9M7M3M8M9

σi4J9J6J2J10M9M6M2M10
σi5J10J8J5J1M10M8M5M1

{15j}Spin(4) (5.40)

where we are using a shortened notation to make the equation look a bit more compact.

With {15j}Spin(4) we denote the Spin(4) invariant with the combinatorics of a four-simplex,

analogous to the {15j} symbol for SU(2), labelled by the representations of Spin(4) related

to the ones of SU(2) by the fusion coefficients. The label τ denotes the five tetrahedra

associated to the four-simplex, and f(τ) is the fusion coefficient associated to the given

tetrahedron with the given decoration in terms of SU(2) and Spin(4) representations. The

summation over Spin(4) representations entering the {15j}Spin(4) symbol, with the appro-

priate measure, is left implicit. Finally, the Clebsch-Gordan coefficients in (5.29) determine

the additional face amplitudes Af associated to the faces of each tetrahedron,

Af =
∑

M,q+,q−

(
C
Jf j

+
f
j−
f

Mf q
+
f
q−
f

)2

. (5.41)

Once more, the equation (5.40) describes the dynamics of condensates as determined by

the chosen spin foam/GFT model, encoded in the face amplitudes and fusion coefficients. It

is clear that further simplifications are needed, as the equation itself is rather complicated.

Nonetheless it is useful to display it even without proposing an explicit solution, since it

highlights the generality of the procedure that we are proposing. The various spin foam

models proposed so far are easily included with no essential modification in the equations.

The Lorentzian models lead as well to the same equations.

This detailed discussion shows that the true challenges are then the proof that these

condensate states can be used as reliable approximations of the physical states on one

hand, and the development of methods of approximation for the solution of (5.40) (and

similar equations obtained for other condensates), for specific models. All this is indeed

work in progress.
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5.2 Effective modified Friedmann equation: a concrete example

Let us now look at the resulting effective dynamics for GFT condensates in a specific simple

example. We have seen that, assuming that the kinetic operator used in the definition of

the GFT has a nontrivial kernel and that one focusses on states that are well-behaved in a

regime of low particle density, the ‘dipole’ function ξ has to satisfy the linear equation (5.21)

which is of Wheeler-DeWitt type. Similarly, the same linear equation would result from

considering the simple condensate given by the function σ and taking a weak-coupling limit

of the non-linear equation (5.6).

In this section, to make the previous rather general discussions more concrete in a

specific model, we show that the equation (5.21) can, in a semiclassical (WKB) limit,

reproduce an effective cosmological dynamics that resembles what one would expect from

a classical gravitational theory; in the isotropic case, the dynamics reduces to precisely

the classical (vacuum) Friedmann equation with quantum corrections depending on the

choice of state. We will also highlight the limitations of this simple example, which in

fact should not be taken too seriously: for one thing, most of the dynamics in spin foam

models and group field theories is supposed to be encoded in the vertex term, not only in

the kinetic term. The example has to be taken only as a template of how one should go

about extracting an approximate classical geometric equation in our general scheme: take

the fundamental GFT/SF dynamics, and extract an effective cosmological dynamics for

some simple condensate state.

For generic GFT models, we have seen how to construct GFT condensate states from

the elementary GFT field ϕ, defined on four copies of Spin(4) and satisfying the gauge

invariance property

ϕ(g1, . . . , g4) = ϕ(g1h, . . . , g4h) ∀h ∈ Spin(4) . (5.42)

In order to obtain models that can include gravitational degrees of freedom, and can thus

be relevant for cosmology, we now need to consider simplicity constraints as well, to ensure

that one describes only geometric configurations (i.e. those for which BAB
i = ǫi

jkeAj e
B
k for

some triad eAi ).

We have discussed the most general constructions introduced in the literature, leading

to different models, at length. For concreteness, for the purposes of this section we impose

simplicity as in [62], by requiring that

ϕ(g1, . . . , g4) = ϕ(g1h1, . . . , g4h4) ∀hI ∈ SU(2)X0 ⊂ Spin(4) , (5.43)

where SU(2)X0 denotes the subgroup of Spin(4) (acting transitively on S3) which sta-

bilises a fixed X0 ∈ S3. Hence, ϕ is really a function on four copies of the coset space

Spin(4)/SU(2)X0 ∼ S3, or equivalently four copies of SU(2) (since Spin(4) itself is sim-

ply SU(2) × SU(2)); in this section we work with a field on SU(2)4. This is the type of

prescription corresponding to the Barrett-Crane model [61].

There is an issue with imposing both (5.42) and (5.43), which can be understood most

simply by noticing that there is no natural way to define a right action of Spin(4) on the

coset space Spin(4)/SU(2)X0 . When one imposes (5.42) and (5.43) by group averaging,
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one finds that the two operations do not commute. The issue was resolved in [61], where

a normal X ∈ S3 is added as an argument of the GFT field, thus basing the whole for-

malism explicitly on projected spin networks [63, 64]. The simplicity constraints are then

imposed by

ϕ(g1, . . . , g4;X) = ϕ(g1h1, . . . , g4h4;X) ∀hI ∈ SU(2)X ⊂ Spin(4) , (5.44)

where X is now the argument of the field and no longer fixed; the gauge invariance property

is then

ϕ(g1, . . . , g4;X) = ϕ(g1h
−1, . . . , g4h

−1;h ·X) ∀h ∈ Spin(4) . (5.45)

This is now consistent with the reduction to the coset space. After imposing simplicity,

the arguments on the left-hand side of (5.45) are elements of Spin(4)/SU(2)X while those

on the right-hand side live in Spin(4)/SU(2)h·X . The map

Rh−1 : Spin(4)/SU(2)X → Spin(4)/SU(2)h·X , [g] 7→ [g h−1] (5.46)

between coset spaces is well-defined, as one can easily verify.

One can use (5.45) to gauge-fix the normal X to a fixed X0, reducing the Spin(4)

invariance to the subgroup SU(2)X0 that leaves this X0 invariant. In the GFT model

proposed in [61] there is no explicit coupling of normal vectors in the GFT interaction

term, and in this sense they have no dynamics. One can then reduce again to a formulation

where the GFT field depends only on four copies of SU(2), together with invariance under

an action of SU(2)X0 . In the case considered here, this action would be trivial, given by

the right action of SU(2)X0 on Spin(4)/SU(2)X0 .

Let us now assume the normals have been gauge-fixed and hence can be removed from

the formalism, and define the condensate (4.10) by

|ξ〉 := N (ξ) exp
(
ξ̂
)
|0〉 ,

ξ̂ :=
1

2

∫
(dg)4(dh)4 ξ(g−1

1 h1, . . . , g
−1
4 h4)ϕ̂

†(g1, . . . , g4)ϕ̂
†(h1, . . . , h4)

as previously. Because of the simplicity condition (5.43), the function ξ satisfies ξ(gI) =

ξ(kIgIk
′
I) for all kI , k

′
I ∈ SU(2)X0 . It is hence a function on four copies of the space

SU(2)X0\Spin(4)/SU(2)X0 (which is simply a compact interval), or alternatively a function

on four copies of S3 ∼ Spin(4)/SU(2)X0 which is invariant under separate left actions of

four copies of SU(2)X0 . This SU(2)X0 acts on S3 by rotating around a fixed axis given by

X0. We will adopt the second interpretation.

Once simplicity constraints are imposed, the configuration space of the dipole function

ξ is no longer simply the gauge-invariant configuration space of a single tetrahedron, but a

quotient of that by the left actions of SU(2): ξ is just a function of the ‘absolute values’ of

four parallel transports. They do not admit a direct interpretation as ‘Hubble parameters’

since they are still subject to a closure condition, and their geometric significance at the

level of simplicial geometry is not obvious at this stage. One can always work at the level of

four S3 elements and take care of the additional SU(2)4 symmetry, as we do in the following.
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To proceed, we assume that there is a closure condition meaning that only three of the

four arguments of ξ are independent. This condition is the one we would get automatically

if the field ϕ satisfied an SU(2) closure condition of the form (5.42),

ϕ(g1, . . . , g4) = ϕ(g1 h, . . . , g4 h) ∀h ∈ SU(2) , (5.47)

where the arguments gI are now in SU(2). Concretely, we impose ξ(gI) = ξ(kgIk
′) for any

k, k′ ∈ SU(2). Note that this is not a special case of the previous invariance property; the

action on SU(2) on itself is transitive, while the action of SU(2)X0 on S3 stabilises X0, for

instance. With all this being done, the arguments of the collective wave function admit

now the required geometric interpretation as minisuperspace variables.

