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Abstract

This paper contrasts the performance of heterogeneous and shrink-
age estimators versus the more traditional homogeneous panel data
estimators. The analysis utilizes a panel data set from 21 French re-
gions over the period 1973-1998 and a dynamic demand speci…cation
to study the gasoline demand in France. Out-of-sample forecast per-
formance as well as the plausibility of the various estimators are con-
trasted.
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1 Introduction
With the increasing time dimension of panel data sets, some researchers
including Robertson and Symons (1992), Pesaran and Smith (1995), and
Pesaran, Smith and Im (1996) have questioned the poolability of the data
across heterogeneous units. Instead, they argue in favor of heterogeneous
estimates that can be combined to obtain homogeneous estimates if the need
arises. Maddala, Srivastava and Li (1994) and Maddala et al. (1997) on the
other hand argued in favor of shrinkage estimators that shrink the hetero-
geneous estimators towards the pooled homogeneous estimator. Previously,
proponents of homogeneous panel estimators have acknowledged the poten-
tial heterogeneity among the cross-sectional units, but have assumed that
the e¢ciency gains from pooling outweighed these costs. Clearly, in panel
data sets with T up to 10, traditional homogeneous panel estimators would
appear the only viable alternative. But as T reaches 25 or even 50 years of
post-war annual data, the choice no longer seems clear-cut. Furthermore,
asymptotic theory is unlikely to illuminate the choice. In this paper, we turn
to prediction tests as well as plausibility of the estimates as a promising ap-
proach in empirical work for resolving this conundrum. We place the debate
within the context of French gasoline demand with a panel data set from 21
regions of France over the period 1973-1998.

Several researchers have emphasized the gains from pooling (see Hsiao
(1986) on the bene…ts of panels). In the context of a gasoline demand across
18 OECD countries over the period 1960-1990, Baltagi and Gri¢n (1997) ar-
gued for pooling the data as the best approach for obtaining reliable price and
income elasticities. They also pointed out that pure cross-section studies can-
not control for unobservable country e¤ects, whereas pure time-series studies
cannot control for unobservable oil shocks or behavioral changes occurring
over time. But, even if one agrees that a pooled estimator is preferable to
individual time-series or cross-section estimates, there remains the question
of which pooled estimators yields the more plausible estimates.

More recently, the fundamental homogeneity assumption underlying pooled
models has been called in question and alternative estimators have been pro-
posed. Several authors1 argue in favor of heterogeneous estimates. Maddala,
Srivastava and Li (1994) propose an iterative Bayesian shrinkage estimator
based on individual estimates shrunk towards the pooled model estimates.
On the other hand, Pesaran and Smith (1995) advocate abandoning the
pooled approach altogether because of inherent parameter heterogeneity and
relying upon the average response from individual regressions. Depending on

1See Robertson and Symons (1992), Maddala, Srivastava and Li (1994), Pesaran and
Smith (1995), Maddala et al. (1997), Hsiao, Pesaran and Tahmiscioglu (1999) and Pesaran
and Zhao (1999), among others.
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the extent of cross-sectional heterogeneity in parameters, researchers may
prefer these heterogeneous estimators to the traditional pooled homogeneous
parameter estimators. Despite the proliferation of these heterogeneous esti-
mators, relatively little is known about their performance in applied work.
Baltagi and Gri¢n (1997) and Baltagi, Gri¢n and Xiong (2000) contrast the
performance of these estimators using panels for gasoline and cigarettes and
out-of-sample forecast tests.

Following Baltagi and Gri¢n (1997), our objective here is to compare
the performance of 10 homogeneous and 13 heterogeneous estimators apply-
ing them to gasoline consumption across 21 French regions over 1973-1998.
Unlike previous work using international gasoline data, the focus here on
21 regions within France poses a very di¤erent type of data set for the het-
erogeneity versus homogeneity debate. Inter-regional di¤erences in gasoline
prices and income within France are likely to be much smaller than inter-
national price and income di¤erences. Thus, the usual e¢ciency argument
for pooling would seem to lose much of its force. At the same time, hetero-
geneities between the Paris region and rural sections of France would suggest
that the heterogeneous estimators may outperform their homogeneous coun-
terparts.

Our choice of regional French gasoline data also has some signi…cant pol-
icy considerations. French transportation policy involves drawing up master
plans to develop road and motorway improvements and construction. For
these infrastructure plans, long-run tra¢c forecasts are updated every …ve
years. Gasoline consumption serves as a key proxy for these tra¢c forecasts.
In the 70’s, and despite the …rst oil shock, there has been a steady growth
of tra¢c which was fueled by the increasing number of cars. The mid-80’s
experienced a boom in the car market and car tra¢c, which was stimulated
by low gasoline prices and by a quickly increasing share of diesel cars (using
a 40% cheaper fuel in France). This tra¢c growth seemed to have slowed
down in the 90’s, but the growth rates are not homogeneous nationwide.
Geographical factors are important in tra¢c analysis. For instance, for car
use, the most dynamic segments are peri-urban and long distance tra¢c. So,
we need to di¤erentiate gasoline demand forecasts (or tra¢c forecasts). Dif-
ferentiation speaks in favour of an administrative division (regions) since, at
this executive level, planning and funding stakes stand.2 Furthermore, it is
inside employment basins, e.g. inside regions, that we observe the greatest
di¤erences of car ‡eets and car uses. So, both from a methodological as well
as a policy perspective, the study of gasoline demand is important since long-
run price elasticity of gasoline remains an unresolved issue even if gasoline

