Tôhoku Math. Journ. 34 (1982), 53-63.

HOMOGENEOUS KÄHLER MANIFOLDS OF COMPLEX DIMENSION TWO

SATORU SHIMIZU

(Received March 26, 1981, revised July 7, 1981)

Introduction. Let M be a connected and simply connected homogeneous Kähler manifold. In this note, by a homogeneous Kähler manifold we mean a Kähler manifold on which the group of all holomorphic isometries acts transitively. The purpose of this note is to prove the following theorem.

THEOREM 1. If dim_c M = 2 and if the canonical hermitian form of M is degenerate and non-zero, then the fibering of M due to Hano and Kobayashi [3] is holomorphic and the fiber with the induced Kähler structure is a homogeneous Kähler manifold with zero Ricci curvature.

Our proof of Theorem 1 is based on the theory of Kähler algebras developed by Gindikin, Pjateckii-Sapiro and Vinberg [2]. They studied the structure of homogeneous Kähler manifolds and stated the following *Fundamental conjecture*:

Every homogeneous Kähler manifold admits a holomorphic fibering, whose base is analytically isomorphic to a homogeneous bounded domain and whose fiber with the induced Kähler structure is isomorphic to the direct product of a locally flat homogeneous Kähler manifold and a simply connected compact homogeneous Kähler manifold.

Combining Theorem 1 with the results of Alekseevskii and Kimel'fel'd [1] and Shima [7], [8], we see that the above conjecture is true for a complex two dimensional connected and simply connected homogeneous Kähler manifold. As an immediate consequence of this fact, we obtain the following.

THEOREM 2. Let M be a connected homogeneous Kähler manifold of complex dimension two. If M contains no complex line, that is, if there are no non-constant holomorphic maps of C into M, then M is homogeneous bounded domain in C^2 .

In the theory of hyperbolic complex manifolds in the sense of Kobayashi [4], we have the following basic problem (see [4, Problem 12, p. 133]):

Let M be a homogeneous complex manifold of complex dimension n which is hyperbolic in the sense of Kobayashi. Then is M a homogeneous bounded domain in \mathbb{C}^n ?

Noting that hyperbolic complex manifolds contain no complex line, we see that Theorem 2 provides an affirmative answer to the above problem when M is a homogeneous Kähler manifold of complex dimension two.

The author wishes to express his hearty thanks to Professor Kodama who suggested to me the use of a result of Hano and Kobayashi [3] and introduced me to the works of Alekseevskii and Kimel'fel'd [1] and Shima [8], [9].

1. Preliminaries. In this section we recall the definition of Kähler algebras and state several lemmas for later use.

We denote by M a connected homogeneous Kähler manifold on which a connected Lie group G acts transitively as a group of holomorphic isometries, and by K an isotropy subgroup of G at a point o of M. Let I be the G-invariant complex structure tensor on M, let g be the Ginvariant Kähler metric on M and let v be the G-invariant volume element corresponding to the Kähler metric g. In terms of a local coordinate system $\{z_1, \dots, z_n\}$ on M, the form v is expressed by v = $(\sqrt{-1})^n F dz_1 \wedge \dots \wedge dz_n \wedge d\overline{z}_1 \wedge \dots \wedge d\overline{z}_n$, where F is a positive function. The G-invariant hermitian form

$$h = \sum rac{\partial^2 \log F}{\partial z_i \partial \overline{z}_i} dz_i d\overline{z}_j$$

is called the canonical hermitian form of M. It is easy to see that the Ricci tensor of the Kähler manifold M is equal to -h.

Let g be the Lie algebra of all left invariant vector fields on G and let t be the subalgebra of g corresponding to K. Let π be the canonical projection of G onto M = G/K and let $T_o(M)$ be the tangent space of M at the point $o = \pi(e)$, where e is the identity element of G. We define a linear mapping π_* of g onto $T_o(M)$ as follows:

$$\pi_*(X) = (d\pi)_{\scriptscriptstyle e}(X_{\scriptscriptstyle e}) \quad {
m for} \quad X \in {\mathfrak g}$$
 ,

where $(d\pi)_e$ is the differential of π at e and X_e is the value of X at e. There exist a linear endomorphism J of g and a skew symmetric bilinear form ρ on g such that

$$\pi_*JX = I_o(\pi_*X)$$
, $\rho(X, Y) = g_o(\pi_*X, I_o(\pi_*Y))$ for $X, Y \in \mathfrak{g}$,

where I_o and g_o are the values of I and g at o, respectively. Then the

quadruple (g, f, J, ρ) satisfies the following properties and is called the Kähler algebra of M (see Gindikin, Pjateckii-Sapiro and Vinberg [2]):

