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Abstract

We review a plethora of relevant experimental results on internal homogeneous crystal nucleation in silicate glasses obtained in the
last four decades, and their analyses in the framework of the classical nucleation theory (CNT). The basic assumptions and equations of
CNT are outlined. Particular attention is devoted to the analysis of the properties of the critical nuclei, which, to a large extent, govern
nucleation kinetics. The main methods employed to measure nucleation rates are described and the possible errors in the determination
of the crystal number density (and, correspondingly, in nucleation rates) are discussed. The basic regularities of both time and temper-
ature dependencies of nucleation rates are illustrated by numerous experimental data. Experimental evidence for a correlation between
maximum nucleation rates and reduced glass transition temperatures is presented and theoretically justified. Special attention is given to
serious problems that arise in the quantitative description of nucleation rates when using the CNT, for instance: the dramatic discrepancy
between calculated and measured nucleation rates; the high value of the crystal nuclei/melt surface energy, rcm, if compared to the
expected value estimated via Stefan’s rule; the increase of rcm with increasing temperature; and the discrepancies between the values
of the surface energy and the time-lag for nucleation when independently estimated from nucleation and growth kinetics. The analysis
of the above mentioned problems leads to the following conclusion: in contrast to Gibbs’ description of heterogeneous systems under-
lying CNT, the bulk thermodynamic properties of the critical nuclei generally differ from those of the corresponding macro-phase result-
ing simultaneously in significant differences of the surface properties as compared with the respective parameters of the planar interfaces.
In particular, direct experimental evidence is presented for compositional changes of the crystal nuclei during formation of the critical
nuclei and their growth from critical to macro-sizes. In addition, detailed examinations of crystal nucleation and growth kinetics show a
decrease of both the thermodynamic driving force for nucleation and of the critical nuclei/liquid interfacial energy, as compared with the
respective properties of the macro-phase. However, despite significant progress in understanding crystal nucleation in glasses in the past
four decades, many problems still exist and this is likely to remain a highly interesting subject for both fundamental and applied research
for a long time.
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1. Introduction

Glasses can be defined as non-crystalline solids that
undergo a glass transition in the course of their preparation.
One of the most important and traditional (but not the only)
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method of vitrification consists in supercooling a liquid
escaping crystallization. Thus, when a liquid is cooled down
at sufficiently high rates, crystallization can occur to a lim-
ited degree or can be completely arrested down to tempera-
tures corresponding to very high viscosities, in the range
g P 1013–1012 Pa s � g(Tg), where Tg is the glass transition
temperature. Below this temperature, the viscosity is so high
that large-scale atomic rearrangements of the system are no
longer possible within the time-scale of typical experiments,
and the structure freezes-in, i.e., the structural rearrange-
ments required to keep the liquid in the appropriate meta-
stable equilibrium state cannot follow any more the
change of temperature. This process of freezing-in the struc-
ture of an undercooled liquid transforming it into a glass is
commonly denoted as glass transition. Typical glass-form-
ing liquids, such as silicate melts, are usually characterized
by: (i) relatively high viscosities (g > 100 Pa s) at the melting
point or liquidus and (ii) a steep increase of the viscosity
with decreasing temperature. These properties favor vitrifi-
cation. The mechanism above sketched leads to the conclu-
sion that the glass structure must be similar to that of the
parent undercooled liquid at temperatures near Tg and,
indeed, this similarity has been experimentally observed.

Glass is thermodynamically unstable with respect to the
undercooled liquid, i.e., there is no energy barrier between
the glass and its corresponding undercooled (metastable)
liquid. At a first glance, the high stability of the glassy state
reflects only a relaxation problem; the system cannot
evolve to a metastable state due to the kinetic inhibition
of this process at low temperatures. On heating, relaxation
of the glass structure may occur to reach first a metastable
liquid state corresponding to the given temperature and
then, eventually, go over into the crystalline state. The lat-
ter evolution process, as will be shown below, involves
overcoming of a thermodynamic potential barrier. At
room temperature glasses can exist for extremely long peri-
ods of time because their high viscosity inhibits structural
rearrangements required for crystal nucleation and growth.
However, when a glass is heat-treated for a sufficiently long
time at temperatures within or above the glass transition
range, devitrification readily starts, as a rule, from the sur-
face and sometimes in the bulk via heterogeneous or homo-
geneous nucleation (see below).

Nucleation, or the process of formation of the precur-
sors of the crystalline phases, may occur by different mech-
anisms. Commonly one divides these processes into
homogeneous and heterogeneous nucleation. Homoge-
neous nucleation is a stochastic process occurring with
the same probability in any given volume (or surface) ele-
ment. Alternatively, nucleation occurring on preferred
nucleation sites, e.g., such as pre-existing interfaces, previ-
ously nucleated phases, and surface defects, is denoted as
heterogeneous nucleation. Depending on the location
where nucleation takes places, volume (bulk) and surface
crystallization can be distinguished.

Glass-forming melts are interesting models for studies of
nucleation, growth and overall crystallization phenomena.
Their high viscosities result in relatively low (measurable)
rates of crystallization, which may permit detailed studies
of nucleation and growth kinetics. Homogeneous nucle-
ation can sometimes be observed at deep undercoolings
(T/Tm < 0.6) because glass-forming melts are excellent sol-
vents for solid impurities that thus only exist as ionic spe-
cies when the liquid is vitrified. In addition, the rapid
increase of viscosity with decreasing temperature makes it
possible to ‘freeze-in’ different states of the crystallization
process by quenching previously heat-treated specimens
to room temperature. Hence, as it was figuratively said in
Ref. [1], ‘glasses did and may serve as the Drosophila of
nucleation theory in order to test different approaches’.
Moreover, silicate glass is one of the oldest materials pro-
duced by mankind, having its origin about 6000 years
ago in ancient Mesopotamia [2], but are still gaining tech-
nological importance.

It is evident from the above discussion that crystalliza-
tion and glass formation are competitive processes. In this
way, in order to avoid uncontrolled crystallization of glassy
articles one needs to know the main factors that govern
crystal nucleation and growth. On the other hand, con-
trolled nucleation and crystallization of glasses underlay
the production of glass-ceramics invented in the mid-
1950s [3], which are widely used in both domestic and
high-technology applications. By the foregoing reasons,
the investigation of glass crystallization kinetics is of great
interest from both practical and theoretical points of view.
Since, in many respects, the nucleation stage determines the
pathways of overall crystallization, in this review we will
focus our attention on nucleation, with particular emphasis
on the analysis of relevant experimental results in the
framework of the classical nucleation theory (CNT).
Hereby we will restrict ourselves to selected data for homo-
geneous nucleation obtained mainly with silicate glasses.

The present paper is organized as follows: In Section 2,
the basic equations of CNT are briefly summarized, which
are then employed for nucleation data analysis. Section 3
presents the main methods that may by employed to exper-
imentally determine nucleation rates. Section 4 is devoted
to experimental findings concerning transient and steady-
state crystal nucleation in glasses. In particular, evidence
for a strong correlation between nucleation rates and
reduced glass transition temperature is given. An analysis
of the problems arising in the application of CNT to exper-
imentally observed nucleation rate data is performed in
Section 5. The paper is completed by concluding remarks.

2. Basic assumptions and equations of classical nucleation

theory (CNT)

2.1. Historical notes

In its original form, classical nucleation theory is based
on the thermodynamic description of heterogeneous sys-
tems developed by Gibbs [4]. Following Gibbs, a real inho-
mogeneous system is replaced by a model system consisting
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of two homogeneous phases divided by a mathematical
surface of zero thickness. While the properties of the ambi-
ent phase are known, the bulk properties of the critical
clusters are determined via Gibbs’ equilibrium conditions.
A detailed analysis shows that the cluster bulk properties
determined in such way are widely identical to the proper-
ties of the newly evolving macroscopic phase coexisting in
stable equilibrium with the ambient phase at a planar inter-
face. The free energy of the heterogeneous system – consist-
ing of a cluster of the newly evolving phase in the ambient
phase – is expressed as the sum of the bulk contributions of
the nucleus and the ambient phase. These bulk terms are
supplemented by interfacial contributions, the main one
is given by the product of the interfacial area and specific
surface energy.

When applying the theory to cluster formation, these
surface terms initially result in an increase of the character-
istic thermodynamic potential, which leads to the existence
of a critical cluster size. Only clusters with sizes larger than
the critical size are capable to grow up to macroscopic
dimensions in a deterministic way. The change of the char-
acteristic thermodynamic potential resulting from the for-
mation of clusters of critical size is commonly denoted as
the work of critical cluster formation. This quantity reflects
the thermodynamic aspects in the description of nucleation.

In addition to thermodynamic aspects of nucleation, the
dynamics of cluster formation and growth must be appro-
Fig. 1. From top left to right bottom: J.W. Gibbs, G. Tamman
priately incorporated into the theory. Different approaches
have been employed depending on the particular problem
being analyzed. The application of CNT to the formation
of crystals originates from the work of Kaischew and
Stranski [5]. These authors investigated this problem for
the case of crystal formation from supersaturated vapor
employing the approach developed by Volmer and Weber
[6] for vapor condensation. Further advances in CNT
including nucleation in the condensed systems, which are
the focus of the present review, were connected with the
work of Becker and Döring [7], Volmer [8], Frenkel [9],
Turnbull and Fisher [10], Reiss [11] and others. Photo-
graphs of some of these pioneers of nucleation theory are
shown in Fig. 1.

According to CNT, the description of homogeneous and
heterogeneous nucleation can be basically performed by
the same methods. We will present first the results for
homogeneous nucleation and afterwards will introduce
the modifications required to account for the effect of insol-
uble solid impurities and interfaces that may lead to heter-
ogeneous nucleation.

2.2. Homogeneous nucleation

As we already discussed, homogeneous nucleation sup-
poses the same probability of critical nucleus formation
in any given volume or surface element of the system under
n, M. Volmer, R. Kaischew, J. Frenkel, and D. Turnbull.
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study. According to CNT (see, e.g., Refs. [12,13]), the
steady-state homogeneous volume nucleation rate can be
written as

I st ¼ Io exp �W � þ DGD

kBT

� �
;

Io ¼ 2N 1
kBT

h
a2rcm

kBT

� �1=2

:

ð1Þ

This equation determines the so-called steady-state nucle-
ation rate, Ist, i.e., the number of supercritical clusters
formed per unit time in a unit volume of the system. The
pre-exponential term, Io, depends only weakly on tempera-
ture (if compared to the exponential function) and varies
between 1041 and 1043 m�3 s�1 for different condensed sys-
tems [14]. In Eq. (1) kB and h are the Boltzmann and
Planck constants, respectively; N1 � 1/a3 is the number of
structural (formula) units, with a mean size a, per unit vol-
ume of melt; rcm is specific surface free energy of the crit-
ical nucleus-melt interface; DGD is the activation free
energy for transfer of a ‘structural unit’ from the melt to
a nucleus (kinetic barrier). To a first approximation, the ki-
netic barrier for glass-forming liquids is often replaced by
the activation free energy for viscous flow, DGg. W* is the
thermodynamic barrier for nucleation, i.e., the increase in
the free energy of a system due to the formation of a nu-
cleus with critical size, r*. The critical nucleus size can be
determined from the condition

oW
or
¼ 0; W ¼ c1r2rcm � c2r3DGV ; ð2Þ

where DGV = Gl � Gc is the difference between the free
energies of liquid and crystal per unit volume of the crystal
(i.e., the thermodynamic driving force for crystallization)
and c1 and c2 are shape factors. In the case of a spherical
nucleus, we obtain the expressions

r� ¼
2rcm

DGV
ð3Þ

and

W � ¼
16p

3

r3
cm

DG2
V

: ð4Þ

The thermodynamic driving force for crystallization is
given by

DGV V m ¼
DHm

T m

ðT m � T Þ �
Z T m

T
DCp dT 0 þ T

Z T m

T

DCp

T 0
dT 0;

ð5Þ
where Vm is the molar volume, DHm and Tm are the molar
heat of melting and the melting temperature of the crystal,
respectively, and DCp ¼ Cl

p � Cc
p is the difference between

the molar heat capacities of liquid and crystal at constant
pressure. The experimental values of DGV are normally
bounded by the approximations usually assigned to Turn-
bull (Eq. (6)) and Hoffman (Eq. (7)) that assume DCp = 0
and DCp = constant, respectively [13],
DGV ðT Þ ¼ DH V 1� T
T m

� �
; ð6Þ

DGV ðT Þ ¼ DH V 1� T
T m

� �
T

T m

: ð7Þ

Here DHV is the melting enthalpy per unit volume of the
crystal. One should note, however, that Eq. (6) was first
employed by Thomson and Volmer (cf. Ref. [8]).

Eq. (1) describes the time-independent steady-state
nucleation. Such nucleation regime occurs if a stationary
size distribution of the newly evolving subcritical (r < r*)
and critical (r = r*) nuclei is established in the system.
The cooling rates typically employed for glass formation
from the melt, and the heating rates of small glass speci-
mens to any given temperature T under investigation are
commonly too high to maintain a steady-state distribution
of nuclei in the system. Hence, some time period is needed
for a reconstruction of the initial nuclei distribution
towards the time-independent distribution corresponding
to the temperature of study. During this period the nucle-
ation rate varies and approaches a steady-state value given
by Eq. (1).

The time required to establish steady-state nucleation in
a system is commonly denoted as the time-lag for nucle-
ation, s. It characterizes the duration for the onset of the
steady-state distribution, and hence the evolution of the
nucleation rate, I(t), towards a steady-state value, Ist. In
the cases when the initial concentration of critical and
sub-critical nuclei may be neglected, s and I(t) can be
expressed by Eqs. (8) and (9), respectively [15,16],

s ¼ 16h
p

rcm

DG2
V a4

exp
DGD

kBT

� �
; ð8Þ

IðtÞ ¼ I st 1þ 2
X1
m¼1

ð�1Þm exp �m2 t
s

� �" #
: ð9Þ

Integration of Eq. (9) results in the following expression for
the time-dependence of the number of super-critical nuclei
per unit volume of the system, NV,

NVðtÞ
I sts

¼ t
s
� p2

6
� 2

X1
m¼1

ð�1Þm

m2
exp �m2 t

s

� �" #
: ð10Þ

For sufficiently long times, t, as compared with s this
expression can be approximated by

NVðtÞ ¼ I st t � p2

6
s

� �
: ð11Þ

For the experimental estimation of s, it is convenient to
use the induction period, tind, defined via Eq. (12) as

s ¼ 6

p2
tind: ð12Þ

The induction period, tind, is easily determined as the inter-
section of the asymptote (Eq. (11)) with the time-axis. An-
other more correct way to estimate Ist and s is by fitting the
experimental values of N(t) to Eq. (10).
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2.3. Heterogeneous nucleation

The existence of foreign solid particles and phase
boundaries may favor nucleation. This effect is due mainly
to the diminished thermodynamic barrier as compared to
that for homogeneous nucleation, owing to a decrease of
the contribution of the effective surface energy to the work
of critical cluster formation. For example, the thermody-
namic barrier for nucleation in the case of condensation
on planar interfaces is given by [12]

W het
� ¼ W �U; U ¼ 1

2
� 3

4
cos hþ 1

4
cos3 h: ð13Þ

Depending on the value of the wetting angle, h, the param-
eter U varies from zero to unity. The value of U depends on
the mechanism of nucleation catalysis.