2In France, 80% of fuel price at the pump can be attributed to regional and national
taxes.
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demand has been studied extensively3.
Section 2 describes the model speci…cation, the data set and the pooled

and heterogeneous estimators to be compared. In section 3, we compare the
plausibility of alternative estimates of price, income and car elasticities as
well as the speed of adjustment path to the long-run equilibrium. In section
4, we compare the forecast performance of these pooled and heterogeneous
estimators using the model to provide 10-year forecasts of gasoline consump-
tion. Section 5 summarizes the results and concludes.

2 Model speci…cation and estimators

2.1 Model speci…cation

Following Baltagi and Gri¢n (1997), we assume that the stock of energy-
using equipment is …xed in the short-run and its utilization is supposed to be
a function of normal economic in‡uences. Over time, observed utilization is
adopted to desired utilization through the familiar habit-persistence mech-
anism. So, the desired gasoline consumption per vehicle (GAS=CAR)¤ is
posited to be a log-linear function of the real price of gasoline (PMG=PCP I),
real income per capita (Y=N) and cars per capita (CAR=N). The stock of
cars is included to capture the likely e¤ect of reduced vehicle utilization say,
by a two-car family which does not necessarily drive twice the miles of a
one-car family.
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Adjustment to desired consumption per vehicle is assumed to follow the …rst-
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Adding the region and time subscripts, the classical dynamic demand equa-
tion for gasoline per vehicle is:
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3See Houthakker, Verleger and Sheehan (1974), Sweeney (1978), Gri¢n (1979), Bohi
and Zimmerman (1984), Dahl and Sterner (1991) and Baltagi and Gri¢n (1997).
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We follow the usual convention of assuming that the disturbance term in
equation (3) is speci…ed as a one-way error component model:

ui;t = ¹i + ºi;t , i = 1; :::; N , t = 1; :::; T

where ¹i denotes a region-speci…c e¤ect and ºi;t is white noise. Under this
formulation, the long-run price, income per capita and cars per capita re-
sponses are respectively: (µ¯= (1 ¡ µ)), (µ°= (1 ¡ µ)) and (µ±= (1 ¡ µ)) where
µ is the adjustment coe¢cient and (1 ¡ µ) ; the speed of adjustment to the
long-run equilibrium.

The data set consists of a panel of 21 French administrative regions cov-
ering the period 1973-1998. The variables are: the fuel consumption (GAS);
a petrol price index (integrating the growing part of diesel vehicles for which
fuel is cheaper) (PMG) de‡ated by the consumer price index (PCPI); house-
hold income (Y ); regional French population (N) and, the number of cars
(CAR) which is an important determinant of the long-run evolution of car
tra¢c.4 Table 1 summarizes the extent of data variation, both inter and
intra-regionally for the key variables: gasoline consumption per car, price
per capita, income and cars per capita. The price variation is predomi-
nantly within region while the income variation is a little over one-fourth
between regions and a little less than three-fourths within regions. For cars
per capita this variation is one-…fth between regions and four-…fths within
regions. Given the preponderance of within variation in the independent
variables this data set di¤ers markedly from the Baltagi and Gri¢n (1997)
comparison utilizing inter-country data. Under these conditions, one might
expect heterogeneous estimators to perform more favorably than homoge-
neous estimators.

Table 1
Variabilities of the French regional data (N = 21, T = 1973-1998)
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³
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Total variability 7:060

(100 %)
153:115

(100 %)
9:757
(100 %)

20:925
(100 %)

Between regional 65:72% 0:05% 27:84% 20:09%
Within regional 34:28% 99:95% 72:16% 79:91%

2.2 Homogeneous estimators

We …rst consider three standard pooled estimators, assuming the exogeneity
of all the regressors. These include OLS, which ignores the regional e¤ects,
the Within estimator, which allows for …xed regional e¤ects, and GLS, which

4See the data appendix.
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assumes that regional e¤ects are random. Since our model is dynamic, and
even if all the explanatory variables are uncorrelated with the error com-
ponents, the presence of serial correlation in the remainder error term or
the presence of a random regional e¤ect renders the lagged dependent vari-
able correlated with the error term and leads to inconsistent least squares
estimates.