After all these preliminaries, we can now proceed to derive the effective cosmological

dynamics from GFT models with a particular kinetic term. We focus on models whose

kinetic operator is the Laplace-Beltrami operator on SU(2)4, together with a ‘mass term’.

A motivation for this choice is that the presence of the Laplacian seems to be required by

GFT renormalisation [65–69]. The equation (5.21) for the function ξ then becomes (setting

the g′′I which are arbitrary equal to the identity)

(
∑

I

∆g′
I
+ µ

)
ξ(g′I) = 0 , (5.48)

where we recall that ξ is a function on SU(2)4 ∼ (Spin(4)/SU(2)X0)
4 with additional

symmetries. Using the parametrisation for SU(2) given by

g =
√

1− ~π2 1− i~σ · ~π , |~π| ≤ 1 , (5.49)

where σi are the Pauli matrices, the Laplace-Beltrami operator on SU(2) is

∆gf(π[g]) =
(
δαβ − παπβ

)
∂α∂βf(π)− 3πα∂αf(π) . (5.50)

(Note that the second term, which will drop out of the WKB analysis, was missing

in [13].) This parametrisation of SU(2) associates a Lie algebra element π to every group

element g. We can associate this Lie algebra element with a gravitational connection

whose parallel transport is g: if we assume that the gravitational connection is constant

over the dual link we are considering, the path-ordered exponential reduces to the usual

exponential, g = P exp(
∫
ω) = exp(ω1), in coordinates in which the corresponding link has

unit coordinate length in the x1 direction. Expanding this in the basis of Pauli matrices,

we have ω1 = i~σ · ~ω1 and

g = cos(|~ω1|)1+ i~σ · ~ω1
sin(|~ω1|)

|~ω1|
. (5.51)

In this sense, the fundamental dynamical variable, the Lie algebra element π, corresponds

to the “sine of the connection”, rather than the connection itself, which is very much

reminiscent of what happens in loop quantum cosmology (LQC). Since we assume that for

our configurations all gauge-invariant combinations of these parallel transports are close
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to the identity, we can approximate sin(|~ω1|) ≈ |~ω1|, and the corresponding Lie algebra

elements can be interpreted directly as a gravitational connection at leading order.

In order to take the semiclassical (WKB) limit, we can then substitute the co-

ordinate expression of the Laplace-Beltrami operator into (5.48), rewrite ξ(πI [gI ]) =

A[πI ] exp(iS[πI ]/κ) in terms of slowly varying amplitude and rapidly varying phase, and

take the (formal) eikonal limit κ→ 0. The equation we obtain is

∑

I

(
BI ·BI − (πI ·BI)2

)
= O(κ) , (5.52)

where · is the Killing form on su(2) and BI := ∂S/∂πI is the momentum conjugate to

πI , a bivector associated to one of the faces of a tetrahedron. For this scheme to be self-

consistent, the phase of the function ξ has to vary rapidly compared to the modulus, which

is itself peaked near the identity in SU(2)4. Eq. (5.52) contains only the leading term in

the WKB expansion, and the term in µ, being of higher order (κ2), does not appear. In

the WKB approximation, (5.52) becomes the Hamilton-Jacobi equation for the classical

action S.

Because of the symmetries of the function ξ, and hence the function S, the variables

appearing in (5.52) are not all independent. Let us consider this in more detail. First,

there is an invariance of ξ under separate left actions of SU(2)X0 as rotations of the three-

sphere (using the map SU(2) → SO(3) ≃ SU(2)/Z2). Identifying X0 ∈ S3 with the

identity in SU(2), this action corresponds to rotating the coordinate vector ~π, ~π → O~π,

or infinitesimally ~π → ~π + ~τ × ~π where × is the standard cross product in R3 ≃ su(2).

Invariance of S under these transformations tells us that

S[~πI ] = S [~πI + ~τI × ~πI ] ≃ S[~πI ] +
∑

I

~τI ·
(
~πI × ~∇IS[πI ]

)
, (5.53)

i.e. the WKB “angular momenta” ~πI ×BI = [πI , BI ] vanish; πI and BI are proportional as

elements of su(2).12 Second, we have an invariance under the simultaneous action of SU(2)

on all arguments, S[π(gI)] = S[π(kgIk
′)], ∀k, k′ ∈ SU(2). The transformation property of

the SU(2) coordinates π under a left multiplication is

π(kgI) = ~κ

√
1− ~πI

2 + ~πI
√
1− ~κ2 + ~κ× ~πI (5.54)

where π(k) =: ~κ. Similarly, under right multiplication we have

π(gIk
′) = ~κ′

√
1− ~πI

2 + ~πI
√

1− ~κ′2 − ~κ′ × ~πI . (5.55)

Infinitesimally, the six independent possible transformations (acting on all four arguments

of S) can be parametrised by

~πI 7→ ~πI + δ ~πI = ~πI + ~ǫ

√
1− ~πI

2 + ~η × ~πI (5.56)

12In class A Bianchi models, this condition can be satisfied for the canonical pairs of dynamical variables

by choosing them as diagonal in a given fiducial basis, e.g. for Ashtekar-Barbero variables in a Bianchi IX

model in [70].
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corresponding to translations and rotations acting on the three-sphere. Invariance under

rotations has already been used previously. The invariance of the function S under a

simultaneous translations of the group elements gI by an su(2) element ~ǫ means that

S[πI ] = S

[
~ǫ
√

1− ~π2I + ~πI

]
≃ S[πI ] + ~ǫ ·

∑

I

(√
1− ~π2I

~∇IS[πI ]

)
, (5.57)

which implies the conservation law
∑

I

√
1− ~π2I BI = 0. This can be solved to express B4

in terms of the other momenta Bi. Furthermore, we can use the invariance of S to set

~π4 = 0 by a suitable left multiplication. The equation (5.52) then becomes (indices i and

j run from 1 to 3)

∑

i

(
Bi ·Bi − (πi ·Bi)2

)
+
∑

i,j

√
1− ~π2i

√
1− ~π2j Bi ·Bj = O(κ) . (5.58)

In order to identify the Bi and conjugate πi with cosmological variables, we follow

their geometric interpretation as bivectors and conjugate infinitesimal parallel transports,

and write Bi = Ai Ti and πi = piVi, where each Ti and Vi is a dimensionless normalised

Lie algebra element. Ai is an area element which we identify with the usual scale factors

as A1 = a2a3 and cyclically. Then (5.52) becomes

∑

i

2A2
i

(
1− p2i

)
+
∑

i 6=j

AiAjγij

√
1− p2i

√
1− p2j = O(κ) (5.59)

where the dimensionless quantities γij = Ti·Tj depend on the state, and we used Ti·Vi = ±1.

At the level of the WKB approximation that we have employed, (5.59) is the effective

‘Hamiltonian constraint’ satisfied by the WKB phase space variables Ai and pi, which

can be interpreted in terms of classical gravitational dynamics. Before discussing (5.59)

in full generality, let us first specialise to an isotropic geometry. Here we can set Ai =

µiA, pi = νip for constants µi and νi, and we further assume that the state is such that

the anisotropic contributions to (5.59) vanish: γij = 0 (meaning that all Ti are pairwise

orthogonal in su(2)). We then obtain

p2 − k = O
( κ
a2

)
, (5.60)

where k =
(∑

i µ
2
i

)
/
(∑

i µ
2
i ν

2
i

)
. At leading order in κ, this is the classical Friedmann

equation for an empty universe with spatial curvature k, with the modification of replacing

the connection by its sine (here represented by the variable p), just as in loop quantum

cosmology (LQC). Since k > 0, this interpretation is consistent when G = SU(2), where G

is the group of isometries of spatial hypersurfaces that has to be chosen to interpret the

condensate states.