In order to adapt the expression for the steady-state
nucleation rate, Eq. (1), to the description of heterogeneous
nucleation, the number of ‘structural’ units per unit vol-
ume, N1, which appears in the pre-exponential term of
Eq. (1), must be replaced by the number, NS, of ‘structural
units’ in contact with the catalyzing surface per unit vol-
ume. Hence, in the case of heterogeneous nucleation, the
following equation can be written for the steady-state
nucleation rate:

Ihet
st ffi NS kBT

h
exp �W �Uþ DGD

kBT

� �
: ð14Þ

Catalyzing surfaces may be represented, for instance, by
dispersed solid particles that act as nucleation sites. In this
case, their curvature and number may strongly affect the
nucleation kinetics [14,17]. The exhaustion of available
nucleation sites due to crystal nucleation leads to satura-
tion of the kinetic curve N versus t. If, however, for some
reason such saturation is not achieved, the knowledge of
the N(t)-dependence is not sufficient to conclude what type
of nucleation took place.

3. Experimental methods to estimate nucleation rates

3.1. General problem

At high undercoolings corresponding to the range of
measurable homogeneous (volume) nucleation rates in typ-
ical glass-forming liquids, the critical nuclei are undetect-
able by common experimental techniques, hence they
must first be developed to a visible size to allow one to
determine (e.g., using a microscope) their number density,
N, as a function of time, allowing then to estimate the
nucleation rate as I = dN/dt. In order to perform such
task, different methods have been developed.

3.2. Double-stage (‘development’) method

If the overlapping of the nucleation and growth rate
curves is weak (i.e., the crystal growth rates are very low
at temperatures corresponding to high nucleation rates),
the observation of the nucleated crystals and the estimation
of the crystal number density is a quite difficult task. For
these cases, about a hundred years ago, Gustav Tammann
(who was studying crystallization of organic liquids) pro-
posed the following procedure, which is now known as
the Tammann or ‘development’ method [18]. Crystals
nucleated at a low temperature, Tn, are grown up to micro-
scopic sizes at a higher temperature, Td > Tn. The develop-
ment temperature Td has to meet the following conditions
for nucleation (I) and growth (U) rates: I(Td)� I(Tn) and
U(Td)� U(Tn). After a lapse of seventy years, Ito et al.
[19] and Filipovich and Kalinina [20] independently applied
Tammann’s method to the study of crystal nucleation
kinetics in lithium disilicate glasses. Since then, this method
has been widely employed for glass crystallization studies.
Some problem inherent in this method and connected with
the possible dissolution of some part of the originally
formed (at the nucleation temperature) nuclei at the devel-
opment temperature will be discussed later.

3.3. Single-stage methods

3.3.1. The direct method
When there is considerable overlap of the I(T) and U(T)-

curves, the number density of crystals can be measured
directly after single-stage heat treatments at Tn. Then, the
obtained N(Tn, t)-curve will be shifted (relatively to the true
one) to higher times by a time to = (rres � r*)/U(Tn) ffi rres/
U(Tn) that is needed to grow the crystals up to the micro-
scope resolution limit, e = 2rres [21]. Finally, one must cor-
rect the number densities to account for stereological
errors. This procedure will be described in Section 3.4.

3.3.2. Crystal size distribution analysis

Continuous nucleation and growth normally result in a
broad distribution of crystal sizes, i.e., the first nucleated
crystal has the largest size and so forth. If the crystal
growth rate is known, one can calculate the ‘birth dates’
of crystals belonging to different size groups and then plot
a N(t)-curve. Toschev and Gutzow derived the basic for-
mulas relating the size distribution of spherical isolated
particles embedded in a continuous matrix with that of
their circular intersections on a sample cross-section for
both steady-state and transient volume nucleation [22].
For surface crystallization the size distribution is easily
constructed from direct measurements. This method,
known as Köster’s method, also works in the case of heter-
ogeneous nucleation from a finite number of active centers
when the latter are depleted in a relative short time, and
further advancement of crystallization only occurs via crys-
tal growth. It has been systematically employed to study
the surface nucleation rates in metallic [23] and silicate
glasses [24].

3.4. Stereological corrections

The use of reflected light microscopy can lead to large
errors in the determination of the number of crystals per
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Fig. 2. Fractional underestimation of the number of spherical particles
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particle diameter. Solid and dashed curves refer to cases (i) and (ii),
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unit volume due to the stereological methods employed to
calculate volume properties (size distributions, numbers,
etc.) based on statistical evaluations performed on cross-
sections through the specimens. Thus a significant fraction
of the cut crystals (in the cross-sections) can be smaller
than the resolution limit of the microscope used, which
may lead to an underestimation of the crystal numbers
and, consequently, of the determined values of nucle-
ation rates. In Refs. [25,26], equations were derived for
the fractional underestimation, f, of the number of spheri-
cal particles per unit volume and of the nucleation rates,
as obtained from stereological techniques for reflected
light microscopy or SEM, for typical cases of crystal nucle-
ation in glasses. The following two cases bound the
most common experimental situations: (i) a monodisperse
system of spherical particles that can result from instan-
taneous heterogeneous nucleation; (ii) a uniform size dis-
tribution of spherical particles from the critical size to
DM, where DM is the largest diameter of the clusters in
the distribution. Such distribution is typical for simulta-
neous nucleation and growth with constant rates in a
single-stage heat treatment. The equations for these cases
are:

Case (i). Monodisperse systems:

f ¼ 2

p
arcsinðr1Þ; ð15Þ

Case (ii). Uniform size distribution from the critical size to

DM:

f ¼ 1� 2

p
cos h1½1� lnð1þ sin h1Þ	 þ h1 þ r1 ln r1 � r1½ 	

� 	
:

ð16Þ

In above equations, h1 = arccosr1, r1 
 e/DM, and e is the
resolution limit of the microscope used. Comparison with
experimental nucleation data for two silicate glasses dem-
onstrated that these equations predict well the observed
underestimations of the number of spherical particles.
Fig. 2 shows the function f for cases (i) and (ii).

To minimize these errors employing reflected light opti-
cal microscopy methods, one should use high magnification
objective lenses or SEM. Alternatively, transmission meth-
ods could be used because they lead to much smaller errors
than reflection techniques.

Similar underestimates occur when one tries to deter-
mine volume fractions crystallized, and these may be sub-
jected to significant errors when the largest grain size of
the distribution is close to the microscope resolution limit
[26]. For transformations occurring from a fixed number
of nuclei, the systematic errors are smaller than those
observed in the continuous nucleation case, but can still
be significant when reflected light microscopy is used.
Transmission methods are more time-consuming, but lead
to much smaller errors than reflection techniques.
3.5. Probabilistic approach for the analysis of the

nucleation process

For the sake of completeness we should briefly mention
a method based on the stochastic nature of nucleation [27].
The appearance of critical nuclei is a stochastic event that
can be characterized by an average waiting period, �s,

�s ¼ 1

IV
; ð17Þ

where I is the nucleation rate and V is the volume of the
system under study.

Since the probability of critical nucleus formation due to
a successful series of attachment and separation reactions is
very low, nucleation can be treated as a Poissonian process.
Hence the probability of appearance of one critical nucleus
in a time period s1 is

P 1ðs1Þ ¼ ks1 expð�ks1Þ; ð18Þ
where k ¼ 1=�s.

In cases of high nucleation rates, their measurement is
normally limited to relatively low undercoolings that corre-
spond to high values of the crystal growth rate. Thus, the first
few super-critical nuclei trigger crystallization of the whole
sample. Fitting the experimental distribution of waiting times
of the first nucleus, s1, to Eq. (18) one can estimate an aver-
age waiting period, �s, and then the nucleation rate from Eq.
(17). Such analysis has been employed, e.g., for metals dis-
persed in the form of small drops when the use of other meth-
ods is connected with difficulties (see, e.g., [13,28]).

3.6. Overall crystallization kinetics

Crystal nucleation followed by subsequent growth
results in the overall crystallization of the sample. This
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process can be described by determining the volume frac-
tion of the transformed phase, a(t). The formal theory of
overall-crystallization kinetics under isothermal conditions
was developed in the late 1930s by Kolmogorov [29], John-
son and Mehl [30], and Avrami [31], and is well-known as
the JMAK theory. According to this theory, the volume
fraction of the new phase is given by

aðtÞ ¼ 1� exp �g
Z t

0

Iðt0Þ
Z t

t0
Uðt00Þdt00

� �3

dt0
" #

; ð19Þ

where g is a shape factor, which is equal to 4p/3 for spher-
ical crystals. If the nucleation (I) and growth (U) rates are
constant throughout the transformation (e.g., steady-state
homogeneous stoichiometric nucleation), Eq. (19) can be
rewritten as

aðtÞ ¼ 1� exp � gIU 3t4

4

� �
: ð20Þ

When the number of growing crystals, No, does not
change with time (as it is typical for fast heterogeneous
nucleation on a finite number of active sites), Eq. (19)
transforms to

aðtÞ ¼ 1� exp½�gNoU 3t3	: ð21Þ
Avrami proposed that, in general, the following relation

should be used:

aðtÞ ¼ 1� expð�KtnÞ: ð22Þ

In typical applications, Eq. (22) is employed in the form

lnð� lnð1� aÞÞ ¼ ln K þ n ln t: ð23Þ
The values of K and n can be estimated then by fitting the
experimental data of a(t) to Eq. (23). Thus the coefficient K

includes I and U, or No and U. The Avrami coefficient, n,
depends on both nucleation and growth mechanisms, and
can be written for the case of three-dimensional growth as

n ¼ k þ 3m; ð24Þ
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Fig. 3. Typical curves of the number density of Li2O Æ2SiO2 (a) and 2Na2O ÆC
versus time of nucleation obtained by the ‘development’ method [35,36].
where k and m are taken from the formulas N � tk and
r � tm describing the variation of crystal number (N) and
crystal size (r) with time.

The knowledge of the Avrami coefficient, n, is helpful to
understand the mechanism of phase transformation at a
given temperature. When it is possible to independently
measure the crystal growth rate, one can then calculate
the nucleation rate from the coefficient K. This method is
not as precise as direct measurements, but can give useful
information about nucleation in advanced stages of crystal-
lization, when the application of other methods is hindered
(see Section 5).

For the simplest cases of constant nucleation rate (or
constant number of crystals) and linear growth, Eqs. (20)
and (21) have been tested by using Ist, U, and No data inde-
pendently measured by optical microscopy in glasses of
stoichiometric compositions 2Na2O ÆCaO Æ3SiO2 [32] and
Na2O Æ2CaO Æ3SiO2 [33]. Good agreement was obtained
between the values of gIU3 (or gNoU3), calculated from fit-
ting the a(t)-data to the JMAK equation, and directly mea-
sured values. Recently, the JMAK-equation was also
successfully employed, together with measured crystal
growth rates, to estimate extremely high nucleation rates
in a stoichiometric glass of fresnoite composition [34].

4. Interpretation of nucleation experiments by the classical

nucleation theory

4.1. Non-steady state (transient) nucleation

4.1.1. Estimation of the time-lag in nucleation

Typical N(Tn,Td, t)-curves obtained by the ‘develop-
ment’ method are shown in Fig. 3. As we already men-
tioned, only the nuclei that achieve the critical size,
r*(Td), during heat treatment at Tn can grow at the devel-
opment temperature Td. The other nuclei have a high prob-
ability to dissolve at Td. As the result, the number of
crystals nucleated at given conditions and developed at
Td has, strictly speaking, to decrease with increasing Td
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(see Figs. 4 and 5). The total number of supercritical crys-
tals, N, nucleated at a temperature, Tn, in a time, t, is given
by

NðT n; r�ðT nÞ; tÞ ¼
Z t

0

IðT n; t0Þdt0: ð25Þ

The number of crystals nucleated in the same conditions,
but having sizes larger than the critical size, r*(Td), and
which are, consequently, capable to grow at Td, is given by

NðT n; r�ðT dÞ; tÞ ¼
Z t�t0

0

IðT n; t0Þdt0; ð26Þ

where to is the period of time that critical nuclei of size
r*(Tn) need in their growth to reach the size r*(Td). This
time interval is determined by

toðT n; T dÞ ¼
Z r�ðT dÞ

r�ðT nÞ

dr
UðT n; rÞ

: ð27Þ
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Fig. 4. Number density of crystals versus development temperature in a
lithium aluminum silicate glass subjected to nucleation treatment for 5 min
at Tn = 785 �C [37].
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Fig. 5. (a) Number density of Li2O Æ2SiO2 crystals developed at
Td = 530 �C (curves 1 and 5), 560 �C (curve 2), 594 �C (curve 3), and
626 �C (curve 4) as a function of nucleation time at Tn = 453 �C [38]. (b)
Induction time versus development temperature.
Eqs. (25) and (26) yield

NðT n; r�ðT nÞ; tÞ ¼ NðT n; r�ðT dÞ; t þ toÞ: ð28Þ
Hence, N(Tn, r*(Tn), t) plots are similar to N(Tn, r*(Td), t)-
plots with the difference that the latter is shifted along
the time-axis by a time to. Thus, the development method

can provide the correct value of the steady-state nucleation

rate, but overestimates the induction time for nucleation by

to.
The period during which heat treatment at the nucle-

ation temperature Tn does not influence crystallization at
Td can be identified with to (given by Eq. (27); here we
neglect the time of the first critical nucleus formation). This
time is indicated by an arrow in Fig. 3(a). According to Eq.
(27), the higher the growth rate U at the nucleation temper-
ature, Tn, and the closer is Td to Tn (r*(Tn) is correspond-
ingly closer to r*(Td)), the lower is to. Hence, for a strong
overlap of the nucleation and growth rate curves, the value
of to is not very high and can often be neglected. Fig. 3(b)
confirms this assumption for a 2Na2O ÆCaO Æ3SiO2 glass.
On the other hand, when the overlap of the nucleation
and growth rate curves is weak, as observed for lithium
disilicate glass, one has to reduce the measured value of
tind(Tn,Td) by a time to(Tn,Td) (see Fig. 3(a)) to estimate
tind(Tn). The value of tind(Tn) can be roughly estimated
via extrapolation of the tind(Tn,Td)-values for the
N(Tn,Td, t)-curves, obtained at different Td, to tind corre-
sponding to Td = Tn. Fig. 5(a) presents examples of such
N(Tn,Td, t)-curves for lithium disilicate glass. Fig. 5(b)
shows the values of tind, taken from these curves, versus
development temperature. When Td approaches Tn =
453 �C, tind is about 1.9 h (the average value of the linear
and quadratic polynomial extrapolations). Hence, one
can approximately estimate to as to(Td,Tn) = tind(Tn,
Td) � tind(Tn), e.g., for Td = 530 �C and Tn = 453 �C to is
about 0.9 h. A similar value is obtained by extrapolating
the initial section of the N(t)-curve 1 (see also curve 5) to
N = 0. Thus, according to Eq. (12), one can assume that
Eq. (29) holds, i.e.,

sðT nÞ ¼
6

p2
tindðT n; T dÞ � toðT n; T dÞð Þ: ð29Þ

Kinetic N(t)-curves, such as those presented by Fig. 3,
can be plotted in dimensionless coordinates (N(T, t � to)/
Ist(T)s(T) versus (t � to)/s(T)). Fig. 6(a) shows that these
coordinates allow one the combination of data for different
glasses and different temperatures in the same plot. The
experimental points are quite close to the theoretical master
curve calculated with Eq. (10). This curve corresponds to
increasingly higher nucleation rates towards the steady-
state value, Ist. The evolution of the nucleation rate calcu-
lated by Eq. (9) is shown in Fig. 6(b).

As we already mentioned in Section 3.3, if one employs
the single-stage method, the induction periods obtained
from experimental N(Tn, t)-curves must be reduced by a
period of time to � rres/U(Tn). An example of such curve,
obtained for Au-catalyzed nucleation in NaPO3 glass, is
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shown in Fig. 7. The dashed line indicates the case of
steady-state nucleation where the shift, to, is taken into
account. The comparison of this line with experimental
data gives clear evidence for the transient character of the
N(t)-curves. It should be emphasized that one of the first
experimental demonstrations of transient nucleation in
glasses was presented in Ref. [39].