Consequently, we also focus on pooled estimators employing two-stage
least squares (2SLS) using as instruments the exogenous variables and their
lagged values. In particular, we examine …ve alternative 2SLS pooled esti-
mators. First, we consider a standard 2SLS estimator, making no attempt
to improve e¢ciency by taking into account the random regional e¤ect. This
estimator is consistent only if the exogenous regressors are uncorrelated with
the unobservable individual e¤ects. Second, we report the Within 2SLS esti-
mator, which transforms the data about region means and thereby eliminates
any regional …xed e¤ect. In addition, this instruments for the presence of
the lagged dependent variable by using exogenous variables and their lagged
values. The third estimator is …rst-di¤erence 2SLS (FD2SLS) proposed by
Anderson and Hsiao (1982) in which …xed or random regional e¤ects are elim-
inated. However, …rst-di¤erencing introduces autocorrelation in the remain-
der error term (ºi;t ¡ ºi;t¡1) and thus ine¢ciency problems. Nevertheless,
consistency is preserved by the use of predetermined variables as instruments.
Keane and Runkle (1992), (hereafter denoted by KR) suggest a modi…cation
of the 2SLS estimator that allows for any arbitrary type of serial correlation
in the ºi;t’s. We refer to this estimator as 2SLS-KR. Still another variant
would be to allow for any arbitrary form of serial correlation in the …rst
di¤erenced disturbances in the manner of Keane-Runkle. This is denoted
as the FD2SLS-KR estimator. Although the FD2SLS and the FD2SLS-
KR estimates are quite similar, they generally di¤er appreciably from other
2SLS type estimators. Finally, following Arellano and Bond (1991), we used
a GMM estimator on the …rst-di¤erences speci…cation (FDGMM) with in-
struments in levels. This incorporates more orthogonality conditions than
is usually used by the Anderson and Hsiao (1982) estimator as well as a
general robust variance-covariance matrix speci…cation allowed by GMM. In
addition, we employ a GMM procedure on a speci…cation in levels with in-
struments in …rst-di¤erences (GMM). In total, we compare 10 homogeneous
estimators.

2.3 Heterogeneous estimators

Underlying the poolability of the data is the assumption of homogeneity of
the parameters across regions. However, if this assumption is invalid the
dynamic pooled model could be biased because of heterogeneity in the para-
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meters across regions. Pesaran and Smith (1995) proposed instead an average
of the individual region regressions which yields a consistent estimate of the
parameters as long as N and T tend to in…nity. We therefore compute in-
dividual region regressions and the Pesaran and Smith average estimate to
compare homogeneous as well as heterogeneous estimates of the regression
coe¢cients. We also computed the Swamy (1970) random coe¢cient re-
gression estimator which is a weighted average of the least squares estimates
where the weights are inversely proportional to their variance-covariance ma-
trices. Using a quite di¤erent approach, Maddala, Srivastava and Li (1994)
claim that shrinkage Bayesian type estimators are superior to either the in-
dividual heterogeneous estimates or the homogeneous estimates, especially
for prediction purposes. In this case, one “shrinks” the individual estimates
towards the pooled estimate using weights depending on their correspond-
ing variance-covariance matrices. From the individual maximum likelihood
estimators, based on the normality assumption, several shrinkage estimators
have been proposed in the literature including the empirical Bayes estima-
tor, the iterative Bayes estimator and the iterative empirical Bayes estimator
(see Maddala et al. (1997) for a description of these estimators).5 Maddala
et al. (1997) estimated short- and long-run elasticities of residential nat-
ural gas and electricity demand using a panel of 49 states over the period
1970-1990. They found that individual time series regressions for each state
gave wrong signs and were highly unstable. Although the pooled estimates
gave the right signs and were more reasonable, Maddala et al. (1997) argued
that these estimates are not valid because the hypothesis of homogeneity
of the coe¢cients is rejected. They proposed the shrinkage estimators as a
compromise between the unstable heterogeneous estimates and the untenable
homogeneity assumption. Thus, depending on the extent of between regional
heterogeneity in parameters, researchers may prefer either individual region
regression estimates, the Pesaran and Smith average, or the shrinkage esti-
mates to the traditional pooled homogeneous parameters estimates. In total,
we compute 13 heterogeneous estimates including the ones described above
and their instrumental variables counterpart.

5It is important to note that these shrinkage estimators were derived based on the strict
exogeneity assumption of the regressors. Nevertheless, Maddala et al. (1997) argue that
these estimators are still consistent but not e¢cient, when a lagged dependent variable is
present among the regressors.
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3 Comparison of parameter estimates

3.1 Results using homogeneous estimators

Table 2 summarizes the homogeneous elasticity estimates utilizing the vari-
ous estimators set forth in the previous section. In the …rst regression, OLS
— which emphasizes between regional di¤erences — …nds non-signi…cant in-
come and price elasticities. Given the relatively small inter-regional variation
in prices and income, this result should not be surprising. The 0:97 coe¢cient
on lagged gasoline consumption is no doubt biased because it is correlated
with the omitted speci…c e¤ects. The Within estimator may be preferred
in principle because it completely controls for region-speci…c e¤ects and the
possible correlation of these e¤ects with the explanatory variables. Short-run
price, income and car elasticities are very small (¡0:079, 0:141 and ¡0:240
respectively) but they are all signi…cant. Moreover, the coe¢cient of lagged
consumption (0:787) shows a strong habit persistence, so the long-run re-
sponse is 4:7 times the short-run response.6 The long-run income elasticity
is about 66% which con…rms previous results of models which explicitly in-
troduce the vehicle stock in the speci…cation.7 Since the stock of cars enters
both as a dependent and independent variable, the short-run transformed
elasticity of gasoline consumption relatively to the car-‡eet is (1 + µ±), e.g.
(0:76). The GLS estimates, which treat the ¹i’s as random e¤ects, lead to a
0:82 coe¢cient on lagged gasoline consumption. Both the short-run income
and car elasticities are smaller than those found with the Within estimator.
Nevertheless, these two estimators as a group of traditional estimators enjoy
certain areas of conformity.