(K.1) $J\mathfrak{k} \subset \mathfrak{k}, J^2 \equiv -\mathrm{id} \pmod{\mathfrak{k}},$

 $(K.2) [W, JX] \equiv J[W, X] \pmod{\mathfrak{k}},$

- $(K.3) [JX, JY] \equiv J[JX, Y] + J[X, JY] + [X, Y] \pmod{\mathfrak{k}},$
- (K.4) $\rho(W, X) = 0$,
- (K.5) $\rho(JX, JY) = \rho(X, Y),$
- (K.6) $\rho(JX, X) > 0, X \notin \mathfrak{k},$

(K.7) $\rho([X, Y], Z) + \rho([Y, Z], X) + \rho([Z, X], Y) = 0$, where X, Y, Z e g, W e f.

Putting $\eta(X, Y) = h_o(\pi_*X, \pi_*Y)$ and

(1.1)
$$\psi(X) = \operatorname{Tr}_{\mathfrak{g}/\mathfrak{k}}(\operatorname{ad}(JX) - J\operatorname{ad}(X)) \,,$$

we have

(1.2)
$$2\eta(X, Y) = \psi([JX, Y])$$
 for $X, Y \in \mathfrak{g}$ (see [6]).

The forms η and ψ satisfy the following properties:

(1.3)
$$\eta(JX, JY) = \eta(X, Y),$$

(1.4)
$$\psi([W, X]) = 0$$
,

(1.5) $\psi([JX, JY]) = \psi([X, Y]) \quad \text{for} \quad X, Y \in \mathfrak{g}, W \in \mathfrak{k}.$

We note that if G acts effectively on M, then t contains no non-zero ideal of g.

Now we have the following lemmas which are due to Shima [8].

LEMMA 1 (cf. [8, Lemma 2.4]). Let x be an ideal of g. Suppose $\psi = 0$ on x. Then $x \subset \{X \in g; \eta(X, Y) = 0 \text{ for all } Y \in g\}$.

LEMMA 2 (cf. [8, Lemma 2.3]). Let r be a commutative ideal of g. If G acts effectively on M and if the center of g is zero, then $\mathfrak{t} \cap \mathfrak{r} = \mathfrak{t} \cap J\mathfrak{r} = \{0\}$.

LEMMA 3 (cf. [8, Lemma 2.6]). Let $\{E\}$ be a one dimensional ideal of g. Then we have:

(a) If $\psi(E) \neq 0$, then $[E, \mathfrak{k}] = \{0\}$.

(b) If $[E, \mathfrak{k}] = \{0\}$ and if G acts effectively on M, then there exists an endomorphism \tilde{J} of g such that $\tilde{J} \equiv J \pmod{\mathfrak{k}}$ and $[\tilde{J}E, \mathfrak{k}] = \{0\}$.

LEMMA 4 (cf. [8, Lemma 3.2]). Let $\{E\}$ be a one dimensional ideal of g. If $\psi(E) \neq 0$ and $[JE, \mathfrak{k}] = \{0\}$, then $[JE, E] \neq 0$.

LEMMA 5 (cf. [8, Lemma 3.3]). Let $\{E\}$ be a one dimensional ideal of g. Suppose $[E, \mathfrak{k}] = [JE, \mathfrak{k}] = \{0\}$ and [JE, E] = E, and put $\mathfrak{p} = \{P \in \mathfrak{g};$

[P, E] = [JP, E] = 0. Then ad $(JE)\mathfrak{p} \subset \mathfrak{p}$ and $\mathfrak{g} = \{JE\} + \{E\} + \mathfrak{p}$ (direct sum), where $\{JE\}$, $\{E\}$, \mathfrak{p} are mutually orthogonal with respect to the form η , and η is positive definite on $\{JE\} + \{E\}$.

2. Existence of certain ideals. Throughout this section we use the same notations as in the previous section and assume the following:

$$\dim_c M = 2.$$

(2.2) The canonical hermitian form h is degenerate and non-zero.

(2.3) G acts effectively on M.