4.1.2. Temperature dependence of the time-lag for nucleation

According to Eq. (8), when the degree of undercooling
increases, the time-lag s passes through a minimum. This
behavior is due to the interplay between the decrease of
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Fig. 7. Number density of crystals in NaPO3 glass doped with 0.45% Au
versus time of heat treatment at T = 332 �C obtained by a single-stage
method [39]. The dashed line refers to the steady-state nucleation rate. The
shift due to the time required to grow the crystals to visible sizes is taken
into account.
1=DG2
V and the increase of the exponential term. This min-

imum is located at a low undercooling. Since, in the case of
glass-forming silicate melts, detectable (internal) homoge-
neous nucleation rates are observed only at very deep
undercoolings, DT/Tm P 0.4 [40], at these undercoolings
only an increase of the time-lag with increasing undercool-
ing is observed. Fig. 8 illustrates this trend for lithium disi-
licate glass. The circles refer to experimental data. The solid
line is determined according to Eq. (8) with rcm = 0.2 J/m2

assuming that the activation free energy DGD is equal to
that for viscous flow, DGg. For deep undercoolings the
validity of this last assumption has been a subject of con-
troversial discussion, however, it is commonly assumed to
be valid for T > 1.2Tg (see, e.g., [42]).

4.1.3. Transient nucleation with a pre-existing nucleus

size distribution

So far we discussed transient nucleation assuming the
absence of an appreciable number of pre-existing nuclei.
This assumption is quite reasonable for interpreting time-
lag phenomena for glasses obtained via fast quenching of
the melt. In contrast, preliminary annealing of a glass at
some temperature, T1, for sufficiently long times, t P s(T1),
results in the formation of a cluster distribution that acts as
an initial distribution at the temperature T2. Then this
distribution evolves towards a steady-state distribution
corresponding to the temperature T2, complicating the
time-dependence of the nucleation rate.

For example, for lithium disilicate glass annealed at T1,
the nucleation rate at T2 > T1 passes through a maximum
before reaching the steady-state value. Fig. 9 shows the
N(t)-curves at T2 = 465 �C for a rapidly quenched parent
glass (curve 1) and for glasses that had been previously
annealed at T1 = 430 �C (curves 2 and 3). All curves were
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obtained by the ‘development’ method at Td = 626 �C.
Curves 2 and 3 demonstrate, as compared with curve 1, a
strong increase in the number of crystals, and only for
times higher than about 120 min the nucleation rate
reaches steady-state conditions corresponding to the tem-
perature T2. The evolution of the nucleation rate corre-
sponding to curve 3 is shown in Fig. 9(b).

Such unusual behavior of the nucleation kinetics is
caused by the transition of an initial distribution formed
at T1 for sizes less than r*(Td) into the steady state cluster
size distribution corresponding to T2. Since the number of
nuclei having sizes r P r*(T) increases with decreasing tem-
perature, down to T = Tm/3, a strengthening of the effect of
the preliminary heat treatment with decrease of T1 should
be expected. This is indeed the case as shown in Fig. 10.
The presented effects of the multistage heat treatments were
well-described by the numerical modeling of the cluster
evolution performed in the framework of the classical
nucleation theory [44–46] with the exception of the heat
treatments involving the temperature T1 = 430 �C [45].
Since the values of the parameters needed for the simula-
tions were estimated via a fitting procedure this disagree-
ment could be caused by the error in the Ist(430 �C)
estimation or viscosity data taken from other authors. Nev-
ertheless, the simulations clearly show that the nucleation
kinetics is governed by the evolution of the nuclei
distribution.

4.2. Steady-state nucleation

4.2.1. Temperature dependence of steady-state nucleation

rates

Some examples of steady-state nucleation rates, Ist, mea-
sured from the slope of the linear part of the N(t)-plots,
such as those shown in Fig. 3, are presented in Fig. 11
as a function of reduced temperature. The values of Ist(T)
pass through a maximum at a temperature Tmax. The
magnitudes of Ist(Tmax) 
 Imax vary from 5 · 1013 to 3 ·
102 m�3 s�1 and cover practically the whole range of avail-
able measurements of nucleation rates in silicate glasses
with stoichiometric compositions.

The reason for the existence of the nucleation rate max-
imum follows from a simple analysis of Eq. (1). Since the
pre-exponential term, Io, depends only weakly on tempera-
ture, the temperature dependence of the nucleation rate is
determined mainly by the thermodynamic and kinetic bar-
riers for nucleation. A temperature decrease produces two
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effects: a decrease of the thermodynamic barrier due to an
increase in the thermodynamic driving force for crystalliza-
tion, leading to a higher nucleation rate, and an increase of
the kinetic barrier, leading to a lower nucleation rate (the
kinetic barrier is, as mentioned earlier, often replaced by
the activation free energy for viscous flow). As a result of
these two opposite tendencies, one finds a maximum of
the steady-state nucleation rate at a temperature Tmax,
which is located well below Tm.

Eq. (4) for the thermodynamic barrier can be rewritten
as

W �

kBT
¼ C1

1

T rð1� T rÞ2
; C1 ¼

16p
3

a3
STDHm

RT m

; T r 

T

T m

:

ð30Þ
Here we used the linear approximation for the thermody-
namic driving force, Eq. (6), and the following semi-empir-
ical equation:

rcm ¼ aST
DH m

V 2=3
m N 1=3

A

ð31Þ

for the specific surface energy of the nucleus/melt interface
proposed by Skapski and Turnbull [49,50]. In Eq. (31),
DHm is the melting enthalpy per mole, Vm is the molar vol-
ume, NA is Avogadro’s number, and aST is an empirical
dimensionless coefficient, smaller than unity, reflecting the
fact that surface atoms have less neighbors than bulk
atoms. Assuming that DGD is of the same order of magni-
tude as the activation free energy for viscous flow, DGg, one
can write the kinetic barrier as

DGDðT Þ
kBT

¼ C2

T r � T or

; C2 

2:30B

T m

ffi 30ðT gr � T orÞ;

T or 

T o

T m

; T gr 

T g

T m

; ð32Þ

where To and B are the empirical coefficients of the Vogel–
Fulcher–Tammann (VFT) equation and Tg is the glass
transition temperature. The application of the VFT-rela-
tion implies the assumption of a temperature-dependent
activation free energy, DGg. In the definition of C2 we took
into account the fact that DGg/(kBT) ffi 30 at T = Tg.

Fig. 12 shows Ist(Tr)-curves calculated with Eqs. (1),
(30), and (32), reasonable estimates of the pre-exponential
term and values of the parameters C1 and C2, as indicated
in the figure caption. One can see that the decrease in the
kinetic barrier, caused by a decrease in C2 at a fixed value
of C1, results in a shift of the nucleation rate maximum to
lower temperatures (cf. curves 1–4). The reduced tempera-
ture Tr 
 T/Tm = 1/3 is a lower limit to T max

r 
 T max=T m

obtained when the kinetic barrier tends to zero (cf. curve
5). This shift is accompanied by a strong increase in the
magnitude of I(Tmax) 
 Imax. When the thermodynamic
barrier is diminished, at fixed values of C2, by decreasing
the parameter C1 (which is proportional to aST and the
reduced melting enthalpy DH r

m ¼ DH m=RT mÞ, the value
of Imax also increases (curves 1 and 6–8), but the value of
Tmax shifts to higher temperatures.

The effect of variation of the kinetic barrier on the nucle-
ation rate can be qualitatively illustrated for lithium disili-
cate [51] and sodium metasilicate [52] glasses with different
H2O content (a few percent of water often result in a signif-
icant decrease of viscosity) as shown in Fig. 13. A decrease
in the thermodynamic barrier can be also caused by a
decrease in the effective crystal/melt interfacial energy as
in the case of heterogeneous nucleation. As a result, as
was shown in Ref. [53], the temperature Tmax for heteroge-
neous surface nucleation is displaced to higher values as
compared with homogeneous nucleation.

4.3. Correlation between nucleation rate and glass

transition temperature

The methods discussed in Section 3 to measure nucle-
ation kinetics are both difficult to perform and time con-
suming. Also, owing to several restrictions, they cannot
always be employed. Hence, the knowledge of any correla-
tion between nucleation rate and easily measurable proper-
ties of glasses is highly desirable. As one example, well
before the development of nucleation theory for condensed
systems, Tammann called attention to the following ten-
dency: the higher the melt viscosity at the melting temper-
ature, the lower is its crystallizability [54].

Almost eighty years after Tammann’s pioneering
research work, James [55] and Zanotto [56], based on
numerous experimental nucleation rate data for several
silicate glasses, concluded that glasses having a reduced

glass transition temperature, Tgr 
 Tg/Tm, higher than
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�0.58–0.60, display only surface (mostly heterogeneous)
crystallization; while glasses showing volume (homogeneous)
nucleation have values Tgr < 0.58–0.60. Since at tempera-
tures T < Tm the nucleation rate is always positive, the
absence of volume nucleation for glasses having Tgr >
0.60 merely indicates undetectable nucleation on labora-
tory time/size scales. Hence, an increase in the nucleation
rate with decreasing Tgr could be expected. Indeed, a dras-
tic increase of the magnitude of Imax with decreasing Tgr

has been demonstrated by Deubener [57]. Fig. 14 presents
a plot of the Imax(Tgr)-dependence, which has been
extended in Ref. [58] and in the present work. In a rela-
tively narrow range of Tgr (from 0.47 to 0.58) shown by
55 glasses of stoichiometric and non-stoichiometric compo-
sitions, belonging to eight different silicate systems, the

nucleation rates drop by about 17 orders of magnitude! When
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Fig. 14. Maximum nucleation rate as a function of reduced glass
transition temperature for 55 silicate glasses. The lines are calculated
from CNT with C1 = 4.5 (curves 1) and 6.5 (curves 3). Solid lines refer to
C2 = 4.5 and Tor = Tgr � C2/30; dashed lines to Tor = 0.4 [58].
Tgr increases, the kinetic inhibition of nucleation proceeds
at higher temperatures and at higher values of the thermo-
dynamic barrier due to lower values of the thermodynamic
driving force. As a consequence, nucleation becomes prac-
tically undetectable at Tgr > 0.58. This result confirms the
findings of James [55] and Zanotto [56]. The lines in
Fig. 14 are calculated from CNT (Eqs. (1), (30), and (32))
with reasonable values of the parameters C1 and C2 indi-
cated in the figure caption. Remember that C1 and C2 char-
acterize the temperature independent parts of the
thermodynamic and kinetic barriers for nucleation, respec-
tively. Since Eq. (32) contains two independent parameters
C2 and Tor, the viscosity and, correspondingly, Tgr, was
varied in two different ways, by keeping either C2 (solid
line) or Tor (dashed line) fixed. In the most interesting tem-
perature range (0.5 < Tr < 0.6) these different ways of vary-
ing Tgr lead to similar results. The lines reflect correctly the
experimentally observed general trend. However, in apply-
ing the mentioned rule to particular systems one has to act
with some precaution since a substantial variation of the
thermodynamic barrier can result in a considerable varia-
tion of Imax for glasses having similar values of Tgr. For
instance, fresnoite (2BaO ÆTiO2 Æ2SiO2) and wollastonite
(CaO ÆSiO2) glasses have Tgr about 0.57, while the values
of the parameter aST are 0.4 and 0.6, respectively. The lat-
ter fact leads to a strong difference in the values of the ther-
modynamic barriers and correspondingly to a strong
difference in Imax. Also nucleation of metastable phases,
such as BaO Æ2SiO2, is possible as shown in Ref. [59].

An important parameter is the location of Tmax. It is
commonly accepted that Tmax is close to Tg. However, it
was shown in Ref. [58] that the ratio Tmax/Tg depends on
Tgr. Tmax/Tg is higher than one (i.e., Tmax exceeds Tg) at
low Tgr, approaches one at about Tgr � 0.55, and then
becomes smaller than one. This trend results in an addi-
tional increase of the kinetic barrier at Tmax with increasing
Tgr caused by the increase of g(Tmax).

Computations of Ist(T) temperature dependencies simi-
lar to those published in Ref. [58] and presented here were



Table 1
Ratio of experimental and theoretical pre-exponential, and surface energy
values calculated by CNT for different glasses [40]

Glass DCp = 0 DCp = f(T)

logðIexp
o =I theo

o Þ r�cm logðIexp
o =I theo

o Þ r�cm

Li2O Æ2SiO2 15 0.19 19 0.20
Na2O Æ2CaO Æ3SiO2 18 0.17 72 0.19
2Na2O ÆCaO Æ3SiO2 27 0.15 139 0.17

The specific interfacial energy is given in J m�2.

Table 2
Liquid–crystal surface energies (in J m�2) calculated from nucleation and
growth data [69]

Glass rcm r�cm r��cm K rr
cm

Li2O Æ2SiO2 1.4 0.20 0.152–0.156
(450 �C < T

< 485 �C)

0.19–0.23 0.050–0.060

Na2O Æ2CaO
Æ3SiO2

1.5 0.18 0.099–0.110
(580 �C < T

< 685 �C)

0.13 0.026
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performed by Turnbull in the 1960s (see, e.g., Ref. [60]).
However, at that time, with the exception of the measure-
ments of Tammann [61] and Mikhnevich [62] for organic
liquids, nucleation rate data were not available in wide
temperature ranges including Tmax. In order to verify the
existence of a correlation between Imax and Tgr, as pro-
posed here, an abundance of experimental points must be
available. This is now the case (cf. Fig. 14).

5. Nucleation rate data and CNT: some serious problems

5.1. Different approaches for the interpretation of

experimental data by CNT

As shown in the previous sections, in its original form
CNT provides a good qualitative description of nucleation
rate data for silicate glasses, however, serious problems
arise when one tries to employ this theory for a quantita-
tive interpretation of experimental data.

If one uses the Stokes–Einstein equation to connect the
kinetic barrier of nucleation with the glass viscosity one can
rewrite Eq. (1) for the steady-state nucleation rate as

I st ¼ Kg
1

g
exp � W �

kBT

� �
; Kg ¼ Io

h

4l3
; ð33Þ

where the size parameter l has the order of the Si–O bond
length. Hereby, the diffusivity across the crystal/liquid
interface is replaced by the volume diffusivity.