We now recall that our reconstruction procedure, providing a geometric interpretation

to the variables appearing in our quantum states, required connections that were flat on

the scale of the tetrahedra. We have used the gauge freedom to set ~π4 = 0 and therefore we

should assume that pi ≪ 1 for our setting to be consistent, which also allows us to interpret
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p directly as the gravitational connection (which, if one assumes it to be the Levi-Civita

connection of an FRW metric, is p ∝ ȧ
N ). The assumption pi ≪ 1 was not needed for the

derivation of the equation (5.60), nor for the definition of the quantum states, but it is

imposed for the geometric interpretation we want to give to our variables, i.e. for relating

discrete to continuum variables, using the procedure described in section 3.

The constant k appearing in (5.60) is of order one, so that the condition (5.60) at lowest

order in the WKB approximation, while identical to the classical Friedmann equation, has

no consistent solutions. (p = constant would correspond to flat R4 foliated by round

spheres of varying radius.) One could of course stick to the equation so obtained, and

assume its validity and geometric interpretation beyond the domain in which our classical

reconstruction procedure would allow it. As said, in fact, the p≪ 1 condition does not come

from the dynamics of the theory, nor is it needed for deriving the above effective equation.

Moreover, we have already pointed out how the same reconstruction procedure needs to

be further developed, in particular for what concerns the role of various distance scales

(as in loop quantum cosmology). However, at the moment we take this as an indication

that our choices of GFT dynamics (here totally neglecting the interaction term), quantum

ensembles, condensate states, and approximation scheme have to be improved to fully

reproduce General Relativity in a cosmological setting.

Let us now return to the general anisotropic case given by (5.59). Since we assume

that pi ≪ 1, in order to interpret the effective classical dynamics satisfied by the GFT

condensate, we can expand (5.59) in powers of pi,

2
∑

i

A2
i +

∑

i 6=j

AiAj γij − 2
∑

i

p2iA
2
i −

1

2

∑

i 6=j

AiAjγij(p
2
i + p2j ) = O(κ, p3i ) (5.61)

where we are only looking at terms up to quadratic order in pi. The terms neglected can

be viewed as higher derivative corrections to the effective gravitational dynamics which

become negligible in the low-curvature regime we are looking at. The GFT dynamics

allows also to compute explicitly the corrections to (5.61), including both the subdominant

terms in the WKB approximation of the above equation and the corrections coming from

the higher order terms in the effective cosmological dynamics.

In the general anisotropic case, the dynamics of homogeneous universes in General

Relativity is given by one of the Bianchi models, depending on the group of isometries

of spatial hypersurfaces. Consistency with the isotropic case seems to suggest that this

should be the Bianchi IX model, with G = SU(2), which we derive for the convenience of

the reader in appendix B. In metric variables, one finds a kinetic term quadratic in the

momenta pi plus a potential representing spatial curvature which is independent of p. For

instance, for the choice of variables A1 = a2a3 and cyclically, where ai are the scale factors

appearing in the 3-metric
∑

k a
2
k(

0ek⊗0ek) for a given basis {0ei} of left-invariant one forms

on SU(2), the (Riemannian) Hamiltonian constraint is

H=A1A2p1p2 +A1A3p1p3 +A2A3p2p3 +

(
A2A3

2A1

)2

+

(
A1A3

2A2

)2

+

(
A1A2

2A3

)2

− 1

2

∑

i

A2
i .

(5.62)
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The effective ‘Hamiltonian constraint’ (5.61) giving the dynamics of our GFT condensate

states has the general form of a quadratic kinetic term and an ‘anisotropy potential’,

independent of p, that should be interpreted as a non-zero spatial curvature.

While there is a freedom in the choice of state that amounts to a tuning of the coeffi-

cients γij in (5.61), none of the possible choices exactly reproduce the classical Bianchi IX

dynamics in the truncation to quadratic order in momenta. We have made certain choices

in obtaining this result: a choice of condensate state which neglects higher order multi-

particle correlations and leads to an effective dynamics to which only the kinetic term in

the GFT action contributes, and a choice of GFT model. In particular, from the LQG

perspective an approximation in which the GFT potential V [ϕ, ϕ̄] does not contribute to

the effective equations cannot capture an essential aspect of GFT dynamics, which is in the

potential and its prescription for determining the ways tetrahedra are glued to simplices

or other building blocks. A better approximation would certainly have to involve the GFT

potential in some way.

Again, the semiclassical analysis of anisotropic condensates shows that these choices

(reduction to kinetic term only, quantum states, etc.) have to be improved in order to be

able to reproduce General Relativity in the effective dynamics. Nevertheless, the example

demonstrates the general applicability of our procedure for the derivation of an effective

semiclassical dynamics from the quantum dynamics of condensate states in GFT.

5.3 Effective modified Friedmann equation: Lorentzian case

We can now try to repeat the constructions of section 5.2 for GFT models corresponding

to Lorentzian signature. As we discuss in appendix A, the only additional difficulty is that

symmetries of the GFT field can lead to divergences under integration. Repeating our

definition of the dipole condensate (4.10) for the case of gauge group Spin(4),

|ξ〉 := N (ξ) exp
(
ξ̂
)
|0〉 with

ξ̂ :=
1

2

∫
(dg)4(dh)4 ξ(g−1

1 h1, . . . , g
−1
4 h4)ϕ̂

†(g1, . . . , g4)ϕ̂
†(h1, . . . , h4) ,

we can replace ϕ(g1, . . . , g4) = ψ(g1g
−1
4 , g2g

−1
4 , g3g

−1
4 ) and change variables to go to a

formulation without redundant integrations. One obtains

ξ̂ =
1

2

∫
(dg)4(dh)4 ξ(g−1

1 h1, g
−1
2 h2, g

−1
3 h3, e)ψ̂

†(g1, g2, g3)ψ̂
†(h1, h2, h3) (5.63)

using the invariance of ξ under simultaneous left or right multiplication of its arguments.

It is now explicit that the integration over g4 and h4 is redundant, and so, using the

normalisation of the Haar measure that Vol(Spin(4)) = 1,

ξ̂ =
1

2

∫
(dg)3(dh)3 ξ(g−1

1 h1, g
−1
2 h2, g

−1
3 h3, e)ψ̂

†(g1, g2, g3)ψ̂
†(h1, h2, h3) . (5.64)

For the compact group Spin(4) this is just a rewriting of the same definition. We could

now try to use (5.64) for non-compact gauge groups such as SL(2,C) where the previous

definition would be ill-defined due to the infinite volume of this group.
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However, a closer look at (5.64) reveals that, due to the invariance of the function ξ

under conjugation,

ξ(g−1
1 h1, g

−1
2 h2, g

−1
3 h3, e) = ξ(kg−1

1 h1k
−1, kg−1

2 h2k
−1, kg−1

3 h3k
−1, e) ∀k ∈ Spin(4) , (5.65)

the integrals appearing in (4.11), such as
∫
(dg)3(dh)3|ξ(g−1

i hi)|2, are still infinite for gauge
group SL(2,C); the resulting state |ξ〉 is not normalisable. As we show in appendix A,

this state of affairs is due only to the fact that, for convenience, we do not work with

functions defined over the correct space, i.e. SL(2,C)4/SL(2,C)diag. However, this is just

a technical, not a conceptual problem, which is easily circumvented with a suitable choice

of gauge fixing.

This discussion ignores the imposition of the simplicity constraints, which, as we saw

in section 5.2, affect the gauge invariance property imposed on the field ϕ. In Lorentzian

signature, imposing them as we did for the Barrett-Crane prescription used in section 5.2

means that we now require

ϕ(g1, g2, g3, g4) = ϕ(g1h1, g2h2, g3h3, g4h4) ∀hI ∈ SU(2)X0 ⊂ SL(2,C) , (5.66)

where X0 ∈ H3. The GFT field then becomes a function on four copies of the homogeneous

space SL(2,C)/SU(2), which is 3-dimensional hyperbolic space, or Hom(2) as a group

manifold (see appendix C for a discussion of this group and its geometry). As before,

in order to impose gauge invariance properly, one should go to an extended formalism

including a normal that is now an element of H3. For the purposes of extending the example

of section 5.2 to Lorentzian signature, we shall assume the normals have been gauge-fixed

to X0, and there is no further gauge invariance property of the field ϕ. This means we

can proceed as before, using the definition (4.10). The function ξ is now interpreted as a

function on four copies of SL(2,C)/SU(2), separately invariant under left actions of SU(2)

on the four arguments.