Then, by a result of Hano and Kobayashi [3] there exists a closed subgroup L of G satisfying the following properties:

$$(2.4) L \supset K .$$

(2.5) The coset space L/K is a one dimensional connected complex submanifold of M = G/K.

(2.6) $T_o(L/K) = \{v \in T_o(M); h_o(v, v') = 0 \text{ for all } v' \in T_o(M)\}, \text{ where } T_o(L/K) \text{ is the tangent space of } L/K \text{ at the point } o = \pi(e).$

It is easy to see that the submanifold L/K of M is a homogeneous Kähler manifold with the Kähler metric induced from M.

Let I be the subalgebra of g corresponding to L. Then $I \supset \mathfrak{k}$ and I is J-invariant. From (2.6), we have

(2.7)
$$l = \pi_*^{-1}(T_o(L/K)) = \{X \in \mathfrak{g}; \eta(X, Y) = 0 \text{ for all } Y \in \mathfrak{g}\}.$$

We see dim g/t = 4 by (2.1) and, furthermore, dim $g/l = \dim l/t = 2$ by (2.5).

The purpose of this section is to prove the following.

PROPOSITION. The Lie algebra g contains a one dimensional ideal or a two dimensional commutative ideal r such that l = l + r.

If the center of g is not zero, then it is clear that there exists a one dimensional ideal of g. Therefore it is sufficient to prove the above proposition when the center of g is zero. For the purpose, we need the following lemma.

LEMMA 6. Let r be a commutative ideal of g. Then $l + r \neq g$.

PROOF. First, we note that $\psi([A, X]) = 0$ for all $A \in I$ and $X \in g$. In fact, by (1.2), (1.5) and (2.7) we see $\psi([A, X]) = \psi([JA, JX]) = 2\eta(A, JX) = 0$. Assume g = I + r. Then, we have JX = A + B and X' = A' + B' for $X, X' \in g$, where $A, A' \in I$ and $B, B' \in r$. Since $\psi([A, Y]) = 0$ $\psi([A', Y']) = 0$ for all $Y, Y' \in \mathfrak{g}$ and since \mathfrak{r} is commutative, it follows that $2\eta(X, X') = \psi([JX, X']) = \psi([A + B, A' + B']) = \psi([B, B']) = 0$. This contradicts the assumption (2.2), and hence the lemma is proved.

We now prove Proposition under the assumption that the center of Suppose that g is semi-simple. Then, by a result of Koszul g is zero. [6]. h is non-degenerate, which contradicts the assumption (2.2). Therefore g is not semi-simple, i.e., there exists a non-zero commutative ideal Since dim g/t = 4, we have dim r = 1, 2, 3, 4 by Lemma 2. r. In the case dim r = 1, there is nothing to prove. We consider the cases dim r =2, 3, 4. Using Lemma 6, we see dim $r \neq 4$. For, if dim r = 4, then $\mathfrak{q} = \mathfrak{k} + \mathfrak{r} = \mathfrak{l} + \mathfrak{r}$ by Lemma 2. This contradicts Lemma 6. We show that r contains an ideal satisfying the assertions of Proposition in the cases dim r = 2, 3.

First, suppose dim r = 3. Since dim g/l = 2, we see dim $l \cap r \neq 0$. Lemma 6 and the fact dim g/l = 2 yield dim $l \cap r \neq 1$. Furthermore, since dim l/t = 2, we see dim $l \cap r \neq 3$ by Lemma 2. Hence dim $l \cap r = 2$. We have $J(l \cap r) \subset l = t + l \cap r$, because l is J-invariant and $t \cap (l \cap r) =$ $t \cap r = \{0\}$ by Lemma 2. This implies that there exists an endomorphism \tilde{J} of g such that $\tilde{J} \equiv J \pmod{t}$ and $\tilde{J}(l \cap r) \subset l \cap r$. Therefore we may suppose $J(l \cap r) \subset l \cap r$. Then $J^2 = -id$ on $l \cap r$ by (K.1). Moreover, we have $\psi \neq 0$ on r. In fact, suppose $\psi = 0$ on r. Then $r \subset l$ by Lemma 1, which contradicts dim $l \cap r = 2$. Using these facts, we can select a basis of r as follows:

$$\mathfrak{r} = \{JE, \, E, \, F\} \;, \qquad \mathfrak{l} \cap \mathfrak{r} = \{JE, \, E\}$$

and

(

$${
m i}$$
) $\psi(JE)=0$, $\psi(E)=0$, $\psi(F)
eq 0$

or

(ii) $\psi(JE) \neq 0$, $\psi(E) = 0$, $\psi(F) = 0$.

