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Homogeneous ice formation in convective cloud outflow regions

B. Kärcher
German Aerospace Agency (DLR), Institute for Atmospheric Physics (IPA), Wessling, Germany
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Homogeneous droplet freezing in the warm cirrus regime (230–240 K) is investigated
along idealized convective cloud trajectories using a spectral parcel model developed to
track droplet freezing events accurately. The novel model is described and used to study
ice formation from rapidly ascending (vertical velocity 0.6–6 m s−1) air parcels containing
cloud condensation nuclei (CCN) and liquid water droplets. Homogeneous freezing events
in warm cirrus are affected by latent heat exchange and produce a mode of small ice crystals
with maximum dimensions 10–100 μm after initial supersaturation quenching. During the
formation stage, ice-crystal number concentrations formed homogeneously in convective
cloud outflow are hardly affected by ice-crystal settling and depend sensitively on vertical
velocity. In the case of CCN activation into cloud water droplets prior to or along with
freezing, relative humidity variations also result in widely varying ice numbers that are
insensitive to CCN solubility. These results offer pointers on how further progress can be
achieved in simulating and better understanding the formation of upper tropospheric ice
clouds originating from convective detrainment zones.
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1. Introduction

Homogeneous freezing of supercooled, liquid water containing
particles is the most fundamental microphysical process leading
to cloud ice formation, requiring only the presence of
ubiquitous cloud condensation nuclei (CCN) and a dynamical
forcing – usually cooling – to initiate water phase transitions.
Evidence for homogeneous freezing of cloud droplets occurring
at the tops of convective clouds is available from in situ
measurements (Rosenfeld and Woodley, 2003; Stith et al., 2014).
To assess the role of heterogeneous ice nuclei (IN) in atmospheric
ice formation processes reliably, a sound understanding of
homogeneous droplet freezing is essential.

An analytical approach has been presented describing
homogeneous ice formation from water droplets in liquid clouds
(Kärcher and Seifert, 2016, hereinafter referred to as KS16) or
from supercooled aerosol particles in cirrus (pure ice clouds that
lack a liquid cloud droplet phase: Kärcher and Lohmann, 2002).
This approach rests on the concept of freezing–relaxation, which
examines the supersaturation history in moist adiabatic air parcels
by showing that the number of nucleated ice crystals is largely
determined by the condition that the rate of ice supersaturation
quenching due to water-vapour deposition on the newly formed
ice crystals equals the rate of ice supersaturation increase due to
dynamical forcing induced by a prescribed updraught speed.

According to these and a number of follow-on studies,
primary ice formation is strongly controlled by the dynamical
forcing and the impact of IN on homogeneous freezing events

diminishes in conditions of sufficiently strong forcing. In such
conditions, IN reduce homogeneously nucleated ice-crystal
number concentrations significantly or prevent homogeneous
freezing from occurring only if they are sufficiently abundant.

The present work continues this research by means of
detailed numerical simulations of droplet and ice microphysics
at temperatures 230–240 K, in a first step without consideration
of IN effects. In this temperature (warm cirrus) regime, wherein
homogeneous freezing of supercooled aerosol particles takes place
only with exceedingly low probability, efficient homogeneous
freezing of liquid water droplets takes place. Those droplets are
either transported from within cloud to high-altitude outflow
regions or form from CCN available within those regions. We
examine a deep convection case study of homogeneous droplet
freezing, in which important variables are constrained by in situ
observations. Our previous work on this issue (KS16) is taken
one step further by adding effects of convectively driven CCN
activation in the simulations to explore the liquid-phase control
of this ice formation pathway.

To this end, we have developed a numerical parcel model that
is tailored towards an accurate treatment of ice nucleation and
depositional growth from a prescribed population of CCN (that
might be internally mixed with heterogeneous immersion freezing
nuclei) and the supercooled cloud droplets evolving from them.
Effects of CCN and IN on ice formation in mixed-phase clouds
have in the past been studied using a parcel model framework (Li
et al., 2013, and references therein) employing classical nucleation
theory to model cloud-droplet freezing, with an emphasis on
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Figure 1. Schematic of particle types and microphysical transformation pathways realized in the spectral parcel model primeice. CCN are supercooled aqueous
aerosol particles containing hygroscopic solutes (sol) and optionally insoluble immersion ice nuclei (ins) as dry cores (c). The solute material dissolves in the presence
of condensed water, creating solution droplets. Those sub-μm sized aqueous droplets equilibrate by condensation or evaporation of small amounts of water vapour
in a liquid water subsaturated environment and may activate into μm-sized cloud droplets by condensing large amounts of supersaturated vapour. Together, liquid
aerosol and cloud droplets are denoted as water particles (w). They may nucleate ice crystals (i) by either homogeneous or immersion freezing. Pristine ice crystals
grow by deposition of water molecules at their surfaces. The reverse process, sublimation, returns water vapour back to the gas phase. Cooling or heating of air induces
water phase transitions conserving total water mass and heat. Water particles and ice crystals compete for the available water vapour. Ice crystals may be removed
from the parcel by sedimentation, leading to a loss of total water.

temperatures warmer than 240 K. The model described here has
been employed to assess quantitative predictions of our theoretical
considerations and to explore the basic features of its underlying
concept in greater detail. It includes homogeneous freezing of
supercooled aerosol particles below 230 K and can therefore also
be used for future cirrus cloud studies. While we describe how
immersion freezing is treated in the framework of the spectral
model, detailed studies of IN effects, including the competition
between various ice nucleation modes, will be part of future work.

The basic model equations and numerical solution methods
presented here are described in section 2. An observation-based
case study is analyzed and a number of sensitivity studies are
carried out in section 3. A summary of the main findings and
their implications for future work in section 4 concludes this
article.

2. Numerical model

The spectral parcel model primeice has been developed to
treat primary ice formation processes – ice nucleation either
homogeneously or heterogeneously from aqueous precursor
particles and growth by uptake of water vapour – as summarized in
Figure 1 and outlined in section 2.1. Its underlying equations and
the numerical methods to solve them are described in sections 2.2
and 2.3, respectively.