Again, we can assume that the kinetic term of the GFT model consists of a Laplacian

and a mass term. For the coordinates on H3 that are the analogue of the coordinates on

S3 chosen above, the Laplacian is

∆H3f(π) =
(
δαβ + παπβ

)
∂α∂βf(π) , (5.67)

so that (5.21) reduces to (
∑

I

∆g′
I
+ µ

)
ξ(g′I) = 0 , (5.68)

the WKB approximation will give

∑

I

(
BI ·BI + (πI ·BI)2

)
= O(κ) . (5.69)

This corresponds to the “analytic continuation” π → iπ when compared with (5.52) which

is precisely the transformation between Riemannian and Lorentzian signature gravity.
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Again, the symmetries of ξ and S give constraints on the variables appearing in (5.69).

The invariance of S under separate left actions of SU(2)X0 on hyperbolic space, ~π → O~π

or infinitesimally ~π → ~π + ~τ × ~π, means that

S[~πI ] = S [~πI + ~τI × ~πI ] ≃ S[~πI ] +
∑

I

~τI ·
(
~πI × ~∇IS[πI ]

)
, (5.70)

and again ~πI × BI = 0. To identify the quanta that make up the GFT condensate with

geometric tetrahedra, we then also need to impose a closure condition on ξ. The most

natural choice is to use the condition analogous to what is used in section 5.2, namely

invariance under the simultaneous action of SL(2,C) on all four arguments of ξ,

~πI 7→ ~πI + δ ~πI = ~πI + ~ǫ

√
1 + ~πI

2 + ~η × ~πI (5.71)

which are the translations and rotations of hyperbolic space. This is again a non-compact

symmetry which will make |ξ〉 non-normalisable. However, the linear effective equation

we have derived for the dipole condensate does not depend the normalisation of the state

explicitly. One can hence define a regularised normalisable condensate state where the

redundant integration over SL(2,C) is cut off at some ‘maximal boost’. This regulator

can be taken to infinity without affecting the effective equations. For the purposes of this

calculation, we can continue without considering this regularisation explicitly. We then

find that

S[πI ] = S

[
~ǫ
√

1 + ~π2I + ~πI

]
≃ S[πI ] + ~ǫ ·

∑

I

(√
1 + ~π2I

~∇IS[πI ]

)
, (5.72)

and so, as before, we can use
∑

I

√
1 + ~π2I BI = 0 to express B4 in terms of the other

momenta Bi. We can then also set ~π4 = 0 by a suitable translation. From (5.69) we

thus obtain

∑

i

(
Bi ·Bi + (πi ·Bi)2

)
+
∑

i,j

√
1 + ~π2i

√
1 + ~π2j Bi ·Bj = O(κ) . (5.73)

Again, we can introduce cosmological variables Bi = Ai Ti and πi = piVi, and (5.69)

becomes ∑

i

2A2
i

(
1 + p2i

)
+
∑

i 6=j

AiAjγij

√
1 + p2i

√
1 + p2j = O(κ) . (5.74)

Since this is simply the analytically continued version of (5.59), which we were not able

to match to any Bianchi model in Riemannian signature, it does not correspond precisely

to any Bianchi model in Lorentzian signature. Nevertheless, the structure of the equation

shows that changing the GFT gauge group corresponds precisely to the change of signature

in the metric formulation that one would expect, and so everything seems consistent as we

argued. In particular, going to the isotropic limit we obtain

p2 + k = O
( κ
a2

)
, (5.75)
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where the spatial curvature is still positive. This is an interesting result which suggests

that the models we investigate generically describe spatially closed universes, and that the

spatial curvature we obtained before was not simply a result of the positive curvature of

the gauge group SU(2) used as configuration space for the GFT field. In fact, here the

configuration space is H3 which is negatively curved.

6 Beyond vacuum and homogeneity: matter and perturbations

The GFT models we have discussed so far are candidates for a theory of pure quantum

geometry. We have seen that a certain class of states in these models captures the degrees

of freedom of spatially homogeneous cosmologies, and we have obtained indications that

their dynamics can reproduce, under a few assumptions, that of a classical theory of gravity.

However, in order to connect to any realistic model of cosmology, it is essential to be able

to describe two more ingredients: matter fields and perturbations in the gravitational field

corresponding to inhomogeneities.

6.1 Adding matter: a scalar field

The most direct way of including matter degrees of freedom is to do what one would do

in Wheeler-DeWitt geometrodynamics, that is to enlarge superspace to include not only

the gravitational but also matter fields. This approach is also followed in loop quantum

gravity [14–16] and can be adapted easily to the GFT setting (for matter fields in this

context, see [71, 72]). An alternative would be to look for matter degrees of freedom in the

effective theory of perturbations over background solutions of the GFT dynamics, i.e. look

for emergent matter. This last route has been tentatively explored in [73–75].

Let us consider a (real) scalar field, the most natural matter in cosmology. A scalar

under diffeomorphisms is naturally associated to the vertex of a spin network, or in the

dual simplicial geometry picture to an elementary tetrahedron.

In continuum loop quantum gravity, in order to be able to apply the mathematical

framework of compact groups to a scalar field, the physical variable used in the quantum

theory is a ‘point holonomy’

Uζ,x(φ) := exp(iζφ(x)) , (6.1)

an element of U(1) associated to the vertex. The parameter ζ can be seen as a regulator

to be taken to zero after the quantum theory has been defined.

The restriction to compact groups does not seem strictly necessary in our context. We

have seen that Lorentzian models can be defined, although one needs to be careful in order

to avoid divergences. It is then not clear whether we need to compactify the scalar degree

of freedom at the vertex by introducing a point holonomy. For dimensional reasons, we

must in either case introduce a parameter ζ with dimensions of length, so that the new

variable for the GFT field is φ̃ := ζφ. Note that the only dimensionful parameter that has

appeared so far is κ (which has dimensions of area) used in the WKB approximation. It is

not clear at this stage how ζ and κ are related. We will see that in the effective Friedmann

equation ζ determines the coupling of matter to gravity, and so just like κ should be related

to Newton’s constant.
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The extended GFT model including a scalar field is then defined by a kinetic term

Sk[ϕ, ϕ̄]=

∫
(dg)4(dg′)4dφ̃ dφ̃′ ϕ̄(g1, . . . , g4, φ̃)K(g1, . . . , g4, g

′
1, . . . , g

′
4, φ̃, φ̃

′)ϕ(g′1, . . . , g
′
4, φ̃

′)

(6.2)

plus a potential. At this abstract level, all we have done is to extend the domain space

of the GFT from four copies of Spin(4) to Spin(4)4 × R or Spin(4)4 × U(1), in the case

of Riemannian signature that we now restrict to for technical simplicity. There is no

additional gauge invariance property for ϕ since the scalar is left invariant by local Spin(4)

transformations. The basic commutation relations for the quantum field are then
[
ϕ̂(gI , φ̃), ϕ̂

†(g′I , φ̃
′)
]
=IG(gI , g

′
I)δ(φ̃− φ̃′) ,

[
ϕ̂(gI , φ̃), ϕ̂(g

′
I , φ̃

′)
]
=
[
ϕ̂†(gI , φ̃), ϕ̂

†(g′I , φ̃
′)
]
=0,

(6.3)

where the coordinate φ̃ takes values in [0, 2π) for a point holonomy and in all of R otherwise.

It should then be clear that the constructions of section 5 go through just as before. Again,

if we assume an interaction of odd order, for the ‘dipole’ condensate defined by

|ξ′〉 := N (ξ′) exp
(
ξ̂′
)
|0〉 with (6.4)

ξ̂′ :=
1

2

∫
(dg)4(dh)4 dφ̃ ξ′(g−1

1 h1, . . . , g
−1
4 h4, φ̃)ϕ̂

†(g1, . . . , g4, φ̃)ϕ̂
†(h1, . . . , h4, φ̃) , (6.5)

the effective dynamics splits into two separate equations corresponding to the kinetic and

potential terms, the former being
∫
(dg′)4 dφ̃′ K(gI , g

′
I ; φ̃, φ̃

′)〈ϕ̂(g′1, . . . , g′4, φ̃′)ϕ̂(g′′1 , . . . , g′′4 , φ̃′′)〉ξ′ = 0 . (6.6)

The two-point function can be computed to be

〈ϕ(gI , φ̃)ϕ(hI , Φ̃)〉 = ξ(g−1
I hI , φ̃)δ(φ̃− Φ̃)

+

∫
(dg′)4(dh′)4 ξ(g−1

I g′I , φ̃)ξ(h
−1
I h′I , Φ̃)〈ϕ(g′I , φ̃)ϕ(h′I , Φ̃)〉 , (6.7)

and following the discussion in section 5, we can focus on the class of solutions to (6.6)

that satisfy ∫
(dg′)4 K(gI , g

′
I ; φ̃, φ̃

′)ξ((g′′I )
−1g′I , φ̃

′) = 0 , (6.8)

which is the same equation that we would obtain from considering the weak-coupling limit

of the effective equation for the single condensate σ′, defined in analogy to (4.4).

