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ABSTRACT

Molecular simulations have provided valuable insight into the microscopic mecha-
nisms underlying homogeneous ice nucleation. While empirical models have been
used extensively to study this phenomenon, simulations based on first-principles
calculations have so far proven prohibitively expensive. Here, we circumvent this
difficulty by using an efficient machine learning model trained on density-functional
theory (DFT) energies and forces. We compute nucleation rates at atmospheric pres-
sure, over a broad range of supercoolings, using the seeding technique and systems
of up to hundreds of thousands of atoms simulated with ab initio accuracy. The key
quantity provided by the seeding technique is the size of the critical cluster (i.e., a
size such that the cluster has equal probabilities of growing or melting at the given
supersaturation) which is used together with the equations of classical nucleation
theory to compute nucleation rates. We find that nucleation rates for our model at
moderate supercoolings are in good agreement with experimental measurements
within the error of our calculation. We also study the impact of properties such as
the thermodynamic driving force, interfacial free energy, and stacking disorder on
the calculated rates.
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Ice crystallization from supercooled liquid water is one of the most emblematic phase transfor-
mations to be found in nature. It is of key importance in the regulation of our planet’s climate[1]
and in many applications, such as artificial cloud seeding, cryopreservation, and food processing.
Molecular simulations have proven an invaluable tool to obtain insight into molecular-level details
of this process and to make predictions at conditions not readily accessible to experiments. For
instance, Lupi et al. [2] considered the effect of stacking disorder (i.e. the presence of alternate
layers of hexagonal and cubic ice) on the nucleation rates and Sanz et al. [3] used systems of more
than 100 000 molecules in order to compute nucleation rates at low supercoolings.

However, simulations of ice nucleation carried out so far have employed relatively simple empirical
models, such as the coarse-grained monoatomic model of water mW[4] or the four-site rigid
TIP4P water models[5]. A different route to study this phenomenon is using ab initio molecular
dynamics[6]. In this technique, the forces acting on the atomic nuclei are derived from electronic
structure calculations. At variance with empirical models, the ab initio potential energy surface
does not rely on empirical information, captures complex bonding behavior between atoms, and
describes the formation and breaking of chemical bonds. The solution of the many-body electronic
Schrödinger equation is, in general, not tractable and a widely-used approximation in this context is
Kohn-Sham density-functional theory[7] (DFT). The application of ab initio molecular dynamics
has, however, been limited for several decades to the simulation of relatively small systems (∼ 1000
atoms) and short times (∼ 100 ps) due to its high computational cost. This limitation has precluded
the study of ice nucleation from first principles.

A solution to this conundrum has been the use of machine learning algorithms that are able to
learn the energies and forces derived from DFT data[8]. The machine learning interatomic models
constructed in this fashion reproduce the ab initio potential energy surface with high fidelity, are
several orders of magnitude faster than DFT, and also show linear scaling with the number of
nuclei. Such models have recently been applied to the study of crystal nucleation in silicon[9] and
gallium[10]. Previous simulations using first-principles models, however, explored only relatively
large supercoolings for which systems of a few thousand atoms are able to contain the required
crystalline cluster.

Here, we compute ice nucleation rates using an ab initio machine learning model of water. We
employ the seeding technique[3] and systems of up to 300 000 atoms in order to obtain nucleation
rates in a broad range of supercoolings. Our results allow us to compare predictions from a model
derived from first principles with direct experimental measurements of nucleation rates. Although
we only simulate explicitly clusters of hexagonal ice, we take into account the effect of stacking
disorder using a model for the chemical potential of ice with stacking disorder.

During homogeneous ice nucleation an ice cluster is formed within bulk liquid water. Typically,
this phenomenon takes place below the melting temperature and thus there is a driving force for
the formation of ice. However, the formation of an ice cluster in the liquid creates a liquid-solid
interface with an associated energetic penalty. The competition between a favourable bulk term and
an unfavourable surface term leads to a free energy barrier that the system must surmount in order
to proceed with the transformation. The existence of a free energy barrier makes nucleation a rare
event and severely hinders the ability to study the phenomenon directly using molecular simula-
tions. Although there have been attempts to study ice nucleation using straightforward molecular
simulations[11], in general the problem must be tackled using more sophisticated techniques.
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A possible route to study ice nucleation on the computer are rare event techniques, such as path
sampling[2, 12], forward flux sampling[13, 14], or metadynamics[15, 16]. These approaches can
provide valuable insights into the nucleation mechanism, albeit at a high computational cost. A
simpler alternative is the seeding technique[3] that is based on performing a series of relatively
short simulations at different temperatures starting from a configuration that contains an ice cluster
embedded in liquid water. The aim of these simulations is to find the temperature T ∗ for which
the chosen cluster is critical, that is to say, at T ∗ the cluster has equal probabilities of growing and
thawing. This information is then used in combination with the equations of classical nucleation
theory (CNT)[17] to calculate the nucleation rate. This approach has several potential pitfalls that
can affect the calculated rates, such as the appropriate choice of an order parameter to calculate the
cluster size and the applicability of CNT to the nucleation process been studied. These limitations
have been carefully considered in the literature[18] and the seeding technique has been shown to
provide nucleation rates in good agreement with other methods[19, 20].