A number of alternative instrumental variable estimators8 are designed
to deal with the endogeneity problem of the lagged gasoline consumption
variable. The simplest is 2SLS which di¤ers from OLS only in that it as-
sumes lagged consumption endogenous. Comparison of the OLS results with
the 2SLS results, in Table 2, show a substantial fall in the lagged-gasoline
consumption coe¢cient from 0:968 to 0:797. Only the price elasticity (¡0:03
in the short-run) is statistically signi…cant. Generally, the 2SLS pooled esti-
mates of (1 ¡ µ) are much lower than those models treating the lagged depen-
dent variable as predetermined. The standard interpretation of such results
is that the 2SLS estimators avoid biasing (1 ¡ µ) toward 1. Comparing the
Within-2SLS estimates with the Within estimates, we note that the Within-
2SLS estimator …nds a modest decrease of the lagged-gasoline consumption
coe¢cient from 0:787 to 0:716, and the remaining short-run elasticities also

6See, for instance, Bohi and Zimmerman (1984), Dahl and Sterner (1991) who found
the long-run responses to be 3:3 times the short-run response.

7See Baltagi and Gri¢n (1997) who found a similar elasticity for 18 OECD countries.
8We use two lags on price, income and car per capita as additional instruments.
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do not di¤er widely. Since serial correlation of the ºi;t’s may render our esti-
mators asymptotically ine¢cient, we apply the 2SLS-KR that allows for any
arbitrary type of serial correlation in the ºi;t’s. First of all, there is almost
no di¤erence between the 2SLS and the 2SLS-KR9 estimator except for the
income and car elasticities, but these estimates are insigni…cant. Next, fol-
lowing Arellano and Bond (1991), we employ a GMM estimator. First, on
a speci…cation in levels with instruments in …rst-di¤erences and later on a
…rst-di¤erences speci…cation with instruments in levels (FDGMM). For the
GMM and FDGMM estimators, we …nd quite similar results as those of the
Within-2SLS estimator.

Another method of controlling for region e¤ects, proposed by Anderson
and Hsiao (1982), amounts to …rst di¤erencing the data and then applying
2SLS using lagged values of predetermined variables as instruments, which
is denoted by FD2SLS. Both FD2SLS and the FD2SLS-KR estimates are
quite similar, but the elasticities estimates are much higher than their 2SLS
counterparts. Short-run and long-run elasticities become signi…cant with
the FD2SLS-KR procedure. Overall, the pooled homogeneous estimates are
reasonable, pretty stable across various estimators, have the right sign and
are signi…cant.

3.2 Results using heterogeneous estimators

Table 3 summarizes the results of the individual region regressions, the Pe-
saran and Smith average estimate, the Swamy random coe¢cients estimate,
maximum likelihood and shrinkage type estimators. The individual OLS re-
gion regressions yield quite a wide range of variability with lagged-gasoline
consumption coe¢cients across regions ranging from 0:10 to 0:90, short-run
elasticities of price (ranging from ¡0:25 to ¡0:06), income (ranging from
¡0:25 to 0:72) and car (ranging ¡1:06 to 0). The same variability is also
exhibited by the individual 2SLS estimates. The range of individual 2SLS
estimates suggests that the individual region estimates are highly unstable
and unreliable. Indeed, the instability of parameter estimates from individ-
ual time series has been observed quite commonly in a variety of demand
studies, providing a major argument for pooling.10 Pesaran and Smith’s sug-
gestion of using a simple average of the individual region estimates to obtain
long-run elasticity estimates implies that the long-run elasticities for price
are ¡0:352 (OLS) and ¡0:417 (2SLS), for income 0:957 (OLS) and 0:958
(2SLS), for car ¡1:341 (OLS) and ¡1:545 (2SLS). Likewise, Swamy’s esti-

9Estimation is based upon 1978-1998 since it may be worth emphazing that if T > N ,
this procedure will fail since the variance-covariance matrix will be singular with rank N .

10See, for instance, Baltagi and Gri¢n (1997), for gasoline demand and Maddala et al.
(1997) for residential demand for electricity and natural gas.
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mator gives long-run elasticities for price (¡0:387) for income (0:889) and for
car (¡1:383).

Maximum likelihood estimates under normality yield a narrower range of
estimates on lagged-gasoline consumption coe¢cients ranging from 0:40 to
0:81. The short-run elasticities of price (ranging from ¡0:18 to ¡0:05), of
income (ranging from 0:05 to 0:46) and of car (ranging from ¡0:71 to ¡0:10).
The same conclusions occur for the empirical Bayes shrinkage estimator and
for the iterative Bayes estimators (iterative shrinkage estimator and iterative
empirical shrinkage estimator). Despite the fact that the shrinkage Bayes
estimators seem to provide a smaller range of estimates than the individual
regions estimates, there remains a much wider variability compared to the
pooled homogeneous estimates reported in Table 2. For instance, Figure 1
shows that the long-run income per capita elasticities, estimated with indi-
vidual OLS, exhibit a wide but unrealistic variability among the 21 French
regions. On the other hand the Bayes estimators shrink the heterogeneous
estimates towards a narrower range of variation. Values of long-run income
elasticities are concentrated around unity, especially for the Iterative Empir-
ical Bayes estimator. This is also true for long-run price elasticities, long-run
car per capita elasticities and the same features occur for the instrumen-
tal variables shrinkage estimates. The shrinkage type estimators seems to
provide a smaller more plausible range of estimates.