If we now focus on models with a Laplacian kinetic term on the extended domain space,

K(gI , g
′
I ; φ̃, φ̃

′) = δ(g−1
I g′I)δ(φ̃− φ̃′)

(∑

I

∆gI + τ ∆φ̃ + µ

)
(6.9)

where we allow for a nontrivial relative weight τ between the gravitational and matter

parts of the kinetic term, we can redo the analysis of section 5.2 to obtain in the WKB

limit (using that f(x)δ(x) = 0 implies that f(0) = 0)
∑

I

(
BI ·BI − (πI ·BI)2

)
+ τ p2

φ̃
= O(κ) , (6.10)
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where pφ̃ := ∂S/∂φ̃ is the momentum conjugate to φ̃. For isotropic states, we saw before

that the gravitational part of this can be written as a4(k − p2) for some state-dependent

constant k > 0, so that we finally get

k − p2

a2
= −

τ p2
φ̃

a6
+O(κ) . (6.11)

This is just the classical Friedmann equation with a massless free scalar field if the sign

of τ is chosen appropriately (τ > 0 for Riemannian signature, it would be τ < 0 in the

Lorentzian case), the dimensionful parameter ζ is chosen appropriately and physical units

are restored. Just as in usual quantum cosmology, the dynamics of gravity coupled to such a

scalar field is described by a positive definite Laplacian (for Riemannian signature gravity)

and a wave operator of Lorentzian signature (for Lorentzian gravity) on superspace.13 Since

the Laplacian on U(1) is the same as on R, we obtain the same Friedmann-type equation

from the WKB approximation, independent of whether the scalar field is compactified

using point holonomies in the definition of the GFT model.

These calculations show that a very natural extension of the GFT kinetic term to the

matter sector leads to the correct coupling to gravity in the Friedmann equation obtained

in the WKB limit. Clearly, they are just an example of how matter can be included into

the GFT models. More work is needed in the fundamental definition of GFT models for

quantum gravity models with matter fields, or in understanding whether matter degrees

of freedom are already present in the existing models, without adding them by hand.

6.2 Perturbations/inhomogeneities

An important point remains to be addressed: the dynamics of the perturbations above

a spatially homogeneous universe. This subject requires considerable extension of the

analysis of the solutions to the GFT equations of motion presented earlier in the paper.

Nonetheless, we can provide a rough and tentative picture of the various points that need

to be addressed.

Since condensates are candidates for quantum states that will be able to describe the

cosmological sector of GFT, it is natural to assume that inhomogeneities will be encoded in

small deviations from condensate states. In other words, it is natural to look for the physics

of cosmological perturbations in the regime of fluctuations above the GFT condensates,

i.e. GFT phonons.

The deviation from homogeneity complicates significantly the treatment, not least

because everything has to be expressed in a coordinate-free language. In order to encode

in a GFT state perturbations of an otherwise homogeneous metric, one has to find first a

complete set of invariants that can be used to store the shape of the perturbations. For

instance, one could give the spectrum of the perturbations in terms of the Fourier modes

on a spatial slice. Second, one has to translate this information into a state that stores it

in terms of correlations among GFT quanta.

13In quantum cosmology, just like in our discussion in GFT, the choice of kinetic operator can be viewed

as a choice of metric on superspace. For a geometric discussion of this metric and its Lorentzian signature,

see [76].
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This is a subproblem of the general sampling and reconstruction problem that is found

in the construction of semiclassical states in quantum gravity, and that we have discussed

in section 3. Thus, the reconstruction procedure has to be extended to this case. This will

be a first task ahead.

A second task will have to do with solving the quantum dynamics of the theory, which

we are not able to solve exactly even for the simple condensate states. If |Ψ〉 is a state

solving the equations of motion in the homogeneous sector, then the equations of motion

for any small deviation from it (not necessarily homogeneous) can be understood in terms

of perturbation theory,

|Ψ〉 → |Ψ〉+ ǫ |δΨ〉 . (6.12)

The perturbation has to be such that, if |Ψ〉 is a solution of the equations of motion, so is

|Ψ〉 + ǫ |δΨ〉, at least in the approximate sense that we consider only limited information

about the quantum states and ask that this is compatible with them solving the equations

of motion.

As discussed in section 5, the quantum equations of motion can be turned into an

infinite set of equations for all the correlation functions,

〈Ψ| Ô[ϕ̂, ϕ̂†]Ĉ(gI) |Ψ〉 = 0 , (6.13)

and in general we will be interested in a certain set of observables {Ôµ}. We will adapt

the state |σ〉 in such a way that we reproduce the results of the exact solution |Ψ〉 with a

given accuracy η, ∣∣∣∣∣
〈Ôµ〉Ψ − 〈Ôµ〉σ

〈Ôµ〉σ

∣∣∣∣∣ < η . (6.14)

In general it will be possible to choose observables for which this inequality is violated, and

they will set the theoretical error of the effective theory that we are going to develop. There-

fore, the preliminary step before using our machinery to discuss inhomogeneous cosmologies

is the enumeration of the observables of the GFT that we want to keep under control.

At this point, for the restricted set of observables we can replace |Ψ〉 with |σ〉, making a

relative error at most of magnitude η. In order to be consistent with our replacement of the

exact solution |Ψ〉 with the state |σ〉, for example, the split of the state into homogeneous

part and inhomogeneities requires that η ≪ ǫ. If this is the case, for the observables

Oµ we can use |σ〉 instead of |Ψ〉, and one can obtain a set of equations involving the

condensate wavefunction σ as well as the various quantities used in the parametrisation of

inhomogeneities.

The assumption that we are dealing with a small amount of inhomogeneities has to

be translated into the appearance of a dimensionless expansion parameter, ǫ ≪ 1, that

controls the deviation from the perfect condensate state,

|σ〉 → |σ〉+ ǫ|δΨ〉 . (6.15)

We stress that the meaning of the parameter ǫ is given by the structure of the state |δΨ〉,
and can be understood only once the geometric content of the state is specified.
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These considerations are so far very general. To turn them into concrete calculations,

one would need to identify the elementary excitations above the homogeneous backgrounds

in terms of operators. In analogy with the case of quantum fluids, it is reasonable to

conjecture that the elementary excitations might be described by effective “phononic”

fields whose relationship with the fundamental field operators in terms of which GFT is

formulated might not be a simple linear transformation (e.g. a Bogoliubov transformation).

An approximate way to study this dynamics of perturbations would be to simply work

at the classical GFT level and study perturbations around (condensate) solutions of the

classical GFT equations, obtaining their effective action. Indeed, this analysis has been

already carried out in simple cases (simple solutions of the equations of motion, special

types of perturbations around them) and shown to give rise to effective field theories for

scalar fields over non-commutative flat spacetimes [73–75]. This line of work goes then in

the direction of identifying emergent matter from collective excitations of the very same

degrees of freedom constituting spacetime itself. These results should now be improved,

generalised, and reanalysed in light of the results presented in this paper.

On the basis of these considerations, then, we can expect to obtain an analogue of the

Bogoliubov-de Gennes formalism for Bose-Einstein condensates. It is also worth stressing

that this method, going beyond a mean-field approach, might be useful, in addition to the

analysis of deviation from homogeneity, in the description of phase transitions, as it can

provide a first estimate of the breakdown of the regime that can be described in terms of

a semiclassical background geometry.

Last comes the issue of re-interpreting and rewriting the effective dynamics for the GFT

phonons as an effective field theory on the continuum (spatially homogeneous) spacetime,

defined by the background GFT condensate, as opposed to a field theory on minisuperspace.

