HOMOGENEOUS KAHLER AND SASAKIAN STRUCTURES
RELATED TO COMPLEX HYPERBOLIC SPACES

P. M. GADEA' AND J. A. OUBINA?

! Institute of Fundamental Physics, CSIC,
Serrano 113-bis, 28006 Madrid, Spain (pmgadea@iec.csic.es)
2 Departamento de Xeometria e Topoloxzia, Universidade de Santiago de Compostela,
15782 Santiago de Compostela, Spain (ja.oubina@usc.es)

Abstract  We study homogeneous Kéhler structures on a non-compact Hermitian symmetric
space and their lifts to homogeneous Sasakian structures on the total space of a principal line
bundle over it, and we analyze the case of the complex hyperbolic space.

Keywords: Homogeneous Riemannian structures; homogeneous Kéhler structures;
homogeneous almost contact Riemannian manifolds;
non-compact Hermitian symmetric spaces; Sasakian spaces

2000 Mathematics subject classification: Primary 53C30; Secondary 53C25, 53C35, 53C55

1 Introduction

The general theory of homogeneous Kahler manifolds is well-known, as well as the relation
between homogeneous symplectic and homogeneous contact manifolds (see e.g. Boothby
and Wang [6], Diaz Miranda and Reventés [9], and Dorfmeister and Nakajima [10]).

As is also widely known, a connected, simply connected and complete Riemannian
manifold is a symmetric space if and only if its curvature tensor field is parallel. Ambrose
and Singer [2] extended this result to obtain a characterization of homogeneous Rieman-
nian manifolds in terms of the existence of a tensor field S of type (1,2) on the manifold,
called a homogeneous Riemannian structure (see Tricerri and Vanhecke [26], where a clas-
sification of such structures is also given), satisfying certain properties (see (2.1); if S =0
one has the symmetric case). Moreover, Sekigawa [24] obtained the corresponding re-
sult for almost Hermitian manifolds, defining homogeneous almost Hermitian structures,
which were classified by Abbena and Garbiero in [1] (among them the homogeneous
Kéhler structures). Its odd-dimensional version, the almost contact metric case, has
been also studied (see, for instance, [8, 11, 14, 19]).

In Section 2, we give the basic results about homogeneous Riemannian and homoge-
neous Kahler structures. In particular we consider these structures on Hermitian sym-
metric spaces of non-compact type. Besides the trivial homogeneous structure S = 0
associated to the description of one such space as a symmetric space, other structures
can be obtained associated to other descriptions as a homogeneous space and, in particu-
lar, to its description as a solvable Lie group given by an Iwasawa decomposition (§ 2.2).



We also give a construction of homogeneous Sasakian structures on the bundle space of
a principal line bundle over a Hermitian symmetric space of non-compact type, endowed
with a connection 1-form that is the contact form of a Sasakian structure on the total
space (Proposition 2.5).

The complex hyperbolic space CH(n) = SU(n,1)/S(U(n) x U(1)) with the Bergman
metric is an irreducible Hermitian symmetric space of non-compact type, and, up to ho-
motheties, is the simply-connected complete complex space form of negative curvature.
It has been characterized in [12] in terms of the existence of certain type of homogeneous
Kaéhler structure on it, and in [7] a Lie-theoretical description of its homogeneous struc-
ture of linear type is found. In Section 3 we study the homogeneous Kéhler structures
on CH(n) from other point of view, which in particular provide an infinite number of
descriptions of CH(n) as non-isomorphic solvable Lie groups. Moreover, we consider the
principal line bundle over CH(n) with its Sasakian structure given in a natural way from
a connection form on the bundle, and we obtain the families of homogeneous Sasakian
structures on its bundle space following our previous general construction. Summarizing,
we get:

(a) All the homogeneous Kéhler structures on CH(n) = AN. They are given in terms
of some 1-forms related by a system of differential equations on the solvable Lie group
AN (Theorem 3.1).

(b) The explicit description of a multi-parametric family of homogeneous Kéhler struc-
tures on CH(n), given by using the generators of a +n (Proposition 3.6), and the corre-
sponding subgroups of the full isometry group SU(n, 1) of AN (Theorem 3.7).

(¢) The explicit description of a one-parametric family of homogeneous Sasakian struc-
tures on the bundle space of the line bundle M — CH(n), given in terms of the horizontal
lifts of the generators of a+n and the fundamental vector field & on M (Proposition
3.9), and their associated reductive decompositions (Propositions 3.11 and 3.12). One
of them describes M as the complete simply connected @-symmetric Sasakian space
SU(n,1)/SU(n), which is also a Sasakian space form.

On the other hand, complex hyperbolic space was the first target spacetime where
Nishino’s [21] alternative (i.e., neither necessarily hyper-Kéhler nor quaternion-Kéhler)
N = (4,0) superstring theory proved to work. This model has some interesting features,
among them, not to have (which is a trait common to heterotic o-models) the incompat-
ibility between the torsion tensor and quaternion-Kahler manifolds found by de Wit and
van Nieuwenhuizen [27]. Another peculiarity is that in this case, one of the two scalars
of the relevant global multiplet is promoted to coordinates on CH(n), while the other
plays the role of a tangent vector under the holonomy group S(U(n) x U(1)).

2 Homogeneous Riemannian Structures

Ambrose and Singer [2] proved that a connected, simply connected and complete Rie-
mannian manifold is homogeneous if and only there exists a tensor field S of type (1, 2)
on M such that the connection V = V — § satisfies the Eqs.

Vg=0, VR=0, VS=0, (2.1)



where V is the Levi-Civita connection of g and R its curvature tensor field, for which we
adopt the conventions Rxy Z = V[ny]Z—VvaZ—‘rVyVXZ, Rxyzw = g(nyZ, W)
Such a tensor field S is called a homogeneous Riemannian structure ([26]). We also denote
by S the associated tensor field of type (0,3) on M defined by Sxyz = g(SxY, Z).

2.1 Homogeneous Kahler structures

An almost Hermitian manifold (M, g, J) is said to be a homogeneous almost Hermitian
manifold if there exists a Lie group of holomorphic isometries which acts transitively and
effectively on M. Sekigawa proved the following

Theorem 2.1. ([24]) A connected, simply connected and complete almost Hermitian
manifold (M, g, J) is homogeneous if and only if there is a tensor field S of type (1,2)
on M which satisfies Eqs. (2.1) and VJ = 0.