4 Forecast properties
In this section, we use the prediction-performance criteria to help us choose
among alternative estimators. Given the large data set of 21 regions over 24
years, we estimate our model using a truncated data set (i.e., without the
last ten years of data) and then apply each estimator to an out-of-sample
forecast period. Table 4 gives a comparison of various predictors using the
root mean square errors criterion (RMSE). Because of the ability of an esti-
mator to characterize long-run as well as short-run responses is at issue, the
average RMSE is calculated across the 21 regions at di¤erent forecast hori-
zons. Speci…cally, each model was applied to each region, and out-of-sample
forecasts for ten years were calculated. The relative forecast rankings are
reported in Table 4 after one year, …ve years, and ten years. The overall
average ranking for the full ten-year period is also reported. In comparing
the relative performance of the various estimators, one can analyze these
results from the following perspective: heterogeneous versus homogeneous,
and one-year-ahead forecasts versus long-run forecasts. A comparison of het-
erogeneous versus homogeneous estimators reveals some interesting patterns.
The individual OLS and individual 2SLS also perform poorly vis-a-vis the
homogeneous estimators ranking 22 and 23 over the …fth and 10 year hori-
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zons. The Pesaran and Smith “average OLS”, “average 2SLS” and Swamy’s
random coe¢cients estimator rank 13, 16 and 15, respectively for the 10 year
average forecasts. The weak forecast performance of the Pesaran and Smith
average and the Swamy estimators relative to the homogeneous estimators
arise because of the parameter-instability problem of the individual region
regressions. Similarly, the relatively weak performance of the shrinkage and
Bayes type estimators (ranking from 11 to 21 for the 10 year average), can be
attributed to their reliance upon the individual region parameter estimates.
This ranking depends on the type of estimator, whether empirical Bayes, it-
erative Bayes or their IV version. Thus, what seemed as an advantage to the
shrinkage estimator — that is, placing some weight on the individual region
regressions — becomes a liability when parameter instability is severe.

The overall RMSE forecast rankings o¤er a strong endorsement for the ho-
mogeneous estimators due in large part to their parameter stability. Within-
2SLS ranks …rst, followed by Within, GLS, FDGMM, FD2SLS, OLS, FD2SLS-
KR for the 10 year average. In fact, the top ten estimators for the …ve-, ten-
and average ten-years forecasts are homogeneous parameters estimators. En-
dogeneity problems seem not to be severe since GLS, Within and Within-
2SLS give the lowest RMSE for the …ve, ten and overall ten-year average.
See Figure 2 for a plot of the RMSE forecast, by French region, for the GLS
estimator for the one, …ve and 10 year ahead forecasts.

5 Summary and conclusions
This paper con…rms again the value of panel data sets and the emphasis
given to pooled estimators using a French panel data set on gasoline de-
mand across 21 regions over the period 1973-1998. Unlike previous evidence
using panels for international gasoline demand across 18 OECD countries
and cigarette demand across U.S. states, this French panel is very di¤er-
ent in that inter-regional variation in price and income is small vis-a-vis the
intra-regional variation. Particularly if the parameter heterogeneity among
regions is important, they should be manifest in this type of panel. Our
results show that when the data is used to estimate heterogeneous models
across regions, individual estimates are highly variable, unstable and o¤er
the worst out-of-sample forecasts. Despite the fact that shrinkage estimators
outperform these individual estimates, they still have a wide range and are
outperformed by simple homogeneous estimates in out-of-sample forecasts.
Admittedly, this is another case study using French data, but it does add to
the evidence that simplicity and parsimony in model estimation o¤er more
plausible estimates and better forecasts.
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Appendix: the data set
Our data set consists of a pooled sample for 21 French regions covering the
period 1973 to 1998. The data base has been built with the assistance of Jean-
Loup MADRE, Research Director at “INRETS” (Department of Transport
Economics and Sociology, The French National Institute for Transport and
Safety Research) in the framework of a workshop on tra¢c modelling.

² Consumption of gasoline (GAS) has been computed from fuel sales
(source: “Comité Professionel des Pétroles,” Professional Committee of
Petrols) using hypotheses on changes in fuel e¢ciency (miles per gallon
separately for diesel and gasoline) and for the share of these fuels used
by light vehicles (in France, diesel cars represent about 40% of total car
tra¢c). These hypotheses are revised each year but are the same for
each region. Consumption of gasoline is expressed in hundreds millions
of vehicles kilometers travelled. So, we obtain an estimation of regional
light tra¢c (private cars + light trucks). When this consumption is
de‡ated by the number of cars, we observe the contrast between transit
regions, like Bourgogne, where the ”mean annual mileage per car” is
high (about 17; 000 km per year), and enclaved (Auvergne) or urban
(Ile-de-France) regions where exchanges of interstate tra¢c tend to
counterbalance each other.