Another crucial ingredient in the simulation of ice nucleation is an accurate description of the
interatomic interactions. Here, we derive the forces between nuclei from first principles calculations.
In particular, we use density-functional theory (DFT) adopting the Strongly Constrained and
Appropriately Normed[21] (SCAN) exchange and correlation functional. SCAN is arguably one of
the best semilocal functionals available and many properties of ice and water have been studied
using this functional, e.g., in Refs. 22 and 23. Driving the dynamics directly using DFT forces
would be unduly costly and instead we use a machine learning model trained on DFT data. The
model is based on deep neural networks and was constructed using the deep potential methodology
developed by Zhang et al. [24]. Below, we refer to this model as SCAN-ML (i.e., SCAN-trained,
machine learning-based model). The SCAN-ML model was carefully trained to reproduce data
over a vast region of the phase diagram of water[25]. SCAN-ML has been used to provide evidence
of the existence of a liquid-liquid transition at deeply supercooled conditions[26] and to study the
ice Ih-ice XI transition[27]. The thermodynamic properties of this model relevant to ice nucleation
were thoroughly characterized in ref. 23. The model has a melting temperature of 312 K, around
40 K larger than the experimental value. The density change upon melting is 6% in the model,
somewhat smaller than the 9% found in experiments. Another important property is the relative
stability between ice Ih and ice Ic that are the two competing polymorphs during ice nucleation
at ambient pressure. The SCAN-ML model correctly predicts that ice Ih is more stable than ice
Ic in agreement with experiments. Ref. 23 also analyzed the ability of the SCAN-ML model to
reproduce SCAN energies in configurations that contain atomic environments compatible with both
liquid water and ice, and found that the model is a faithful representation of SCAN with deviations
of less than 1.3 meV per H2O molecule. We provide in Table 1 a summary of the properties of the
SCAN-ML model and we compare them with experimental data and results using the empirical
water models TIP4P/Ice and mW.

Before describing the results of our simulations, we briefly discuss the advantages of SCAN-ML
over empirical models. SCAN-ML is an all-atom fully-flexible model at variance with empirical
potentials such as mW, which is a coarse-grained model, and TIP4P/Ice, which is an all-atom rigid
model. Since SCAN-ML reproduces the DFT potential energy surface, the flexibility of the OH
bonds depends on the environments while in flexible empirical models, such as TIP4P/2005f[28], the
flexibility of the bonds is modeled using simple functional forms and a few parameters that do not
depend on the environment. Another property that depends on the environment is the dipole moment
of the water molecule. For instance, the dipole moment is different in liquid water and ice[22],
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but can also exhibit more subtle changes with the environment[29, 30]. SCAN-ML is polarizable
and able to capture the effects connected to changes in dipole moment[27, 30]. SCAN-ML is also
fully reactive and can describe the proton transfer process in water. This model captures many
body interactions beyond 2- and 3-body, while mW is limited to 3-body interactions and TIP4P/Ice
is based only on 2-body interactions. SCAN-ML and TIP4P/Ice can both describe an important
feature of ice Ih, namely proton disorder, which is absent in the coarse-grained mW due to the lack
of protons.

Our simulations based on SCAN-ML also have several limitations. While the electronic degrees of
freedom are treated quantum mechanically, the dynamics of the nuclei are based on the equations of
motion of classical mechanics. Therefore, we ignore nuclear quantum effects that could be modeled
using path integral molecular dynamics. Another disadvantage is that SCAN-ML is around 1 to 2
orders of magnitude more computationally expensive than empirical models. Also, the properties
of SCAN-ML differ somewhat from experimental properties and this shows the limitations of the
SCAN functional in the description of water and ice. Lastly, the model is short-ranged, with an
interaction cutoff of 6 Å. It thus can not capture the long range electrostatic interactions (present,
for instance, in TIP4P models) nor van der Waals forces beyond this range. Long-range electrostatic
interactions could be modeled using the recently introduced deep potential long range (DPLR)
scheme[31].

We now turn to discuss the results of the seeding simulations. We studied ice Ih clusters of around
200, 700, and 4 500 molecules embedded in liquid water and the corresponding total number of
water molecules in the simulation boxes were around 4 000, 12 000, and 100 000, respectively.
The choice of system size is discussed in detail in the Supplementary Information. The initial,
equilibrated configurations of such ice clusters are shown in Figure 1 a, b, and c. We refer the reader
to the Methods section for information about the equilibration procedure. The clusters are nearly
spherical, an observation that will be important when CNT is used to calculate several physical
properties (see below). Some faceting of the clusters can be observed and the hexagonal shape of
the clusters is compatible with the six-fold symmetry of the basal plane of ice Ih.

Molecular dynamics simulations were performed at different temperatures starting from the equili-
brated configurations. The change in cluster size as a function of time is shown in Fig. S1 for the
three cluster sizes at different temperatures. From these simulations we identified the temperatures
T ∗ at which these clusters have equal probabilities of growing and thawing. In Figure 1d we show
T ∗ for the three cluster sizes studied here with the SCAN-ML model. In order to determine the
cluster size N∗ we must choose a local order parameter. The results depend somewhat on this
choice[18] and here we employ a criterion similar to the one used by Espinosa et al. [19] in order
to compare our results with the data reported therein (see Methods section for details about our
criterion to identify ice-like molecules). We also include in Figure 1d the comparison with the
results of Espinosa et al. [34] for two widely used empirical models, namely, mW and TIP4P/Ice.

Table 1: Melting temperature (Tm), densities of ice Ih and liquid water at coexistence (ρice and ρl), and enthalpy of
fusion (∆Hf ) of SCAN-ML, experimental water, and the empirical models TIP4P/Ice and mW.