The use of the Stokes–Einstein equation in Eq. (33) can
be avoided if one estimates the kinetic barrier from the
nucleation time-lag. In this case, Eq. (1) takes the following
form:

I st ¼ Ks
1

DG2
V tind

exp � W �

kBT

� �
; Ks ¼ Io

8hrcm

3a4
: ð34Þ

In the analysis of crystallization kinetics in glass-form-
ing systems, it is commonly accepted – in accordance with
CNT and Gibbs’ classical description of heterogeneous sys-
tems – to use the properties of the newly evolving macro-
phase as reference states for the description of the bulk
properties of the critical nucleus. Additionally one has to
properly specify the value of the specific interfacial energy,
rcm. Since measurements of the interfacial energy of the
crystals in their own melt are confronted with serious
difficulties, one usually employs the easily measurable ther-
modynamic driving force for crystallization of the macro-
phase for the determination of the work of critical cluster
formation. Hereby, rcm is commonly taken as a fit param-
eter and is treated, to a first approximation, as a size-inde-
pendent (capillarity approximation) and temperature
independent quantity. The respective values of rcm are de-
noted in Tables 1 and 2 as r�cm. These approximations allow
one to estimate both the magnitude of the pre-exponential
term, Io, in Eq. (1) and the value of crystal-melt surface en-
ergy, rcm, from a fit of experimental data (Ist, g, or tind).
According to Eqs. (33), (34), and (4), ln(Istg) and
lnðI sttindDG2
V Þ versus 1=ðTDG2

V Þ plots should yield straight
lines. Their intercepts and slopes can be employed to eval-
uate Io and r�cm, respectively. However, these approxima-
tions lead to the following problems:

(i) The use of Eq. (33) [55,63] and Eq. (34) [64] leads to
drastic discrepancies between the experimental, Iexp

o ,
and theoretical, I theo

o , values of the pre-exponential
factor. This discrepancy was first observed for crystal
nucleation in undercooled Ga [65] and Hg [66]. In
order to illustrate this issue, Table 1 shows the
ðI exp

o =I theo
o Þ-ratio, and surface energy values for some

stoichiometric silicate glasses calculated from
lnðI sttindDG2

V Þ versus 1=ðTDG2
V Þ plots for temperatures

above the glass transition range. To trace these plots,
both the linear (Turnbull) approximation (Eq. (6))
and the experimental values (Eq. (5)) of the thermo-
dynamic driving force for crystallization of the stable
macro-phases were used. The discrepancy between
theory and experiment is strongly affected by the
choice of DGV (see also Appendix A, where an anal-
ysis similar to that given in Ref. [13] is performed).
The experimental values of DGV are close to Turn-
bull’s approximation in the case of Li2O Æ2SiO2 glass,
and to Hoffman’s approximation in the case of
2Na2O Æ1CaO Æ3SiO2 glass. These equations normally
bound the experimental values of DGV [13], and the
ðI exp

o =I theo
o Þ-ratio increases as one passes from Turn-

bull’s to Hoffman’s approximation. However, inde-
pendently of the particular choice of the expression
of the thermodynamic driving force, i.e., with any
reasonable approximation or with experimental val-
ues of DGV, the mentioned discrepancy remains quite

large.
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Fig. 15. (dr1/dT) versus Tolman’s parameter for Li2O Æ2SiO2 crystals in a
glass of the same composition. The kinetic barrier for nucleation was
estimated from the nucleation time-lag.
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(ii) The values of the surface energy, rcm, calculated as
described above (in the deeply undercooled regime
close to Tg), are lower than the melt–vapor surface
energy, rmv, which can be measured directly [67,68]
(above the equilibrium melting point) by a factor of
about 0.5–0.6. These values must then be corrected
since rcm refers to nuclei of critical size, r*, while
rmv refers to planar melt/vapor interfaces. In the case
of lithium disilicate glass, for instance, corrections
made with the Tolman equation, Eq. (35), for the size
effect, increase this factor to 0.8 [69]. Such high values
of rcm, as compared with rmv, strongly overestimate
its real magnitude. Indeed, according to Stefan’s rule
[70], one would expect the ratio rcm/rmv to be
approximately equal to rcm/rmv ffi DHcm/DHmv� 1,
where DHcm 
 DHm and DHmv are the melting
enthalpy of the crystalline phase and enthalpy of
evaporation, respectively.

It follows that the widespread believe – the driving force
of critical cluster formation can be determined correctly via
the classical Gibbs’ approach and all necessary corrections
have to be incorporated into the theoretical description via
the introduction of appropriate values of the specific inter-
facial energy – is challenged by above given analysis and
has to be reconsidered. In the following sections, possible
reasons for the failure of CNT in application to a quantita-
tive description of nucleation experiments will be analyzed
in detail.

5.2. Temperature and size-dependence of the nucleus/liquid

specific surface energy

The discrepancy between experimental and theoretical
values of Io can be avoided if one calculates rcm from
nucleation data (Ist and tind or g) employing the theoretical
expression for Io. This procedure slightly decreases the val-
ues of rcm and leads to a weak increase of rcm with increas-
ing temperature [71] (dr/dT � (0.06–0.16) · 10�3 J/m2 K)
regardless of the way of estimating the kinetic barrier. As
far as we know, Turnbull [66] was the first to draw atten-
tion to this fact. At a first sight such kind of temperature
dependence of rcm (i.e., an increase of the surface tension
with increasing temperature obtained via the mentioned
treatment of nucleation experiments) is in conflict with
the theoretical expectations of most, but not all, authors
(see the discussion below). Commonly the opinion is
favored that, from a thermodynamic point of view, a
decrease of rcm (for planar interfaces (r1)) with tempera-
ture should be expected [72–74], at least, in the temperature
range where crystallization processes may occur [74]. It fol-
lows that we are confronted here with a contradiction
between the discussed interpretation of experimental
results and general theoretical expectations.

As will be shown now this contradiction can be partly
removed by taking into account a possible curvature (or
nucleus size) dependence of the surface energy. Recall that
the specific surface energy estimated from nucleation rate
data refers to nuclei of critical size. Curvature corrections
are expected to reduce the effective value of the surface
energy. When the critical nucleus size increases with
increasing temperature, the effect of curvature corrections
decreases (see Eq. (35)), leading to higher effective values
of the surface energy.

To a first approximation, Tolman’s equation (that was
originally derived for a liquid drop in equilibrium with its
vapor) can be used to decouple these size and temperature
effects. The Tolman equation reads

rðr�Þ ¼
r1

1þ 2d
r�

� � ; ð35Þ

where the Tolman parameter d is a measure of the (un-
known) width of the interfacial region between the coexis-
ting phases.

Employing this relation, the work of formation of a
spherical critical nucleus may be written as

W � ¼
16p

3

r3
1

1þ 2d
r�

� �3

DG2
V

; ð36Þ

where

r� ¼
2r1
DGV

� 2d ð37Þ

holds.
Fig. 15 shows the average values of (dr1/dT) at T P Tg

versus the Tolman parameter. Using experimental nucle-
ation data for Li2O Æ2SiO2 glass, fits of r1 have been per-
formed for different values of d employing Eq. (34). For
this glass, as d increases (dr1/dT) progressively decreases
and becomes negative for d > 2.4 · 10�10 m. Thus, reason-
able values of the Tolman parameter may be chosen such
that r1 decreases with increasing temperature, in line with
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the theoretical predictions of Refs. [72,73]. Similar results
were obtained for a Na2O Æ2CaO Æ3SiO2 glass [71].

For completeness of the discussion, we would like to
mention also another interpretation of the increase of rcm

with increasing temperature widely discussed in Ref. [75].
The argumentation is based on model considerations sup-
posing an increased ordering of the liquid near the crystal.
These ideas were expressed first by Turnbull [66] and result
in an entropy decrease. Employing some plausible assump-
tions, the positive temperature coefficient of rcm can be
accounted for then by the mentioned entropy loss. Run-
ning ahead we could also suppose that the temperature
dependence of rcm is the result of a possible change of
the critical nucleus composition and/or structure with its
size.

However, regardless of the above possible interpretations

the values of the specific surface energy estimated from

nucleation rate data in the framework of the classical Gibbs’

approach remain too high when compared with the respective

melt–vapor surface energies. Consequently, the problem

posed at the end of the preceding section remains unsolved

by these considerations.

5.3. Estimation of crystal/liquid specific surface energies

via dissolution of subcritical nuclei

Essentially all known methods to determine the nucleus-
undercooled liquid surface energy are based on nucleation
experiments involving certain additional assumptions.
However, in order to test the classical nucleation theory
or to make theoretical predictions, independent estimates
of the specific surface energy are required. Such an inde-
pendent method of estimating rcm for clusters of near-crit-
ical sizes has been developed recently [69]. The results are
summarized below.

The new method is based on the dissolution phenome-
non (discussed in Sections 3 and 4) of subcritical nuclei
with an increase in temperature. As we already have
shown, an N(Tn, r*(Tn), t)-plot coincides with the
N(Tn, r*(Td), t)-plot, with the only difference that the latter
is shifted along the time-axis by a time to (Eq. (27)). Then,
kinetic N(Tn, t)-curves obtained with different development
temperatures Td1 and Td2 > Td1 should be shifted with
respect to each other by a time Dto = to2 � to1. Fig. 5 shows
an example of such kinetic curves. The following equation:

Dto ¼
Z r�ðT d2Þ

r�ðT d1Þ

dr
UðT n; rÞ

¼ 1

UðT n;1Þ
r�ðT d2Þ � r�ðT d1Þ
�

þ r�ðT nÞ ln
r�ðT d2Þ � r�ðT nÞ
r�ðT d1Þ � r�ðT nÞ

� ��
ð38Þ

was derived in Ref. [38] to estimate this shift. In the deriva-
tion of Eq. (38) a size-dependent crystal growth velocity
[76] was used of the form

UðT ; rÞ ¼ UðT ;1Þ 1� r�ðT Þ
r

� �
: ð39Þ
Employing Eq. (3) for the critical nucleus size and assum-
ing that rcm depends only slightly on temperature, Eq.
(38) can be rewritten as

rcm ¼
1

2

DtoUðT n;1Þ
1

DGV ðT d2Þ
� 1

DGV ðT d1Þ
þ 1

DGV ðT nÞ ln
1

DGV ðT d2Þ
� 1

DGV ðT nÞ
1

DGV ðT d1Þ
� 1

DGV ðT nÞ

� �� �
ð40Þ

Hence, it is possible to calculate the average value of rcm in
the temperature range Tn–Td2 from experimental values of
Dto, U(Tn,1) and DGV. Note that in doing so neither nucle-

ation rate nor time-lag data are required. The values of rcm

calculated by this method for Li2O Æ2SiO2 and Na2O Æ2-
CaO Æ3SiO2 glasses are collected in Table 2, which also
shows values estimated with the assumption of a size and
temperature independent specific surface energy, r�cm (see
also Table 1) and r��cm employing the theoretical values of
Io. The values of rcm calculated via Eq. (40) significantly
exceed the corresponding values calculated from a fit of
nucleation rate data to CNT (r�cm, r��cm). According to
CNT such high values of rcm lead to vanishing nucleation
rates. However, nucleation processes do occur and are in-
deed observed in deeply undercooled glasses!

In order to find out the origin of this discrepancy, one
should realize that the methods discussed above do not
provide us with the surface energy directly, but instead only
give its combination with the thermodynamic driving force.
In particular, rcm is calculated from the measured values of
Dto and U(Tn,1) via (see Eq. (40))

Dto ¼
2

U
rcmf

1

DGV

� �
ð41Þ

and r��cm (as well as r�cm) from the thermodynamic barrier
for nucleation

W � �
r��cm


 �3

DG2
V

: ð42Þ

One should recall again that, in line with Gibbs’ thermo-
dynamic description of heterogeneous systems, the thermo-
dynamic driving force for crystallization of macro-crystals
has been used to estimate the surface energy of critical and
near-critical nuclei. Provided, this assumption is correct
then we obtain correct values of the specific interfacial
energy. However, if this assumption occurs to be incorrect
then also the estimates of the surface energy are not cor-
rect. In such case, in order to arrive at correct values of
the work of critical cluster formation for nucleation, the
value of the surface energy has to be chosen appropriately
becoming merely a fit parameter. Hence, the above dis-
cussed discrepancy may result from the difference between
the macroscopic values of the thermodynamic driving
force, DG1, employed and the correct driving force of
critical cluster formation and growth, DGV, which is deter-
mined by the real physical state of the critical and near-
critical clusters. Since the identity of the driving force of
critical cluster formation with the respective macroscopic
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values is the only assumption employed in the analysis it
has to be removed in order to solve the discussed in this
and earlier sections discrepancies. Then we have to admit
that the bulk properties of critical and near-critical clusters
do not coincide with the properties of the respective macro-
scopic phases and are not determined correctly employing
Gibbs’ classical thermodynamic approach. As a direct con-
sequence from this assumption, it follows that both surface
energy and thermodynamic driving force must be consid-
ered as unknown quantities.

Let us analyze now the above mentioned results intro-
ducing a coefficient K(r) that connects the (supposed) real
thermodynamic driving force, DGV, with the respective
value for the macro-phase, DG1, as

DGV ¼ KðrÞDG1: ð43Þ

The coefficient K(r) reflects the fact that the thermody-
namic driving force for critical nuclei may differ from that
of the corresponding macro-phase. If one denotes by rr

cm

the true value of the surface energy estimated with account
of Eq. (43) and takes into consideration that U � DGV, the
following equations connecting rr

cm with rcm and r��cm are
obtained from Eqs. (41) and (42)

rr
cm ¼ KðrÞ2rcm; rr

cm ¼ KðrÞ2=3r��cm: ð44Þ

Eq. (44) yield

K ¼ r��cm

rcm

� �2=3

: ð45Þ

Thus, both methods provide the same value of crystal/
melt surface energy if the reduced thermodynamic driving
force, DGV = K(r)DG1, is employed. The values of K pre-
sented in Table 2 show a considerable reduction of the ther-
modynamic driving force for nucleation and growth of
critical and near-critical nuclei as compared with that for
the macro-crystal growth (K < 1). Employing this self-con-
sistently determined value of the driving force, different
estimates for the specific surface energy are obtained as
compared with the case when the classical Gibbs’ approach
for the determination of the driving force is used. It should
be emphasized that the value of rr

cm (see Table 2) is smaller
than that of r�cm and r��cm. Hence, in this way, the decrease of
the thermodynamic driving force results in values of the
interfacial energy that are significantly more reasonable
(taking Stefan’s rule into account). We can conclude, con-
sequently, that the discussed so far grave problems in the
theoretical interpretation of crystallization can be removed
if one assumes that the state of critical and near-critical
clusters is different from the state of the newly evolving
macro-phase. That is the classical Gibbs’ approach does
not give, consequently, in general a correct description of
the bulk properties of critical and near-critical clusters.

Arriving at such conclusion, two classes of problems
arise: First, one has to discuss whether there exist alterna-
tive theoretical concepts favoring this point of view or not
and whether it is possible to generalize eventually Gibbs’
approach in order to remove mentioned defect in Gibbs’
classical treatment. Second, one has to search for the phys-
ical origin of such differences in the state of the critical clus-
ters as compared with the respective bulk phases and for
additional arguments and experimental results confirming
such point of view. Such analysis will be performed in
the subsequent sections.

5.4. Bulk properties of critical clusters and properties

of the newly evolving macroscopic phase: some results

of theoretical analyses

5.4.1. Gibbs’ theory of heterogeneous systems: basic
postulates, advantages and shortcomings

In the theoretical interpretation of experimental results
on the dynamics of first-order phase transitions starting
from metastable initial states, up to now the classical nucle-
ation theory has been predominantly employed treating the
respective process in terms of cluster formation and growth
and employing Gibbs’ theory of capillarity. This preference
is due to the advantage of Gibbs’ approach to the descrip-
tion of thermodynamically heterogeneous systems allowing
one to determine the parameters of the critical clusters and
the work of critical cluster formation in the nucleation rate
expression in a relatively simple way which is based on the
knowledge of macroscopic bulk and surface properties of
the ambient and newly evolving phases.

In his classical analysis [4], Gibbs describes heteroge-
neous systems (in application to the problems under consid-
eration, we discuss a cluster of a newly evolving phase in the
ambient phase) via an idealized model system. In this model,
the real system is described as consisting of two homoge-
neous phases divided by a mathematically sharp interface.
The thermodynamic characteristics of the system are repre-
sented as the sum of the contributions of both homogeneous
phases and correction terms, the so-called superficial quan-
tities, which are assigned to the interface. They reflect the
diffuseness of the interface in the framework of Gibbs’ model
approach. In contrast to alternative statements [77,78] we
believe that such approach is theoretically well-founded
and correct provided one is able to determine the superficial
quantities in an appropriate way for any real system.

In order to further develop the theoretical concept
attempting to solve this task, Gibbs formulated a funda-
mental equation for the superficial (or interfacial) thermo-
dynamic parameters (specified by the subscript r) which is
widely similar to the fundamental equation for homoge-
neous bulk phases. For spherical interfaces we restrict
our considerations to, it reads [4]

dUr ¼ T r dSr þ
X

lir dnir þ rdAþ C dc; ð46Þ

where U is the internal energy, S the entropy, T the temper-
ature, li the chemical potential, ni the number of particles
or moles of the different components (i = 1,2, . . . ,k), r
the surface or interfacial tension, A the surface area, and
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c = (1/R) the curvature of the considered surface element,
while C is a thermodynamic parameter determining the
magnitude of changes of the internal energy with variations
of the curvature of the considered surface element. R is the
radius of curvature of the considered surface element.