2.1. Salient features

Supercooled aerosol particles acting as nuclei for water-vapour
condensation can turn into nearly pure water (cloud) droplets
by overcoming a critical supersaturation with respect to liquid
water. Both aerosol and cloud droplets may be regarded as one
type of water-containing particles distinguished solely by their
water content. The amount of condensed water is controlled by
the mass and chemical nature of solute (hygroscopic) material
of the CCN and the temporal evolution of supersaturation
driven by a dynamical forcing. Aerosol and cloud droplets
turn into ice crystals by homogeneous freezing in sufficiently
cold and moist conditions. Hygroscopic material dissolved in
aqueous particles attracts water molecules, thereby lowering the
freezing temperature of pure water. In this way, homogeneous
ice nucleation from supercooled solution aerosols can, in the
absence of liquid water supersaturation, be suppressed to very
low temperatures, e.g. 185–190 K in the winter polar stratosphere
(Peter, 1997), well below the range of temperatures (≈235–239 K)
where pure water droplets freeze homogeneously on short time-
scales (KS16).

As opposed to homogeneous freezing – a stochastic, volume-
dependent process in fully liquid particles – heterogeneous ice
nucleation behaviour is surface-controlled and may vary strongly
between individual IN (Murray et al., 2012). In particular, in a
given time window, not all IN in a sample might nucleate ice,
due to interparticle variability in their ice-nucleating properties.
The physico-chemical properties of IN and the temperature
and supersaturation at which they form ice vary depending on
the ice nucleation mode. In primeice, besides homogeneous
droplet freezing, immersion freezing is represented as a primary
heterogeneous ice formation mode. When IN are immersed in
water particles (i.e. liquid aerosol particles or cloud droplets
and immersion IN are internally mixed; see Figure 1), IN may
freeze the host particle around and above homogeneous freezing
temperatures.

Another primary ice nucleation mode is deposition nucle-
ation – the nucleation of ice by water-vapour deposition on the
bare surfaces of externally mixed particles bypassing a supercooled
liquid water stage. It is reasonable to assume that deposition IN
have been removed by in-cloud scavenging processes and are no
longer present in significant concentrations in cold cloud outflow
regions. Moreover, it is fundamentally unclear how to distinguish
between immersion and deposition nucleation in parametriza-
tions of heterogeneous ice nucleation rate coefficients in the case
of thin aqueous coatings.

Ice particle growth from the vapour phase is modelled using
diffusional theory, including a gas kinetic correction, to allow
the accurate treatment of aerosol-induced ice formation. This
correction introduces the deposition coefficient, defined as the
ratio of the number of water molecules incorporated into the ice
crystal lattice during growth and the number of water molecules
impinging on the ice surface. We use constant values for the
deposition coefficient, although in nature it depends on ambient
ice supersaturation (Zhang and Harrington, 2013), among other
factors. This introduces uncertainty in ice-crystal growth rates,
but is unlikely to be critical for simulations of the low-temperature
homogeneous freezing process, since the necessary high ice
supersaturation results in large values of deposition coefficients.

The removal of ice crystals from the parcel due to sedimentation
is implemented in primeice to estimate its potential effect on ice
nucleation and growth. This requires assumptions about the
vertical depth of the parcel. It seems more appropriate, for
that matter, to perform one-dimensional simulations, but such
column models require additional assumptions regarding vertical
profiles of humidity and temperature. Since nucleation layers are
rather shallow (some 10 m extension: KS16), a fine resolution
of those vertical profiles is required. Assumptions about this
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fine-scale structure may at this point be as arbitrary as assigning a
fixed layer depth in a parcel model framework, for which reason
we opt to work with the latter assumption for first exploration.

The dynamical forcing is in the current version of primeice
represented by a constant, sustained cooling rate (or an equivalent
updraught speed). Although it is well recognized that in nature
vertical air motions exhibit temporal variability on short time-
scales, the assumption of constant updraught speeds facilitates
both the identification of dynamical ice formation regimes and
the interpretation of simulation results.

2.2. Basic equations

In primeice, a large set of coupled, stiff differential equations
governing the temporal evolution of heat and particulate water
mass during liquid and ice particle growth and ice nucleation
(subscript ‘nuc’) is solved for adiabatic air parcels. Water vapour is
transferred towards and away from water particles and ice crystals
by condensation/evaporation (con) and deposition/sublimation
(dep), respectively. The principle variables describing the water
budget are size-dependent particle mass mixing ratios, q, and
particle number mixing ratios, η, quantifying the condensed
water mass and the particle number per unit mass of air,
respectively. Details of the spectral representation of these particle
mixing ratios are provided in section 2.3. Both q and η are
invariant under adiabatic change and are used to build particle
size distributions. The evolution of absolute temperature, T,
embodies variations in the heat budget arising from dynamical
(external) forcing and diabatic (internal) processes due to water
phase transitions. The forcing also controls the rate of change
of air pressure, p. Subscripts v, w, i, c indicate water vapour,
liquid supercooled water (or water particles), ice water (or ice
crystals) and particle core material, respectively (Figure 1). Non-
aqueous cores in aerosol particles include soluble matter (sol)
and insoluble immersion nuclei (ins). Particle number mixing
ratios per unit mass of air are defined by η = n/ρa, with particle
number concentrations per unit volume of air n and the mass
density of air ρa. Mass mixing ratios for particulate components
with single particle volumes V and bulk mass densities ρ are
defined by q = ρVη.

Hygroscopic growth of CCNs is simulated in primeice
employing a parametric water activity model based on Köhler
theory (Petters and Kreidenweis, 2007). In the κ –Köhler model,
the liquid water-vapour saturation pressure over solution droplets
is parametrized using the water activity, aw, in the form

1

aw
= 1 + κ

Vsol

Vw
, κ = Vsol

Vc
κsol + Vins

Vc
κins , (1)

with the single particle core volume Vc = Vsol + Vins and where
0 ≤ κ ≤ 1 is a parameter determined by the chemical nature
of the solute and the possible presence of an insoluble particle
core (Vins > 0). Insoluble cores (here, immersion IN) do not
contribute to the particle’s overall solubility, as by definition
κins = 0. This means that the higher the volume fraction of
insoluble material in mixed CCN, the higher the ambient
supersaturation over liquid water must be for CCN to activate
into cloud droplets. In the case of strongly diluted water particles
(Vw � Vc), aw ≈ 1.