Tm (K) ρice (g/cm3 ) ρl (g/cm3 ) ∆Hf (kJ/mol)
SCAN-ML [23] 312(1) 0.949(1) 1.002(3) 7.6(1)

Experiment 273.15 0.917 0.999 6.01
TIP4P/Ice [5] 270 0.906 0.985 5.40
mW [32, 33] 273 0.978 1.001 5.3
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Figure 1: Ice Ih clusters employed in the seeding simulations. a, b, and c show snapshots of the equilibrated
cluster configurations in which only oxygen atoms are shown. Atoms with ice Ih-like environments[35, 36] are shown
in orange and atoms with liquid-like environments are shown in gray. d shows the supercooling for which each
of the clusters is critical in the SCAN-ML model. The curve labelled fit - linear γ is based on the CNT formula
N∗ = (32πγ3)/(3ρ2

ice|∆µ|3) and uses the linear fit to γ shown in Fig. 3a. Results from ref. 34 for empirical models
mW and TIP4P/Ice are also shown. e, f, and g show the quantum-mechanical average dipole moment of the water
molecule as a function of the distance from the center of the ice clusters. Hyperbolic tangent functions were fit to
the data and are shown in solid blue lines. Reference values for bulk ice Ih and liquid water were calculated at the
equilibration temperatures (240 K, 275 K, and 290 K) and are shown with dashed orange and grey lines. The reference
value for the liquid at 240 K is not provided due to the very long relaxation times at this temperature.

The results show that the critical cluster sizes are fairly independent of the model. At the highest
supercooling studied here, around 50 K, the dynamics of liquid water are very slow and thermal
equilibration might not have been reached (see Supplementary Information for a detailed discussion
on the relaxation times of liquid water in the SCAN-ML model).

In order to illustrate the ability of SCAN-ML to capture subtle quantum-mechanical polarization
effects, we calculated the average dipole moment of the water molecule as a function of the distance
from the center of the ice Ih clusters. The quantum-mechanical molecular dipole moment was
computed according to the modern theory of polarization[37, 38], adopting the formulation in terms
of Wannier centers[39]. The dependence of the Wannier centers on the coordinates of the atoms in
the system was described by a deep neural network as described in ref. [29, 30] (see Supplementary
Information for further details of the calculation). The results are shown in Fig. 1 e, f, and g. The
average dipole moment changes from around 3.25 D in the ice Ih cluster to around 3.1 D in the
liquid water surrounding the cluster. We also show in Fig. 1 e, f, and g the reference values for bulk
ice Ih and liquid water (dashed lines) and the agreement with the dipoles in the cluster configurations
is very good. There is also good agreement between the bulk dipole moments calculated here and
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reference values obtained with SCAN DFT[22]. The experimental dipole moment of liquid water
at 298 K is 2.9 ± 0.6 D and is reproduced relatively well by SCAN[22]. We note that the average
dipole moment of the water molecule is a function of the temperature. Since each cluster has been
equilibrated at a different temperature, the reference bulk values differ in subplots e, f, and g of
Fig. 1. Furthermore, in the configurations with the ice cluster embedded in liquid water, the average
dipole moment transitions smoothly from the bulk ice Ih value to the bulk liquid value, and the
water molecules at the interface have, on average, intermediate values of the dipole moment.

We now turn to assess the performance of the SCAN-ML model to describe ice nucleation. We
calculate nucleation rates by combining the information obtained from the seeding simulations with
CNT. The predictions of CNT rest on various assumptions[17], for instance, CNT assumes that
clusters are spherical and show bulk ice Ih properties. Within CNT the nucleation rate (nuclei per
unit time per unit volume) is,

J = ρlZf exp(−β ∆G∗) (1)

where ρl is the density of the liquid, Z is the Zeldovich factor which represents the probability
of a critical cluster to cross the energy barrier, f is the attachment rate, β = 1/(kBT ), T is the
temperature, and kB is the Boltzmann constant. The nucleation free energy barrier, ∆G∗, can be
calculated using the CNT formula,

∆G∗ =
|∆µ|N∗

2
, (2)

where ∆µ is the difference in chemical potential between liquid water and ice Ih, and N∗ is the
number of water molecules in the critical cluster. Eq. (2) provides a convenient way to calculate
rates from N∗ and T ∗ obtained in the seeding simulations. ρl and ∆µ of the SCAN-ML model were
calculated in ref. [23] and further details about the determination of N∗, Z, f , ρl and ∆µ can be
found in the Methods section and in the Supplementary Information.

The nucleation rates thus calculated are shown in Figure 2 together with results of experiments[40–
46], and simulations using empirical models mW[34] and TIP4P/Ice[14, 16, 34]. Most experiments
are performed on micron-sized droplets and yield nucleation rates in the supercooling range 35-40
K[41, 42]. However, experiments in the last 10 years have also used nano-sized droplets to reach
much deeper supercoolings[40, 43]. We have not included in our plot the experimental results of
Laksmono et al. [47] since there are discrepancies between their rates and most measurements. Fur-
thermore, it has been argued that more than one nucleus could have formed in those experiments[48].
We have included in Figure 2 an horizontal line representing the experimental homogeneous nucle-
ation limit, i.e. the rate at which a micron-sized droplet freezes in one second[19]. We note that
there are significant differences between the nucleation rates calculated from simulations using
different methods. For instance, in the case of TIP4P/Ice, estimates from forward flux sampling[14],
metadynamics[16], and seeding[34] span about 10 orders of magnitude, which is, however, the
typical error bar of the seeding technique. Nucleation rates of the SCAN-ML model are in good
agreement with experimental measurements within the uncertainty of our calculation. Furthermore,
the rates of SCAN-ML are intermediate between those of mW and TIP4P/Ice. Therefore, the
performance of SCAN-ML is similar to that of the best available semiempirical models. As we
shall see later, the inclusion of stacking disorder makes rates faster and reduces to some extent the
discrepancy with experiment.
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Figure 2: Ice nucleation rates as a function of supercooling. Rates of the SCAN-ML model calculated in this work are
compared with experimental data[40–46] and results from other works obtained using the models TIP4P/Ice[14, 16, 34]
and mW[13, 34, 49, 50]. We refer the reader to Figure S12 for further details about the computational techniques used
to compute the rates of empirical models. The solid green line labeled SCAN-ML linear γ was obtained using the CNT
Eq. (1) and a linear fit to the interfacial free energy data presented in Fig. 3. The green shaded area is an estimate of the
error in this calculation. The experimental homogeneous nucleation limit[19] is shown as a horizontal gray dashed line
and corresponds to log10(J)(m−3s−1)=14. The calculation of error bars is described in the Supplementary Information.