Put g' = t + Jr + r. Then $\dim_c g'/t = 1$ or 2, since g' is J-invariant, $t \cap r = \{0\}$ and $\dim_c g/t = 2$. From $\dim r = 3$, we have $\dim_c g'/t = 2$, which implies g = g' = t + Jr + r. Hence $g = t + \{JF\} + \{JE, E, F\}$ (direct sum). Further $l = t + \{JE, E\}$.

Case (i). It suffices to show that $\{JE, E\}$ is an ideal of g. Since $\{JE, E\} = I \cap r$ is an ideal of I, we see $[I, \{JE, E\}] \subset \{JE, E\}$. The commutativity of r implies $[\{F\}, \{JE, E\}] = \{0\} \subset \{JE, E\}$. Hence it is sufficient to show $[\{JF\}, \{JE, E\}] \subset \{JE, E\}$. Since $\{JE, E, F\} = r$ is an ideal of g, we have $[JF, E] = \lambda JE + \mu E + \nu F$ for some $\lambda, \mu, \nu \in \mathbf{R}$. The

fact $E \in I$ yields $\eta(F, E) = 0$ by (2.7). From these and from $\psi(JE) = \psi(E) = 0$, it follows that $0 = 2\eta(F, E) = \psi([JF, E]) = \lambda\psi(JE) + \mu\psi(E) + \nu\psi(F) = \nu\psi(F)$, which implies $\nu = 0$, since $\psi(F) \neq 0$. Therefore $[JF, E] = \lambda JE + \mu E \in \{JE, E\}$. Similarly, we have $[JF, JE] \in \{JE, E\}$. Thus $[\{JF\}, \{JE, E\}] \subset \{JE, E\}$.

Case (ii). It suffices to prove that $\{E\}$ is an ideal of g. Since $\{JE, E\}$ is an ideal of I, we can put $[X, E] = \lambda JE + \mu E$ for $X \in I$, where $\lambda, \mu \in \mathbb{R}$. Then $\psi(JE) \neq 0$, $\psi(E) = 0$ and $\eta(X, JE) = 0$ yield $[X, E] = \mu E$ as in the case (i), which shows $[I, \{E\}] \subset \{E\}$. Since r is commutative, we see $[\{F\}, \{E\}] = \{0\} \subset \{E\}$. Therefore it suffices to show $[\{JF\}, \{E\}] \subset \{E\}$. Put $[JF, E] = \lambda JE + \mu E + \nu F$, where $\lambda, \mu, \nu \in \mathbb{R}$. Then, using $\psi(JE) \neq 0$, $\psi(E) = 0$, $\psi(F) = 0$ and $\eta(F, E) = 0$, we have $[JF, E] = \mu E + \nu F$, which together with [E, F] = [JE, F] = 0 and (K.3) implies $[JE, JF] = -\mu JE - \nu JF + W$, where $W \in \mathfrak{k}$. Therefore $\nu JF \in \mathfrak{k} + \{JE, E, F\}$, as $[JF, JE] \in \{JE, E, F\}$. Since the sum $g = \mathfrak{k} + \{JF\} + \{JE, E, F\}$ is direct, we see $\nu JF = 0$, and hence $\nu = 0$. This proves $[\{JF\}, \{E\}] \subset \{E\}$.

Next, suppose dim r = 2. Since dim g/I = 2, we have dim $I \cap r \neq 0$ by Lemma 6. If dim $I \cap r = 2$, then $I = \mathfrak{k} + r$ by Lemma 2. This shows that r is a two dimensional ideal satisfying the assertions of Proposition. Hence, in the following we may suppose dim $I \cap r = 1$. Then $g = \mathfrak{k} + Jr + r$. For, putting $g' = \mathfrak{k} + Jr + r$, we see dim_c $g'/\mathfrak{k} = 1$ or 2. If dim_c $g'/\mathfrak{k} = 1$, then $Jr \subset g' = \mathfrak{k} + r$ by Lemma 2. This contradicts (K.1), since I is J-invariant. Therefore dim_c $g'/\mathfrak{k} = 2$, and hence $g = g' = \mathfrak{k} + Jr + r$. Furthermore, we have $\psi \neq 0$ on r by Lemma 1. So we can select a basis of r as follows:

$$\mathfrak{r} = \{E, F\}$$
 , $\mathfrak{l} \cap \mathfrak{r} = \{E\}$

and

(iii)
$$\psi(E) = 0$$
, $\psi(F) \neq 0$ or (iv) $\psi(E) \neq 0$, $\psi(F) = 0$.