An integration of this equation results in

Ur ¼ T rSr þ
X

lirnir þ rA: ð47Þ

A combination of both equations yield the Gibbs adsorp-
tion equation in the general form

Sr dT r þ
X

nir dlir þ Adr ¼ C dc: ð48Þ

In order to assign well-defined values to the superficial
quantities and cluster size, as an essential requirement of
Gibbs’ theory the location of the dividing surface has to
be specified. In application to nucleation processes, usually
the surface of tension is employed. It is defined, utilizing
Gibbs’ fundamental equation for the superficial quantities,
via the equation C = 0. For this particular dividing surface,
the surface tension does not depend explicitly on the curva-
ture. Moreover, it follows that in the classical Gibbs’
approach the surface tension depends on (k + 1) indepen-
dent state variables.

With Eq. (47) and the well-known expressions for the
internal energy of homogeneous bulk phases, we get the
following expression for the internal energy of the whole
system (e.g., [79–81])

U ¼ T aSa � paV a þ
X

liania þ T bSb � pbV b

þ
X

libnib þ T rSr þ
X

lirnir þ rA: ð49Þ

Here p is the pressure, V the volume, the subscript a spec-
ifies the parameters of the cluster phase, the subscript b re-
fers to the parameters of the ambient phase.

In application to nucleation, the state of the ambient
phase is known. In this way, in order to employ Gibbs’ the-
ory, the bulk state of the cluster phase has to be specified.
This procedure is performed in Gibbs’ classical treatment
for equilibrium states of heterogeneous substances, exclu-
sively (the title of his paper, Ref. [4], is ‘On the equilibrium
of heterogeneous substances’), a cluster of critical size in
the ambient phase being a particular realization of a ther-
modynamic equilibrium state. By employing the general
conditions for thermodynamic equilibrium [4], two of the
three basic sets of the equilibrium conditions are obtained

T a ¼ T b ¼ T r; lia ¼ lib ¼ lir; i ¼ 1; 2; . . . ; k; ð50Þ

allowing one to uniquely determine the state parameters of
the cluster phase from the knowledge of the state of the
ambient phase.

The bulk properties of the critical clusters of the newly
evolving phase are determined, consequently, in Gibbs’
approach uniquely via the equilibrium conditions Eq.
(50) for temperature and chemical potentials of the differ-
ent components in the two coexisting bulk phases. Hereby
the question is not posed whether or not these state param-
eters represent a correct description of the bulk state
parameters of the cluster. It is commonly believed that this
is the case. However, Gibbs himself made a comment that,
in general, the properties of the critical clusters may differ
from the predictions obtained in his approach. It follows
further from the Gibbs method that, for the critical clus-
ters, the interfacial tension referred to the surface of ten-
sion is uniquely determined by the state parameters of
either the ambient or the cluster phase (cf. Eqs. (48) and
(50)). Consequently, once the parameters of the ambient
phase are given, the surface tension does not depend –
according to Gibbs’ classical method – on the state para-
meters of the cluster phase. Moreover, the superficial
temperature and chemical potentials are determined by
the respective parameters of the bulk phases as well.

As it turns out [80–82], Gibbs’ method leads to state
parameters of the critical cluster’s bulk phase which are
widely identical, at least, in application to phase formation
in condensed phases, to the properties of the newly evolv-
ing macroscopic phases. Modifications of these properties,
due to differences in the pressure of small clusters as com-
pared with the equilibrium coexistence of both phases at
planar interfaces, as given by the Young–Laplace equation
(the third equilibrium condition),

pa � pb ¼
2r
r�

ð51Þ

is commonly of minor importance here although the pres-
sure differences may be large. With the numerical estimates
pb = pat � 105 N/m2, r � 0.1 J/m2, r* � 10�9 m (at high
under-cooling), we get Dp � 2 · 108 Pa or 2000pat. How-
ever, the effect of pressure on the density is small due to
the low compressibility of the cluster bulk phase. This re-
sult – the wide similarity of the properties of the critical
cluster with the properties of the evolving macroscopic
phases – is an essential general feature of Gibbs’ classical
theory not only in application to crystallization. It leads
– as discussed in detail here above – to contradictions in
the interpretation of experimental results and as we will
see below to contradictions with the results of computer
simulations and density functional computations of the
properties of critical clusters showing a quite different
behavior, in particular, for higher supersaturations. So,
why Gibbs’ theory can be applied at all to nucleation?
The following answer can be given.

In application to nucleation, not the knowledge of the
properties of the critical clusters is commonly of major
interest but instead the value of the work of critical cluster
formation, W*. This quantity is determined in Gibbs’
description generally via W* / r3/(pa � pb)2 [4] or in a fre-
quently good approximation via W* / r3/(DGV)2 (cf. Eq.
(4)). For any state of the ambient phase, the driving force
of critical cluster formation, which can be considered to
be proportional to either (pa � pb) or DGV, is determined
uniquely via the equilibrium conditions Eq. (50). In this
way, as far as the process proceeds via nucleation with a
well-defined value of the work of critical cluster forma-
tion, one can always find a value of the interfacial tension
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leading to the correct result for W*. Such possibility exists
independently on whether the driving force is determined in
an appropriate way corresponding to the real situation. In
general, the interfacial tension (or the specific interfacial
energy in application to formation of crystalline critical
nuclei) is different from its macroscopic value. This devia-
tion from the macroscopic value is connected then with
the idea of a curvature (or supersaturation) dependence
of the surface tension. But in such approach, r looses its
meaning of a physical quantity. As we previously men-
tioned it becomes a fit parameter that compensates the
inappropriate choice of the bulk reference states for the
description of the critical clusters.

The failure of Gibbs’ classical approach for the determi-
nation of the bulk properties of the critical clusters is con-
nected with another disadvantage that has seldom been
noticed. This classical approach is in deep conflict with the
conventional method of determination of saddle points or
extremums of hyper-surfaces of any dimension. In order to
find these singular points of such surfaces, following the
standard methods, one has to first formulate the respective
equations for any arbitrary state of the system and then to
apply the extremum conditions. In application to cluster for-
mation, we would have first to formulate the thermody-
namic potentials for any well-defined thermodynamic
(including non-equilibrium) states of a cluster or ensembles
of clusters in the ambient phase and then to search for saddle
points. This is the general procedure, which is also employed
in any density functional computations of the work of criti-
cal cluster formation (see the subsequent discussion).

However, Gibbs never tried in his fundamental paper [4]
even to formulate the problem of the determination of the
thermodynamic potential of a cluster or ensembles of clus-
ters of non-critical sizes in the otherwise homogeneous
ambient phase. His method is, consequently, in conflict
with the standard theoretical procedure. It follows as
another consequence that Gibbs’ original treatment cannot
supply one with a recipe to determine the state of sub- and
supercritical clusters in a well-founded theoretical way.
Any description of cluster growth processes, which is based
on Gibbs’ theory, involves additional assumptions, which
may or may not be appropriate. Consequently, a problem
arises whether it is possible to develop a generalisation of
Gibbs’ thermodynamic treatment allowing one to describe
critical cluster formation in a theoretically more founded
way and supplying one simultaneously with a regular
method of theoretical determination of the properties of
sub- and supercritical clusters. However, before developing
the respective generalization, we briefly summarize some
alternative methods of theoretical description and their
results concerning the problems under consideration.

5.4.2. Continuum’s approaches to the determination of the

properties of heterogeneous systems: van der Waals’ and
modern density functional approaches

About two decades after the formulation of Gibbs’ the-
ory, van der Waals [83,84] developed an alternative contin-
uum’s approach to the description of heterogeneous
systems. In this approach, the interface is characterized
by a continuous change of the intensive thermodynamic
state parameters from the respective values in one to those
characterizing the other of the coexisting phases. The van
der Waals method of description of heterogeneous systems
was reinvented about 60 years later by Cahn and Hilliard
[85] and applied for the description of the properties of
critical clusters in nucleation and for the development
of the basic ideas of the classical theory of spinodal
decomposition.

In the van der Waals and Cahn–Hilliard approach, the
Gibbs free energy of a heterogeneous system is given in
the simplest version as

Gðp; T ; xÞ ¼
Z

gðp; T ; xð~rÞÞ þ jðrxð~rÞÞ2
h i

dV : ð52Þ

For any given concentration profile, the value of the Gibbs
free energy can then be found by integrating the volume
density, g, of the Gibbs free energy supplemented by the
surface term, jðrxð~rÞÞ2, over the whole volume, V, of the
system, i.e., any well-defined function, x(r), results in some
definite value of the Gibbs free energy. Critical clusters re-
fer to saddle points of the thermodynamic potentials. Con-
sequently, in order to determine the change of the Gibbs
free energy in critical cluster formation, one has to search
for such concentration or density profiles, for which the
respective conditions for a saddle point of the thermody-
namic potential G are fulfilled. From a mathematical point
of view, the thermodynamic potential is determined, conse-
quently, as a functional of the density or concentration
profile giving the name to the method of computation of
the work of critical cluster formation (density functional
methods; i.e., saddle points are determined via the search
for an extremum of the respective functional).

In application to nucleation-growth processes (phase
transformations originating from metastable initial states),
Cahn and Hilliard came to the conclusion that the bulk
state parameters of the critical clusters may deviate consid-
erably from the respective values of the evolving macro-
phases and, consequently, from the predictions of Gibbs’
theory. These results of the van der Waals and Cahn–Hil-
liard-approach were reconfirmed later-on by more
advanced density functional computations (cf., e.g., Refs.
[86–88]) allowing one to determine the thermodynamic
potential by choosing some well-defined interaction poten-
tials between the particles of the system under consider-
ation. Similarly to the van der Waals and Cahn–Hilliard
approach, the spatial distribution of the order parameter
field is computed and it is assumed that the different phases
and their states can be described by varying the value of the
order parameters.

As an example, the composition of a critical cluster in
phase formation in a binary solution is shown in Fig. 16
[80]. The supersaturation is changed by varying the molar
fraction, x, of one of the components in the ambient phase
inside the range from the binodal to the spinodal curves,



Fig. 16. Composition of the critical cluster, xa, as a function of the
supersaturation for segregation processes in solutions [80]. The molar
fraction, x, of the segregating component in the ambient solution can be
considered as a measure of supersaturation, which varies in the range
between the binodal (xb) and spinodal (xsp) curves. The dotted curve
(curve 3) refers to results of computations of the critical cluster parameters
obtained via Gibbs’ classical method; the dashed curve (curve 1) to the
newly developed generalized Gibbs approach and the full curve (curve 2)
to results of density functional calculations of the density in the center of
the critical cluster obtained via the van der Waals square gradient method.
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i.e., for metastable initial states of the ambient phase. The
results of the classical Gibbs approach to the determination
of the properties of the critical clusters are given by a dot-
ted curve (curve 3). It is evident that the composition of the
critical clusters – determined in such a way – practically
does not depend on supersaturation and is widely equal
to the value in the newly evolving macroscopic phase.
The full curve (curve 2) shows the results for the cluster
composition in the center of the critical cluster as obtained
via the van der Waals and Cahn–Hilliard square gradient
approximation as described by Eq. (52). It is evident that
both approaches lead, in general, to very different results.
Qualitatively similar results are obtained when the van
der Waals and Cahn–Hilliard approach or more advanced
density functional computations are applied to the descrip-
tion of crystallization [77,89,90], i.e., the state of the critical
cluster differs, in general, from the state of the newly evolv-
ing macroscopic phase.

Both Gibbs’ and the van der Waals or more advanced
density functional methods of description of thermody-
namically heterogeneous systems are considered commonly
as well-established theories. Nevertheless, only one of them
(if any) can be correct in the prediction of the properties of
the critical clusters. Moreover, the Gibbs and van der
Waals approaches lead to contradicting each other results
in the description of the behavior of phase separating sys-
tems in the vicinity of the classical spinodal curve (cf. Ref.
[91]). In this way, one is confronted here with internal con-
tradictions in two well-established theories, which must be,
hopefully, resolved.

The question which of both mentioned theories
describes more correctly the properties of the critical clus-
ters can be answered from a theoretical point of view based
on the analysis of the results of computer simulation meth-
ods of phase formation processes in model systems [92–96].
The respective analyses show that critical clusters do have
properties, in general, significantly different from the prop-
erties of the newly evolving macroscopic phases (although
in some particular cases also results are obtained which
are in agreement with the classical Gibbs approach). In this
way, computer simulation methods support, in general, the
van der Waals or alternative density functional approaches
for the description of heterogeneous systems.

Consequently, we can conclude that the majority of exist-
ing theoretical approaches for the determination of the work
of critical cluster formation gives strong support to the point
of view that the state of the critical clusters may significantly
differ from the state of the newly evolving macroscopic
phases. Consequently, in order to obtain correct expressions
for the work of critical cluster formation in the interpreta-
tion of experimental results one has to account for a cluster
size dependence not only of the surface properties of the crit-
ical clusters but also of their bulk properties.

5.4.3. A generalization of Gibbs’ classical theory

Having reached such conclusion, immediately the ques-
tion arises whether it is necessary to abandon the classical
Gibbs approach at all or whether it is possible to modify it
in such a way that it retains its advantages (use of macro-
scopic properties of the phases of interest for a determination
of the work of critical cluster formation) but overcomes its
shortcomings (incorrect determination of the bulk proper-
ties of the critical clusters) discussed above. As it turns out
such generalization of Gibbs’ thermodynamic theory can
be really performed. It was initiated several years ago based
initially on a generalization of Ostwald’s rule of stages in
application to nucleation. This generalization of Ostwald’s
rule was formulated as follows [97]: ‘Those classes of critical
clusters determine the process of the transformation, which
correspond to a minimum work of critical cluster formation
(as compared with all other possible alternative structures
and compositions, which may be formed at the given thermo-
dynamic constraints)’. This concept was then employed in
order to develop a new approach for the determination of
the work of critical cluster formation and the determination
of critical cluster properties based on a generalization of
Gibbs’ classical approach [79,98].

In such a generalization of Gibbs’ theory, we followed
again Gibbs’ method of dividing surfaces but started with
the analysis of the question how to formulate a thermody-
namic description of heterogeneous systems (clusters or
ensembles of clusters in the otherwise homogeneous ambi-
ent phase) for well-defined non-equilibrium states, when
both the clusters and the ambient phase are in an internal
thermodynamic equilibrium but the system as a whole is
not. Having a look at Eq. (49), immediately the question
arises then, how to determine the values of the superficial
temperature and chemical potentials for any well-defined
non-equilibrium states of the heterogeneous systems under
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consideration. Since these parameters cannot be deter-
mined independently of the parameters of the coexisting
bulk phases, we postulated long ago [99] that generally
the conditions

T b ¼ T r; lib ¼ lir; i ¼ 1; 2; . . . ; k; ð53Þ

must hold. In other words, it is assumed that the superficial
temperature and chemical potentials are determined widely
by the properties of the ambient phase (with known prop-
erties). Note that the bulk state parameters of the cluster

phase may vary independently and may have so far arbitrary

values. Employing such condition and the fundamental
equation for the superficial quantities Eq. (46) as formu-
lated by Gibbs, the interfacial tension (referred to the sur-
face of tension) becomes then a function of the state
parameters of the ambient phase exclusively. However,
for non-equilibrium states the interfacial tension has to de-
pend, in general, not only on the properties of the ambient
but also on all intensive state parameters of the cluster
phase. This set of intensive state parameters of the cluster
phase we denote here as {uia}. In order to be able to de-
scribe such additional dependence, Gibbs’ fundamental
equation Eq. (46) has to be generalized resulting in (see also
[79,82] for further details)

dUr ¼ T r dSr þ
X

lir dnir þ rdAþ C dcþ
X

/ia duia;

ð54Þ
where /ia are parameters determining the magnitude of
variations of the superficial internal energy with respect
to variations of the bulk state of the cluster phase.