There are two options in primeice to generate a cloud droplet
size distribution: either the activation of a prescribed dry CCN
size distribution into cloud droplets is computed or a cloud
droplet size distribution including CCN cores is prescribed.
CCN and immersion IN are treated as particles that are not
physically separated (internal mixture); ice crystals resulting from
homogeneous and immersion freezing of droplets are represented
as a separate particle type. Mass mixing ratios of core material
transferred to ice by nucleation are tracked as a function of time.
Insoluble cores notably affect water particle properties, e.g. bulk
mass densities, only at water subsaturated conditions and ice

crystals only during freezing, when the frozen water mass is still
small. The average mass density of core material is defined by
ρc = (Vsolρsol + Vinsρins)/Vc in the case of mixed cores.

We adopt conservation laws governing the temporal evolution
of all water phases and heat in moist air adiabatic parcels
accounting for ice nucleation-induced water phase transitions.
Owing to the short ice formation time-scales, radiation-induced
temperature changes modify neither the parcel temperature nor
the temperature of individual particles significantly; these are
therefore set equal.

The evolution of air pressure is given by the hydrostatic
equation,

d ln(p)

dt
= −γ�a

w

T
, (2)

where γ = 3.5 is the adiabatic index, �a is the dry adiabatic lapse
rate and w > 0 is the assumed updraught speed. Equation (2)
allows us to compute the air mass density from the ideal gas law,
ρa = p/(RaT), with the specific gas constant for air, Ra.

The transfer of heat between the water phases is embodied in
the heat balance equation,

dT

dt
= −�aw

+ T

εγ

[ ∑
θw

(dqw

dt

)
con

+
∑

θi

(dqi

dt

)
dep︸ ︷︷ ︸

vapour↔liquid/solid

+
∑

θf

(dqi

dt

)
nuc︸ ︷︷ ︸

liquid↔solid

]
, (3)

introducing dimensionless latent heats, θ , normalized by RwT,
with the gas constant for water vapour Rw and ε = Ra/Rw =
0.622. The first term on the right-hand side is the dry adiabatic
cooling rate and the other terms account for diabatic heating or
cooling due to water phase changes, where θf = θi − θw is the
normalized latent heat of fusion. The sums run over all sizes for
each particle type. We recall that q and η mark spectral particle
mixing ratios defining the particle size distributions shown later
in this study and do not represent total (size-integrated) values.

Sizes of water particles and ice crystals are derived from the
respective total (water and core) single particle volumes ∝ q/η:

rw/i =
[ 3

4π
(Vw/i + Vc)

]1/3
(4)

and are interpreted as radii of volume-equivalent spheres.
The rates of change of condensate due to phase transitions are

given by

dqw

dt
=

(dqw

dt

)
con

+
(dqw

dt

)
nuc

, (5a)

dqi

dt
=

(dqi

dt

)
dep

+
(dqi

dt

)
nuc

. (5b)

Uptake rates, Z , of water molecules on CCN, cloud droplets and
ice crystals of a given size are governed by diffusional growth
laws corrected for latent heating/cooling and non-continuum
(gas kinetic) effects:

(dqw

dt

)
con

= Zw(qv − awKwqsat,w) , (6a)

(dqi

dt

)
dep

= Zi(qv − Kiqsat,i) , (6b)

with the water-vapour saturation pressures of supercooled
water/hexagonal ice qsat,w/i and the Kelvin (curvature) correction
Kw/i. For liquid particles, Kw = exp(Aw/rw) with Aw = 1 nm,
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consistent with the κ –Köhler solubility model. For ice crystals,
we use Ki = exp(Ai/ri) with variable Ai(T). The rate of water
mass transfer by diffusion from the vapour to particles is defined
by

Z = 4π
βD

1 + B
n Cr , β = 1

1 + λ/r
, (7)

where D is the diffusion coefficient of water molecules in air and
n is the number concentration of particles with size r. Moreover,
B corrects the uptake rate for latent heating; β corrects for surface
attachment effects becoming important for particles with sizes
similar to the mean free path of water molecules in air, to which
λ, containing the deposition coefficient, is proportional; C is
the dimensionless capacitance factor [capacitance normalized by
volume-equivalent radii from Eq. (4)] accounting for particle
shape effects. Equations (6a) and (7) calculate growth of both
non-activated aqueous aerosol particles and cloud water droplets.

Ice nucleation in water particles changes the water and ice mass
mixing ratios, qw and qi, according to

(dqi

dt

)
nuc

= −
(dqw

dt

)
nuc

= (J + Jins)qw , (8)

where J is the homogeneous freezing rate and Jins is the
immersion freezing rate. Similar equations hold for the time
tendencies of number mixing ratios, ηi and ηw. Moreover, core
material in water particles (subscript ‘w,c’) is transferred in the
same way to ice crystals during droplet freezing. The resulting
core mass mixing ratios (subscript ‘i,c’) follow from

(dqi,c

dt

)
nuc

= −
(dqw,c

dt

)
nuc

= (J + Jins)qw,c . (9)

Ice crystals are removed from the parcel by sedimentation
according to

(dy

dt

)
sed

= −2
vt

δz
y , y = ηi, qi, qi,c , (10)

where vt is the size-dependent terminal fall speed of ice crystals
and δz is the prescribed depth of the supersaturated vertical layer
the crystals fall into, which is typically larger than the freezing layer
depth. The factor 2 accounts for a an assumed homogeneous ice
crystal distribution in the layer, which means that the average dis-
tance ice crystals must settle before being removed from the parcel
is δz/2. Ice crystal sedimentation is the only loss process of total
water in the parcel depending on the choice of the parcel’s ver-
tical dimension. Water particles are too small (<10 μm) to settle
significantly during homogeneous freezing events. More realistic
quantification of sedimentation effects requires the use of at least a
one-dimensional model framework with high vertical resolution
(Jensen and Pfister, 2004; Lin et al., 2005; Murphy, 2014).

Water vapour saturation pressures and associated latent heats
of vaporization are taken from Murphy and Koop (2005). Water
mass transfer rates from Eq. (7) are taken from Lamb and
Verlinde (2011). We use κsol = 0.5 for the CCN hygroscopicity
parameter, a value approximately midway between those for
marine and continental water-soluble particles (Kreidenweis
et al., 2009). This value is reduced tenfold in a sensitivity study
modelling rather non-hygroscopic particulate matter. We set
ρsol = 1.5 g cm−3 for simplicity. Homogeneous freezing rates are
specified in Appendix A. The deposition coefficient for uptake
of water molecules on ice crystals in homogeneous freezing
conditions is set equal to 0.7 (Skrotzki et al., 2013); for liquid
particles, a value of unity is used. While the small water particles
are spherical, a commonly observed shape of pristine ice crystals
found in cold (< 250 K) cloud tops is that of hexagonal prisms
(plates and columns) (Libbrecht, 2005). Pristine ice crystals in
convective cloud tops tend to be isometric (Järvinen et al., 2016),
therefore in the current version of primeice we use capacitance
factors and terminal fall speeds for columns with a moderate
aspect ratio of 2 (Appendix B). Ice-supersaturated layer depths
are varied parametrically corresponding to different ice crystal
sedimentation rates.