A tensor S satisfying the Eqs. (2.1) and VJ = 0 is called a homogeneous almost
Hermitian structure. The almost Hermitian manifold (M, g, J) is Kéhler if and only if
J is integrable and the fundamental 2-form 2 on M, given by Q(X,Y) = g(X, JY), is
closed, or equivalently VJ = 0. In this case, a homogeneous almost Hermitian structure
is also called a homogeneous Kéhler structure, and we have

Proposition 2.2. A homogeneous Riemannian structure S on a Kahler manifold (M,g,J)

is a homogeneous Kahler structure if and only if S -J = 0, or equivalently Sxyz =
Sx jv gz for all the vector fields X,Y,Z on M.

Corollary 2.3. A connected, simply connected and complete Kdhler manifold (M, g,J) is
a homogeneous Kdahler manifold if and only if there exists a homogeneous Kahler structure
on M.

If (M = G/H,g) is a homogeneous Riemannian manifold, where G is a connected
Lie group acting transitively and effectively on M as a group of isometries and H is
the isotropy group at a point o € M, then the Lie algebra g of G may be decomposed
into a vector space direct sum g = h+m, where b is the Lie algebra of H and m is an
Ad(H)-invariant subspace of g. If G is connected and M is simply connected then H is
connected, and the condition Ad(H)m C m is equivalent to [h, m] C m. The vector space
m is identified with T,(M) by the isomorphism X € m — X € T,,(M), where X* is the
Killing vector field on M generated by the one-parameter subgroup {exptX} of G acting
on M. If X € g=h+m, we write X = Xy + X, (Xy € h, Xu € m). The canonical
connection V of M = G/H (with regard to the reductive decomposition g = h+m) is
determined by

(Vi Yo = [X*, V"], = —[X,Y]: = —([X, Y]w)Z, X,Y €m, (2.2)

and S = V-V satisfies the Ambrose-Singer Egs. (2.1), and it is the homogeneous Rieman-
nian structure associated to the reductive decomposition g = b +m. If (M, g) is endowed
with a compatible almost complex structure J invariant by G (so that (M = G/H, g, J)
is a homogeneous almost Hermitian manifold), restricting J to T,(M) = m, we obtain a



linear endomorphism .J, of m such that J? = —1, and .J, adp = ady J,. Moreover, J is
integrable if and only if

[JoX, JoYTm — [X, Y] — Jo[X, JoY]m — Jo[JoX, Y]m =0

for all X,Y € m ([18], Ch. 10, Prop. 6.5).

Conversely, suppose that (M, g) is a connected, simply connected and complete Rie-
mannian manifold, and let S be a homogeneous Riemannian structure on (M, g). We
put m = T,(M), where o € M. If R is the curvature tensor of the connection V = V — S,
the holonomy algebra b of V is the Lie subalgebra of the Lie algebra of antisymmetric
endomorphisms so(m) of (m,g,) generated by the operators Rxy, where X, Y € m. A
Lie bracket is defined (Nomizu [20]) in the vector space direct sum § = b + m by

[U,V]=UV -V, U,V eb,
U, X] = U(X), Ueh, X em, (2.3)
[X,Y]=Rxy +SxY —SyX, X,Yem,

and g = b+ m is the reductive decomposition corresponding to the homogeneous Rie-
mannian structure S. Let G be the connected simply connected Lie group whose Lie
algebra is g and H the connected Lie subgroup of G' whose Lie algebra is h. Then G acts
transitively on M as a _group of isometries and M is diffeomorphic to G / H. If T is the
set of the elements of G which act trivially on M, then I' is a discrete normal subgroup
of G, and the Lie group G = G/T acts transitively and effectively on M as a group of
isometries, with isotropy group H = H /T. Then M is diffeomorphic to G/H. Now, if
J is a compatible almost complex structure on (M, g) and S is a homogeneous almost
Hermitian structure, then the holonomy algebra his a subalgebra of the Lie algebra
u(m) = {A € so(m) : A-J = 0} of the unitary group, and M ~ G/H ~ G/H is a
homogeneous almost Hermitian manifold.

2.2 Hermitian symmetric spaces of non-compact type

Suppose that (M = G/K, g, J) is a connected Hermitian symmetric space of non-compact
type, where G = Iy(M) is the identity component of the group of (holomorphic) isome-
tries and K is a maximal compact subgroup of G. Then M is simply connected and
the Hermitian structure is Kéhler. We consider a Cartan decomposition g = €+ p of
the Lie algebra g of GG, and the Iwasawa decomposition g = £+ a+n, where £ is the Lie
algebra of K, a C p is a maximal R-diagonalizable subalgebra of g, and n is a nilpotent
subalgebra. Let A and N be the connected abelian and nilpotent Lie subgroups of G
whose Lie algebras are a and n, respectively. The solvable Lie group AN acts simply
transitively on M, so M is isometric to AN equipped with the left-invariant Riemannian
metric defined by the scalar product ( , ), induced on a+n = g/ € = p by a positive
multiple of B, » p, where B is the Killing form of g.

Now, let G be a connected closed Lie subgroup of G which acts transitively on M.
The isotropy group of this action at o = K € M is H = GNK. Then M = G/K
has also the description M = G/H, and o = H € G/H Let § = h+m be a reductive
decomposition of the Lie algebra g of G corresponding to M = G/H.



We have the isomorphisms of vector spaces
Pg/Eg/hEm T,(M) 2 atn,

with

1w

G p>m, pm T,(M), C:TO(M)ia—i-n,
given by
N2 =2y, w2)=2z: ¢HNX) =X, Zem, X €a+tn.
For each X € g, we have (X¢); = 0 and (V(X,)*)o = 0, and since the Levi-Civita
connection V has no torsion, for each X,Y € g, we have

(VY ")o = (Vi) (Y8))o = [(Xp)", (Ye)"Jo = —[Xp, VA5 (2.4)

The reductive decomposition g = h+m defines the homogeneous Riemannian struc-
ture S = V — V, where V is the canonical connection of M = G/ H with respect to
4 = h+m, which is G-invariant and uniquely determined by (%X*Y*)O = —[X,Y]s, for
X,Y € m (2.2). The tensor field S is also uniquely determined by its value at o because
M = G/H and S is G-invariant. Since J is G-invariant, from [18], Ch. 10, Prop. 2.7, it
follows that VJ = 0, and by Theorem 2.1, S is a homogeneous Kéahler structure.