Then $g = \mathfrak{k} + \{JE, JF\} + \{E, F\}$, since $g = \mathfrak{k} + J\mathfrak{r} + \mathfrak{r}$.

In the case (iii), we can show in a method similar to that of (i) in the case of dim r = 3 that $\{E\}$ is an ideal of g. Hence, in this case g contains a one dimensional ideal.

Finally we show that the case (iv) does not occur. Since $\{E\}$ is an ideal of I, we can put $[X, E] = \lambda E$ for $X \in I$, where $\lambda \in \mathbb{R}$. Hence, from $\psi(E) \neq 0$ and $\eta(X, JE) = 0$, we have [X, E] = 0. In particular, we see $[E, t] = \{0\}$ and [JE, E] = 0. From $\psi(E) \neq 0$, $\psi(F) = 0$ and $\eta(E, F) = 0$, it follows that $[JE, F] = \alpha F$ and $[JF, E] = \beta F$ for some $\alpha, \beta \in \mathbb{R}$. Put $[JF, F] = \lambda E + \mu F$, where $\lambda, \mu \in \mathbb{R}$. Then, putting $f = \operatorname{ad} (JF) - J \operatorname{ad} (F)$, we have $f(E) = \beta F$ and $f(F) = \lambda E + \mu F$. Noting that, for $X \in \mathfrak{g}$,

 $f(JX) \equiv Jf(X) \pmod{\mathfrak{t}}$ by (K.3), we see $f(JE) \equiv \beta JF$ and $f(JF) \equiv \lambda JE + \mu JF \pmod{\mathfrak{t}}$. These facts show $\operatorname{Tr}_{\mathfrak{g}/\mathfrak{t}} (\operatorname{ad} (JF) - J \operatorname{ad} (F)) = 2\mu$. Since $0 = \psi(F) = \operatorname{Tr}_{\mathfrak{g}/\mathfrak{t}} (\operatorname{ad} (JF) - J \operatorname{ad} (F))$ by (1.1), we obtain $\mu = 0$, which implies $[JF, F] = \lambda E$. By (2.2), η is definite on $\mathfrak{g}/\mathfrak{l}$. Therefore $0 \neq 2\eta(F, F) = \psi([JF, F]) = \lambda \psi(E)$, and hence $\lambda \neq 0$. Consequently, we have the following relations:

(2.8) [JE, E] = 0, $[JE, F] = \alpha F$, $[JF, E] = \beta F$, $[JF, F] = \lambda E$, $\lambda \neq 0$.

Now, by carrying out the same computation as in Shima [8, Proof of Lemma 4.1], we derive a contradiction. First, we show $\mathfrak{t} = \{0\}$. As indicated above, $[E, \mathfrak{t}] = \{0\}$. Let $W \in \mathfrak{t}$. Put $[W, F] = \mu E + \nu F$, where $\mu, \nu \in \mathbf{R}$. Then $\psi(E) \neq 0$, $\psi(F) = 0$ and (1.4) yield $[W, F] = \nu F$. From this, we obtain $\psi([JF, [W, F]]) = \nu \psi([JF, F]) = \lambda \nu \psi(E)$ and $\psi([JF, [W, F]]) =$ $\psi([[JF, W], F]) + \psi([W, [JF, F]]) = \psi([J[F, W], F]) = -\nu \psi([JF, F]) =$ $-\lambda \nu \psi(E)$ by (1.4) and (K.2). Therefore we have $2\lambda \nu \psi(E) = 0$, and hence $\nu = 0$ and [W, F] = 0. Thus $[\mathfrak{t}, \mathfrak{r}] = \{0\}$. Since $[\mathfrak{t}, J\mathfrak{r}] \subset \mathfrak{t}$, $[\mathfrak{t}, \mathfrak{t}] \subset \mathfrak{t}$ and $\mathfrak{g} = \mathfrak{t} + J\mathfrak{r} + \mathfrak{r}$, we see that \mathfrak{t} is an ideal of \mathfrak{g} . By (2.3), we have $\mathfrak{t} = \{0\}$. Next, we show $2\alpha = \beta$. Using the Jacobi identity, (K.3) and $\mathfrak{t} = \{0\}$, we have