To achieve this, it could be crucial to use the directions in the GFT configuration space

that we have so far neglected: our analysis of the condensate states describing homogeneous

cosmologies was restricted to gauge-invariant configurations, invariant under local actions

of Spin(4) or SL(2,C). While this restriction is motivated by the interpretation of the

fundamental degrees of freedom in discrete geometry, where indeed geometric observables

can only depend on gauge-invariant quantities, it means we are throwing away information

about a local reference frame generally encoded in a GFT quantum state. When going be-

yond the homogeneous condensate, the information in such a reference frame could be used

for the construction of a coordinate system in which the perturbations can be localised. One

would then generically look for gauge-variant perturbations over the gauge-invariant GFT

condensate. All the geometric information needed to define the localisation and the state

of motion of the GFT perturbations on the spacetime defined by the background GFT con-

densate state (assumed to be also a semiclassical state) should be extracted from the latter.

7 Conclusions

In this paper, we have addressed one fundamental issue faced by all approaches to quan-

tum gravity: to extract an effective macroscopic continuum dynamics directly from the

fundamental microscopic quantum dynamics of the theory.
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We have constructed a class of condensate states that can be interpreted as macro-

scopic, spatially homogeneous geometries of the type usually considered in cosmology.

These states are non-perturbative in that they contain contributions from arbitrary num-

bers of excitations of the (no-space) Fock vacuum of the theory. Our construction is thus

a concrete realisation of the picture of spacetime as a quantum fluid or condensate, advo-

cated previously in the context of group field theory (GFT) [77] and more generally in [78].

This picture can then be investigated dynamically in GFT: because these condensate states

are analogous to coherent or squeezed states, their n-point functions can be computed and

used to derive effective equations for the ‘condensate wavefunctions’ used to define the

states. These effective equations take the form of generalised nonlinear and nonlocal quan-

tum cosmology equations. We have shown all of this in full generality, for a general choice

of GFT model and for the different types of condensate states we are considering. It is

easy to specialise the effective equations to specific GFT/spin foam models of 4d quantum

gravity. We have investigated a simple example where a particular choice of kinetic term

leads to an effective equation that reduces, in a WKB approximation and in the isotropic

case, to the classical Friedmann equation in vacuum. This example can be extended to

Lorentzian signature and to include a massless scalar field, as we have shown.

There are many directions for future work. Perhaps the most pressing one is to un-

derstand more carefully the nature and regime of the different approximations involved.

The picture of spacetime as a GFT condensate involves a hydrodynamic approximation of

the fundamental quantum dynamics. It required us to assume that the basic geometric

building blocks describe near-flat configurations at the scale of the same building blocks,

and specific approximations to the full GFT dynamics. In terms of cosmological variables,

we are working in a regime outside of high curvature. In the homogeneous and isotropic

case, where in our example the lowest order in momenta (i.e. Hubble rates) corresponded to

what one would expect from GR, we also employed a WKB approximation enforcing semi-

classicality on our quantum states. It is not clear at this stage which of the approximations

would have to be considered first in computing the leading order corrections.

More fundamentally, as one extrapolates to higher curvatures and follows the evolution

of the universe backwards in time towards the Big Bang (or forwards approaching a Big

Crunch), one expects the hydrodynamic approximation to break down. As we have argued,

this would be signalled by large quantum fluctuations over the mean field whose effective

dynamics is described by our quantum cosmological equations. Just like in the physics

of Bose-Einstein condensates, this means that the ansatz one has made for the quantum

state is no longer a good approximation and has to be replaced by something else; the

Gross-Pitaevskii equation for the mean field no longer captures the relevant quantum dy-

namics. If we take this analogy seriously for the case of quantum gravity and quantum

cosmology, it would mean that a high-curvature (presumably Planckian) regime cannot

be described by a state consisting of near-flat, weakly interacting building blocks of ge-

ometry. Instead, one might expect a quantum phase transition, presumably a transition

from a pre-geometric phase to a phase of an approximately smooth metric geometry — a

scenario that often goes under the name of geometrogenesis [77, 79]. Understanding this

deep quantum-gravity regime will require methods that go beyond the ones used in this
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paper, and that will be explored in future work. Similarly, an important direction of future

research, as we tried to discuss, is the study of fluctuations over the condensate states we

have considered. The physics of such fluctuations should encode, we conjecture, the physics

of cosmological perturbations (inhomogeneities) and one should try to recast the effective

dynamics of such GFT perturbations in the form of an effective field theory over the back-

ground homogeneous geometries defined by our condensate states. The ultimate goal, of

course, is to use such effective dynamics, directly extracted from the fundamental quantum

gravity dynamics, to obtain predictions of testable quantum gravity effects in cosmology.
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A Regularisation of Lorentzian models

The generalisation of the results obtained in the Riemannian case to Lorentzian signature

requires some care in the definition and manipulation of the various quantities. In this

appendix we consider briefly the key points that need to be addressed. No significant

modifications in the essence of the procedure introduced in the paper arise, and there are

only some small technical adjustments.

In the models we consider, the signature of the metric tensor that has to be recovered

is encoded in the choice of local gauge group. Therefore, models for Lorentzian spacetimes

have to be based, in four dimensions, on SL(2,C). The noncompactness of the group

leads to a number of technical difficulties when working with a GFT field defined on four

copies of SL(2,C), e.g. when defining integrals and structures as a non-commutative Fourier

transform on the group.

A primary concern is that already the classical GFT action in Lorentzian signature

is ill-defined, since the imposition of the closure constraint as an invariance property of

the GFT field leads to spurious integrations over one or more copies of SL(2,C). For the

kinetic term, assuming that the kinetic operator K has the same symmetries as the GFT

field ϕ, this is straightforward to see, as

∫
(dg)4(dg′)4 ϕ̄(g1, . . . , g4)K(g1, . . . , g4, g

′

1
, . . . , g′

4
)ϕ(g′

1
, . . . , g′

4
)

=

∫
(dg)4(dg′)4ϕ̄(g1g

−1

4
, g2g

−1

4
, g3g

−1

4
, e)K(g1, . . . , g4, g

′

1
, . . . , g′

4
)ϕ(g′

1
(g′

4
)−1, g′

2
(g′

4
)−1, g′

3
(g′

4
)−1, e)

=

∫
(dh)3(dh′)3 dg4 dh4 ϕ̄(h1, h2, h3, e)K(h1, h2, h3, h

′

1
, h′

2
, h′

3
)ϕ(h′

1
, h′

2
, h′

3
, e) (A.1)
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where we have defined hi ≡ gig
−1
4 , h′i ≡ g′i(g

′
4)

−1. Integration over g4 and h4 now leads to

factors proportional to the volume of the group. In the case of compact groups this is just

a finite constant which can be set to one by a normalisation of the Haar measure, but in

the Lorentzian case it means that the action can only be zero or infinite, and so does not

define a variational principle.

One way out is the observation that the closure constraint is equivalent to a restriction

of the domain of the field to the homogeneous space SL(2,C)4/SL(2,C)diag ∼ SL(2,C)3.

One can rewrite the theory in terms of a field on this second group manifold without

divergences arising from redundant integrations. In order to define the models, one can

introduce a gauge-fixed field14

ψ : SL(2,C)3 → C , ψ(g1, g2, g3) = ϕ(g1, g2, g3, e) = ϕ(g1g4, g2g4, g3g4, g4) , (A.2)

and rewrite the theory in terms of this, removing redundant integrations, viz.,

Sreg
k [ψ, ψ̄] =

∫
(dh)3(dh′)3 ψ̄(h1, h2, h3)K(h1, h2, h3, h

′
1, h

′
2, h

′
3)ψ(h

′
1, h

′
2, h

′
3) (A.3)

for the kinetic term we looked at. There is of course no conceptual difficulty in rewriting

any action in this way, once we keep track in each term of the reduced dependence of the

fields on the arguments. By its definition, the field ψ has no gauge invariance property

corresponding to closure and so the action defined this way can be finite. The quantum

field ψ̂ satisfies standard commutation relations,

[ψ̂(g1, g2, g3), ψ̂
†(g′1, g

′
2, g

′
3)] = δSL(2,C)3(g1g

′−1
1 , g2g

′−1
2 , g3g

′−1
3 ) (A.4)

consistent with the commutation relations of ϕ̂,

[ϕ̂(g1, . . . , g4), ϕ̂
†(g′1, . . . , g

′
4)] = δSL(2,C)3(g1g

′−1
1 , . . . , g4g

′−1
4 ) , (A.5)

where δSL(2,C)3 denotes the Dirac delta over the homogeneous space obtained from SL(2,C)4

after imposing gauge invariance.