We have

(Sx+Y")o = (Vx-Y")o + [X,Y]; = Vy: X", XY em. (2.5)
By (2.4) and (2.5), S is given by
Sx:Y) = [X¢, Y5, X, Y em.
Then, for each X,Y € a+n, we have
Sxs Yy = Se(x,):€(Yn)o = [(€(Xp))es Yol

The complex structure J on M = G/K is defined by an element E; in the center of
¢, and it defines the complex structure J € End(a+n) such that the following diagram
is commutative, and (a+mn,(, ), J) becomes a Hermitian vector space isomorphic to
(TO(M), Yo, JO)-

p—m —A s T(M) —— a+n

was, | | | |

p—m — s T,(M) —— a+n

Let A and N be the connected abelian and nilpotent Lie subgroups of G whose Lie
algebras are a and n, respectively. The solvable Lie group AN acts simply transitively
on M. Then M is isometric to AN equipped with the left-invariant Riemannian metric
defined by the scalar product induced on a+n = g/ = p by a positive multiple of
By xp, where B is the Killing form of g, so that AN equipped with the left-invariant

almost complex structure defined by J is a Kahler manifold.



2.3 Homogeneous almost contact Riemannian manifolds

An almost contact structure on a (2n + 1)-dimensional manifold M is a triple (¢, £, n),
where ¢ is a tensor field of type (1,1), £ a vector field (called the characteristic vector
field) and 7 a differential 1-form on M such that

P’ =—id+n®¢ () =1

Then p§ =0, nop = 0, and ¢ has rank 2n. If g is a Riemannian metric on M such that

GeX, oY) = §(X,Y) —n(X)n(Y) for all vector fields X and ¥ on M then (¢, §,m,9) is
said to be an almost contact metric structure on M. In this case, g(X,&) = n(X). The
2-form ® on M defined by ®(X,Y) = §(X, pY) is called the fundamental 2-form of the
almost contact metric structure (¢, &,7,3). If dp(X,Y) = Xn(Y) =Y n(X)-n(X,Y]) =
20(X Y), then (¢,&,7,9) is called a contact metric (or contact Riemannian) structure;
in particular, n A (dn)™ # 0, that is, 1 is a contact form on M. If

(Dxp)Y =g(X,Y)é —n(Y)X, (2.6)

where D is the Levi-Civita connection of g, then (p, £, 7, g) is called a Sasakian structure,
and the manifold M with such a structure is a Sasakian manifold. Sasakian manifolds
can also be characterized as normal contact metric manifolds and they are in some sense
odd-dimensional analogues of Kéhler manifolds (see Blair [3, 4]).

If (¢,€,7m,9) is an almost contact metric structure on M and (M = G/H,g) is a
homogeneous Riemannian manifold such that ¢ is invariant under the action of the con-
nected Lie group G (and hence so are ¢ and ) then (M, ¢, £, 7, g) is called a homogeneous
almost contact Riemannian manifold ([8, 14, 19]). Let R be the curvature tensor field of
the Levi-Civita connection D of g. Let S be a homogeneous Riemannian structure on
M, that is Dg =0, DR =0 and DS =0, where D = D —S. If S satisfies the additional
cond1t10n Dy = 0 (and hence DE = 0 and Dn = 0), then S is called a homogeneous
almost contact metric structure on (M, ¢, &, n,g). From the results of Kiri¢enko in [17]
on homogeneous Riemannian spaces with invariant tensor structure, it follows

Theorem 2.4. A connected, simply connected and complete almost contact metric man-
ifold (M, v, &,1m,g) is a homogeneous almost contact Riemannian manifold if and only if
there exists a homogeneous almost contact metric structure on M.

A homogeneous almost contact metric structure on a Sasakian manifold will be also
called a homogeneous Sasakian structure.

2.4 Principal 1-bundles over almost Hermitian manifolds

Let (M, g, J) be an almost Hermitian manifold and let M be the bundle space of a princi-
pal 1-bundle over M. Let 1 be a connection (form) on the principal bundle 7: M — M,
and let & be the fundamental vector field on M defined by the element 1 of the Lie algebra

R of the structure group of the bundle. Then n(£) = 1. For each vector field X on M,
we denote by X# the - horizontal lift of X with respect to 7. If X is a vector field on M,
its vertical part is 7(X)&. Then, for any vector fields X and Y on M, we have

(XY = [X, Y] + (X7, Y H))e



Moreover, [X#,¢] = 0, because X is invariant under the action of the structural group.
We define a tensor field ¢ of type (1,1) and a Riemannian metric § on M by

X = (JX)", p¢=0, g=ng+nen, (2.7)

where X and Y are vector fields on M. Clearly, (¢,&,7,9) is an almost contact metric
structure on M, and we have g(X  YH) = g(X,Y)on, and g(XH,£) = 0. Let ® be its
2-fundamental form. If Q is the fundamental 2-form of the almost Hermitian manifold
(M, g,J), then 7*Q = ®.

If V and D are the the Levi-Civita connections of g and g, respectively, then (Ogiue
[22])

Dyn Y = (V) 4 Zn([X, Y )e = (V) - 2 dn(x", e,

and Dxn& = De X = —pXH. Now, if 2@ = dn, Eq. (2.6) is satisfied as one can easily
see by replacing (X,Y) by (XH,YH), (X" ¢), and (¢,YH), respectively. Then, if the
almost contact metric structure (p, &, 7, g) is a contact structure, it is also Sasakian.
Suppose now that the structural group of the principal 1-bundle 7: M — M is R and
that the base manifold is a 2n-dimensional connected Hermitian symmetric space of non-
compact type (M = G/K,g,J), so that M is isometric to the solvable Lie group AN as
in § 2.2. Then M is holomorphically diffeomorphic to a bounded symmetric domain, i.e.,
to a simply connected open subset of C™ such that each point is an isolated fixed point
of an involutive holomorphic diffeomorphism of itself ([15], Ch. VIII, Th. 7.1). Since
7: M — M is a principal line bundle over the paracompact manifold M, then it admits
a global section ([18], Ch. I, Th. 5.7), so there exists a diffeomorphism M — M x R,
and the bundle space M may be identified with AN x R, with 7 being the projection
on AN. On the other hand, since the fundamental 2-form 2 associated to the Kéhler
structure (g, J) is closed, 2 = d( for some real analytic 1-form ¢ on AN. We consider
the connection form n = 27*C 4 dt on M, where t is the coordinate of R. The vertical
vector field & with n(§) = 1 can be identified with %, and we consider ¢ and g given
by (2.7). Then 2® = 27*Q = 2x*d( = dn, and hence (¢, &, 7, g) is a Sasakian structure
on M. i
_If S is a homogeneous almost contact metric structure on M, and D = D — S, then
D¢ =0, and hence Sxné = Dyné = —pXH . We have

Proposition 2.5. Let (M = G/K,g,J) be a connected Hermitian symmetric space of

non-compact type. Letw: M — M be a principal line bundle with connection form n such

that the almost contact metric structure (©,&,n,9) on M defined by (2.7) is Sasakian.
(a) If S is a homogeneous Kdihler structure on M then the tensor field S on M defined

by
SxnYH = (SxY) —g(X",oY™)e, Sxué=—pX" =8 X" S=0,

for all vector fields X and Y on M, is a homogeneous Sasakian structure on M.