Another quantity that can be easily obtained from the seeding simulations is the interfacial free
energy averaged over all orientations γ̄. For this purpose we employ the CNT expression,

γ̄ =

(
3N∗

32π

)1/3

ρ
2/3
ice |∆µ|, (3)

where the symbols have the same meaning as in Eqs. (1) and (2), and ρice is the density of ice Ih.
The results of this calculation are shown in Figure 3a. Data for the mW and TIP4P/Ice models
obtained from seeding simulations[34] are also shown. The dependence of γ̄ on supercooling is a
consequence of two different factors. The first is that the interfacial free energy of a flat interface
depends on the temperature and the second is that each cluster has a different size and this will
affect γ̄ as shown by the Tolman equation[17].

In order to validate the results obtained using seeding simulations, we also calculated the interfacial
free energy γ at coexistence for flat interfaces using advanced sampling simulations. For this
purpose, we computed γ for the most relevant interfaces in ice Ih, namely the prismatic (11̄00),
secondary prismatic (112̄0), and basal (0001) planes. The method to compute γ for flat interfaces
at coexistence is based on the reversible interconversion of the liquid and the respective liquid-ice
Ih interface. This is achieved by a suitably designed bias potential that increases the probability
of observing the high free energy interfacial configuration. A schematic of the interface sampled
during the simulation of the secondary prismatic plane is shown in Figure 3b. Further details of this
approach and its validation can be found in the Methods section. We also computed the interfacial
free energy averaged over all orientations (γ̄) as the mean of the three studied interfaces[19]. The
results of the free energy calculations are summarized in Table 1 and γ̄ is shown in Figure 3a. As
seen in this figure, the agreement between γ̄ obtained from advanced sampling calculations and
seeding is very good. For reference, we show in Table 2 results for the models mW and TIP4P/Ice
as reported in ref. 51.
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B
A

Figure 3: Liquid water-ice Ih interfacial free energy. a) Interfacial free energy as a function of supercooling. Results
for SCAN-ML at supercooling different from zero were obtained using data from the seeding simulations and assuming
the validity of CNT. We have included data from Refs. 34, 51 for the models mW and TIP4P/Ice, and experimental
measurements at the melting temperature[52]. Linear fits to the results of the different models are shown as solid lines.
The distribution of the experimental data is shown in red using a violin plot. The calculation of error bars is described
in the Supplementary Information. b) Planar interface between liquid water and the secondary prismatic plane of ice Ih.
This configuration was extracted from an advanced sampling simulation at 312 K driven by SCAN-ML during which
the interface reversibly forms and melts.

Interfacial free energy (mJ/m2)
γ(11̄00) γ(112̄0) γ(0001) γ̄

SCAN-ML 36(2) 34(2) 37(2) 36(2)
Experiment [53] - - - 29.1(8)

Experiment (avg.) - - - ∼ 31.5
TIP4P/Ice [51] 31.6(8) 30.7(8) 27.2(8) 29.8(8)

mW [51] 35.1(8) 35.2(8) 34.5(8) 34.9(8)
Table 2: Interfacial free energy of ice Ih with liquid water at coexistence. We report results for the prismatic (11̄00),
secondary prismatic (112̄0) and basal (0001) planes. The interfacial free energy averaged over all orientations γ̄ is
also reported. We have included experimental results[52, 53] (see text for details) and calculations using the mW and
TIP4P/Ice models[51].

We have also included in Figure 3a and in Table 2 experimental results for γ̄ at the melting
temperature[52]. There is no direct experimental measurement of γ̄ at other temperatures and
estimates based on CNT differ significantly[52]. For this reason we have not included them in our
analysis. The spread of the experimental results at the melting temperature is relatively large (∼ 20
mJ/m2) and has a mean value ∼ 31.5 mJ/m2 after removing outliers. It has also been argued[19, 52]
that the experiments of Hardy[53] based on the shape of the grain boundary groove provide the
most reliable estimate, with a value of 29.1 ± 0.8 mJ/m2. γ̄ for SCAN-ML is well within the
region of uncertainty of the experimental measurements. However, the interfacial free energy of
SCAN-ML is higher than the average experimental estimate. This behavior can be rationalized
taking into account that SCAN-ML has a melting temperature and enthalpy of fusion higher than
both the corresponding numbers for real water (experiments) and TIP4P/Ice. Turnbull observed
that there is a strong correlation between the interfacial free energy and the enthalpy of fusion[54],
and Laird has made a similar observation for the correlation between the interfacial free energy
and the melting temperature[55]. It is thus expected that the interfacial free energy of SCAN-ML
should be higher than in the experiment and in TIP4P/Ice (melting temperature ∼270 K[5]). In
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Figure S4 we show that indeed the interfacial free energy correlates very well with the melting
temperature in the TIP4P family and SCAN-ML. An option to account for the different melting
temperatures of the models is to compare γ̄ using units of kBT for the energy. A plot of γ̄ in units of
kBT/m