Let us work out explicitly the regularised version for the Ooguri model for BF theory

in four dimensions. Here the kinetic term is

Sk=

∫
(dg)4ϕ̄(g1, g2, g3, g4)ϕ(g1, g2, g3, g4)=

(∫
dg

)∫
(dh)3ψ̄(h1, h2, h3)ψ(h1, h2, h3) (A.6)

with a single redundant integration. There is also an interaction term, given by

VOo=

∫
(dg)10ϕ(g1, g2, g3, g4)ϕ(g4, g5, g6, g7)ϕ(g7, g3, g8, g9)ϕ(g9, g6, g2, g10)ϕ(g10, g8, g5, g1) .

(A.7)

Replacing the field ϕ by the gauge-fixed field ψ, this becomes

VOo =

∫
(dg)10ψ(g1g

−1
4 , g2g

−1
4 , g3g

−1
4 )ψ(g4g

−1
7 , g5g

−1
7 , g6g

−1
7 )ψ(g7g

−1
9 , g3g

−1
9 , g8g

−1
9 )×

×ψ(g9g−1
10 , g6g

−1
10 , g2g

−1
10 )ψ(g10g

−1
1 , g8g

−1
1 , g5g

−1
1 ) . (A.8)

14Notice that in terms of the original four copies of SL(2,C) there will be several different parametrisations,

which will be equivalent representations of the same model.
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We can now change variables to

h1 = g1g
−1
4 , h2 = g2g

−1
4 , h3 = g3g

−1
4 , h4 = g4g

−1
7 , h5 = g5g

−1
7 ,

h6 = g6g
−1
7 , h7 = g7g

−1
9 , h8 = g8g

−1
9 , h9 = g9g

−1
10 , (A.9)

so that (A.8) becomes

VOo =

(∫
dg

)∫
(dh)9ψ(h1, h2, h3)ψ(h4, h5, h6)ψ(h7, h3h4h7, h8)×

×ψ(h9, h6h7h9, h2h4h7h9)ψ(h−1
9 h−1

7 h−1
4 h−1

1 , h8h
−1
7 h−1

4 h−1
1 , h5h

−1
4 h−1

1 ) . (A.10)

Notice that this interaction term and the kinetic term have the same redundant integration,

which can be then factorised and removed when the model is regularised.

A regularised version of these models, with potentially finite but non-zero action, can

be given either in terms of the gauge-fixed field ψ or in terms of the original field ϕ, since

all we have done is change variables to make the redundant integration explicit. The

regularised Ooguri action Sreg
Oo = Sreg

k + Vreg
Oo is equal to

Sreg
Oo =

∫
(dg)3 ϕ̄(g1, g2, g3, g0)ϕ(g1, g2, g3, g0) (A.11)

+

∫
(dg)9ϕ(g1, g2, g3, g4)ϕ(g4, g5, g6, g7)ϕ(g7, g3, g8, g9)ϕ(g9, g6, g2, g0)ϕ(g0, g8, g5, g1) .

This now appears to be a function of g0 which is not integrated over, but is in fact inde-

pendent of g0 because of the gauge invariance property of ϕ, and one can set g0 = e, for

instance.

The various quantities (actions, convolutions of operators, etc.) appearing in GFTs

for noncompact groups then have to be understood as defined in terms of the homogeneous

space obtained after imposing the closure constraint, thus eliminating the redundant inte-

grations. However, for convenience in the notation and in the presentation of the various

structures, we are not going to write them explicitly in this form.

B Dynamics of the Bianchi IX model

For completeness and to clarify our choice of variables, we derive the dynamics of the

anisotropic but homogeneous Bianchi IX universe in general relativity from scratch. Similar

derivations can be found in textbooks such as [34, 80].

Although this is in general not a consistent procedure, it turns out that one can

substitute the ansatz of a spatially homogeneous geometry, with spatial slices given by

3-spheres with the round metric, into the Einstein-Hilbert action. This ansatz corresponds

to a tetrad given by

ei = a(i) 0e(i) (i = 1, 2, 3) , e0 = N dt , (B.1)

where ai and N are functions of time only, there is no summation over the index i, and 0ei

define a (fiducial) basis of left-invariant one forms on S3 ≃ SU(2) satisfying the Maurer-

Cartan relations

d0ei = −1

2
ǫijk

0ej ∧ 0ek . (B.2)
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Solving Cartan’s equation of structure deI = −ωIJ ∧ eJ for the Levi-Civita connection

ω gives

ωi0 =
ȧ(i)

a(i)N
e(i) , ω1

2 =
1

2

(
− a1

a2a3
− a2

a1a3
+

a3

a1a2

)
e3 , cyclically for ω3

1, ω
2
3 . (B.3)

When computing the Riemann tensor RIJ = dωIJ+ωIJ∧ωJK one has to keep in mind that

only the components RIJ IJ contribute to the Ricci scalar. The relevant contributions are

Ri0 ⊃
(

ä(i)

a(i)N2
− ȧ(i)Ṅ

a(i)N3

)
ei ∧ e0 , (B.4)

R12 ⊃
(

ȧ1ȧ2

a1a2N2
+

1

4

((
a1

a2a3

)2
+

(
a2

a1a3

)2
− 3

(
a3

a1a2

)2
+

2

(a1)2
+

2

(a2)2
− 2

(a3)2

))
e1∧ e2

and cyclically for R31 and R23. The Ricci scalar is

R = RIJ IJ =
∑

i

(
äi

aiN2
− ȧiṄ

aiN3
+

1

2(ai)2

)
+

ȧ1ȧ2

a1a2N2
+ 2 more− 1

4

(
a1

a2a3

)2

+ 2 more

(B.5)

where the “2 more” terms denote cyclic permutations. Up to a constant coming from

integration over the three-sphere that we set to one, the Lagrangian L =
∫
d3x |e|R is

L =
ä1a2a3

N
− ȧ1Ṅa2a3

N2
+
ȧ1ȧ2a3

N
+
N

4

(
−(a1)3

a2a3
+

2a2a3

a1

)
+ cyclic perm. (B.6)

or after integration by parts, discarding the boundary term,

L = − ȧ
1ȧ2a3

N
+
N

4

(
−(a1)3

a2a3
+

2a2a3

a1

)
+ cyclic perm. (B.7)

Various choices for the canonical variables can be found in the literature. If one sticks

with the ai and their conjugate momenta pi, p1 = − 1
N (a2ȧ3 + ȧ2a3) etc., the Hamiltonian

H = ȧipi − L is

H =
N

4a1a2a3

(
−2a1a2p1p2 + 2 more +

∑

i

a2i p
2
i

)
+
N

4

(
(a1)3

a2a3
− 2a2a3

a1
+ cyclic perm.

)
,

(B.8)

which takes the form of kinetic term plus anisotropy potential (this would vanish for Bianchi

I). The conventional choice for the lapse function is N = a1a2a3 which simplifies the form

of H greatly:

H =
1

4

∑

i

a2i p
2
i −

1

2
(a1a2p1p2 + a1a3p1p3 + a2a3p2p3)

+
(a1)4 + (a2)4 + (a3)4

4
− (a1)2(a2)2 + (a1)2(a3)2 + (a2)2(a3)2

2
. (B.9)
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For the geometric variables appearing in the GFT Fock space, one might choose different

variables which are quadratic in the scale factors ai, such as A1 = a2a3 and cyclically. In

terms of the Ai the Lagrangian becomes

L =

√
A1A2A3

4N

((
Ȧ1

A1

)2
− 2Ȧ1Ȧ2

A1A2

)
+
N

4

(
−(A2A3)3/2

(A1)5/2
+

2(A1)3/2√
A2A3

)
+cyclic perm. (B.10)

and the Hamiltonian is, with the same choice of lapse N =
√
A1A2A3,

H = −(A1A2p1p2+A
1A3p1p3+A

2A3p2p3)+

(
A2A3

2A1

)2
+

(
A1A3

2A2

)2
+

(
A1A2

2A3

)2

− 1

2

∑

i

(Ai)2

(B.11)

where pi are now the conjugate momenta to Ai.