(b) {S* : t € R} defined by
Skn Y = —g(X", Y™, Siué=—pX", SXH = —tpx™,  Sie=0,

is a family of homogeneous Sasakian structures on M.



Proof. (a) If D = D — S then smce Sxmyngzn = g((SxY)H, z1") = g(S)_(Y, Z)om =
cond1t10n Dg =0is sat1sﬁed On the other hand, if V V — S we have

Dxn Y = (VxY)!, Dyuné=D:X" =0. (2.8)

We can identify M = G /K with the solvable Lie group AN in an Iwasawa decomposition
G = KAN and consider the Lie algebra a+n of AN. If U, V, X,Y, Z are horizontal lifts
of elements of a+n or some of them are the vertical vector ﬁeld &, then

(DoR)xyzv = ~Bxyzp,v + Rxvvp,z ~ Rzvxp,v + Rzvvp, < (2.9)

m |

since U( svzv) =0. Now, if X, Y, Z, V € a+n, then

Rynyuguyn = (Rxyzv —29(X, JY)g(Z, JV)
+9(X, IV)g(Y, I Z) = g(X, I Z)g(Y,IV)) o7
RXHYHZHg =—g([X, V1", oz") (2.10)
+9(Vx2)", oY) —g(Vy 2)H, X "),
Ryneznue = g(Dxn&, Dyu).

By using (2.8) and (2.10), the conditions VR = 0 and V.J = 0 for the homogeneous
Kahler structure S on M, and the formula Rge& = n(X)Y — n(Y)X for the Sasak-
ian manifold (M, p,&,7,9) ([4], Prop. 7.3), one obtains from (2.9) that DR = 0. Now,
(DyuS)xu Y™ = (VuS)xY)H, (DyuS)xun& = =((VuJ)X)", and DeS = 0, then
DS = 0. Moreover, (Dxnp)YH = ((%XJ_)Y)H and (Dxn )¢ =0, then Dy =0, and S
is a homogeneous Sasakian structure on M.

(b) If t = 1 the corresponding tensor S' coincides with S in (a) for S = 0. For
arbitrary ¢, if D' = D — S we have ZN)EXH = (t —1)(JX)H, and we get D'g = 0,
D'R=0, D!'St =0, D' = 0. O

3 The Complex Hyperbolic Space CH(n)

3.1 CH(n) as a solvable Lie group

The complex hyperbolic space CH(n), which may be identified with the unit ball in C™
endowed with the hyperbolic metric of constant holomorphic sectional curvature —4,
may also be viewed as the irreducible Hermitian symmetric space of non-compact type
SU(n,1)/S(U(n) x U(1)).

The Lie algebra su(n, 1) of SU(n, 1) can be described as the subalgebra of sl(n+ 1, C)

of all matrices of the form r
Z P
X = ( P oic ), (3.1)



where Z € u(n), ¢c € R, and P = (p1,...,pn) € C". The involution 7 of su(n, 1) given by
7(X) = —X7 defines the Cartan decomposition su(n, 1) = €+ p, where

{%:{(g z‘oc):trz+ic:0}g5(u(”)@”(1))’ p:{(g POT )}

The element Ag of p defined by P = (0,...,0,1) generates a maximal R-diagonalizable
subalgebra a of su(n,1). Let fo be the linear functional on a given by fo(4g) = 1. If
n > 1, the set of roots of (su(n,1),a)is ¥ = {xfo, £2fo }, the set IT = { fo } is a system
of simple roots, and the corresponding positive root system is X+ = { fo,2fo }. If n =1,
S ={+2f}, and I = £+ = { 2f, }.

Let E;; be the matrix in gl(n,C) such that the entry at the i-th row and the j-th
column is 1 and the other entries are all zero. The root vector spaces are

95 = (25, Z; n—1) (ifn>1), g =(

01 U>,
g = (W;,W;:1 n—1) (ifn>1), g o, =(V),

NN
NN

J
J
where
Zj=Ejn— Ejni1—Enj— Eni1j, Z) = i(Ejn — Ejns1 + Enj + Eny1),
Wj = Ejn+ Ejni1 — Enj+ Eng1j, W] =i(Ejn+ Ejns1+ Enj — Engj),
U=i(Enwm —Ennt1+ Entin— Entint1)s
V =4i(Enn+ Ennt1 — Entin— Ent1nt1)-

If n > 2, the centralizer of a in £ is Z¢(a) = (Cp, Fji, Hjx = 7,5,k = 1,...,n—1,
j<k)=uln-—1), where

C, =2iFE,, —iE,, — iEn+17n+1, ij = Ejk — Ekj, ij = i(Ejk + Ekj)

and su(n, 1) = (Ze(a) +a)+3 rcx 9y is the restricted-root space decomposition. We also
have the Iwasawa decomposition su(n, 1) = t+a+n, where n =g, + g5, = (U, Z;, Z;
1<j<n—1).

If n =2, we put C = C; = diag(2i, —i,—i), Z = Z1, Z' = Z}, and in this case C
generates Zg(a), and a+n= (Ao, U, Z,Z"). If n =1, Z¢(a) = 0, we have the restricted-
root space decomposition su(1,1) = a+ (ga5, +9_25,) = (Ao) + (U, V), and the solvable
part in the Iwasawa decomposition is a+n = (A, U).

By using the Cartan decomposition su(n,1) = €4 p, we express each element X €
su(n, 1) as the sum X = X¢ + X, (X¢ € &, X, € p). In particular, we have

Up = Z(Enn - n+1,n+1); Up = i(EnJrl,n - n,nJrl);
(Zj)e = Ejn — Enj, (Zj)p = —(Ent1,j + Ejnt1),
(Z))e = i(Ejn + Enj), (Z;)p = i(Eny1j — Ejny1)

From the basis { Ao, U, Z;,Z; : 1 < j < n—1} of a+n and the generators of Ze(a)
above, we get the basis { Cy, Fji, Hjx, U, (Zy)e, (Z])e i1, j,k=1,...,n—1,j <k} of &
and the basis { Ao, Uy, (Zj)p, (Z])p : 1 < j <n—1} of p. Notice that, if n =1, = (Us)
and p = (Ao, Uy), and if n = 2 we have t = (C,Us, Z¢, Zy), and p = (A, Uy, Zy, Z;). We



also decompose & = €' +¢, where ¢' = [&,¢] = (C, — Uy, Fji, Hjk, (Zr)e, (Z1)e : 7,5,k =
1,...,n—1,5 < k) Zsu(n), and c is the center of ¢, which is generated by the element
Ej = 525(Ci+ -4 Cno1 + (n + 1)Ue) such that adg,: p — p defines the complex
structure on CH(n). By the isomorphisms p = su(n, 1)/ €2 a4+ n, we obtain the complex
structure J acting on a+n as follows.