2.3. Discretization and numerical solution methods

To initialize the simulations, a size distribution of dry aerosol
particle cores (here without immersion IN) is defined, from which
cloud droplets can be activated consistent with the prescribed
dynamical forcing. Log-normal size distributions are employed
with mean modal radii rm and geometric standard deviations
(spectral widths) σ . Water may be added to the dry CCN cores to
generate an initial cloud droplet size spectrum.

Core particle spectra are discretized according to their sizes,
defining NP classes (labels) over a radius range spanning 4
standard deviations away from the modal radius. As water
particles, they are allowed to grow and shrink to their exact sizes
in a Lagrangian manner. Their growth is therefore numerically
non-diffusive, a crucial feature for accurate simulations of droplet
freezing.

Ice crystal spectra are discretized into NP grid cells (size bins).
In this study, we prescribe NP = 250 bins distributed within
the radius range 0.01–1000 μm. Bin volumes within this range
increase progressively by a factor of 1.15. The moving-centre size
structure with fixed bin edges and variable bin centres (Jacobson,
1999) is implemented in primeice to treat depositional growth
and sublimation of cloud ice. It exhibits very little numerical
diffusion. The Lagrangian treatment of water particle growth,
along with a fixed size grid for ice crystals, means that we need to
locate the ice-crystal bins – corresponding to the actual droplet
(water plus core) sizes – into which droplets nucleate.

A number of physical tendencies are integrated as diagnostic
variables in order to facilitate the interpretation of results (sec-
tion 3). Numerical solutions of individual processes are carried
out sequentially. A total of 4 + 6 NP equations for {p, T, z; qv} and
the distributions {qw, ηw; qi, ηi; qw,c, qi,c} are solved using using a
constant time step, 
t. Fixing the time step requires some exper-
imentation, depending on the model set-up. In most cases, the
choice 
t [s] = 0.1/w (m s−1) suffices to simulate homogeneous
ice formation processes accurately. For w = 1 m s−1, this corre-
sponds to 
t = 0.1 s and a virtual altitude resolution of 10 cm.
Accurately resolving homogeneous freezing of rapidly evapo-
rating cloud droplets or hygroscopic growth of non-activated
aerosol particles can place even tighter constraints on 
t.

The distance a parcel travels vertically follows from 
z(t) = wt.
The equations determining the evolution of p and T are integrated
explicitly, since time steps appropriate for resolving hygroscopic
aerosol growth and ice nucleation are usually small enough
to track meteorological or thermodynamic variables accurately.
Nucleation and sedimentation equations (affecting q- and η-
condensate and core variables) are integrated fully implicitly. The
total water mass balance coupling qv with qw and qi is solved using
the Analytical Predictor of Condensation (APC) and Dissolution
(APD) schemes (Jacobson, 1999). Those schemes do not require
iteration and are exactly mass-conserving, unconditionally stable
and highly accurate when using sufficiently small time steps. The
APC scheme is applied to solve ice growth, whereas the APD
scheme is used to solve water particle growth, since the water
saturation vapour pressure over solution droplets – hence the
amount of condensable vapour – depends on the amount of
dissolved water.

3. Case studies

In KS16, we studied systematically how many ice crystals form
homogeneously from a given population of cloud droplets
across a wide range of updraught speeds, along with associated
freezing temperatures. Below, we investigate further details of
homogeneous ice formation in the warm cirrus regime with the
help of simulations constrained by updraught speed and droplet
parameters from aircraft measurements in deep convective cloud
tops. We discuss two different simulation set-ups: a baseline case
with and without effects of sedimentation using a prescribed cloud
droplet spectrum (section 3.1) and cases that capture effects of
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Figure 2. Number concentrations of water particles (curves) and ice crystals (symbols) as a function of total (wet) radius and maximum dimension, respectively, for
the deep convective baseline case B. Results (solid curves, filled symbols) are given (a) shortly after homogeneous freezing set in and (b) close to freezing–relaxation.
The initial (
z = 0) cloud droplet spectrum and the distributions at a late stage well after freezing–relaxation (
z = 720 m, open symbols) are also shown.

cloud droplet formation from activation of CCN prior to or along
with homogeneous freezing (section 3.2). Both updraught speed
and CCN solubility are varied in separate sensitivity studies.

3.1. Baseline case

Guided by the field observations (Rosenfeld and Woodley, 2003),
case B assumes an updraught speed w = 6 m s−1 in the deep
convective regime and a total water particle number concentration
nw = 500 cm−3. These values are in the range of those reported
by a comprehensive cloud model study (Khain et al., 2001).
The modal radius and spectral width of the soluble droplet
cores, which have not been reported in the measurements,
are rsol =0.04 μm and σsol = 1.5, respectively. Liquid water is
added to the core particle population such that the modal
radius increases to rw =6.5 μm. This yields an initial liquid
water content 1.2 g m−3 and volume mean radius 8.3 μm of the
initial cloud droplet population, in the range of and close to
the measured values, respectively; they do not increase notably
until freezing–relaxation sets in. The time or vertical location of
freezing–relaxation is defined as the point where the ice number
tendency, dni/dt, due to nucleation – the freezing pulse – reaches
its peak (KS16). Simulations start at 240 K and halt at 234 K after
all ice crystals have formed and depleted the large amount of
water vapour available for deposition up to a remaining, small
supersaturation with respect to ice that balances the sustained
cooling. The initial air pressure, 388 hPa, is inferred from the US
standard atmosphere. Ice crystals are not allowed to fall out of the
parcel unless otherwise mentioned.

Snapshots of water particle and ice crystal size spectra are
shown in Figure 2 at selected distances traveled vertically by the
parcel, 
z = 0, 180, 360 and 720 m, corresponding to parcel ages
t = 0, 30 s, 1 min and 2 min, respectively.