$$\begin{aligned} 0 &= [[JE, JF], F] + [[JF, F], JE] + [[F, JE], JF] \\ &= (\alpha - \beta)[JF, F] - \alpha[F, JF] = (2\alpha - \beta)[JF, F] = \lambda(2\alpha - \beta)E \; . \end{aligned}$$

Hence we see $2\alpha = \beta$. From this, (2.8) and (K.7), we have

$$\begin{split} 0 &= \rho([JE, F], JF) + \rho([F, JF], JE) + \rho([JF, JE], F) \\ &= \alpha \rho(F, JF) - \lambda \rho(E, JE) + (\beta - \alpha) \rho(JF, F) \\ &= (\beta - 2\alpha) \rho(JF, F) + \lambda \rho(JE, E) = \lambda \rho(JE, E) \;. \end{split}$$

This contradicts (K.6). Thus, Proposition has been proved.

3. Proof of Theorem 1. We keep our notations and assumptions in the previous section.

By restricting J and ρ to I, we see that (I, f, J, ρ) is the Kähler algebra of the homogeneous Kähler manifold L/K. Let h' be the canonical hermition form of L/K. Then, putting $\eta'(X, Y) = h'_o(\pi_*X, \pi_*X)$ and $\psi'(X) = \operatorname{Tr}_{\mathfrak{l}/\mathfrak{l}}(\operatorname{ad}(JX) - J\operatorname{ad}(X))$ for $X, Y \in \mathfrak{l}$, we have (1.2), (1.3), (1.4) and (1.5) for the forms η' and ψ' .

Now, Theorem 1 is stated more precisely as follows:

THEOREM 1'. The homogeneous Kähler manifold L/K has zero Ricci curvature. Furthermore, if M is simply connected, then, by defining a

suitable G-invariant complex structure on G/L, the natural projection of G/K onto G/L is holomorphic.

PROOF. To begin with, we prove h' = 0, which shows the first half of the theorem. By the proposition in the previous section, g contains a one dimensional ideal or a two dimensional commutative ideal r such that I = t + r. If g contains a two dimensional ideal satisfying the assertions of the proposition, then we see $\eta' = 0$ by (1.2), (1.4) and the commutativity of r, and hence h' = 0. Therefore we consider the case where there exists a one dimensional ideal $\{E\}$.

If $\psi(E) \neq 0$, then, using Lemmas 3, 4 and 5, we have $g = \{JE\} + \{E\} + \mathfrak{p}$ (direct sum), where $\{JE\}$, $\{E\}$, \mathfrak{p} are mutually orthogonal with respect to the form η , and η is positive definite on $\{JE\} + \{E\}$. By (2.7), we see $\mathfrak{l} \subset \mathfrak{p}$, and hence $\mathfrak{l} = \mathfrak{p}$, since dim $g/\mathfrak{l} = \dim g/\mathfrak{p} = 2$. Therefore we have

$$(3.1) \quad \mathfrak{g} = \{JE\} + \{E\} + \mathfrak{l} \text{ (direct sum) , } [E, \mathfrak{l}] = \{0\} \text{ and } \mathrm{ad} (JE)\mathfrak{l} \subset \mathfrak{l}.$$

Let $X \in I$. Then $(\operatorname{ad} (JX) - J \operatorname{ad} (X))(E) = 0$ and $(\operatorname{ad} (JX) - J \operatorname{ad} (X))(JE) \equiv 0 \pmod{t}$ by (3.1) and (K.3). Using this fact and (3.1), we see

$$\psi(X) = \operatorname{Tr}_{{}_{\mathfrak{g}/\mathfrak{k}}}\left(\operatorname{ad}\left(JX\right) - J\operatorname{ad}\left(X\right)\right) = \operatorname{Tr}_{{}_{\mathfrak{k}/\mathfrak{k}}}\left(\operatorname{ad}\left(JX\right) - J\operatorname{ad}\left(X\right)\right) = \psi'(X) \ .$$

Therefore $\psi = \psi'$ on I. From this and (1.2), we have $2\eta(X, X') = \psi([JX, X']) = \psi'([JX, X']) = 2\eta'(X, X')$ for $X, X' \in I$. Since $\eta = 0$ on I, we see $\eta' = 0$ on I, and hence h' = 0.