JAy=-U, JU=2Ay, JZ, =2, JZ =-2Z,. (3.2)

~

We consider the scalar product (,) on a+n defined by the isomorphism a+n 2 p

and mB“’XP' Then (a+mn,{ ,),J) is a Hermitian vector space, and the basis

{A0,U,Z,,Z : 1 <r < n-—1} of a+n is orthonormal. We consider the solvable

factor AN (with Lie algebra a+n) of the Iwasawa decomposition of SU(n,1) with the

invariant metric g and almost complex structure J defined by (,) and J, respectively.
The Lie brackets of the elements of the basis of a+n are given by

[A0, U =2U, [A0,Zj)=%;, |A0,Z)) =2}, 12,2l = —5;,2U,
The Levi-Civita connection V is given by 2¢(VxY,Z) = g([X,Y],Z) — ¢([Y, Z], X) +
9([Z2,X],Y) for all X,Y,Z € a+n. So, the covariant derivatives between generators of
a+n are given by

VayAo=Va,U=Va,Z =Va,Z =0,
Vudo = —2U, VyU =24y, VyZ.=2., VuZl =-Z,
Vg, Ao =—2Z;, Vz,U=2Z, Vg Z,=0dj;A, Vz,Z.=—0;U,
VziAo = -z Vo U=-Z;, VgZr=6;yU, VZ;Z; = 0, Ao.

27

(3.3)

The components of the curvature tensor field R are given by

Ra,uAo = —4U, Ra,uU =44y, RauvZr =27, RavZ, = —2Z,,
Rayz, Ao = —Z;, Ragz,U =12,  RayzZe =03 Ay,  Rayz, 2L = —65,0,
RaypAo= =2, RaypU=—Z;, RagzZe=03U,  RayzZh =554,
Ruz; Ao =25, Ruz;Ao=—Zj, Ruz,Z, =9;U, Ryz,Z). = d;r Ao,
RUZ;AO = Zj, RUZ;U = —ZJ/-, RUZ;Z = —5jrA0, RUZ§Z7/« = 5er,
Rziz,40 = Rzz,U =0, Rz Ao—=20,,U, Rz zU = —20; Ao,
Rz,2, 2y = 6jrZx — Orr Zj, Rz,2,Z,. = 0jr Z}, — 0xr Z}, Rz 72t = Rz,z;,
Rij;Z =-2(1+ 5er,£), RZ]‘Z; Zl =2(1+ 5jr)Zr
Rz.z1 2y = =bjr 2}, — 6k Zj,  Rz,z12r = 6jrZk — Okr Zj, (k #4).

In particular we see that the invariant metric on AN has constant holomorphic sectional
curvature —4.

3.2 Homogeneous Kihler structures on CH(n) = AN

We will determine the homogeneous Kéhler structures on CH(n) = AN in terms of the
basis of left-invariant forms a, 3,77,77, 1 < j < n — 1, dual to Ay, U, Z;, Z. If S is

10



a homogeneous Riemannian structure on AN and V=v-§ , the condition %g =0
in (2.1) is equivalent to Sxyz + Sxzy = 0 for all XY, Z € a+n. Moreover, VR =0 is
equivalent to the condition

(VxR)y.v,viy, = —Rsxvivavsvs — Byisxvavsys — Bvivasxvsvs — Byivavssxvas

for all Y1,Y1,Y3,Ys € a+n. Replacing (Y1, Y, Y3, Ys) by (Ao, U, Ao, Z;), (Ao, U, Ao, Z}),
(Ao, U, Zy, Z ) and (Ao, U, Zy, Z ) one gets that SXUZ —SXAOZ; SXUZ; :—SXAng,
SXZkz; = —SXZ/Z , and SXZkZ = SXZ,;Z; respectively. It is easy to see that the

condition VR = 0 holds if and only if the last four Eqgs. are satisfied for all X € a+n.
These Egs. also show (see (3.2)) that the condition S - J = 0 of homogeneous Kéhler
structure (see Proposition 2.2) is fulfilled. We put

w(X) = Sxa,u, 0/(X)=5Sxa,2, = —Sxuz;, (X) = Sxaoz; = Sxvz,, (3.4)
oM (X) = Sxz.z, = Sxz,2 V(X)) = Sxz,2, = Sxzy .z (3.5)

We have 6% = ¢7% and " = —¢7*¥. Now, we must determine the conditions for the
1-forms w, o7, 79, %7 and o*J under which the condition V.S = 0 in (2.1) is satisfied.
By (3.3), (3.4) and (3.5), the connection V =V — S is given by
VAo =—(28+w)(X)U = 5,(+ +07)(X)Z; = 3;(7 +77)(X)Z;,
VU = (28 +w)(X) Ao = ;007 + ) (X) 2 + 2,07 + )0 25,
VxZ; = (v +0")(X) Ao+ (V7 +7)(X)U + (8- 67)(X) Z;
Dy (WM (X) 21 — 08 (X) Z,),
VixZj = (7 +7)(X) Ao - (7 +0 ) (XU + (07 = B)(X)Z;
2 (077(X) Z1 — M (X) Z).
Now, replacing (Vi, V3) in the Eq. (%Xs) (W, V1, Vo) = 0 by (A0, U), (Ao, Z;), (Ao, Z)),

(Zy, Zj) and (Zy, Z;), respectively, we obtain that the condition VS =0is equivalent to
the followmg condltlons

Vo=2%((7¥ +o) @1 - (7 +7) @),
Vol = —(B+w+0)or + (7 + )@ (w+6)
+ 3, (WM @ — 0 @+ (v 4+ F) @ 08 — (vF + %) @ ),
Vil =(B+w+6¢)®0’ = (v +0)) @ (w+6)
+ 350 (09 @0+ @1t — (2 +oM) @0 — (YE+ ) e y),  (3.6)
Vo =y +o)ert + () e — (v r ) @t — (v + ) @)
+ 3, VA0 43T, 0% Ay
Vo = (F +ot)ed - (Y + )@t - (P r e - (7 + ) et
IRV SILPNE
where 67 = 077, Thus, from (3.4) and (3.5), we have
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Theorem 3.1. All the homogeneous Kdihler structures on CH(n) = AN are given by

n—1
S=w(@AB)+ > (T @(any —BAY)+7 @ (e Ay +BAY)+607 @ (47 Ay7))
j=1
+ Z (Y @ (FF Ay + 4% Ay + 605 @ (vF AyT 4+ 97 AyF)),
1<k<j<n—1
where w, a’, 77, 0%, p* (1 < k,j < n—1), are 1-forms on AN satisfying 67% = 67,
Wk = ki and the Egs. (3.6).