Since all parameters uia of the cluster phase, entering
Eq. (54), are intensive quantities, the expression for the
superficial internal energy Eq. (47) and also for the thermo-
dynamic potentials are formally not changed as compared
with Gibbs’ original approach. In contrast, the generalized
Gibbs’ adsorption equation reads now

Sr dT b þ
X

nir dlib þ Adr ¼ C dcþ
X

/ia duia: ð55Þ

In the generalization of Gibbs’ approach, the interfacial
tension can and must be considered consequently as a func-
tion both of the intensive state variables of the ambient and
the cluster phases and curvature. For the surface of tension
(defined also in the generalized Gibbs approach via C = 0)
an explicit curvature dependence of the surface tension
does not occur, again.

Having at ones disposal the thermodynamic potentials
for the respective non-equilibrium states, the equilibrium
conditions are obtained by known procedures employed
already by Gibbs in his classical model approach [4]. They
differ from the equilibrium conditions derived by Gibbs
and read, in general,

r� ¼ 2r pa � pb �
X

qiaðlia � libÞ � saðT a � T bÞ
h i

;
.

ð56Þ

lia � lib ¼ ð3=r�Þðor=oqiaÞ; ð57Þ
T a � T b ¼ ð3=r�Þðor=osaÞ: ð58Þ
Here p is the pressure, q the volume density of the (i =
1,2, . . . ,k) different components in the system, s is the vol-
ume density of the entropy. The subscript a specifies, again,
the parameters of the cluster, while b refers to the param-
eters of the ambient phase.

In order to determine the parameters of the critical clus-
ters, one has to know the values of the surface tension (or
the specific interfacial energy). In the simplest case
[79,82,98,100], it can be expressed as a quadratic form in
the differences of the state parameters of the ambient
({uib}) and cluster ({uia}) phases as

r ¼
XX

Nijðuia � uibÞðuja � ujbÞ: ð59Þ

The values of the parameters Nij can be determined then
from the knowledge of the specific interfacial energy for
phase coexistence at planar interfaces.

As it turns out, the work of critical cluster formation can
be written generally again in the well-known classical form

W � ¼ 1
3
rA�; ð60Þ

where A* is the surface area of the critical cluster. Note
however that the results for the numerical values for the
work of critical cluster formation are different in both dis-
cussed classical and generalized Gibbs’ approaches since
the state parameters of the clusters differ in these two
methods.

In general, the parameters of the critical clusters as
obtained via the generalized Gibbs approach differ signifi-
cantly from the parameters obtained following the classical
Gibbs method. However, for phase equilibrium of macro-
scopic systems, the equilibrium conditions derived in the
generalized Gibbs approach coincide with Gibbs’ classical
expressions (here the radius of the critical clusters tends
to infinity and the classical Gibbs equilibrium conditions
are obtained as a special case). Note that Gibbs’ classical
equilibrium conditions are retained in the above given gen-
eralized equations also as a limiting case when the deriva-
tives of the interfacial specific energy with respect to the
intensive state parameters of the cluster phase are set equal
to zero.

Employing the generalized Gibbs’ approach to the
determination of critical cluster properties for a variety of
phase-separating systems (segregation in solutions [80],
condensation and boiling in one-component fluids [81],
boiling in multi-component fluids [82]) it has been shown
that the predictions concerning the properties of critical
clusters and the work of critical cluster formation, derived
in the generalized Gibbs’ approach, are in agreement with
van der Waals’ and more advanced density functional
methods of determination retaining, on the other hand,
the simplicity in applications similarly to the classical
Gibbs method as an additional advantage. For example,
in Fig. 16 the composition of the critical clusters as
obtained via the generalized Gibbs approach is shown by
a dashed curve (curve 1). For small supersaturations, the
results of all mentioned approaches agree, however, when
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the whole range of initial supersaturations is considered
and especially for large supersaturations the results of the
generalized Gibbs’ approach are similar to the results
obtained via square gradient density functional computa-
tions and deviate significantly from the results of Gibbs’
classical approach. Such kind of behavior is essential in
order to guarantee the vanishing of the surface free energy
and of the work of critical cluster formation near the clas-
sical spinodal curve, two features commonly considered as
essential for a correct description of nucleation and which
are not described by the classical approach when the capil-
larity approximation is utilized [88]. It can be shown fur-
ther in a general way [99] that the classical Gibbs
approach employing in addition the capillarity approxima-
tion as a rule overestimates the work of critical cluster for-
mation and, in general, significantly.

Recently the generalized Gibbs’ approach was further
extended [91,101–104] to allow the description not only
of nucleation but also of growth and dissolution processes
taking into account changes of the bulk and surface state
parameters of the clusters as a function of supersaturation
and size. Hereby a criterion was advanced to allow one the
quantitative determination of the changes in the bulk and
surface properties of the clusters in the course of their
growth. As a first application, this new theory of growth
and dissolution processes was applied to the analysis of
segregation in solutions. However, the method is generally
applicable. In the framework of this approach, the change
of a variety of thermodynamic and kinetic properties with
cluster size has been determined for the first time such as
the change of the surface tension, the driving force of clus-
ter growth, the dependence of the effective diffusion coeffi-
cients on cluster size, etc. As it turns out the respective
thermodynamic and kinetic parameters may change signif-
icantly in dependence on cluster size. In this way, the esti-
mates of these parameters obtained from nucleation data
may not be appropriate for the description of growth pro-
cesses of clusters of macroscopic sizes and vice versa. This
result gives a new key to the solution of the problems posed
by Granasy and James [105] that growth rates computed
with values of kinetic coefficients obtained from nucleation
data may lead to deviations between theory and experiment
reaching several orders of magnitude. Even peculiarities in
the evolution of the cluster size distributions – like the
development of bimodal distributions in intermediate
states of the nucleation-growth process and unexpected
properties – may be explained straightforwardly based on
these concepts [102,104,106,107]. Thus, in a correct theo-
retical treatment not only deviations of the composition
of the critical nuclei from those of the respective macro-
scopic phases, but also variations in the composition of
the sub- and supercritical crystals have to be and can be
accounted for.

The extension of these concepts in application to crystal-
lization is in progress. Here, in addition to changes in com-
position and density also possible differences in the
structure of the critical clusters (and their mutual interde-
pendence with concentration fluctuations [12,88,108,109]),
as compared with the state of the crystalline macro-phase,
and its possible change in the course of the growth of the
supercritical crystallites have to be taken into consideration
(cf., e.g., [110–112]).

5.4.4. Discussion

Let us first briefly summarize the results of the preceding
subsection: In order to develop a consistent theoretical
method of determination of the properties of the critical
clusters, we have generalized Gibbs’ theory starting with
the thermodynamic description of non-equilibrium states
and including in this way into the theoretical schema the
possibility of description of clusters of sub- and supercriti-
cal sizes in the ambient phase. In order to realize such task,
Gibbs’ fundamental equation for the superficial thermody-
namic state parameters was generalized to allow one, in
particular, an incorporation into the theory of the depen-
dence of the interfacial or surface tension both on the state
parameters of the ambient and the newly evolving cluster
phases, respectively. Such essential additional step in the
generalization of Gibbs’ classical approach was not done
in earlier own work [99] and also not in the two (to the
knowledge of the authors) existing alternative generaliza-
tions of Gibbs’ theory to non-equilibrium states (see
[113]). By this reason, in latter mentioned approaches
[99,113] the equilibrium conditions retain the same form
as in the classical Gibbs’ approach.

Following the generalized Gibbs’ approach, it is possible
to determine the properties of the critical clusters in a new
way. We arrive at relations, which are, in general, different
as compared with the predictions of the classical Gibbs
approach. The respective results are – for model systems
– in agreement with density functional computations and
results of computer simulations. Moreover, since we have
formulated a consistent description of clusters in thermo-
dynamically non-equilibrium states, regular methods can
be and are developed to determine also the properties of
clusters of sub- and supercritical sizes in dependence on
supersaturation and their sizes. In this way, a new tool
for the description of nucleation-growth processes, in gen-
eral, and crystallization processes in glass-forming liquids,
in particular, has been developed allowing one to interpret
a variety of experimental findings from a new point of view
[91,102–104,111].

As an alternative non-classical method of theoretical
treatment of crystallization going back already to van der
Waals [83,84], the van der Waals and Cahn–Hilliard square
gradient density functional approach is employed presently
intensively for the interpretation of nucleation in crystalli-
zation processes [77,87–89,114]. These studies are supple-
mented by the analysis of nucleation-growth processes
based on so-called phase field models, a dynamic extension
of the van der Waals and Cahn–Hilliard approach
[78,87,115–118], allowing one the determination of the evo-
lution of the order-parameter fields with time. These types
of analyses are confronted, however, with one principal
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problem, which has to be taken into consideration – as it
seems to us – more carefully in future. This problem is
the prediction – in the framework of mentioned van der
Waals and Cahn–Hilliard type approaches – of spinodal
curves in melt-crystallization.

More then three decades ago, Skripov and Baidakov
[119], based on the analysis of experimental and computer
simulation data – advanced the conjecture about the non-
existence of a spinodal curve in one-component melt
crystallization processes (or widely equivalent to them
polymorphic transformations where liquid and crystal
phases have the same composition). It was emphasized that
this statement is in agreement with the point of view of the
non-existence of a critical point in liquid–solid phase equi-
libriums and of a necessarily discontinuous transition
between liquid and crystal [120]. A further detailed proof
of this statement in a period of about 30 years resulted in
a confirmation of its validity [74,121]. An additional sup-
port of such point of view can be obtained from the anal-
ysis of experimental data on crystallization processes of
liquids, in general, and glass-forming melts, in particular.
Such analysis does not give any indication on the existence
of spinodal curves in crystallization processes of the con-
sidered type [12]. The latter conclusion is supported, for
example, by Oxtoby [87,88] and Granasy and James [77].

However, density functional theories of crystallization
predict in a variety of cases the existence of spinodal
curves. Since such kind of behavior is not found by exper-
iments, parameters are chosen that transfer the spinodal
into parameter regions, where – due to the high viscosity
– phase formation processes cannot occur [77,87,122,123].
A spinodal type behavior is also predicted in some cases
by Granasy’s so-called diffuse interface theory and even
close to the glass transition temperature [124]. Provided –
as we believe – the conjecture of Skripov and Baidakov is
correct, the prediction of a spinodal in the mentioned the-
ories leads to some serious doubts into their applicability to
melt crystallization, at least, in the present form. A theory
cannot be correct if it predicts – not as an exception but as
a rule – phenomena, which are absolutely not observed in
nature. By the above discussed reasons, a further detailed
analysis of the basic ideas and limitations of density func-
tional approaches in application to melt crystallization
seems to be absolutely essential.

Completing the discussion on the limitations of the
classical Gibbs approach to the description of the proper-
ties of critical clusters, we would like to add a few
comments on the so-called ‘nucleation theorem’ [125–128]
employed frequently in order to determine the proper-
ties of critical clusters based on nucleation rate data
[88,94,96,129,130]. In an approximate form and for one-
component systems, the content of this theorem can be
formulated as [125]

dW �=dDl � �n�; ð61Þ

i.e., derivatives of the work of critical cluster formation (or
the steady-state nucleation rate) with respect to the state
parameters of the ambient phase allow one to determine
the parameters of the critical clusters. Relations of this type
– derived in the framework of Gibbs’ classical theory and
employing the capillarity approximation – have been
known for a long time. The increased interest in dependen-
cies of such type resulted from the statements by Kashchiev
[125] that the nucleation theorem is valid independent of
the method employed for the thermodynamic description
and valid for any kind of phase transformation and size
of the critical clusters considered. However, the indepen-
dence of the mentioned relation on the way of description
of the clusters is questionable already on general argumen-
tations. For example, Einstein noted in a conversation with
Heisenberg on the foundations of quantum mechanics that
it is the theory which determines what can be measured. In a
detailed analysis of the results of Ref. [125] it has been
shown recently in detail [127,128] that all above mentioned
statements concerning Eq. (61) are not correct.

In an extension of the analysis of Ref. [125], Oxtoby and
Kashchiev developed similar relations in application to
multi-component systems [126]. In this analysis, Gibbs’
classical theory of thermodynamically heterogeneous sys-
tems was employed without introducing any additional
assumptions like the capillarity approximation, i.e., the
assumption that the surface tension of critical clusters is
equal to the respective value for an equilibrium coexistence
of both phases at planar interfaces. Consequently, the
mentioned generalizations of the nucleation theorem are
of the same level of validity in application to experiment
as the classical Gibbs approach. They can describe the
parameters of the real critical clusters correctly only as
far as Gibbs’ classical method is adequate to the consid-
ered particular situation. Having in mind the above dis-
cussed limitations of Gibbs’ classical approach in the
description of the parameters of critical clusters, men-
tioned generalizations of the nucleation theorem do not
supply us, in general, with a description of the real critical
clusters but merely with a description of Gibbs’ model
clusters resulting in the same value of the work of critical
cluster formation as for the real critical clusters. Conse-
quently, also the correctly derived – in the framework of
the classical Gibbs’ approach – versions of the nucleation
theorem do not describe, in general, the parameters of
the real critical clusters.

Since the generalized Gibbs approach allows one a
determination of the parameters of the critical clusters, that
is, for model systems, in agreement with density functional
computations and computer simulation studies, it is of
interest to prove whether dependencies similar to the
‘nucleation theorem’ can be formulated also in this gener-
alization of the classical Gibbs approach. The respective
work is in progress.

Finally, we would like to note that there exist also
approaches connecting the deviations of the experimental
data on crystallization and growth with the effect of static
disorder in the melts [131] or the existence of so-called
floppy and rigid modes in glasses [132–134].
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N1C2S3 glass heat-treated at 650 �C [137].

V.M. Fokin et al. / Journal of Non-Crystalline Solids 352 (2006) 2681–2714 2703
5.5. Compositional changes of the crystal nuclei at

nucleation-growth process: some experimental findings

The formation of solid solutions is a common phenom-
enon in silicate systems. By this reason, it is important to
keep in mind that the critical nuclei can be a proper solid
solution with thermodynamic properties, which may differ
considerably from those of the finally evolving macroscopic
phase. Thus, we can expect that contradictions between
experimental results and theoretical predictions concerning
nucleation rates and growth kinetics in such systems would
be considerably diminished even neglecting for some time
possible deviations in the critical nuclei structure as com-
pared with the evolving macro-phase.

The following reasons could generally lead to a difference
in the bulk properties of the critical and near-critical crystal-
lites as compared with the respective newly evolving macro-
scopic phase and to a reduction of the thermodynamic
driving force: (a) It is reasonable to assume that near-critical
nuclei are less ordered than the material in the corresponding
bulk phase and it is possible to show that, in this case,
DGV < DG1 holds [69]. (b) According to the model of ideal
associated solutions [135,136], a glass-forming melt can be
considered as a solution of oxide components and salt-like
(stoichiometric) phases. Then, critical cluster formation
could be represented as a segregation process in a multi-com-
ponent solution. As shown in Ref. [97], in this case, the driv-
ing force may be smaller than for the macroscopic phase. (c)
The deviation of the critical nuclei composition from that of
the evolving macro-phase (e.g., owing to the formation of
metastable phases or solid solutions) has also to reduce the
thermodynamic driving force, as compared with that for
the stable macro-phase. This effect, i.e., the deviation of
the critical nuclei composition from those of the evolving
macro-phase and the parent stoichiometric glass was recently
observed [137] and is discussed in detail below.