If $\psi(E) = 0$, then $\{E\} \subset I$ by Lemma 1. Using (2.3) and (K.1), we have

(3.2)
$$I = \{JE\} + \{E\} + \mathfrak{k}$$
.

We show $\psi'(E) = 0$. Otherwise $[E, t] = \{0\}$ by Lemma 3 (a), and hence, by Lemma 3 (b), $[JE, t] = \{0\}$ with a suitable linear endomorphism J of g belonging to the Kähler algebra of M = G/K. Furthermore, we have $[JE, E] \neq 0$ by (3.2) (cf. Lemma 4). We may assume [JE, E] = E with a suitable $E \neq 0$. From these, it follows by Lemma 5 that $\eta(E, E) > 0$. This contradicts $E \in I$. Therefore, we see $\psi'(E) = 0$. Using this fact, we have $2\eta'(E, E) = \psi'([JE, E]) = 0$, which implies $\eta' = 0$ on I by (3.2). Thus, h' = 0 is proved.

Next, we prove that the natural projection of G/K onto G/L is holomorphic, if M is simply connected and if we define a suitable Ginvariant complex structure on G/L. Since M is simply connected, Kis connected, and hence so is L by the connectedness of L/K. Therefore, the G-invariant complex structures on G/L are in a natural one-to-one correspondence with the linear endomorphisms \overline{J} of $g \pmod{\mathfrak{l}}$ satisfying the following properties (cf. [5, p. 217]):

$$(3.3) \qquad \qquad \bar{J}\mathfrak{l}\subset\mathfrak{l}, \qquad \bar{J}^2\equiv-\mathrm{id}\,(\mathrm{mod}\,\mathfrak{l})\,,$$

$$[A, \overline{J}X] \equiv \overline{J}[A, X] \pmod{\mathfrak{l}},$$

$$(3.5) \qquad [\bar{J}X, \bar{J}Y] \equiv \bar{J}[\bar{J}X, Y] + \bar{J}[X, \bar{J}Y] + [X, Y] \pmod{\mathfrak{l}},$$

where $X, Y \in g, A \in I$. We show that the linear endomorphism J of g belonging to the Kähler algebra of M = G/K satisfies the above three properties. If this can be done, then it is easily seen that the natural projection of G/K onto G/L with the G-invariant complex structure corresponding to J is holomorphic.

It is clear that (K.1) and (K.3) imply (3.3) and (3.5), respectively. We show by using the proposition that (K.2) implies (3.4). If g contains a two dimensional commutative ideal r with I = t + r, then we see easily that (K.2) implies (3.4), since $[r, g] \subset r \subset I$. Hence we consider the case where there exists a one dimensional ideal $\{E\}$.

If $\psi(E) \neq 0$, then $[E, \mathfrak{l}] = \{0\}$ and ad $(JE)\mathfrak{l} \subset \mathfrak{l}$ by (3.1). From this, we have $[A, JE] \equiv J[A, E]$ and $[A, J(JE)] \equiv J[A, JE] \pmod{\mathfrak{l}}$ for $A \in \mathfrak{l}$. Since $\mathfrak{g} = \{JE\} + \{E\} + \mathfrak{l}$ by (3.1), this implies (3.4).

If $\psi(E) = 0$, then $\mathfrak{l} = \{JE\} + \{E\} + \mathfrak{k}$ by (3.2). Since $\{E\}$ is an ideal, we see $[E, JX] \equiv J[E, X] \pmod{\mathfrak{l}}$ for $X \in \mathfrak{g}$. This implies $[JE, JX] \equiv J[JE, X] \pmod{\mathfrak{l}}$, since $[JE, JX] - J[JE, X] \equiv J([E, JX] - J[E, X]) \pmod{\mathfrak{l}}$ by (K.3). From these and from (K.2), we have (3.4). Thus, the theorem is established.

REMARK. By the above theorem, we see that a complex two dimensional connected and simply connected homogeneous Kähler manifold with degenerate and non-zero canonical hermitian form is a holomorphic fiber bundle whose base space is the unit disk or the Riemann sphere and whose fiber is the complex plane.