² The price of motor gasoline (PMG), expressed in French francs per litre,
integrates the growing part of diesel vehicles for which fuel is cheaper.
This price has been liberalized in 1985 which induced di¤erent regional
evolutions.

² Household income (Y ) is expressed in French francs (source: “INSEE”,
National Institute of Statistics and Economic Studies). INSEE has
supplied regional series of gross disposable income until 1992. With
…scal statistics (income taxes), we have updated these series to 1998.

² Regional French population (N), (source: “INSEE”).

² Consumer price index (PCPI), base 100 = 1980, (source: “INSEE”).

² The stock of cars (CAR) is computed from “la vignette”, the annual tax
on car ownership (source: “Ministère de l’Economie et des Finances,”
Treasury). During the period covered by our panel data set, it is rather
correlated with economic growth, which may induce colinearity prob-
lems. But, as car ownership will approach saturation threshold, this
correlation will decrease. Moreover, as car use has ‡uctuated in a rather
narrow range (12; 000 to 16; 000 km per year since 1973, general mean
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being 14; 527 kms per year), our opinion is that tra¢c elasticity to car-
‡eet should be 1, and that other factors should explain the evolution
of the mean annual mileage per car.
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Table 2 - Gasoline demand: homogeneous parameters estimates 1975-1998

Short Run Long Run
Model type ln (GAS/CAR)i,t-1 ln (PMG/PCPI)i,t ln(Y/N)i,t ln(CAR/N)i,t ln (PMG/PCPI)i,t ln(Y/N)i,t ln(CAR/N)i,t

Exogenous regressors
OLS 0.968

(11.407)
-0.023

(-0.660)
-0.025

(-0.241)
-0.007

(-0.071)
-0.724

(-0.326)
-0.799

(-0.189)
-0.225

(-0.068)
Within 0.787

(30.861)
-0.079

(-7.050)
0.141

(3.592)
-0.240

(-5.179)
-0.375

(-6.109)
0.661

(4.254)
-1.126

(-5.156)
GLS 0.822

(35.089)
-0.064

(-6.293)
0.074

(2.185)
-0.157

(-4.047)
-0.360

(-5.212)
0.417

(2.434)
-0.889

(-3.305)
Endogenous regressors

2SLS 0.797
(14.507)

-0.030
(-4.713)

-0.026
(-1.497)

0.019
(1.128)

-0.151
(-3.335)

-0.128
(-1.304)

0.095
(1.286)

Within-2SLS 0.716
(9.232)

-0.093
(-6.421)

0.200
(2.274)

-0.299
(-4.091)

-0.329
(-4.671)

0.705
(4.421)

-1.055
(-5.486)

2SLS-KR 0.738
(36.858)

-0.036
(-3.620)

-0.015
(-0.819)

0.038
(0.965)

-0.138
(-3.386)

-0.057
(-0.783)

0.146
(0.968)

GMM 0.788
(26.691)

-0.082
(-6.793)

0.138
(2.711)

-0.247
(-4.074)

-0.390
(-6.727)

0.654
(3.314)

-1.170
(-4.578)

FD2SLS 0.727
(6.164)

-0.194
(-6.765)

0.520
(3.275)

-0.767
(-5.082)

-0.711
(-1.945)

1.906
(1.598)

-2.813
(-1.784)

FD2SLS-KR 0.721
(32.530)

-0.187
(-15.178)

0.509
(24.661)

-0.742
(-17.130)

-0.672
(-33.844)

1.828
(10.493)

-2.660
(-21.221)

FDGMM 0.735
(24.737)

-0.091
(-10.176)

0.195
(4.743)

-0.280
(-2.688)

-0.344
(-9.759)

0.737
(4.889)

-1.059
(-2.431)

Numbers in parentheses denote t-statistics.



Table 3 - Gasoline demand: heterogeneous parameters estimates 1975-1998

Short Run Long Run
Model type ln (GAS/CAR)i,t-1 ln (PMG/PCPI)i,t ln(Y/N)i,t ln(CAR/N)i,t ln (PMG/PCPI)i,t ln(Y/N)i,t ln(CAR/N)i,t

Individual region OLS estimator
Maximum 0.902

(9.468)
-0.055

(-0.643)
0.715

(3.196)
-0.004

(-0.014)
-0.126

(-0.593)
3.759

(1.210)
-0.011

(-0.014)
Median 0.580

(4.391)
-0.129

(-2.310)
0.460

(2.514)
-0.597

(-2.554)
-0.330

(-1.518)
1.078

(2.937)
-1.358

(-1.662)
Minimum 0.096

(0.685)
-0.253

(-5.646)
-0.252

(-1.176)
-1.062

(-4.622)
-1.323

(-0.950)
-0.670

(-1.084)
-4.073

(-3.040)
Average 0.590

(16.805)
-0.144

(-10.252)
0.392

(7.507)
-0.549

(-9.228)
-0.352

(-7.703)
0.957

(6.314)
-1.341

(-7.239)
Swamy 0.668

(14.381)
-0.128

(-7.488)
0.295

(4.334)
-0.459

(-6.579)
-0.387

(-5.981)
0.889

(4.628)
-1.383

(-5.739)
Individual region maximum likelihood estimator

Maximum 0.807
(13.017)

-0.052
(-3.784)

0.455
(4.065)

-0.102
(-2.112)