Within certain limits, addition, removal or replacement
of different components can continuously change the com-
position of a given crystallographic system. Hence, gener-
ally speaking, compositional variations of critical nuclei
of a new phase and, consequently, variations of their prop-
erties as compared with those of the corresponding macro-
phase could be expected. Indeed such deviations were
observed in both stoichiometric Na2O Æ2CaO Æ3SiO2 glass
and glasses belonging to the solid solution (s/s) region
between Na2O Æ2CaO Æ3SiO2 (N1C2S3) and Na2O ÆCaO Æ
2SiO2 (N1C1S2) [137]. Ref. [137] shows that the formation
of stoichiometric crystals occurs via nucleation of s/s whose
composition continuously approaches the stoichiometric
one and arrives at that in the final stage of crystallization.
Figs. 17 and 18 show the evolution of crystal and glassy
matrix compositions and the corresponding change of the
lattice parameter, respectively. An extrapolation of the
change of crystal composition to zero time (or zero volume
fraction, a = 0, of the crystallized phase) gives a strong
indication that the critical clusters are also enriched in
sodium.
The exhaustion of sodium in the glassy matrix during
crystallization leads to an inhibition of nucleation and crys-
tal growth. According to an analysis of the overall crystal-
lization kinetics using crystal growth data [137], the
nucleation process is terminated if about 20% of the volume
is crystallized. Fig. 19(a) and (b) shows the volume fraction
of crystals and the size of the largest crystals as a function of
heat treatment time at T = 650 �C for a glass of stoichiom-
etric composition N1C2S3. Nucleation takes place up to
t � 150 min (ln(t) = 5): n � 4, m � 1, k = n � 3m � 1
(n = k + 3m) (see Eq. (24)). This conclusion is confirmed
by a N(t)-plot obtained by the ‘development’ method (see
Fig. 19(c)). But, at ln(t) > 5 crystallization proceeds only
by crystal growth with m � 0.33, n � 1, k � 0 (n = 3m).
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Fig. 20. SEM micrographs of N1C2S3 glass subjected to single (a) and double (b) stage heat treatments: (a) T = 590 �C, t = 1560 min; (b) T1 = 720 �C,
t1 = 20 min and T = 590 �C, t = 1560 min. The bars have a length of (a) 20 lm and (b) 10 lm.
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Fig. 21. Sodium oxide content in the critical nuclei versus composition of
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of the critical nuclei and the parent glasses are the same.
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Na-depleted diffusion fields around the growing crystals
can be visualized by a second heat treatment at a tempera-
ture corresponding to reasonable values of nucleation
and growth rates. A comparison of the samples subjected
to single-stage (cf. Fig. 20(a)) and double-stage (cf.
Fig. 20(b)) heat treatments reveals that pre-existing crystals
(formed in first heat treatment) diminish the number of
crystals nucleated in the subsequent treatment. Refs.
[48,138] show that the nucleation rate decreases with
decreasing sodium content in the glass. Hence, it is appar-
ent that the areas observed around the large crystals refer
to diffusion fields. A similar transformation path was
observed for glasses of compositions between N1C2S3 and
N1C1S2, with the only difference that fully crystallized
glasses are s/s with compositions of the parent glasses.

According to the results presented in Fig. 21, the differ-
ence between the compositions of the critical nuclei and the
parent glass diminishes as the latter approaches the bound-
ary of s/s formation. The deviation of the nuclei composi-
tion from stoichiometry (glass N1C2S3) or from the initial
glass compositions (glasses of the s/s region) diminishes
the thermodynamic driving force for crystallization, DGV,
and increases the thermodynamic barrier for nucleation.
Moreover, this deviation also may lead to an increase of
the kinetic barrier. Nevertheless, nucleation of crystals with
changed compositions (as compared with those of the par-
ent glasses) actually takes place. Hence, the decrease in
DGV must be compensated by a decrease in surface energy
in Eq. (4). However, the determination of the variation of
the surface energy with composition is not a trivial problem
and warrants further study.
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Deviations of the composition of the smallest crystals
(50 nm) from that of the ambient glass have also been
observed for surface crystallization of l-cordierite in a
glass of cordierite composition. But the composition of
the largest l-cordierite crystals (>1 lm) was equal to that
of the parent glass [139]. Variations of the crystal composi-
tions during phase transformation were also found in
CaO–Al2O3–SiO2 glasses [140]. A direct experimental
proof of changes of crystal composition with size in crystal-
lization of Ni(P)-particles in hypoeutectic Ni–P amorphous
alloys was recently reported in Refs. [106,107].

All mentioned results give a further experimental confir-
mation of the thesis of a considerable variation of the prop-
erties of the clusters in the course of their evolution
corroborating the predictions of the generalized Gibbs’
approach.

5.6. Independent estimate of the time-lag for nucleation

from nucleation and growth kinetics

It was correctly claimed in Ref. [141] that another prob-
lem may occur in the treatment of nucleation-growth pro-
cess in glasses. For a glass with a composition close to
lithium disilicate, it was shown in Ref. [141] that the induc-
tion time for crystal growth, tgr, estimated (as illustrated by
Fig. 22) from a R � t plot, where R is the size of the largest
crystal experimentally observed, and t the time elapsed
from the beginning of the nucleation-growth process,
strongly exceeds the induction period for nucleation
(tind ¼ 6

p2 s, see Eq. (11)). Latter value was estimated from
an N � t plot obtained by the ‘development’ method. How-
ever, if crystal nucleation and growth rates refer to the for-
mation of the same phase, tgr and tind are expected to be
similar [21]. In other words, it is reasonable to assume that
after an elapsed time tgr the first supercritical nuclei have
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solid line was plotted with Eq. (10) and the dashed line is a linear fit of the
2R(t)-data [142].
formed, which then deterministically grow up to sizes visi-
ble under an optical microscope.

The discrepancy in induction times reported in Ref.
[141] has also been observed for lithium silicate glasses con-
taining 32.6–38.4 mol% Li2O [142] belonging to the compo-
sition range where solid solution crystals precipitate via
homogeneous nucleation [143,144]. An example of N � t

and R � t plots for lithium silicate glass with 35.1 mol%
Li2O at T = 460 �C is shown in Fig. 22, while Fig. 23 shows
the time parameters tind and tgr estimated at different tem-
peratures for lithium silicate glasses with 33.5 and
32.6 mol% Li2O. Since the N � t curve was obtained by
the ‘development’ method (see Section 3.2), tind is overesti-
mated as compared with the correct value corresponding to
the nucleation temperature. (In Ref. [145] measurements of
nucleation and growth rates and corresponding time-lags
in lithium disilicate glass were undertaken using single-

stage heat treatments at a relatively high temperature,
500 �C > Tmax = 455 �C. The estimated (extrapolated)
nucleation time-lag was considerably higher than that
obtained by the ‘development’ method. We now think that
this result was probably due to insufficient stereological
corrections of the crystal number density of the samples
subjected to single-stage treatments; see Section 3.4.) Thus,
the tgr/tind ratios experimentally obtained in the cited refer-
ences are only a lower bound for the difference between the
real induction periods. To correct the value of tgr to partly
resolve the above discussed problem, an attempt was
undertaken in Ref. [141] to account for the effect of a size
dependent growth rate. However, the discrepancy between
induction times independently estimated from nucleation
and growth experiments remained too high. By this reason,
it was suggested that initially nucleation of metastable
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phase crystals take place, which grow more slowly than the
macroscopic crystals of the stable phase.

Weinberg [146] questioned the conclusions of Ref. [141]
with the argument that the induction time for growth
cannot be uniquely determined because it depends on the
cluster size for which the measurements are performed.
He also stated that the induction time for growth becomes
unbounded even for measurements performed at large clus-
ter sizes. Strictly speaking those arguments are correct, but
since the growth rate tends to time-independent values
fairly rapidly with increasing R (see, e.g., Eq. (39) or Eq.
(62) and Fig. 24), the induction time also tends to a practi-
cally finite value when the measurements are extended to
large (optical microscopy scale) crystal sizes. Consequently,
we believe that the comparison of induction times indepen-
dently obtained by nucleation and growth experiments can
be a useful tool, and, in principle, allows one to draw con-
clusions similar to those of Ref. [141].

Nevertheless, the results and analysis of induction times
for growth deserve some comments. The analysis carried
out in Ref. [141] was based on the solution of macroscopic
growth equations starting with an initial cluster radius
equal to the critical cluster size. With such initial condition,
the induction time for growth tends to infinity indepen-
dently of any particular growth mechanism, since
U(r*) = 0, and the numerical integration employed in
Ref. [141] could not resolve this problem. In other words,
the macroscopic growth equation is not valid for R = r*

and cannot be employed to describe the change of the
nuclei size close to the critical one. Recall that according
to the Zeldovich–Frenkel equation, in the vicinity of the
critical cluster size the ‘motion’ of the clusters in cluster size
space is mainly governed by diffusion-like processes in clus-
ter size space under the action of the concentration gradi-
ent with respect to the cluster size distribution function,
and thus it is not governed by the thermodynamic driving
force, as it is the case in deterministic growth. In addition,
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the discrepancy observed in Ref. [141] could also be
explained in different ways, and not only via the assump-
tion of formation of metastable phases.

To reconsider the above mentioned problem from a dif-
ferent perspective, we employed an analytical solution of
the Fokker–Planck or Frenkel–Zeldovich equation describ-
ing nucleation-growth process (cf. Ref. [147]). According to
this analysis, for nuclei with sizes larger than two critical
sizes, R > 2r*, the following relation holds:

ŝ ¼ 3
5
bR þ lnðbR � 1Þ þ 2

3

h i
: ð62Þ

In Eq. (62) the following dimensionless variables are used:

bR 
 R
r�
; ŝ 
 t

s1

: ð63Þ

Here s1 is the period of time needed to establish a steady-
state cluster size distribution in a range of cluster sizes
slightly exceeding the critical size, i.e., it is practically equal
to the time required to establish a steady-state nucleation
rate for clusters of critical sizes. Recall that, according to
Eq. (9) or (10), to practically establish a steady-state nucle-
ation rate a time period about 5s is required (see Fig. 6(b)).
Hence the following relation between s1 and s exists

s1 ffi 5s: ð64Þ
It should be emphasized that Eq. (62) was derived with the
following (strong) assumptions commonly employed in
CNT:

(i) The bulk state of the clusters is independent on their
sizes and is identical to that of the newly evolving
macroscopic phase;

(ii) The mechanism of cluster growth does not depend on
cluster size, and growth is kinetically limited.

The term ‘kinetically limited’ refers to the ballistic
growth mechanism, where the growth process is only lim-
ited by diffusion across the interface, and does not depend
on bulk diffusion, as it is the case, for instance, for signifi-
cant compositional differences between the liquid phase
and growing crystal.

The experimental R(t) data were fitted to Eq. (62) using
s1 and r* as fit parameters [142]. Fig. 25 shows the result of
such calculations. In this way, in order to arrive at the R(t)-
dependence we did not use any macroscopic growth equa-
tion, but relied instead on an analytical solution of the
Frenkel–Zeldovich equation, which gives a correct descrip-
tion of the evolution of the cluster ensemble. In addition, in
our approach, we do not determine an induction time for
growth, but instead determine the time-lag for nucleation
by fitting experimental growth data to the nonlinear Eq.
(62). Hence, even if Weinberg’s comments [146] about the
impossibility of defining tgr from R(t) curves are strictly
correct, they do not affect our analysis.

The value of s1 exceeds the corresponding nucleation
induction time, 5s, estimated from the N � t curve, by
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about one order of magnitude (see Fig. 25). However, pro-
vided the conditions (i) and (ii) are fulfilled, one expects
that s1 must be equal to about 5s, see Eq. (64), since both
s1 and s refer to nucleation kinetics. This discrepancy leads
to the following conclusion: at least one or both of the

assumptions underlying the derivation of Eq. (62) are not

valid.
In order to explain the present results, one should recall

the assumptions made in the derivation of the above equa-
tions. In particular, one can assume that the compositions
of near-critical clusters deviate from those of the macro-
scopic crystals to which the crystal size measurements refer.
Since in the advanced stages of crystallization the compo-
sition of the macro-crystals coincides with those of the
ambient melt, this assumption leads to the conclusion that
growth of near-critical nuclei is limited by diffusion and is
thus not kinetically determined. Moreover, as shown in the
analysis of a model system [102], the size dependence of the
cluster composition results in a cluster size dependence of a
variety of thermodynamic and kinetic parameters (driving
force, surface tension, effective diffusion coefficients, and
growth rates). These deviations are not taken into account
in the derivation of Eq. (62).

Consequently, the mentioned deviations can be inter-
preted as an additional indication that the classical
approach to the description of nucleation-growth processes
is insufficient for an interpretation of experimental results
on crystallization in lithium disilicate glasses. One of the
possible solutions is the assumption of a size (and eventu-
ally structure) dependent composition of the crystallites.
For completeness we should also to mention an alternative
approach [148,149] connecting the possible deviations with
possible (cluster-size dependent) solute depletion and vol-
ume diffusion in nucleation. Taking into account the results
of the generalized Gibbs’ approach, density functional
studies and computer simulation methods of the properties
of critical clusters, the first interpretation of the deviations
between the time-lag established in two independent ways
(being the result of the change of both cluster properties
and growth kinetics in dependence on their sizes) seems
to us to be a more convincing explanation.

The questions under which conditions and in what way
nuclei change their properties and the growth mechanism
are not trivial to answer, especially if these changes occur
in the early stages of crystallization. However, the transfor-
mation must finally lead to the formation of a stable mac-
rophase with well-defined properties. One of the possible
and often assumed ways to account for such effects – the
formation of metastable phases – will be discussed in Sec-
tion 5.7 However, metastable phase formation is not the
only possible but a very particular explanation for such
kind of behavior (see, e.g., Section 5.5). The analysis of
already mentioned model system (segregation in regular
solutions [102]) shows that clusters may continuously
change their properties with their sizes and do not have
the properties of some fictive metastable phase. Such expla-
nation for the observed discrepancy is more general and
could be ascribed to the formation of different transient
phases more or less continuously changing their properties
in dependence on cluster size.

5.7. On the possible role of metastable phases in

nucleation

As mentioned in Sections 5.3 and 5.5 the precipitation of
metastable phases in the early stages of nucleation may be
one of the reasons for the deviation of the critical nuclei
properties (e.g., composition) from that of the evolving
(stable) macro-phase. The formation of metastable phases
is consistent with the original formulation of Ostwald’s
Rule of Stages according to that, ‘if the supersaturated
state has been spontaneously removed then, instead of a
solid phase, which under the given conditions is thermody-
namically stable, a less stable phase will be formed’ [150].
Note that Ostwald restricted his formulation to the possi-
ble result of the transformation not specifying the bulk
state of the critical clusters as done in the generalization
of this rule as given above (see Section 5.4). Implicitly it
is assumed in his formulation – and also in its theoretical
foundation as developed first by Stranski and Totomanov
[151] – that the critical clusters have properties equivalent
to the properties of one of the finite number of phases
which can exist in a macroscopic form, at least, in a meta-
stable state at the given conditions.

Ostwald’s rule is corroborated by the following thermo-
dynamic considerations. Employing the Skapski–Turnbull
equation, Eq. (31), to estimate the crystal/liquid interfacial
energy, one can show that the thermodynamic barrier for



1 10 100

0.1

1

10  LS2 - glass hypo
glass hypo LS -

 LS2 - glass stoich
glass stoich LS -

 LS
2
 - glass hyper

glass hyper LS -

D
m

ax
 , 

μm

t, h

Fig. 26. Maximum dimension (Dmax) of the largest crystals observed by
TEM in samples of hypo, stoich, and hyper lithium disilicate glasses versus
heat treatment time at 454 �C [159]. Solid and opened points refer to LS2

and LS crystals, respectively.

2708 V.M. Fokin et al. / Journal of Non-Crystalline Solids 352 (2006) 2681–2714
nucleation is proportional to the melting enthalpy. Hence,
higher nucleation rates of metastable phases than those of
the stable phase could be expected due to its lower melting
enthalpy and correspondingly lower thermodynamic bar-
rier. But a higher nucleation rate of a metastable phase
must be accompanied by a lower growth rate, since the lat-
ter is proportional to the thermodynamic driving force.
This is especially true if the composition of the metastable
phase is similar to that of the parent glass.