Comparing the initial droplet spectrum (dashed curve) with
that at 
z = 180 m reveals that only the smallest droplets have
grown by condensation before the first ice crystals (symbols)
form from freezing of the largest droplets. At this level, the
air is slightly supersaturated over liquid water, owing to the
prescribed cooling that forces droplet growth. Some ice crystals,
reaching maximum dimensions 50–70 μm, have already taken
up considerable amounts of water vapour, indicative of large
depositional growth rates in the highly ice supersaturated vapour.
At 
z = 360 m (1 min), the three water phases are close to
freezing–relaxation (at 388.5 m), which means that the number

of homogeneously nucleated ice crystals (filled symbols) is at this
point high enough to drive the water-vapour concentration below
liquid water saturation, forcing the smallest (sub-μm) droplets
with the highest saturation vapour pressure to evaporate first
(solid curve).

At 
z = 720 m (2 min), only a few more ice crystals have
formed and the ice crystal population has grown further to a
slightly larger mean size (open symbols). More ice crystals are now
present at the small size end of the distribution; they have formed
on evaporating cloud droplets in the declining supersaturation.
At the prevailing temperatures, water particles no longer freeze
when their water activity falls below unity. Small cloud droplets
that escaped freezing evaporated to their cores and the added
water vapour is available for depositional growth of the already
frozen droplets (Wegener–Bergeron–Findeisen mechanism). At
this altitude, the initially symmetric log-normal core spectrum
(not shown) is depleted of the largest particles, which have been
activated into the largest droplets that froze preferentially. The air
is slightly supersaturated over ice and the remaining supercooled
aerosol particles equilibrate almost instantly with the slowly
decreasing relative humidity, because they contain only small
amounts of liquid water. Diffusional growth becomes very slow
for 100 μm sized (and larger) ice crystals (Sölch and Kärcher,
2011) and ice-crystal aggregation leads to complex ice-crystal
shapes (Schmitt et al., 2016).

The baseline case B and a weak-forcing variant, Bweak, in
which the updraught speed has been reduced by an order
of magnitude to 0.6 m s−1, are discussed with the help of
Figures 3(a)–(h), respectively, in terms of the evolution of crucial
ice-phase variables. Case Bweak may be viewed as representative
of conditions within outflow regions of extratropical cyclones
showing various degrees of convective activity. We show the ice
saturation ratio, Si = qv/qsat,i, the total (integrated over all sizes)
ice-crystal number concentration, ni, the mean (averaged over the
size distribution) maximum ice-crystal dimension, < L >, and
the total ice water content, IWC. Cases without sedimentation
(formally obtained by setting the layer depth, δz, to a very large
value) are depicted as solid curves.

We first examine case B (Figure 3). For 
z < 250 m, Si rises
only slightly, resulting from a balance between the cooling of
air and the removal of vapour due to droplet condensation.
Droplet growth keeps Sw (not shown) close to liquid water
saturation. The continuously increasing ice formation rate reaches
its peak near 400 m (filled circle) and ongoing depositional
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0.8 1 1.2 1.4 1.6
0

100

200

300

400

500

600

700
(a) (b) (c) (d)

(e) (j) (g) (h)

Δ
z,

 (
m

)

0.1 1 10 100 40 45 50

δz → ∞
δz = 100 m
δz = 50 m

0 500 1000 1500

0.8 1 1.2 1.4 1.6

Si

0

100

200

300

400

500

600

700

Δ
z,

 (
m

)

0.1 1 10 100

ni, (cm–3)

45 60 75 90 105

<L>, (μm)

δz → ∞
δz = 1 km
δz = 0.5 km

0 500 1000 1500

IWC, (mg m–3)

Figure 3. Development of (a,e) ice saturation ratio, (b,f) total ice-crystal number concentration, (c,g) mean maximum ice crystal dimension and (d,h) ice water
content for (a–d) w = 6 m s−1 (case B) and (e–h) tenfold reduced updraught speed (case Bweak). Cases without sedimentation (solid curves, δz → ∞) and
with parametrized sedimentation using sedimentation layer thicknesses, δz, as indicated (dashed and dot–dashed curves) are shown. Circles mark the locations of
freezing–relaxation, i.e. the freezing pulse maxima; the small differences in the location of circles induced by the different onsets of sedimentation in each case are not
shown. Note the change in scale for < L > in both panels.

growth leads to a rapid increase in IWC. Soon after the
nucleation pulse decays (
z > 500 m), a quasi steady-state is
reached with an ice supersaturation si = Si − 1 ≈ 0.01, which
slows the increase in IWC dramatically. The mean maximum
ice crystal size < L > varies only slightly, initially reflecting the
interplay between freezing (favouring the largest droplets) and
depositional growth (favouring the smallest crystals). Around
freezing–relaxation, < L > decreases as the majority of the
droplets freeze. Finally, < L > increases again, but only slightly,
owing to the very low persistent supersaturation. The quasi steady-
state ice supersaturation at higher levels scales ∝ w/(ni < ri >)
(Korolev and Mazin, 2003).

Generally, the same interpretation holds in case Bweak. The
main difference is seen around freezing–relaxation. Freezing
rates remain smaller than depositional growth rates, so that
the resulting faster depletion of the vapour causes droplets to
evaporate more quickly during freezing than in case B. This
contributes to a rapid shutting off of the freezing pulse and a
shallow ice nucleation layer (KS16); compare the evolution of Si

and ni. In case B, Si decreases less rapidly, since faster cooling
leads to lower temperatures and associated higher freezing rates
(now faster than the rates at which the growing ice crystals deplete
the vapour), leading to continued ice production at higher levels,
i.e. a broader freezing pulse. Furthermore, the evolution of < L >

differs in both cases, consistent with the differences taking place
around freezing–relaxation. Mean sizes are larger, due mainly to
lower nucleated ice numbers.

Sedimentation losses are included in two additional simulations
assuming a range of ice-supersaturated layer depths. Settling of ice
crystals begins to affect the evolution of ice variables only at high
levels (above the altitude marked by the circles in Figure 3), after
the ice crystals have grown to sufficiently large sizes. This implies

that ice-crystal settling hardly affects the homogeneous freezing
process for updraught speeds around and above 0.6 cm s−1,
consistent with expectations (KS16). The largest crystals settle
most rapidly, decreasing ni and IWC and increasing the quasi
steady-state supersaturation slightly. In case B (Bweak), this effect
sets in below δz =50–100 m (0.5–1 km), with < L > responding
sensitively to ice crystal removal from the parcel.