-0.172
(-2.705)

1.730
(2.302)

-0.339
(-1.649)

Median 0.656
(7.888)

-0.131
(-5.478)

0.333
(2.365)

-0.500
(-6.107)

-0.380
(-3.180)

1.000
(2.178)

-1.400
(-3.465)

Minimum 0.400
(5.100)

-0.184
(-8.184)

0.045
(0.600)

-0.708
(-6.081)

-0.721
(-4.580)

0.149
(0.0617)

-2.774
(-4.778)

Individual region empirical Bayes shrinkage estimator
Maximum 0.828

(10.473)
-0.055

(-2.455)
0.539

(3.550)
-0.106

(-1.188)
-0.153

(-2.167)
2.255

(1.679)
-0.297

(-1.110)
Median 0.641

(5.796)
-0.132

(-5.071)
0.375

(2.702)
-0.556

(-3.386)
-0.342

(-5.024)
1.014

(4.000)
-1.351

(-2.625)
Minimum 0.303

(2.898)
-0.203

(-5.680)
-0.019

(-0.135)
-0.810

(-5.032)
-0.801

(-3.335)
-0.055

(-0.134)
-3.212

(-3.703)
Individual region iterative Bayes shrinkage estimator

Maximum 0.812
(18.081)

-0.121
(-12.656)

0.415
(10.459)

-0.470
(-37.427)

-0.277
(-9.478)

2.214
(3.827)

-1.222
(-8.966)

Median 0.669
(11.573)

-0.139
(-10.917)

0.329
(9.313)

-0.504
(-41.784)

-0.401
(-6.357)

1.006
(4.865)

-1.543
(-6.074)

Minimum 0.529
(9.628)

-0.160
(-14.708)

0.242
(6.086)

-0.528
(-38.832)

-0.726
(-4.378)

0.514
(4.645)

-2.504
(-4.234)

Numbers in parentheses denote t-statistics.



Table 3 (continued)

Short Run Long Run
Model type ln (GAS/CAR)i,t-1 ln (PMG/PCPI)i,t ln(Y/N)i,t Ln(CAR/N)i,t ln (PMG/PCPI)i,t ln(Y/N)i,t Ln(CAR/N)i,t

Individual region iterative empirical Bayes shrinkage estimator
Maximum 0.738

(26.842)
-0.122

(-16.957)
0.382

(18.851)
-0.470

(-39.246)
-0.298

(-12.789)
1.461

(6.803)
-1.247

(-16.191)
Median 0.662

(21.617)
-0.134

(-17.306)
0.330

(14.891)
-0.498

(-40.334)
-0.392

(-10.268)
0.976

(6.776)
-1.474

(-12.786)
Minimum 0.590

(20.254)
-0.143

(-17.683)
0.276

(13.052)
-0.513

(-46.046)
-0.549

(-9.018)
0.673

(7.293)
-1.799

(-10.408)
Individual region 2SLS estimator

Maximum 1.347
(1.615)

-0.020
(-0.209)

1.302
(1.197)

-0.101
(-0.311)

0.424
(0.482)

3.255
(0.663)

0.422
(0.139)

Median 0.707
(2.813)

-0.135
(-1.158)

0.321
(0.845)

-0.457
(-0.839)

-0.384
(-0.805)

1.234
(2.615)

-1.582
(-1.033)

Minimum

Average

0.159
(0.315)
0.651

(7.872)

-0.285
(-5.349)
-0.145

(-7.924)

-0.450
(-0.325)

0.334
(2.710)

-1.318
(-3.986)
-0.538

(-5.702)

-2.706
(-0.212)
-0.417

(-3.718)

-3.142
(-0.132)
0.958

(2.279)

-6.593
(-0.564)
-1.545

(-3.387)
Individual region IV maximum likelihood estimator

Maximum 1.322
(134.921)

-0.048
(-2.320)

0.581
(8.159)

-0.111
(-1.664)

0.451
(27.616)

2.304
(5.123)

0.516
(9.525)

Median 0.710
(15.438)

-0.136
(-8.664)

0.294
(4.252)

-0.437
(-9.576)

-0.472
(-7.344)

1.112
(4.732)

-1.598
(-7.521)

Minimum 0.323
(5.681)

-0.262
(-16.857)

-0.409
(-25.520)

-1.157
(-14.617)

-1.714
(-2.494)

-1.114
(-0.978)

-4.323
(-2.907)

Individual region IV empirical Bayes shrinkage estimator
Maximum 1.322

(33.747)
-0.044

(-1.854)
0.681

(2.286)
-0.116

(-1.427)
0.446

(9.541)
2.236

(4.067)
0.498

(3.101)
Median 0.712

(7.183)
-0.137

(-5.320)
0.320

(2.815)
-0.445

(-3.499)
-0.456

(-3.108)
1.142

(4.087)
-1.611

(-5.768)
Minimum 0.289

(2.442)
-0.265

(-14.007)
-0.416

(-6.400)
-1.171

(-10.326)
-1.770

(-1.624)
-1.254

(-0.645)
-4.291

(-1.692)
Numbers in parentheses denote t-statistics.