2 vs supercooling is shown in Figure S11. One could also estimate the value of γ̄ in mJ/m2

that SCAN-ML would have if its melting temperature were the experimental one. An appropriate
rescaling of γ̄ is γ̄′ = γ̄ T exp

m /T SCAN−ML
m , where T exp

m and T SCAN−ML
m are the melting temperatures

in the experiment and SCAN-ML, respectively. In this way, we obtain a interfacial free energy for
SCAN-ML of γ̄′ = 31.5 mJ/m2 at the melting temperature.

We now turn to analyze the thermodynamic properties of the models that affect nucleation rates
by assuming the validity of CNT. The nucleation barrier ∆G∗ controls nucleation rates at low and
moderate supercoolings since it is exponentiated in Eq. (1). The CNT expression for ∆G∗ is,

∆G∗ =
16πγ̄3

3ρ2ice|∆µ|2
. (4)

Therefore, the central physical quantities that govern nucleation rates at low and intermediate
supercoolings are 1) the difference in chemical potential between liquid water and ice Ih (∆µ), 2)
the interfacial free energy of ice Ih with liquid water (γ̄), and 3) the density of ice (ρice). In the next
paragraphs we analyze these quantities for SCAN-ML, TIP4P/Ice, and mW.

In Figure 4a we show the difference between |∆µ| in different models and in the experiment
|∆µexp| as a function of supercooling. |∆µexp| cannot be measured directly and its calculation from
experimentally measured heat capacities of liquid water and ice Ih[56] is described in the Supple-
mentary Information. |∆µ| − |∆µexp| is reported in units of kBT in Figure 4a in order to compare
models with different melting temperatures. At 35 K of supercooling |∆µ| is underestimated by
9% in SCAN-ML. The performance of SCAN-ML in describing this property is somewhat better
than that of TIP4P/Ice, which underestimates ∆µ by 17% at the same supercooling. The mW
model is the most accurate among the models considered here with |∆µ| at 35 K within 1% of the
experimental value. However, mW changes from a underestimation of |∆µ| at low supercoolings to
an overestimation at large supercoolings. This is a consequence of a much weaker deviation of ∆µ
from a linear dependence with temperature than the other models (see Figure S8).

Results for the interfacial free energy were presented in Figure 3a. There is limited experimental
information to ascertain the deviation of the interfacial free energy with respect to experiments.
However, the values of γ̄ for TIP4P/Ice and SCAN-ML (adjusted for the different melting tempera-
ture) are in relatively good agreement with most experimental results and most likely within a 5
% error. Instead, γ̄ in the mW model is around 35 mJ/m2 which is higher than the most reliable
experimental estimates of γ̄ and is most likely overestimated by around 10 %. It is also possible to
characterize the temperature dependence of γ̄ using the interfacial entropy, Sγ = −∂γ̄/∂T , that can
be estimated from the slope of γ̄ with respect to temperature in Fig. 3a. We observe that mW has a
lower slope ∂γ̄/∂T than SCAN-ML and TIP4P/Ice, and that the latter two models have a similar
slope. This indicates that the interfacial entropy of the coarse-grained mW model is higher than in
the TIP4P/Ice and SCAN-ML all-atom models that include protons explicitly. Following ref. 32,
the interfacial entropy can also be calculated using,

Sγ ≈ −
γ̄(Tm) ∆Cp(Tm)

∆Hf

(5)

where ∆Hf is the enthalpy of fusion and ∆Cp(Tm) is the difference in heat capacity between
liquid water and ice Ih at the melting temperature Tm. Using the values of ∆Hf and γ̄ reported
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Figure 4: Analysis of the influence of supersaturation on nucleation barriers. a) Difference between the driving
force for nucleation in computer models |∆µ| and in the experiment |∆µexp| as a function of supercooling. |∆µ| for
the mW and TIP4P/Ice models was obtained from ref. 19. The calculation of |∆µexp| is based on experimental heat
capacities[56]. Above 38 K of supercooling results are shown as dashed lines to highlight the uncertainty in |∆µexp|
due to the lack of experimental measurements of the heat capacity of liquid water at these conditions. See SI for further
details on the calculation of |∆µ|. b) Nucleation barrier ∆G∗ calculated using CNT (Eq. (4) - see text for details).
Results from umbrella sampling and metadynamics free energy calculations (FEC) reported in refs. 16, 33, 57 are also
shown.

in Tables 1 and 2, and ∆Cp(Tm) = 49 J/(mol K) [23] we obtain Sγ ≈ −232 µJ m−2 K−1 for
SCAN-ML. This result is in good agreement with Sγ calculated from experimental data (-215
µJ m−2 K−1)[32]. A similar analysis for TIP4P/Ice gives Sγ ≈ −226 µJ m−2 K−1 also in good
agreement with the experiment. The mW model has a Sγ of -44 µJ m−2 K−1 [32] that is around a
fifth of the experimental value. These results are in agreement with the discussion above based on
the slopes of the lines in Fig. 3a. From this discussion we deduce that an all-atom description seems
essential to capture γ̄ and its temperature dependence.