3.2. Effects of CCN activation

It is not clear how often and how many cloud droplets actually
reach cold outflow levels depending on cloud type, aerosol load
and meteorological conditions. However, even if water droplets
and CCN have been depleted in cloudy parcels arriving in these
areas, entrainment of free tropospheric aerosol particles might
replenish the CCN reservoir. Therefore, it is meaningful to carry
out further studies (cases Bccn) that differ from case B regarding
the initial water particle spectrum. Changes in this spectrum are
brought about by lowering the initial relative humidity. Cloud
droplets are then generated from liquid water-subsaturated air
(Sw < 1) by activation of CCN as the parcel rises and liquid water
saturation is surpassed. This alters the moisture and temperature
evolution around freezing significantly. The spectral distribution
of the soluble cores (solubility parameter κsol = 0.5) is identical
to that from case B. Additionally, one case describing very poor
(largely insoluble) CCN with κsol = 0.05 is examined.

Figure 4 shows the development of ice variables in cases Bccn,
where cloud droplets first form from activation of CCN at initial
liquid water saturation ratios Sw = 0.9 (dashed curves) and 0.7
(dot–dashed). For comparison, the results for case B from the top
panel in Figure 3 (for the same updraught speed w = 6 m s−1) are
repeated (solid curves). In contrast to case B, where condensation
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Figure 4. Development of (a) ice saturation ratio, (b) total ice-crystal number concentration, (c) mean maximum ice-crystal dimension and (d) ice water content for
the baseline case B with w = 6 m s−1 and a preexisting spectrum of cloud droplets (solid curves) and two cases Bccn in which CCN activate into cloud droplets at
different initial liquid water saturation ratios (curves with different line styles, initial values Sw(t = 0) below liquid saturation, as indicated). Circles mark the locations
of freezing–relaxation.

of water vapour on to already existing cloud droplets causes Sw

(not shown) to stay approximately constant despite the imposed
cooling, the amount of vapour condensing onto the CCN to
equilibrate them with the gas phase is very small, leaving the
subsaturated gas phase largely unaffected. This causes Si to rise
initially more rapidly in all cases Bccn, due solely to the imposed
cooling. After passing through their maxima, Si values in case
Bccn 0.9 decline and level off at water saturation (Si ≈ 1.4),
before declining again at freezing–relaxation and levelling off
slightly above ice saturation. Case Bccn 0.7 appears to lack a
liquid water saturation stage and freezing–relaxation occurs at a
significantly higher (by about 200 m) altitude.

According to this discussion, two scenarios might be
distinguished. First, in the high Sw case Bccn 0.9, the CCN
activation process is terminated (liquid water saturation is
reached at 
z =300–400 m) before freezing–relaxation sets
in (at 
z ≈ 400 m). This implies that a concept similar to
freezing–relaxation, coined activation–relaxation, determines
the total number of cloud droplets and describes a situation
analogous to the formation of contrails in jet aircraft exhaust
plumes (Kärcher et al., 2015). Second, freezing–relaxation occurs
before activation–relaxation is completed (low Sw case Bccn 0.7,
not showing a liquid water saturation stage), meaning that more
water droplets could form for the given cooling rate in the absence
of homogeneous freezing. The most crucial factor deciding which
scenario is realized for given CCN properties is the updraught
speed.

It is instructive to examine the evolution of the parcel
temperature. Figure 5 shows the development of T in cases
B and Bccn. In case B, temperature declines initially along the
liquid water (moist) adiabate at lapse rate dT/dz ≈ −8.7 K km−1,
due to the presence of the cloud droplets. After homogeneous
freezing–relaxation, below 236 K, the lapse rate follows the ice
adiabate close to the dry adiabate, −9.8 K km−1.

In the Bccn cases, T decreases initially along the dry adiabate,
since the small amount of condensate associated with the
hygroscopic growth of the CCN does not significantly affect
the heat budget and ice crystals have not yet formed. After cloud
droplet formation and still prior to freezing–relaxation, the lapse
rate approaches the moist adiabate before making the transition
towards the dry adiabate after ice crystal formation; this happens
between 
z =250–300 m in case Bccn 0.9. In this thin layer, the
newly formed cloud droplets rapidly quench the relative humidity
to water saturation, as discussed by means of Figure 4.

In case Bccn 0.7, cloud droplets form latest, in range

z =550–600 m, since longer cooling is required to surpass
liquid water saturation owing to the drier initial condition. At
the then lower T (< 235 K), homogeneous freezing rates are large
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Figure 5. Evolution of temperature for the baseline case B and the two cases
Bccn as displayed in Figure 4 (w = 6 m s−1). Circles mark the locations where
freezing–relaxation takes place, defining the homogeneous freezing temperatures.
Lapse-rate changes are caused by the release of latent heat, due mainly to water-
vapour condensation and deposition.

enough to freeze the droplets virtually instantly; J increases
about 40-fold upon decreasing T by 1 K in these conditions
(Appendix A). This explains the absence of an extended liquid
water saturation stage, cp. Si in Figure 4.

Homogeneous freezing temperatures (HFTs) – defined as the
temperatures where the freezing pulse reaches its peak – vary over
more than 2 K, solely by changing the initial relative humidity,
i.e. whether or not cloud droplets already exist or are produced
by CCN activation. This adds to the marked dependence of the
HFTs on updraught speeds (KS16). A few droplets already freeze
at temperatures slightly warmer than the HFT, especially in case
B where the freezing pulse is broadest, cp. Figure 4; this effect
diminishes in the case of CCN activation as Sw(t = 0) decreases.

Figure 6 shows water particle and ice crystal size distributions
at freezing–relaxation in the two cases Bccn. More than half
of the CCN activate into cloud droplets in both cases (fewer in
case Bccn 0.7, due to a lower peak supersaturation). The ice
crystal size distribution is broader in case Bccn 0.9, because of
the broader freezing pulse (Figure 4). In both cases, the total
ice number concentration continues to increase only slightly at
levels above freezing–relaxation. In case Bccn 0.9, evaporation
is ongoing during freezing, as indicated by the presence of CCN
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Figure 6. Number concentrations of water particles (curves) and ice crystals (filled symbols) as a function of total (wet) radius and maximum dimension, respectively,
for cases (a) Bccn 0.9 and (b) Bccn 0.7. Results are given at freezing–relaxation (corresponding 
z-values as indicated). Initial CCN spectra are shown as dashed
curves (
z = 0). For comparison, results obtained for poor CCN (κsol = 0.05) are also shown at freezing–relaxation (occurring at very similar 
z values) as dotted
curves (CCN) and open symbols (ice crystals).

residing between their dry and activated sizes; the resulting
cloud droplet mode is centred near 3 μm. In case Bccn 0.7, all
unfrozen cloud droplets have already evaporated to their cores at
freezing–relaxation.