4. Known results and their consequence. Let M = G/K be a complex *n*-dimensional connected homogeneous Kähler manifold with the canonical hermitian form h, where G acts effectively on M. In the investigation of M, the form h plays an important role. Now, we state the known results about the structure of M.

When h is either definite or zero, the following hold:

(a) If the Ricci curvature of M is negative, then M is a homogeneous bounded domain in C^{n} .

(b) If M has zero Ricci curvature, then M is a locally flat homogeneous Kähler manifold, and hence M is obtained by factoring C^n by some lattice (cf. [1, Theorem 1]).

(c) If the Ricci curvature of M is positive, then G is compact and semi-simple, and hence M is a simply connected compact homogeneous Kähler manifold (see [7, Corollary]).

When h is non-degenerate and not definite, the following are valid:

(d) Suppose that M is simply connected and that the signature of h is (2, 2(n-1)). Then, if either G is semi-simple or G contains a one parameter normal subgroup, M = G/K is a holomorphic fiber bundle whose base space is the unit disk and whose fiber is a homogeneous Kähler manifold of a compact semi-simple Lie group (see [8, Theorem 1]).

(e) If $\dim_c M = 2$ and if the signature of h is (2, 2), then G is semi-simple or G contains a one parameter normal subgroup (see [8, Theorem 2]).

Using these results and Theorem 1' with its remark, we see that the types of complex two dimensional connected and simply connected homogeneous Kähler manifolds M are the following six ones (cf. [8, Section 5]):

(i) Homogeneous bounded domains in C^2 . Hence M is $\{z \in C; |z| < 1\} \times \{z \in C; |z| < 1\}$ or $\{(z_1, z_2) \in C^2; |z_1|^2 + |z_2|^2 < 1\}$.

(ii) Complex two dimensional compact hermitian symmetric spaces. Hence M is $P_1(C) \times P_1(C)$ or $P_2(C)$, where $P_n(C)$ is the complex *n*-dimensional projective space.

(iii) A holomorphic fiber bundle whose base space is the unit disk and whose fiber is $P_1(C)$.

(iv) A holomorphic fiber bundle whose base space is the unit disk and whose fiber is C.

(v) A holomorphic fiber bundle whose base space is $P_1(C)$ and whose fiber is C.

(vi) C^2 .

From these, we obtain the following.

THEOREM 2. Let M be a connected homogeneous Kähler manifold of complex dimension two. If M contains no complex line, then M is a homogeneous bounded domain in \mathbb{C}^2 .

REMARK. It should be remarked that Shima [9] proved the following theorem:

Let M be a connected homogeneous Kähler manifold admitting a simply transitive solvable Lie group. Assume that M contains no complex line. Then M is a homogeneous bounded domain.

References

- D. V. ALEKSEEVSKII AND B. N. KIMEL'FEL'D, Structure of homogeneous Riemann spaces with zero Ricci curvature, Functional Anal. Appl. 9 (1975), no. 2, 97-102.
- [2] S. G. GINDIKIN, I. I. PJATECKII-SAPIRO AND E. B. VINBERG, Homogeneous Kähler manifolds, in "Geometry of Homogeneous Bounded Domains", Centro Int. Math. Estivo, 3 Ciclo, Urbino, Italy, 1967, 3-87.
- [3] J. HANO AND S. KOBAYASHI, A fibering of a class of homogeneous complex manifolds, Trans. Amer. Math. Soc. 94 (1960), 233-243.
- [4] S. KOBAYASHI, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, Inc. New York, 1969.
- [5] S. KOBAYASHI AND K. NOMIZU, Foundations of Differential Geometry, Vol. II, Interscience, New York, 1969.
- [6] L. KOSZUL, Sur la forme hermitienne canonique des espaces homogénes complexes, Canad. J. Math. 7 (1955), 562-576.
- [7] H. SHIMA. On homogeneous complex manifolds with negative definite canonical hermitian form, Proc. Japan Acad. 46 (1970), 209-211.
- [8] H. SHIMA, On homogeneous Kähler manifolds with non-degenerate canonical hermitian form of signature (2, 2(n-1)), Osaka J. Math. 10 (1973), 477-493.
- [9] H. SHIMA, Remarks on homogeneous Kähler manifolds, preprint.

MATHEMATICAL INSTITUTE Tôhoku University Sendai, 980 Japan