The density of ice Ih in the different models considered here is shown in Table 1 and in Fig. S8 (data
from refs. 33, 34, 58). The density of SCAN-ML ice Ih is around 3 % higher than in the experiment
and according to (4) this would partially compensate the somewhat low |∆µ| in this model. For
TIP4P/Ice the density of ice Ih is around 1 % lower than in the experiment and we expect it to have
a negligible effect compared to other errors. Finally, the mW model overestimates the density of ice
Ih with respect to experiment by ∼ 7 % and this might compensate in part for a large γ̄.

We then computed the nucleation free energy barriers using Eq. (4), the values for ∆µ and ρice
reported in Figure S8, and the linear fits to γ̄ shown in Figures 3a. The results are shown in
Figure 4b. We have included barriers from refs. 33, 57 and 16 obtained using umbrella sampling
and metadynamics free energy calculations. For SCAN-ML we expect that the barrier should be
overestimated since |∆µ| is underestimated. This is compatible with the nucleation rates being
somewhat slower than the experiment (see Figure 2). In the TIP4P/Ice water model |∆µ| is
underestimated more than in SCAN-ML and therefore we would expect an overestimation of
the nucleation barrier and nucleation rates slower than in the experiment. At variance with this
prediction, the seeding nucleation rates[34] of TIP4P/Ice seem to agree relatively well with the
experiments. The rates calculated by Niu et al. [16] and Haji-Akbari and Debenedetti[14] for
TIP4P/Ice, however, are slower than the experimental measurements. In the case of the mW water
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model, ∆µ is in very good agreement with the experiment. For this reason, we surmise that the slow
nucleation rates in this model can be traced back to an overestimation of γ̄ not fully compensated
by the overestimation of ρice.

Another important aspect of ice nucleation is stacking disorder. There is significant experimental[59]
and computational[2] evidence that nucleating ice clusters contain stacking faults, i.e. alternating
layers of ice Ih and ice Ic, and the solid polymorph that exhibits this feature is called ice Isd[60].
The prevalence of stacking faults in ice at equilibrium depends on two thermodynamic properties,
namely, the difference in chemical potential between ice Ih and ice Ic ∆µIh→Ic , and the interfacial
free energy between these two polymorphs γIh→Ic . The experimental evidence on the value of
∆µIh→Ic is limited due to the difficulty in obtaining pure ice Ic, although very recently it has become
possible to prepare samples with high structural purity[61]. The available experimental data puts
∆µIh→Ic in the range from 0 to ∼ 200 J/mol (see ref. 62 for a review). An alternative point of view
is provided by Lupi et al. [2] who argue that the experimental results reported in ref. 63 put an upper
limit to ∆µIh→Ic at 16.5± 1.7 J/mol. On the computational side, the TIP4P/Ice and mW models
have very small values of ∆µIh→Ic of ∼ 0 [64] and ∼ 5 J/mol[33, 65], respectively. In ref. 23 we
have found a ∆µIh→Ic for the SCAN-ML model of 65 ± 37 J/mol. As we shall see, the precise
value of ∆µIh→Ic has an influence on rates, and further experimental and computational efforts are
needed to shed light on its value.

We described the effect of stacking disorder using a model for the chemical potential of ice Isd
that rests on the following assumptions: 1) the entropy of mixing of ice Ic and ice Ih layers is
ideal, 2) the interfacial free energy is negligible, and 3) stacking is only relevant in one direction,
namely, the direction perpendicular to the basal plane of ice Ih. It can be shown that the first two
assumptions give a lower bound for the chemical potential of ice Isd. Since the effect of stacking
disorder is more relevant when the chemical potential of ice Isd is lower, then our model gives an
upper bound for the possible effects of stacking disorder. A more sophisticated 2D model has been
used by Lupi et al. [2] and it was found that the simplified 1D model underestimates the entropic
stabilization due to stacking disorder. We also note that a similar model has been used by Pronk
and Frenkel[66]. Further details can be found in the Materials and Methods section. In Figure 5a
we show the difference in chemical potential between ice Isd and ice Ih, ∆µIsd→Ih , as a function
of supercooling as obtained from our model. The model takes as input the difference in chemical
potential between ice Ic and ice Ih ∆µIh→Ic . We used two different values for this quantity, one
compatible with the free energy of the mW model, ∆µIh→Ic = 5 J/mol, and another one compatible
with the SCAN-ML model, ∆µIh→Ic = 65 J/mol. In both cases ∆µIsd→Ih becomes negligible as
the supercooling goes to zero and the critical cluster size goes to infinity. This reflects the fact
that ice Ih is the most stable phase in the thermodynamic limit. At larger supercoolings the finite
size effects start to be important and ice Isd becomes progressively more stable against ice Ih. The
magnitude of the stabilization, around 50 J/mol, is small compared with |∆µ| even at relatively
large supercoolings.