Revisiting Figure 4, fewer ice crystals form in case Bccn 0.9
relative to B and CCN activation leads to a narrower cloud droplet
distribution centred at a roughly twofold lower mean radius at
freezing–relaxation). As a result, the mean ice crystal size and
ice water content are also lower. In case Bccn 0.9, ni is slightly
larger than in the baseline case, due to the lower HFT (Figure 5),
hence larger freezing rate. This leads to a rather low IWC and a
significant further decrease of < L >.

Changes in ice crystal properties are almost negligible if the
cloud droplets are activated from poor CCN (Figure 6). This is due
to the high updraught speed (w = 6 m s−1) and small sensitivity
of ice formation on droplet properties in this case (KS16), so that
most of the CCN activate almost regardless of the value of κsol.
If w were lower, effects of CCN solubility on homogeneous ice
formation would be more pronounced.

4. Discussion and conclusions

Ice formation in atmospheric clouds is a self-limiting process
that bears similarities to the formation of aerosol particles or
the activation of CCN into water droplets. In the presence of a
dynamical forcing creating an environment in which the parent
liquid water phase is metastable, the very creation of the new
ice phase terminates its formation by removing the water vapour
available for its growth. This sequence of coupled processes is
embodied in the theoretical concept of freezing–relaxation. The
validity of this concept has been demonstrated by means of
numerical simulations of homogeneous freezing events in the
warm cirrus regime (230–240 K). As ice nucleation and growth
from the vapour phase are inherently transient and local, the
combined effect of cooling, freezing and growth on the number
and size of the newly formed ice crystals – for given aerosol and
forcing – must be parametrized in most cloud, let alone global,
models.

Predictions of freezing–relaxation include the insensitivity
of nucleated ice-crystal number concentrations to details of
the number and size of freezing droplets and characteristic
dependences of ice-crystal number and mean size and homoge-
neous freezing temperatures on the updraught speed. Moreover,
nucleated ice numbers are insensitive to large variations of the

homogeneous freezing rate coefficient. In deep convective cloud
tops, updraught speeds are large enough to render ice-crystal set-
tling inefficient in depleting the rather shallow freezing layers. At
low updraught speeds, droplet evaporation limits droplet freezing.

Little is known about IN in cold cloud outflow regions, except
that IN constitute only a very small subset (by number) of CCN
and the water droplets evolving from them. Therefore, ice crystals
formed on IN presumably grow to much larger sizes and therefore
sediment rapidly out of the freezing layer. This further limits
their ability to prevent homogeneous freezing from occurring,
although IN potentially reduce homogeneously nucleated ice
crystal numbers by tapping water vapour and thus slowing the
rate of increase in supersaturation at a given updraught speed.
In any case, sedimentation quickly dilutes nucleated ice-crystal
number concentrations and needs to be taken into account when
comparing measured and simulated ice number concentrations.

This study emphasizes the liquid-phase control of anvil ice
formation. Water droplets generated at lower cloud levels may not
be transported to upper-level outflow regions. They may also form
at the threshold to homogeneous freezing from activation of CCN
either lofted from lower cloud levels or entrained into convective
cells near the cloud tops. Variability in microphysical properties
of fresh ice crystals is caused not only by variability in updraught
speeds but also by small variations in relative humidity. Both
determine how many of the CCN can actually be water-activated
and whether the three-phase water system undergoes an extended
liquid water stage. The findings presented here indicate that the
size spectrum of the CCN is a more important determinant of the
activation and subsequent freezing processes than their chemical
nature determining particle solubility. Once again, this is due to
the strong dynamical control of those processes.

This study investigated homogeneous ice formation in the
absence of already existing ice crystals. The basic dependences of
homogeneous ice formation on updraught speed and CCN load
discussed here are also seen in comprehensive cloud simulations
for the same observational case (Khain et al., 2001). However,
the absence of lofted ice in detrainment zones as assumed here is
unlikely to be a realistic assumption for all deep convective clouds.
Ice crystals forming at low levels may reach high-altitude outflow
regions by sufficiently strong convective motion overcoming
sedimentation. Due to artificial counting errors in airborne
particle counters and shattering of ice crystals on the tips of
cloud probes (Korolev et al., 2011), there has been considerable
debate about the presence of small ice crystals in anvil cirrus. In
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view of the radiative significance of such a small ice-crystal mode,
we suggest a systematic exploration of conditions in which lofted
ice can suppress homogeneous freezing or CCN activation across
a range of deep convective cloud conditions.

These results support ongoing efforts to understand better
how cirrus clouds in different dynamical regimes respond to
aerosol perturbations (Kärcher, 2017). This includes warm anvil
cirrus detrained from convection and low-temperature cirrus
forming in situ on supercooled aerosol particles affected by
gravity waves and turbulence. Both small-scale gravity waves and
localized, intermittent turbulence events are associated with deep
convection and create small-scale vertical wind and temperature
fluctuations (Podglajen, et al., 2016; personal communication).

We suggest that future process-oriented anvil cirrus simula-
tions should be based on high-resolution trajectories of vertical
air motions that resolve convection explicitly. Cloud micro-
physics should be carried out at least in a one-dimensional (air
column) set-up; there is little hope of resolving accurately the
sedimentation-induced dilution of freshly nucleated ice crys-
tals and the competition between various ice nucleation modes in
Eulerian transport and coarse-bin or bulk microphysical schemes,
due to either numerical diffusion or lack of spatial or spectral
resolution. A Lagrangian treatment of the ice phase is recom-
mended for this purpose. Finally, studies contrasting stochastic
and non-stochastic heterogeneous ice nucleation behaviour, as
well as exploring effects of faceted ice-crystal growth and turbu-
lent mixing in future cirrus cloud studies, would also be valuable.
However, such efforts might be compromised on the one hand
by a striking lack of experimental constraints on heterogeneous
ice nucleation rate coefficients and water-vapour deposition coef-
ficients valid for temperatures < 230 K and on the other hand
by insufficient information about frequency of occurrence and
properties of turbulence events in the tropopause region.
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Appendices

Appendix A: Homogeneous freezing of liquid aerosol and cloud
droplets

Homogeneous freezing rates – the number of ice crystals produced
per unit time – follow from J = VwJ, with the water volume
Vw (total volume of supercooled water in aqueous particles of
a given size) and the rate coefficient, J, giving the number of
ice germs nucleating per unit time per unit liquid water volume.
While the theory of homogeneous freezing has been developed
based on several models for J (Khvorostyanov and Curry, 2014,
and references therein), in primeice we employ by default the
activity-based parametrization of the rate coefficient, J(T, aw), for
a seamless treatment of homogeneous aerosol and cloud-droplet
freezing (Koop et al., 2000).