Once crystallites of a metastable phase form, they may
favor nucleation of crystallites of the stable phase if its for-
mation is followed by transformation into aggregates of the
more stable phase as discussed in Ref. [152]. Thus, metasta-
ble crystals can, in principle, catalyze in one or the other
way nucleation processes of the stable phase. Some authors
suggested that such crystallization path occurs in Li2O Æ
2SiO2 (LS2) glass, which has been used for many years as
a model system to study homogeneous nucleation (see,
e.g., [153,154]). An article by Deubener et al. [141] (dis-
cussed in Section 5.6) reawakened the interest in this prob-
lem and stimulated an intensive search for metastable
phase formation in LS2-glass [155–157], mainly by trans-
mission electron microscopy (TEM) and X-ray diffraction
(XRD) methods. In addition to stable lithium disilicate
and metastable metasilicate crystals, other, so far
unknown, phases were found. However, the observations
of different authors were often in contradiction to each
other. But, in general, the probability of observing such
new phases in LS2 glass increases with a decrease in time
and temperature of heat treatment [158]. Due to low nucle-
ation rates and correspondingly low crystal number densi-
ties, and extremely small areas observed by TEM, the
statistics of such measurements are quite poor. Moreover,
the electron beam can degrade the crystals under study in
a short time. As an example, however, the results of Ref.
[159] show that at T = 454 �C (close to the nucleation rate
maximum), only Li2O Æ2SiO2 (LS2) and Li2O ÆSiO2 (LS)
crystals were detected in the early stages of crystallization
(less than 1% crystallized fraction), but LS crystals were
not detected in the most advanced stages (5–10% crystal-
lized fraction). It should be emphasized that, according
to the data collected in a time interval 0–100 h at 454 �C,
the LS crystals sizes practically do not change, while the
LS2 crystals significantly grow (see Fig. 26). This result
agrees with calculations according to which the thermody-
namic driving force for LS crystallization in lithium disili-
cate glass is lower than for LS2 crystals [160], because a
higher thermodynamic driving force also results in higher
growth rates. Since there was no evidence of heterogeneous
nucleation of lithium disilicate on lithium metasilicate crys-
tals, it was concluded that LS nucleates concurrently with
the stable phase LS2 and disappears with time. Recall that
lithium disilicate has a wide range of solid solutions (s/s)
formation [143,144]; hence, one can suppose that the criti-
cal nuclei are also s/s. Here it should be noted that the tech-
nique employed in Ref. [159] did not allow them to
distinguish stoichiometric compounds from solid solutions.
The assumption of s/s nucleation does not contradict the
results presented above, but allows one to consider changes
of composition of the evolving nuclei with size, such as
those demonstrated in Section 5.5 for soda-lime-silica
glasses and assumed in Section 5.6. Thus, in some cases,
it is possible that the role of metastable phases in nucle-
ation could be simply a continuous variation of nuclei com-
position (and properties) during the phase transformation.
However, there is another factor that has not been taken
into consideration so far, but may be of considerable influ-
ence. That is the possible effect of elastic stress on nucle-
ation in glass-forming melts. This effect will be analyzed
in the next section.

5.8. Effect of elastic stresses on the thermodynamic

barrier for nucleation

As it follows from Section 5.1, the thermodynamic bar-
rier for nucleation, W*, can be calculated in the framework
of CNT by a fit of experimental data employing Eq. (34).
For such computations, no additional assumptions are
needed apart from the validity of CNT. In addition, one
has to make some choice concerning the value of the sur-
face energy in the pre-exponential term. However, this
choice only weakly affects the final results.

According to Eq. (4), the work of critical cluster forma-
tion, W*, monotonically decreases with decreasing temper-
ature. Nevertheless, the value of W*(T/Tm), calculated
from nucleation data for lithium disilicate glass at temper-
atures close to Tg shows an anomalous increase with
decreasing temperature (cf. Fig. 27). A similar behavior
of W* was observed in other systems, e.g., for wollastonite
glass [162]. The above mentioned deviations of the W*(T)-
dependence from the expected (according to CNT) may be
caused by elastic stresses. Since, in most cases of interest,
the crystal densities differ from those of the corresponding
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glasses, glass crystallization is accompanied by volume
changes. Such changes may result in stress development
which, in turn, diminishes the thermodynamic driving force
for the phase transformation by a term connected with the
elastic strain energy. This energy can partly or even fully
[12,14,163,164] suppress the nucleation-growth process.
This effect may be the origin not only of the anomalous
behavior of the work of critical cluster formation, W*(T),
but also of a number of well-known additional experimen-
tal facts, e.g., the preference of surface to volume nucle-
ation [12,163,164], or the existence of a correlation
according to which glasses having densities much lower
than those of the corresponding crystals usually reveal only
surface crystallization [165].

A theory of nucleation in viscoelastic bodies has been
developed recently [166,167] which takes into account both
stress development and relaxation in phase formation in
glass-forming melts (an analysis of the effect of elastic stres-
ses on crystal growth – based on the same theoretical pre-
mises – is given in Ref. [168]). It was concluded that the
effect of elastic stresses on nucleation can be remarkable
if the time of stress development (estimated as time-lag
for nucleation) is smaller than the characteristic time of
stress relaxation, which is governed by viscous flow. Such
a situation is possible at temperatures lower than the so-
called decoupling temperature Td � 1.2Tg, when the
Stokes–Einstein equation may no longer be valid, i.e.,
when the nucleation kinetics is not governed by viscous
flow. A detailed analysis, performed for lithium disilicate
glass, shows that elastic stresses may decrease the steady-
state nucleation rate by up to two orders of magnitude
[169]. In this analysis, the work of critical cluster formation
in the absence of elastic stresses was determined following
classical nucleation theory.
Recently an attempt was made to estimate the elastic
stress energy directly using the deviation of W*(T)-curves
from the theoretical one [161] for the same lithium disilicate
glass. The obtained values of elastic strain energy were
comparable in magnitude with those calculated using the
elastic constants of glass and crystals. It should be noted
that in the extrapolation of the W*(T)-dependence from
relatively high temperatures, at which elastic stress effects
can be neglected, to low temperatures, where the minimum
of experimental W*-values is observed, both thermody-
namic driving force and crystal/melt surface energy were
considered as fit parameters. The fitting procedure pro-
duced, in accordance with the conclusions of Section 5.2,
values of effective surface energy that decrease with
decreasing temperature. Moreover, the thermodynamic
driving force turned out to be considerably less than that
for the respective macroscopic phase.

Fig. 28 shows experimental steady-state nucleation rates
versus temperature together with the theoretical curve cal-
culated by neglecting elastic stresses, employing values for
the driving force and surface tension obtained via above
discussed fitting procedure. At low temperatures, the calcu-
lated Ist-values considerably exceed the experimental data
giving an indirect evidence of the essential role of elastic
stresses in nucleation.

6. Concluding remarks

We presented an overview of experimental results on
crystal nucleation in silicate glasses and their theoretical
interpretation in the framework of CNT. Different modifi-
cations and alternative theoretical approaches of CNT do
exist and the importance of the correct determination of
the properties of critical clusters and, in particular, of
the work for their formation has been known since the
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formulation of the basic concepts of CNT. However, fol-
lowing Gibbs’ ideas in the description of thermodynami-
cally heterogeneous systems, in the search for the
solution of this problem the properties of the critical clus-
ters have been commonly identified with the properties of
the newly evolving macroscopic phases. Exclusively under
such assumption, the supersaturation (or driving force)
can be considered – at constant pressure – as a function
only of temperature. As a consequence, in most attempts
to reconcile theoretical and experimental results attention
was predominantly directed to the determination of the
size-dependence of the specific interfacial energy. In con-
trast, it follows from the present review that the main prob-
lem regarding the application of CNT for a quantitative
description of nucleation kinetics in glass-forming liquids
consists primarily in the adequate description of the bulk
properties of the critical nuclei. Of course, a deviation of
the bulk properties of the critical clusters as compared with
the newly evolving macroscopic phases also leads to mod-
ifications of the specific interfacial energy. However, the
resulting variation of the specific interfacial energy – due
to changes in the bulk properties of the critical clusters as
compared with the newly evolving macroscopic phase – is
only a secondary factor that must be, of course, also ade-
quately incorporated into the theory. Therefore, the circle
of problems one has to solve for the theoretical description
of nucleation is enlarged. On the other hand, a new meth-
odology – the generalized Gibbs approach – that allows
one to overcome the mentioned problems, which cannot
be resolved following the classical concepts of Gibbs, has
been recently developed.

Direct experimental methods usually employed to study
micron-sized or larger crystals cannot be used for nuclei of
critical sizes, which are only of a few nanometers in the
temperature range of interest. This is one of the reasons
why one typically follows Gibbs’ description of heteroge-
neous systems and assigns the thermodynamic properties
(particularly the thermodynamic driving force for crystalli-
zation) of the macro-phases to the critical nuclei, thus
assuming that the critical nuclei and the evolving stable
macro-phase can be characterized by similar bulk state
parameters. However, since the thermodynamic barrier
for nucleation includes both the thermodynamic driving
force and the nucleus-melt surface energy, a maximum
thermodynamic driving force (corresponding to the stable
phase) is not a necessary condition to attain the lowest
value of the thermodynamic barrier and, correspondingly,
the highest value of the nucleation rate. Moreover, the
thermodynamic properties of the critical nuclei can be
affected by elastic stresses arising from differences between
the densities of the nucleus and the melt. Hence, one can
suppose that, in some cases, the deviation of the composi-
tion of the nuclei from those of the stable phase may be
accompanied by an approach of the nuclei density to that
of the melt. In such cases, the effect of elastic stresses is
reduced and, correspondingly, a decrease in the thermody-
namic barrier for formation of such nuclei (as compared
with the respective value for the stable phase) could be
expected. Thus, elastic stress effects can considerably com-
plicate the thermodynamics of nucleation and extend the
variety of possible structures and compositions of the crit-
ical nuclei.

Since, with rare exceptions, direct measurements of the
characteristic properties of critical nuclei are inaccessible,
it is rather difficult or impossible to attribute the measured
nucleation rates to defined crystal phases. It seems that
such situation will not change in the near future. Moreover,
taking into account density functional studies, computer
simulations and theoretical analyses connected with the
generalization of Ostwald’s rule of stages, it is even ques-
tionable whether the critical clusters have structures and
compositions resembling those of the possible macroscopic
phases that may evolve in the system under consideration.
As shown here, there is some remarkable evidence – partly
presented in this review – for the existence of considerable
differences between the properties of near-critical nuclei
and those of the respective stable macroscopic phases.

Glasses of stoichiometric compositions have been used
as model systems in a variety of studies of crystal nucle-
ation. Such choice was made hoping that it should be pos-
sible to treat such systems as one-component systems.
However, it now became clear that a stoichiometric glass
composition, equal to the composition of the evolving crys-
talline phase, does not guarantee that the nuclei have the
same composition. Therefore, systematic investigations of
nucleation rates versus glass compositions are of great
interest allowing us to understand the true nature of nucle-
ation in glasses. The great value of such analysis is rein-
forced if the crystal growth rates are also measured in the
same temperature range. In this way, additional informa-
tion can be accumulated allowing one to reveal both the
crystal nucleation and growth mechanisms operating in
the systems under study.

On the other hand, further development of the classical
theories of nucleation and growth – aimed to describe not
only critical nuclei formation, but also its subsequent
growth, including the possible evolution of their composi-
tion – may allow us to develop a more adequate description
of phase transformation kinetics. Here we drew attention
to a new approach to the description both of nucleation
and growth – the generalized Gibbs’ approach – which has
been developed in recent years and already demonstrated
its power in the analysis of phase formation in different sys-
tems. Existing different alternative theories and modifica-
tions of CNT and their further developments will show
which of them will be most successful in treating nucle-
ation-growth phenomena in crystallization. However, in
order to be successful in the description of experimental
data on nucleation and growth, any of the proposed theo-
ries – and this is one of the main conclusions of the present
review – must be able to appropriately describe the depen-
dence of the properties of the critical clusters on the state of
the ambient glass-forming melt and the change of the state
of the crystallites with their sizes both in dissolution and
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Fig. A1. Analysis of nucleation data with different expressions for the thermodynamic driving force. (b,d, f,h): thermodynamic driving force versus
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V T . Opened circles are plotted employing the experimental values of the thermodynamic

driving force.
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Table A1
Ratio of experimental and theoretical pre-exponential terms, and surface energy for different glasses [40] calculated by fitting nucleation data to CNT
employing experimental and approximate values of the thermodynamic driving force

Li2O Æ2SiO2 Na2O Æ2CaO Æ3SiO2 2Na2O ÆCaO Æ3SiO2 BaO Æ2SiO2
a

r�cm log Iexp
o

I theo
o

� �
r�cm log Iexp

o

I theo
o

� �
r�cm log Iexp

o

I theo
o

� �
r�cm log Iexp

o

I theo
o

� �
Eq. (6) 0.19 15 0.17 18 0.15 27 0.13 8
Eq. (A.1) 0.20 27 0.18 30 0.16 46 0.13 14
Eq. (A.2) 0.20 45 0.19 51 0.17 79 0.13 23
Eq. (A.3) 0.25 113 0.22 156 0.14 43
Experiment 0.20 19 0.19 72 0.17 139

The specific interfacial energy is given in J m�2.
a Viscosity was used to calculate Iexp

o and r�cm.
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growth processes. We believe the analysis of the size-depen-
dence of the cluster properties and their theoretical inter-
pretation may lead to new exciting developments in the
field of crystal nucleation of glasses, with a variety of
new applications. Thus, despite the fact that numerous
analyses of crystallization kinetics and mechanisms of sili-
cate and other glasses have been performed for decades,
they are expected to remain a highly interesting subject
for both fundamental and applied research on nucleation
and phase transformations in general.
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Appendix A

The experimental values of the thermodynamic driving
force for crystallization given by Eq. (5) is bounded by a
linear approximation (Eq. (6)), commonly denoted as
Turnbull’s formula, and by the approximation of Hoffman
(Eq. (7)), see Fig. A1(b), (d), and (f). Eq. (6) directly fol-
lows from Eq. (5) in the case of DCp = 0. The Hoffman
equation assumes DCp = constant and some additional
simplifications. There are other approximations that pre-
dict values of DGV located inside the range given by Eqs.
(6) and (7). Some of them, taken from Ref. [13], are

DGV ¼
DHV DT

T m

7T
T m þ 6T

� �
; ðA:1Þ

DGV ¼
DHV DT

T m

� cDSm DT � T ln
T m

T

� �� �
; ðA:2Þ

DGV ¼
DHV DT

T m

2T
T m þ T

: ðA:3Þ

Fig. A1(b), (d), (f), and (h) shows the values of DGV versus
temperature calculated with Eqs. (6), (A.1), (A.2), (A.3),
and (7). The value of c in Eq. (A.2) was chosen equal to
0.8. Experimental data on DGV are also shown for Li2O Æ2-
SiO2, Na2O Æ2CaO Æ3SiO2 and 2Na2O Æ1CaO Æ3SiO2 glasses.
Different approximations for the thermodynamic driving
force were used to plot the nucleation rates as shown in
Fig. A1(a), (c), (e), and (g). The intercepts and slopes of
the linear fits at T > Tg were employed to estimate Iexp

o

and r�cm. These parameters are listed in Table A1.
According to Table A1 the discrepancy between experi-

mental and theoretical values of Io is always drastic and
becomes even stronger when the DGV(T)-function becomes
weaker, while r�cm depends only weakly on the choice of a
particular expression for the thermodynamic driving force.
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