A different common choice of variables is given by hi = (ai)2 so that the spatial metric

is given by
∑

i h
i(0ei ⊗ 0ei). In these variables, also used in [80], the Lagrangian is

L = − 1

4N
ḣ1ḣ2

√
h3

h1h2
+ 2 more +

N

4

(
−(h1)3/2√

h2h3
+ 2

√
h1h2

h3
+ cyclic perm.

)
(B.12)

and again choosingN =
√
h1h2h3 we obtain the Hamiltonian (compare section 4.1.2 in [80])

H=
∑

i

(hi)2p2i − 2
(
h1h2p1p2+h

1h3p1p3+h
2h3p2p3

)
+

1

4

∑

i

(hi)2 − 1

2

(
h1h2+h1h3+h2h3

)
.

(B.13)

with pi now conjugate to hi.

Choosing a different Bianchi model would correspond to a different anisotropy potential

(essentially the same terms with different coefficients) but the same kinetic term. Going

to Riemannian signature corresponds to changing the overall sign of the kinetic term.

C The homogeneous space SL(2,C)/SU(2)

Here we discuss the geometry of this homogeneous space which appears as the space of

unit timelike normal vectors in 4d Lorentzian geometry.

First, we note that the Lie algebra sl(2,C) consists of all 2 × 2 complex traceless

matrices. A convenient basis for this (real) Lie algebra is given by

T1 =

(
0 1

0 0

)
, T2 =

(
0 i

0 0

)
, T3 =

(
1 0

0 −1

)
,

T4 = iσ1 =

(
0 i

i 0

)
, T5 = iσ2 =

(
0 1

−1 0

)
, T6 = iσ3 =

(
i 0

0 −i

)
, (C.1)

where σi are the Pauli matrices. Clearly T4, T5 and T6 are generators of an SU(2) subgroup;

there is also a Bianchi V subalgebra generated by T1, T2 and T3:

[T1, T2] = 0 , [T1, T3] = −2T1 , [T2, T3] = −2T2 . (C.2)
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This corresponds to the Lie algebra of the group Hom(2) of homotheties of the plane, which

here appears as the Borel subgroup of SL(2,C). A general SL(2,C) element can then be

written as

g =

(
eλ eλw

0 e−λ

)(
x y

−ȳ x̄

)
=

(
eλ(x− w ȳ) eλ(y + w x̄)

−e−λȳ e−λx̄

)
, λ ∈ R , x, y, w ∈ C , |x|2+|y|2 = 1 .

(C.3)

In this decomposition, λ and the real and imaginary parts of w = α + iβ can be seen as

coordinates on the homogeneous space SL(2,C)/SU(2). The coordinates ~π on SU(2) that

we introduced in section 5.2 (and which cover only half of SU(2)) correspond to y = π2+iπ1
and x =

√
1− ~π2 + iπ3.

One can construct a left-invariant metric on the homogeneous space from left-invariant

one-forms on SL(2,C), obtained from expanding

g−1 dg = ĝ−1 dĝ + ĝ−1 h−1 dh ĝ (C.4)

in the basis of sl(2,C), and we are using the decomposition g = h ĝ as in (C.3). The first

term alone gives the left-invariant forms on SU(2),

ωi = ǫijk πj dπk +
√
1− ~π2 dπi +

πi√
1− ~π2

~π · d~π ; (C.5)

contracting these with a multiple of the su(2) Killing form gives the bi-invariant metric

on SU(2),

δij ωi ⊗ ωj =

[
δij + πiπj

1

1− ~π2

]
dπi dπj , (C.6)

which is the round metric on the three-sphere. From the second term in (C.4) one can

compute the remaining contributions to the SL(2,C) left-invariant forms to get

τ1 = 4dλ
(
π1π3 + π2

√
1− ~π2

)
+ (2α dλ+ dα)(1− 2(π2

2
+ π2

3
)) + 2(2β dλ+ dβ)

(
π3
√
1− ~π2 − π1π2

)

τ2 = 4dλ
(
π1
√
1− ~π2 − π3π2

)
− 2(2α dλ+ dα)

(
π3
√

1− ~π2 + π1π2
)
+ (2β dλ+ dβ)(1− 2(π2

1
+ π2

3
))

τ3 = dλ(1− 2(π2

1
+ π2

2
)) + (2α dλ+ dα)

(
π1π3 − π2

√
1− ~π2

)
− (2β dλ+ dβ)

(
π2π3 + π1

√
1− ~π2

)

τ4 = 2dλ
(
π3π2 − π1

√
1− ~π2

)
+ 2(2α dλ+ dα)π1π2 + (2β dλ+ dβ)(π2

1
− π2

2
) + ω1

τ5 = −2dλ
(
π1π3 + π2

√
1− ~π2

)
+ (2α dλ+ dα)(π2

2
− π2

1
) + 2(2β dλ+ dβ)π1π2 + ω2

τ6 = (2β dλ+ dβ)
(
π1π3 − π2

√
1− ~π2

)
+ (2α dλ+ dα)

(
π2π3 + π1

√
1− ~π2

)
+ ω3 . (C.7)

In the basis we have chosen, the Killing form on sl(2,C) is non-diagonal; its (nor-

malised) non-zero elements are

K15 = K24 = −1 , K33 = 2 , K44 = K55 = K66 = −2 . (C.8)

It has three positive and three negative eigenvalues, corresponding to the compact and

noncompact directions. The bi-invariant metric on SL(2,C) is hence

gSL(2,C) = −(τ1⊗τ5+τ5⊗τ1)−(τ2⊗τ4+τ4⊗τ2)+2τ3⊗τ3−2 (τ4 ⊗ τ4 + τ5 ⊗ τ5 + τ6 ⊗ τ6) .

(C.9)
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A natural left-invariant metric on the homogeneous space is now obtained by orthog-

onally projecting gSL(2,C) to the orbits of the action of SU(2), à la Kaluza-Klein:

gSL(2,C) = −2

(
τ4 +

1

2
τ2

)2

− 2

(
τ5 +

1

2
τ1

)2

− 2τ26 + 2τ23 +
1

2
τ21 +

1

2
τ22 . (C.10)

The last three terms then give a metric on the quotient space SL(2,C)/SU(2) which

is simply

gSL(2,C)/SU(2) = 2dλ2 +
1

2
(2α dλ+ dα)2 +

1

2
(2β dλ+ dβ)2 . (C.11)

As expected from the construction, any dependence on π drops out. The metric (C.11)

has constant negative curvature, and is explicitly given in terms of the left-invariant

forms on Hom(2). The left action of Hom(2) on itself is a subgroup of the group of

isometries SL(2,C).

Eq. (C.11) viewed as a metric on the group Hom(2) is not right-invariant (with respect

to the right action of Hom(2) on itself), as can be seen from computing the right-invariant

forms on Hom(2),

υ1 = dλ , υ2 = e2λ dα , υ3 = e2λ dβ . (C.12)

The right-invariant metric on Hom(2) given by δijυ
i ⊗ υj gives another metric of constant

negative curvature with isometry group SL(2,C). Note that already the left-invariant and

right-invariant volume elements on Hom(2) differ; the group is not unimodular, and its

Killing form is degenerate.

The relation of the coordinates (λ, α, β) to more familiar coordinate systems on hyper-

bolic space is the following: consider the embedding of hyperbolic space into R3,1 by

− t2 + x2 + y2 + z2 = −1 (C.13)

and choose null coordinates

u =
t+ x

2
, v =

t− x

2
. (C.14)

One can now solve (C.13) for u, describing hyperbolic space as the submanifold of R3,1

given by

(t, x, y, z) =

(
1 + y2 + z2

4v
+ v,

1 + y2 + z2

4v
− v, y, z

)
. (C.15)

The induced metric is found to be

gH3 =
1 + y2 + z2

v2
dv2 − 2y

v
dv dy − 2z

v
dv dz + dy2 + dz2 . (C.16)

Changing coordinates to v = eω (notice that v > 0 if one considers the hyperboloid of

future timelike vectors in Minkowski space), this reduces to

gH3 =
(
1 + y2 + z2

)
dω2 − 2y dω dy − 2z dω dz + dy2 + dz2 . (C.17)

The identification with the coordinates used in (C.11) is then ω =
√
2λ, y = −α/

√
2,

z = −β/
√
2.
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