In conditions of variable temperature histories, the water
activity, aw, is a time-dependent, non-equilibrium quantity
calculated using Eq. (1). Homogeneous freezing rate coefficients
are extremely sensitive to small variations in aw; water activity
and therefore freezing rate coefficients vary significantly across
the CCN size spectrum (Haag et al., 2003). Thermodynamic
equilibration times for water-vapour uptake on those particles
scale ∝ r2; fine aqueous aerosol particles (<1 μm) equilibrate very
rapidly with the gas phase (usually within one or a few model time

steps); however, their water activity is small – they are more acidic
due to the Kelvin effect. This decreases the homogeneous freezing
rate coefficients of small aerosol particles dramatically, unless
temperatures are very low. In conditions of rapid cooling, aw

might lag behind its equilibrium value in large aerosol particles,
due to kinetic limitations for condensation. While this effect
is irrelevant in the case of cloud droplets (aw 
 1), it may be
important in the cold cirrus regime (< 230 K) where ice nucleates
in much smaller supercooled aqueous aerosol particles in water-
subsaturated air (aw < 1). The importance of the latter effect
depends on the magnitude of the cooling rate and on the slope of
the large size tail of the particle size distribution. Regardless, in
the cases studied here, homogeneous freezing rates are negligible
in aerosol particles, since J rises to significant values only in
highly ice-supersaturated (Si > 1.5) and sufficiently cold (T <

230–235 K) air (Jensen and Ackerman, 2006).
The activity-based rate coefficient for pure water droplets may

be compared with a parametrization inferred from laboratory
measurements that is valid in a narrow temperature range around
235 K (Riechers et al., 2013). The latter is about 40 times smaller
at T = 237 K than J(T, aw = 1) and the slope is similar in both
cases. The slope is an important parameter, as it determines
the characteristic time-scale of homogeneous freezing events
(KS16). A more recent parametrization has been developed for
homogeneous freezing of pure water that is valid over a larger
range of temperatures (Koop and Murray, 2016).

The sensitivity of homogeneously nucleated ice numbers
between the different parametrizations is weak, which is a direct
consequence of the freezing–relaxation mechanism. For instance,
a 40 times lower value of J just means that the air needs to be
cooled to a slightly lower temperature (about 1 K) to nucleate
enough ice crystals quenching the supersaturation and shutting
off freezing. At lower temperatures, ice-crystal growth and hence
supersaturation quenching is slower and droplet evaporation is
also slower. Both tend to increase nucleated ice numbers. As
growth and evaporation rates change much less than J , the
number of homogeneously nucleated ice crystals increases only
slightly. For example, the difference in simulated peak ni values
between both J parametrizations in case B is about 10%, with
ni 
 129 cm−3 when using Koop et al. (2000) and ni 
 140 cm−3

when applying Riechers et al. (2013). This difference may serve
as an indication of the uncertainty in current estimates of
homogeneously nucleated ice number concentrations for given
liquid water volume and cooling rate in the convective regime.

Appendix B: Ice crystals as hexagonal columns

The length of a hexagonal column is denoted by � and the
maximum span across the hexagon by 2a, the diameter of a
circumscribed circle. The aspect ratio of the column is then
defined by A = �/(2a) > 1. Setting the volume of a column,
3
√

3a2�/2, equal to 4πr3/3, the width of a column, a, is related
to the radius of a volume-equivalent sphere, r, by

a =
(9

√
3

4π
A

)−1/3
r . (B1)

Equation (B1) is used to model ice-crystal shape effects on
capacitance (Westbrook et al., 2008):

C = 0.58 (1 + 0.95A3/4) a , (B2)

and on terminal fall speeds, assuming a random falling angle
approximation (Westbrook, 2008):

vt = g

6πηa

m

C . (B3)

In Eq. (B3), g is the acceleration due to gravity, ηa is the dynamic
viscosity of air and m is the single ice-crystal mass.
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The maximum dimension of a column is given by

L =
√

�2 + (2a)2 = 2a
√

1 + A2 . (B4)

Equation (B4) is used in this study only to display size spectra for
non-spherical ice crystal habits. In primeice, A is set constant,
while in nature A changes during depositional growth. Small
variations of A do not alter our conclusions.

Appendix C: Notation

Subscripts
a (dry) air
c core particle
i ice water, ice crystal
v water vapour
w supercooled liquid water, water

particle
con condensation/evaporation
dep deposition/sublimation
ins insoluble
nuc ice nucleation
sat saturation
sol soluble

Acronyms Units
CCN cloud condensation nuclei –
HFT homogeneous freezing temperature K
IN heterogeneous ice nuclei –
IWC ice water content kg m−3

Symbols
a, � half width (length) of hexagonal

column
m

aw water activity –
m single particle mass kg
p air parcel pressure Pa
q particle mass mixing ratio –
r single particle radius m
s supersaturation –
t time s
vt ice crystal terminal fall speed m s−1

S saturation ratio –
w updraught speed m s−1

C ice crystal capacitance factor –
D gas diffusion coefficient m2 s−1

J homogeneous freezing rate
coefficient

m−3 s−1

K Kelvin factor –
L maximum column dimension m
T air parcel temperature K
V single particle volume m3

κ solubility parameter –
η particle number mixing ratio kg−1

� bulk particle mass density kg m−3

δz ice-supersaturated layer depth m

z vertical distance travelled by air parcel m
� lapse rate K m−1

θ dimensionless latent heat of phase
change

–

A column aspect ratio –
C ice crystal capacitance m
J ice nucleation rate s−1

Z water vapour transfer rate to particles s−1
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