Table 3 (continued)

Short Run Long Run
Model type ln GAS/CAR)i,t-1 ln (PMG/PCPI)i,t ln(Y/N)i,t Ln(CAR/N)i,t ln (PMG/PCPI)i,t ln(Y/N)i,t Ln(CAR/N)i,t

   Individual region IV iterative Bayes shrinkage estimator
Maximum 1.311

(39.439)
-0.036

(-1.688)
0.630

(6.154)
-0.099

(-1.378)
0.442

(11.272)
2.443

(2.310)
0.482

(3.581)
Median 0.719

(16.320)
-0.134

(-6.093)
0.295

(2.830)
-0.431

(-3.930)
-0.468

(-1.678)
1.169

(4.956)
-1.427

(-2.669)
Minimum 0.276

(2.642)
-0.271

(-16.168)
-0.423

(-7.574)
-1.218

(-11.959)
-1.858

(-1.671)
-1.397

(-0.699)
-4.850

(-1.959)
   Individual region IV iterative empirical Bayes shrinkage estimator

Maximum 1.311
(34.055)

-0.053
(-2.171)

0.514
(4.533)

-0.104
(-1.210)

0.466
(9.180)

2.193
(3.657)

0.562
(3.249)

Median 0.749
(16.071)

-0.116
(-3.787)

0.229
(2.697)

-0.393
(-11.645)

-0.503
(-4.504)

0.938
(7.556)

-1.659
(-5.451)

Minimum 0.438
(4.425)

-0.252
(-13.039)

-0.391
(-6.174)

-1.088
(-9.510)

-1.680
(-1.792)

-0.749
(-0.483)

-4.330
(-1.871)

Numbers in parentheses denote t-statistics.



 

Table 4 - Comparison of forecast performance on French panel data set 
 

 1st year   5th year   10th year   10-year average  
Ranking Estimator RMSE  Estimator RMSE  Estimator RMSE   RMSE 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 

 

GLS 
Within 
Emp. It. Bayes 
OLS 
Within-2SLS 
FD2SLS 
FD2SLS-KR 
It. Bayes 
Emp. It. Bayes IV 
FDGMM 
Max. Likelihood 
Emp. Bayes 
Max. Likelihood IV 
It. Bayes IV 
Emp. Bayes IV 
Indiv. OLS 
2SLS 
Indiv. 2SLS 
2SLS-KR 
GMM 
Average OLS 
Average 2SLS  
Swamy 

1.818 
1.836 
1.841 
1.880 
1.885 
2.124 
2.189 
2.241 
2.291 
2.469 
2.566 
2.686 
2.798 
2.812 
2.981 
3.283 
3.410 
3.797 
4.574 
5.821 
9.198 
9.738 
9.909 

 Within-2SLS 
Within 
GLS 
OLS 
FDGMM 
FD2SLS 
FD2SLS-KR 
2SLS 
2SLS-KR 
GMM 
Emp. It. Bayes 
It. Bayes 
Average OLS 
Swamy 
Max. Likelihood 
Average 2SLS 
Emp. It. Bayes IV 
Emp. Bayes 
Max. Likelihood IV 
Emp. Bayes IV 
It. Bayes IV 
Indiv. OLS 
Indiv. 2SLS 

4.432 
4.545 
4.568 
5.593 
6.061 
6.077 
6.318 
7.891 
9.702 
10.377 
12.081 
12.913 
13.014 
13.620 
13.965 
14.654 
15.425 
16.274 
19.982 
20.654 
22.196 
23.254 
24.070 

 Within-2SLS 
Within 
GLS 
FDGMM 
FD2SLS 
FD2SLS-KR 

2SLS 
OLS 
2SLS-KR 
GMM 
Average OLS 
Emp. It. Bayes 
Swamy 
It. Bayes 
Average 2SLS 
Max. Likelihood 
Emp. It. Bayes IV 
Emp. Bayes 
Max. Likelihood IV 
Emp. Bayes IV 
It. Bayes IV 
Indiv. OLS 
Indiv. 2SLS 
 

5.252 
5.568 
5.682 
7.216 
8.523 
8.961 
9.164 
10.682 
11.240 
12.133 
14.291 
14.554 
14.571 
16.359 
16.664 
19.883 
22.822 
23.392 
35.495 
38.439 
47.598 
60.922 
66.610 

 Within-2SLS 
Within 
GLS 
FDGMM 
FD2SLS 
OLS 
FD2SLS-KR 

2SLS 
2SLS-KR 
GMM 
Emp. It. Bayes 
It. Bayes 
Average OLS 
Max. Likelihood 
Swamy 
Average 2SLS 
Emp. It. Bayes IV 
Emp. Bayes 
Max. Likelihood IV 
Emp. Bayes IV 
It. Bayes IV 
Indiv. OLS 
Indiv. 2SLS 

4.107 
4.223 
4.246 
5.561 
5.927 
6.097 
6.190 
7.392 
9.147 
10.058 
10.955 
11.896 
12.690 
13.258 
13.264 
14.284 
15.014 
15.731 
20.883 
21.949 
24.896 
28.367 
30.035 

RMSE x 10-2 
  
 



Figure 1 - Distribution of the long run income per capita elasticities
among the 21 French regions over 1975-1998
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Figure 2 -  Average RMSE across the 21 French regions
         for 3 forecast horizons - GLS estimator
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