It is also interesting to evaluate how ∆µIh→Ic affects the cubicity of the nucleating clusters. We
evaluated the cubicity as a function of the size of the cluster and the results are reported in Figure 5b.
We found that for ∆µIh→Ic = 5 J/mol the cubicity drops below 1% for clusters of around 100 000
molecules, in excellent agreement with findings of Lupi et al.[2] for the mW water model. Instead,
for ∆µIh→Ic = 65 J/mol the cubicity drops below 1% at around 2 000 molecules. Therefore, the
extent to which stacking disorder is relevant in small clusters depends largely on ∆µIh→Ic .
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A

B

C

Figure 5: Influence of stacking disorder on the rates. a) Difference in chemical potential between ice Isd and ice Ih,
∆µIsd→Ih = µIh − µIsd , as a function of supercooling. b) Cubicity as a function of the number of molecules N in a
spherical ice cluster. The threshold to distinguish ice Isd from ice Ih is shown with a dashed gray line and corresponds
to a 1% cubicity. c) Nucleation rates as a function of supercooling. Rates for ice Ih are compared with experimental
data and the results for ice Isd obtained with a model for stacking disorder. The green shaded region corresponds to the
error in the rate of ice Ih and was calculated as described in the Supplementary Information. Two values are considered
for µIc − µIh in (10), one compatible with mW (5 J/mol) and another one compatible with SCAN-ML (65 J/mol).

∆µIsd→Ih can be used within CNT to estimate the nucleation rates of ice Isd. In Figure 5c we show
the nucleation rates of ice Isd calculated in this fashion. For clarity we only show the results using a
low value of ∆µIh→Ic , namely 5 J/mol, since this gives the greatest effect for the rates and is easier
to visualize. For this reason it should be considered an upper bound for the effect rather than the
most reliable estimate. In spite of the systematic choices we have made to obtain the maximum
possible influence of stacking disorder on the rates, the effect of stacking disorder is around two or
three orders of magnitude at deep supercoolings. This relatively small change, however, improves
somewhat the agreement of SCAN-ML with the experiment. We also calculated nucleation rates
using ∆µIh→Ic = 65 J/mol and the results are shown in Figure S9. This work shows that the
latest advances in ab initio molecular dynamics allow studies of complex phenomena such as ice
nucleation from first principles. Our findings indicate that nucleation rates predicted based on SCAN
DFT are in reasonably good agreement with experiment. The rates are similar to those estimated
with the TIP4P/Ice model and somewhat faster than the rates of the mW model. The nucleation
rate is a complex quantity that depends on many different properties of an atomistic model such
as the density of liquid water and ice, the water-ice interfacial free energy, and the difference in
chemical potential between water and ice. We have performed a careful analysis of these properties
and we have also compared them to the results of empirical models. SCAN-ML gives a balanced
description of these properties that results in good agreement between the calculated rates and the
experimental measurements.

We have also highlighted limitations of the SCAN functional in describing some of the properties of
liquid water and ice. More accurate functional approximations and/or higher level quantum chemical
data are expected to improve the description of the properties of water. It has also been shown
that the MB-pol model[67] based on CCSD(T) calculations reproduces experimental properties
with high accuracy and is thus an interesting model to study in the future. Furthermore, in this
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work we have neglected nuclear quantum effects (NQE) that may have an important impact on
some properties. For instance, the difference in chemical potential between liquid water and ice is
influenced by heat capacities and the latter are affected significantly by NQE[68]. In spite of their
possible relevance, modeling NQE through path integral molecular dynamics is still computationally
impractical for nucleation simulations that employ large system sizes such as the ones considered
here. Understanding the impact of NQE on ice nucleation is an interesting direction for future work.
Finally, ab initio machine learning models of water can be extended to describe a substrate in order
to simulate heterogeneous ice nucleation, a process of direct relevance to atmospheric science and
climate modeling. This would allow to include hitherto neglected phenomena, such as the effect
of pH and the spontaneous hydroxylation of surfaces. For these reasons, we foresee continued
progress in the simulation of ice nucleation from first principles and the prediction of rates that are
in progressively improved agreement with experiments as a result of an accurate description of the
thermodynamic and kinetic properties of water and ice.

Methods

Molecular dynamics Simulations were performed using LAMMPS[69] patched with the DeePMD-
kit[70]. The temperature was kept constant with the stochastic velocity rescaling algorithm[71]
using a relaxation time of 0.1 ps. A Parrinello-Rahman type barostat was used to maintain the
pressure at 1 bar and a relaxation time of 1 ps was employed. For the seeding simulations an
isotropic barostat was used whereas for the advanced sampling simulations only the pressure
component in the direction perpendicular to the interface was controlled. The SCAN-ML model
used with the DeePMD-kit was exactly the same as the one employed in ref. 23. The performance
of the implementation that we used was around 1 ns/day using an optimal number of GPUs for a
given system size. The performance with the latest version of DeePMD-kit would have been faster
at around 10 ns/day.

Seeding simulations Configurations for the seeding simulations were constructed in the following
way. A simulations box with water molecules was prepared and then a spherical cavity was carved
from its center. This region was later filled with a seed of ice Ih with proton disorder created using
GenIce[72]. This procedure was repeated for three different system sizes. These systems contained
3 934, 11 872, and 99 404 water molecules, respectively. Afterwards the energy was minimized to a
relative accuracy 10−6 and a 1 ns MD simulation for equilibration was performed at a temperature
below the one for which the cluster is critical in order to avoid partial melting of the cluster. The
corresponding temperatures were 240, 275, and 290 K for the smallest, intermediate, and largest
cluster, respectively. After equilibration, MD simulations were run at different temperatures to find
T ∗. The simulations for the largest system were run on the Summit supercomputer using 600 Nvidia
V100 graphical processing units (GPUs). Each of the simulations would have required ∼5 years to
be completed in a single GPU. The intermediate and small system sizes used 100 and 24 GPUs per
simulation, respectively.