If n =2, we put v = 7', ¥ = o/}, so that {a, 3,7,7'} is the basis of left-invariant
forms on AN = CH(2) dual to {A0,U, Z, Z'}, and we have

Corollary 3.2. All the homogeneous Kdihler structures on the complex hyperbolic plane
CH(2) = AN are given by

S=w@@AB)+0@(aAy=BAY)+7@ (@AY +BAY)+0® (YAY),
where w, o, T and 0 are 1-forms on AN satisfying

Vw=2(v+0)®@71—2(y +7)®@0c =V,
Vo=-B+w+0) @7+ (' +71)® (w+0),
%T:(ﬁ+w+9)®a—(7+0)®(w+9)-

If n = 1, {«, B} is the basis of l-invariant forms on the 2-dimensional solvable Lie
group AN = CH(1) dual to the basis {Ag, U} of a+n, and we have

Corollary 3.3. All the homogeneous Kdhler structures on the complex hyperbolic line
(or real hyperbolic plane) CH(1) = AN are given by S = w® (a A ), where w is a 1-form
on AN satisfying Vw = 0.

Remark 3.4. If S = w ® (o A ) is a homogeneous Kéhler structure on CH(1), and
w = Aa + pf, where X and p are functions on CH(1), the condition Vw = 0 together
with the structure Eq. [Ag, U] = 2U gives A = u = 0 or A\ + p? = 4, and we have
that there are infinite homogeneous Kéahler structures on CH(1). However (see [26],
Th. 4.4), up to isomorphism, there are only two homogeneous structures on the real
hyperbolic plane: one of them is S = 0 (A = g = 0), and the other, which is given by
SxY = g(X,Y)& — g(&,Y)X, with § = 24, (for X,Y € a+n = (A4y,U)), corresponds
to S=w® (aApf), withw=-28(A=0, up=-2).

Remark 3.5. For each n > 0, S = 0 is a homogeneous Kéhler structure on CH(n)

1l

AN, the corresponding canonical connection is V = V, its holonomy algebra is ¢ =
s(u(n) ® u(l)), the associated reductive decomposition is the Cartan decomposition
su(n,1) = ¢+p, and it gives the description of CH(n) as symmetric space CH(n) =
SU(n,1)/S(U(n) x U(1)).

12



Now, our purpose is to obtain nontrivial homogeneous Kéhler structures on CH(n),
n > 2, their associated reductive decompositions, and the corresponding descriptions as
homogeneous Kéhler spaces.

We will seek for solutions for which 0/ = —49, 77 = —4/J. In this case, we have

VAl = (B-07) @97 + 3, (0% @4 — 08 @),
%,Y/j — (9;’ - p) 9 + Zk#(gkj ® v + PRI @ 4'F).

(Obviously, the last summands on the right hand-side in each one of the two Eqs. above
do not appear if n = 2.) By the second and third Egs. in (3.6), we must have w = —2,
which also satisfies the first Eqs. in (3.6), because V3 = (284 w) ® a — >0+
¥+ Zj (77 +07)®~7 = 0. If n = 2, by Corollary 3.2, we only have to determine ¢
such that VO = 0. If we put § = acv + b3 + ¢y + ¢+, by using also the structure Egs.
of a+n={(Ay,U, Z, Z"), we obtain that ¢ = ¢ = 0 and a and b are constant. For n > 2
we put 6/ = 099 = aja + b8, 0% = cja, Y = pria, (k # j), with aj, by, cxj, prj € R.
Then, if 07 = -9, 77 = —"7 and w = -2, Eqs. (3.6) are satisfied if and only if one has

Prj(br = bj) = cij(bk — bj) = 0.
Consequently, we get

Proposition 3.6. For n > 2, the space CH(n) admits the multi-parametric family of
homogeneous Kdihler structures S = S§%-0i-¢i:Pkigiven in terms of the generators of a+n
by the following table.

Table I Ay U Z; Z;

Sao 0 0 aiZi+3,,,waZi+cuZ) —a;Zi+30,,(paZl — ciZ)
Su —2U 2Ag ij]/» —b; Z;

Sz,c —Zy, Z;; 5ij0 —5ij

SZ’/c —Z]/C — 7 5k]U 5ij0

The complex hyperbolic plane CH(2) admits the two-parametric family of homogeneous
Kdhler structures S = S%° given in terms of the generators of a +n by the following table.

Table II  Ap U Z A

Sa, 0 0 a2 —aZ
Su —2U 240 bZ' —bZ
Sz -7 A Ao -U
Sy 7 —Z U A

If S = S@bickiPri | with respect to the basis { Ao, U, Z;, Z} } of a+n, the connection
%zV—Sisgivenby
%A()Zj = _a’JZJ/ - Zl;ﬁ](pjlzl + leZl/)a %UZJ = (1 - bJ)ZJ/a
VaZ, =a;Z; — Z(pjzzf —caZy), VuZi=(b;—1)Z;,
1]
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with the rest vanishing. Hence, the components of the curvature tensor field are R AU =
—Rz,z; =23 ,(1-b))(Z; ® v — Z; ®~7), and the rest zeto.

Ifo; =1forallj =1,...,n—1, the holonomy algebra of V is trivial and the reductive
decompositions associated to the homogeneous Kahler structures given in Proposition 3.6
are given by g“"“""* = {0} + (a+n) with nonvanishing brackets, by (2.3), given by

[Ao, U] =2U, [Ao,Zj]=7Z;+ CLjZJ/- + Zl#(plel +cjuZ)), (3.7)
(Ao, Z}] = —a; Z; + Z; + 32,0 2] + cpZh), |25, 2;) = —2U. '
On the other hand, the element Ao =MC1+-- '+)‘nflcnfl+2j<l(clejl_plejl>+A0
of su(n, 1) generates a subspace ¢*i*ki-Pki of Zy(a)+a, and the structure Egs. of the Lie
subalgebra e*i:¢::Pki +n of su(n, 1) are

[Ao, U] = 2U, [1210, Zj] =2Z; + (3)\J + Zl;ﬁj )\Z)ZJ/ + Zl;ﬁj (plel + leZl/),

i (3.8)
[Ao, Zj) = =(BNj + 2012, M)VZj + Z5 + 301402y + cpZy), |2, Zj) = —2U,

with the rest vanishing. From (3.7) and (3.8), it follows that g“*“**""* is isomorphic to
¢ NisChiPli 4.

Now, for the structure S = §%-03:¢ki-Pri in Table I, suppose that bj # 1 for some j =
1,...,n—1. Then, p= Ra,u = —Rgz,z; = 2Zj(1—bj)(ZJ’-®”yj —Z; ®~'7) generates the

a;j,bj,ChjsPrj S . i .
of V.=V -5, and the reductive decomposition associated

i becrs s ~53bChi PR .
aj:bj:ChiPRi [)a] PERIPRS (a+n) = (p, Ao, U, Z;, Z) with structure Egs.,

holonomy algebraijv
to Sis g
by (2.3), given by

p, Aol = [p, U] =0, [p,Z;] =201 -b5)Z;, [p,Zj] =2(b; — 1)Z;,
Ao, Ul=p+2U, [Ao,Zj]=Z; +a; Z; + 3,021 + ciZ)),

Ao, Zj) = —a; Z; + Z; + 30 (ppnZ) + cuZa),

U Zj| = (b; = 1)Z;, (U, Z}] = (1-0))Z;, [Zx,Z}] = —0k;(p+2U).

(3.9)

If u 22 u(1) is the subspace of Zg(a) generated by C = Cy + --- + Cj,_1, it is easy to see
that the Lie algebra § %P7 Pk ig isomorphic to the Lie subalgebra u + e 2Pk 41 =
(C,A0,U, Zj, Z}) of su(n,1). We deduce

Theorem 3.7. Let S = S%:bi:¢kiPri be the homogeneous Kdhler structure on CH(n),
n > 2, given by Table I, and let ¢ *i-°ki-Pki be the subspace of Zy(a) + a generated by

~ na;—3 ;4
Ay =3 N0+ Y g arana(CiHy — puFy) + Ao, (N = =555,

and u = (C1 + -+ Cho1). Ifbj =1 forall j = 1,...,n — 1, the corresponding
group of isometries is the connected subgroup Ei¢%iPki N of SU(n,1) whose lie alge-
bra is e kiPki 4. If bj # 1 for some j = 1,...,n — 1, the corresponding group of
isometries is the connected subgroup U(1)E*i¢x:Pki N of SU(n, 1) whose Lie algebra is
U eNiiChiPR fq.
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If 8% is the homogeneous Kdihler structure on the complex hyperbolic plane CH(2)
given by Table II, ¢* = (Ag), where Ay = AC + Ao, (A = a/3), and u = (C), then
the corresponding group of isometries is (i) the subgroup EAN of SU(2,1) generated by
the Lie subalgebra ¢* +n of su(2,1), if b = 1; (ii) the subgroup U(1)E*N of SU(2,1)
generated by u-+e* +n, if b # 1.

Remark 3.8. Each structure S%-0i:¢kiPri  with b; = 1 for all j, is also character-
ized by the fact that V = V — §%b5:¢:Pki is the canonical connection for the Lie
group Ei:¢kiPki N which is the connection for which every left-invariant vector field
on E*i:¢kiPki N is parallel. Each one of these groups acts simply transitively on CH(n)
and it provides a description of CH(n) as a homogeneous space. If all the parameters
aj, Ckj, Pkj are zero, then ¢ Mok Pki = g, and we get the usual description as a solvable
Lie group CH(n) = AN. In this case, the corresponding homogeneous structure is given
by SxY = VxY for all X,Y € a+n. If b; # 1 for some j =1,...,n— 1, we get the
descriptions as homogeneous space CH(n) = U(1)E*i-¢x:Pri N/U(1).

3.3 Principal line bundle over CH(n)

By (3.2), the fundamental 2-form of the Kéhler structure (J, g) of CH(n) = AN is given
by Q = a/\ﬂ—zy;llﬂyj A7 = —1dp, where { o, 3,747,747 : 1 < j <n—1} is the basis
of left-invariant 1-forms on AN dual to the basis { Ao, U, Z;, Z} } of a+n. We consider
the principal line bundle 7: M — CH(n), and identify the bundle space M with AN x R
and 7 with the projection on AN. The fundamental vector field ¢ is identified with %,
and the 1-form n = dt — 7% is also regarded as a connection form on the bundle. If ¢
and g are given by (2.7), then (g, &,7,g) is a Sasakian structure on M.

By (a) of Proposition 2.5, each homogeneous Kéhler structure $% i:¢ki-Pki on CH(n)
given in Theorem 3.7 defines a homogeneous Sasakian structure §%:b:¢ki-Pki on M which
gives a description of M as either the connected subgroup E*i:%%3:Pki N xR of SU(n, 1) x
R (ifb; =1 for all j = 1,...,n — 1), or as the homogeneous space (U(1)E*i:¢ki-Pei N x
R)/U(1).

On the other hand, from (b) of Proposition 2.5, it follows

Proposition 3.9. The bundle space M of the line bundle m: M — CH(n) admits the
family of homogeneous Sasakian structures {S* : t € R} given, in terms of the horizontal
lifts of the generators of a+n and the fundamental vector field £, by the following table.

Table I AY U zit "«

fqé, 0 —£ 0 0 UH
i i3 0 0 0 A"
;5 0 0 0 oni€ —ZiF
fZ;H 0 0 —dki& 0 zZH
St tu" —tA" " ez 0

Remark 3.10. For each p € M, if ¢12(S?), is the map from the tangent space T, (M)
to its dual given by c12(S%),(X) = ngrl S,.e.x» where {e;} is an orthonormal basis
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of Tp(M), then c12(S"), vanishes for every ¢t € R. According to Tricerri-Vanhecke’s
cla551ﬁcat10n of homogeneous Riemannian structures in [26], each S* is of type T3 & 7.
Moreover, if t = —1, we have S¢ Y + Sy X =0, then S~! is of type 73, which means that
M is a naturally reductlve Rlemanman space. If ¢ = 2, then each cyclic sum & v 7 Sxy 5
vanishes, and hence M is of type T3, which may be also expressed by saying that M is
a cotorsionless manifold (see [13]).