The size of the clusters was determined using the local Steinhardt parameter Q̄6 proposed by Lechner
and Dellago[73]. Q̄6 was calculated using the Freud[74] Python library v2.7.0. The threshold
value of Q̄6 that separates liquid and ice Ih environments was determined for each temperature
using the criterion that an environment with the threshold value of Q̄6 has equal probabilities of
being classified as liquid or ice Ih. Probability densities of Q̄6 for the liquid and ice Ih at different
temperatures are shown in Fig. S5a. The chosen thresholds as a function of temperature are shown in

13



Homogeneous ice nucleation in an ab initio machine learning model of water A PREPRINT

Fig. S5b and show a linear correlation. We used a linear fit to these data to determine the threshold at
any intermediate temperature. All seeding simulations were analyzed using a threshold appropriate
for the temperature of the simulation. We note that the overlap of the liquid and ice Ih distributions
increase sharply upon crossing the Widom line. This can be expected given that below the Widom
line liquid water resembles the low density liquid (LDL) water phase and ice Ih is known to be more
similar to LDL than to the high density liquid (HDL). In Figure 1 the classification in ice-like and
liquid-like environments was performed with the Polyhedral Template Matching algorithm[35] as
implemented in OVITO[36].

The prefactor in the CNT expression for the nucleation rates (Eq. (2)) requires the calculation of the
Zeldovich factor Z and the attachment rate f . Z was calculated using,

Z =

√
|∆µ|

6πkBTN∗
(6)

and f was calculated using[19],

f =
〈(N(t)−N(0))2〉

2t
(7)

where N(t) is the cluster size at time t. In practice, we computed f from the slope of
〈(N(t)−N(0))2〉 vs 2t. Results for f are shown in Figure S7.

Advanced sampling simulations The calculation of the ice Ih-liquid water interfacial free energy was
performed with LAMMPS augmented with the PLUMED enhanced sampling plugin[75, 76]. The
initial configuration was made using GenIce and consisted in 288 water molecules in the ice Ih
structure with proton disorder. An equilibration of 1 ns at 312 K and 1 bar was then carried out, and
the box dimensions were set to their average values during this run. In order to obtain simulation
boxes adequate for the simulation of the prismatic, secondary prismatic, and basal interfaces, the
box was replicated along one of the three main axis and then the solid configuration was melted in a
1 ns run at 450 K while only the direction along which the box was replicated was barostated.

Next, we performed an advanced sampling simulation for each interface in which a bias potential
was constructed using the On-the-fly Probability Enhanced Sampling (OPES) method[77]. This
method is an evolution of the well-known metadynamics technique[15]. The OPES bias potential
was built as a function of a collective variable (CV) that counts the number of environments
compatible with ice Ih in a region around an arbitrarily chosen atom (for instance, atom number
1). The number of environments compatible with ice Ih was calculated using the environment
similarity[78] metric taking the four tetrahedral reference environments of ice Ih χi with i = 1, .., 4.
As a result of the introduction of the bias potential, during the biased simulations a slab of the ice Ih
crystal is reversibly formed and melted. The free energy difference between the liquid and the slab
was calculated using,

∆G = −kBT log

(
Z‡

Z l

)
(8)

where Z‡ and Z l are the partition functions of the slab and the liquid. The interfacial free energy
can then be calculated as,

γ =
|∆G|
2A

(9)

with A the cross section of the interface. Further details are provided in the Supplementary
Information.
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This approach was validated by calculating the interfacial free energy of TIP4P/Ice that is known
from literature[51]. The interfacial free energy of TIP4P/Ice averaged all interfaces was found to be
31(1) mJ/m2 in good agreement with the estimate from literature 29.8(8) mJ/m2.

Model for stacking disorder Stacking disorder was modeled using the following expression for the
difference between the chemical potential of ice Isd and Ih,

µIsd(C,N)− µIh = C(µIc − µIh)− 1

N
TSmix +

1

N

∑
i

γsfAi (10)

where C is the cubicity, N is the number of molecules, the index i runs through the ice Ih-ice Ic
interfaces, γsf is the interfacial free energy of the stacking faults, and Ai is the area of the i-th
interface. The first term in Eq. (10) is the bulk contribution of ice Ih and ice Ic. The second term
is the contribution from the entropy of mixing of the stacked layers. We assume that stacking is
relevant only in one direction, i.e. the direction perpendicular to the basal plane of ice Ih. The
last term in Eq. (10) takes into account the penalty to form an ice Ih-ice Ic interface. The second
and third terms go to zero as N →∞, reflecting that stacking disorder is only relevant for finite
systems.

Since the effect of stacking disorder on the rates and chemical potentials is small, we do the
following approximations. First, we neglect the third term in Eq. (10) that is always positive.
Second, we approximate the entropy of mixing with the ideal entropy of mixing,

Smix ≈ −NlkB(C log(C) + (1− C) log(1− C)) (11)

where Nl is the number of stacked layers. The ideal entropy of mixing is always larger than Smix.
These choices give a lower bound for µIsd(C,N)− µIh and thus the greatest possible influence on
the rates. We make the additional assumption that the cluster of N molecules is approximately
spherical and calculate Nl using the expression,

Nl(N) =
D

d
=

(
6N

πρice

)1/3
1

d
(12)

where D is the diameter of the cluster and d is the distance between layers of the basal plane. The
cubicity and chemical potential in equilibrium are found by minimizing µIsd(C,N) with respect to
C. In order to obtain µIsd(C,N) as a function of temperature, we replace N with the number of
molecules N∗Isd(T ) in a critical cluster with stacking disorder at a given temperature T . N∗Isd(T ) is
not known but can be approximated by the number of molecules N∗Ih(T ) in a critical cluster of ice
Ih that has been computed using seeding simulations.
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