We will construct the reductive decomposition g, = Bt +m associated to each homoge-
neous Sasakian structure S*, where m = T, (M), with o € M, is generated by A= (Af,,
U= U, 2; = (z1),, Z’ =(Z)H,€=¢, (1<j<n-1),and b, is the holonomy

algebra of the connect1on Dt D — S'. Each connection D! is given by

Table IV AY Ut Vi zH 3
D!\n 0 0 0 0 0
Dty —2Uu* 2AY zH -zF 0
szf, -z zH 81y Al —6,; U0
DYu —zH —zH Sk UM Sk Ay 0
Dt 1-tut @-1A" t-1zH" -0zl o

Let R' be the curvature of Df, and let { &, j, ”yJ 59, .7} be the basis dual to the basis
{A,U,Z; Z’ €} of @m. The holonomy algebra b, of D' is generated by the curvature
operators pg, Pry Pr, Ur, Ojk, Tik (15, k=1,...,n—1,j < k), given by

=Ry, =20t-3)aeU-Fed)+22-t)Y /(¥ ® Z, - 77 © Z)),
=Rl z _2(2—t)(a®0—5®21)+2(t—3)(~y ®Z -7"® Z,)

P
or=Rhy =Rz =-00Z,+B0Z+7 0A-7" 0T,
. -

Ur=RL, =R, =-a®Z -0Z:+7 U +7"® 4,

Dt _ pt _ ~/ / 1k 1
Ujk—RZjZk—RZ;Z;——”YJ@Zk_ YieZ,+7 e Z; +7* ® Z,
- - e -
Tjk:R%jZ,;:RtZkZ;:—”)/J®Zk+”Y/J®Zk—”y ®Z,+7"%® Z;.

(If n = 2, the operators ¢;, and 7;; do not appear, that is Gt = (po, p1,P1,¥1), and if
n =1, b, is generated by py = Ei‘xf} =2(t-3)(a®U - 3® A).) The Lie structure
of g, = b, + m is defined by the Egs. (2.3). If t # (2n + 1)/n, the subalgebra b, is
isomorphic to the Lie algebra ¢ = s(u(n) + u(1)) = u(n) in § 3.1, via the map h: h, — ¢
given by h(po) = 2U, h(p,) = (C + Ue), h(e ) (¥ ) h(3 ) = (Z.)e, Wojk) = Fji,
hMrjk) = —Hji. If we put po = %( po — 2{) = —§p0 — pr — &, then su(n,1) =
<p0,pr,<pr,1/)r,ajk,7'Jk,A U, ZT,Z g k=1,. 1,7 < k) is an ideal of g,, and

the map h extends to a Lie algebra isomorphism h ( 1) — su(n, 1) = €+p, given by
h(po) = Ue, h(pr) = Cr, hlor) = (Zo)es h(¥r) = (Z])e, hloje) = Fji, h(rje) = —Ha,
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h(A) = Ag, h(U) = Uy, W(Z,) = (Z)p, MZL) = (Z),. Moreover, §, is the semidirect
product of su(n,1) and the line generated by € under the homomorphlsm 52 (€) —
Der_(fu(n 1)), given by 8,(€)(A) = (t = 1)U, 6(E)(U) = (1 = )A, 6,()(Z:) = (1 - 1)Z],
6:(6)(Z) = (t = 1)Z,, and 6,()({ po, pr Prs U, ok, Tjk)) = 0. So, we have

Proposition 3.11. The reductive decomposition associated to the homogeneous Sasak-
ian structure S*, t # (2n + 1)/n, on the total space of the line bundle M — CH(n)
is §, = b, +m, where b, = s(u(n) + u(1)) = u(n) C su(n,1), and m = p+(§) =
(A0, Uy, (Zy)p, (Z])p, € + 1 < r < n—1). Moreover, g, is the semidirect product
g, = (€) x5, su(n, 1), where 6,(§)(Ao) = (¢t = 1)Uy, 6(€)(Up) = (1 — 1) Ao, 8:()((Zr)p) =
(1= (Z0)p. 8(E)(Z})p) = (t = 1)(Z)p, and 6,(€)(h,) = 0.

Ifn>2 and t = (2n 4+ 1)/n, then it is easy to see that po = p; + -+ + p,_1, and
we put pr = (pg +pr), 1 <r <n—1 In this case, gznt1 = hann —|—1‘T1 coincides

~

with the reductive decomposition su(n,1) = & +m’, WhereL v = [{%,n t] = su(n), and
m’ = p+(c), being ¢ the center of ¢, which is generated by the element E; such that
adg,: p — p defines the complex structure of CH(n). In fact, we have the isomorphism

f: Gz — su(n,1) given by f(7r) = 3(Ue = Cp), f(on) = (Zo)e f(r) = (Z])e,
flojr) = Fk, f(mjn) = —Hjx, f(A) = Ao, f(U) = Uy, f(Zr) = (Z0)p, F(Z]) = (Z})s,
and f(§) = -2 E; = — L (C1 4 - -+ Ch_1+(n+1)Us), and, in particular, f(hzusr) = ¥
and f(m) = m’. If n =1and t = 3, then py = 0. In this case, h; = 0, ¢ = [¢,¢] = 0,
¢ = (E;), E; = 31U, g5 = {0} + m is the reductive decomposition su(1,1) = {0} + m’,
where @ = (A,U,&), m' = (A, Uy, Up), and f: g5 — su(1,1) such that f(A) = Ao,
f(U) =U,, f(€) = —Uy. Hence, we have obtained

Proposition 3.12. The reductive decomposition associated to the homogeneous Sasakian
structure S, with t = (2n + 1)/n, on the total space of the line bundle M — CH(n) is
su(n,1) = € +m’, where ¥ = [£,§ = su(n), and m’ = p+c, ¢ = (E;) being the center
of L.

Remark 3.13. The reductive decomposition su(n,1) = & +m’ associated to the ho-
mogeneous Sasakian structure S?, with ¢ = 2"“, provides the description of M as the
homogeneous space SU (n,1)/K’, where SU(n, 1) is the universal covering of SU(n, 1),
and K’ 2 SU(n) is the connected subgroup of SU(n, 1) whose Lie algebra is € 2 su(n).
(In particular, if n = 1, M is the universal covering space of SI(2,R).) These spaces
appear in the classification by Jiménez and Kowalski [16] of complete simply connected
p-symmetric Sasakian manifolds, and they are also Sasakian space forms (they have con-
stant -sectional curvature —7). Notice that for a Sasakian manifold, the condition of
being a locally symmetric space is too strong, because in this case it is a space of con-
stant curvature (Okumura [23]). For this reason, Takahashi [25] introduced ¢-symmetric
spaces in Sasakian geometry as generalizations of Sasakian space forms. They are also
analogues of Hermitian symmetric spaces. A @-symmetric space is a complete connected
regular Sasakian manifold M that fibers over a Hermitian symmetric space M so that
the geodesic involutions of M lift to involutive automorphisms of the Sasakian struc-
ture on M. Moreover, each complete simply connected @-symmetric space is a naturally
reductive homogeneous space (Blair and Vanhecke [5]).
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