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ABSTRACT. This paper solves the problem of determining which Lie groups
act simply transitively on a Riemannian manifold with negative curvature.  The
results obtained extend those of Heintze for the case of strictly negative curvature.
Using results of Wolf and Heintze, it is established that every connected, simply
connected, homogeneous manifold M with negative curvature admits a Lie group
S acting simply transitively by isometries and every group with this property must
be solvable.   Formulas for the curvature tensor on M are established and used to
show that the Lie algebra of any such group S must satisfy a number of structural
conditions.  Conversely, given a Lie algebra < satisfying these conditions and any
member of an easily constructed family of inner products on i, a metric deforma-

tion argument is used to obtain a modified inner product which gives rise to a

left invariant Riemannian structure with negative curvature on the associated simply

connected Lie group.

1. Introduction.  This paper was motivated by the following problem:
Which connected Lie groups admit a left invariant Riemannian metric with nega-
tive (sectional) curvature? We emphasize that throughout the paper, we under-
stand "negative" to mean "less than or equal to zero". Since the property in
question is not sensitive to groups linked by a local isomorphism, we deal primar-
ily with simply connected groups.  Results of J. A. Wolf [13] and E. Heintze [4]
show that the above problem is closely linked with the classification of connected,
homogeneous Riemannian manifolds with negative curvature.  Indeed, if M is such
a manifold and if M is simply connected, then M is isometric to a solvable Lie
group endowed with a left-invariant metric.

In this paper, we give a complete solution to our original problem by show-
ing that a necessary and sufficient condition for a group to have the property in
question is that its Lie algebra be what we call an "NC algebra". Roughly speak-
ing, the crucial properties of an NC algebra $ are that in addition to being solv-
able, é must contain an abelian subalgebra a complementary to the derived
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324 ROBERT AZENCOTT AND E. N. WILSON

subalgebra n of 3 and that a must contain elements 770 such that a(770) > 0
whenever a G a* - {0} is the real part of a root of the adjoint representation of
a on the complexification of n. In addition, there are several technical properties
linking the structure of n with the extent to which the adjoint action of o on rt
can deviate from a semisimple action. See Definition 6.2 for a precise description
of AC algebras. We wish to point out that in the announcement of our results in
[1], Théorème 3 is incorrectly stated because of the omission of the property
given here in 6.2(v).

For the case of strictly negative curvature (see §7.8), the problem was
recently solved by E. Heintze [4]. Here one looks only at those AC algebras
where the derived subalgebra has codimension 1 and most of the technical diffi-
culties inherent in the general situation are not present. We wish to thank J. A.
Wolf for bringing Heintze's results to our attention.

The second part of our work, to appear elsewhere, will use the results ob-
tained here to study in greater detail the structure of the group I(M) of all isom-
etries on a homogeneous Riemannian manifold M with negative curvature and
will push further towards a classification of these manifolds up to isometries. In
particular, we shall give a complete group-theoretic characterization of those Lie
groups isomorphic to I0(M) for M a simply connected manifold of the above type.
See §8 for further comments on the questions to be dealt with in Part U.

We conclude this introduction with a summary of the organization of results
in the present paper. A first good look (§2) into the structure of I(M) for M a
homogeneous manifold with negative curvature reduces the initial problem to the
context of solvable groups. Hence, in §3, we fix a solvable group S endowed
with a left-invariant metric and compute explicitly the sectional curvature on 8,
the Lie algebra of S. Imposing the condition of negative curvature, the computa-
tion shows that if HE i is orthogonal to n= [6, &], then the operator A =
ad T7|n is "almost normal" in the sense that (Re A)2 + [Re A, Im A] > 0, where
Re A and Im A axe, respectively, the symmetric and skew-symmetric parts of A.
§4 begins with a rather painful clarification of the structure of certain families of
almost normal operators. For the case at hand, this information shows that o,
the orthogonal complement of n in 8, is abelian and provides information about
root subspaces of n relative to the adjoint action of o. More refined structural
constraints on 8 axe obtained in §5, where in particular it is seen that the non-
zero real parts of the roots of a in n he in an open half-space of the dual a* of
a. These constraints are then collected together in §6 to form the definition of
the class of "AC algebras".  Finally, in §7, we prove that when « is an arbitrary
AC algebra, any associated Lie group carries (many) left-invariant metrics with
negative curvature. We first handle the case when n = [8, 8] is abelian by explicit
diagonalization of the curvature tensor. In the general situation, we begin with
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any "admissible" metric on 8, i.e. an inner product linked to the Lie structure of
8 by a few simple constraints. By linear "deformation" of this metric, we obtain
the desired metrics on S. The main point is that the study of linear deformations
of a metric is in an appropriate sense dual to the study of the fixed metric to-
gether with linear deformations of the Lie structure on $ tending to make n
"almost abelian".

2. Structure of the group of isometries.
2.1. Let M he a connected Riemannian manifold and I(M) the group of all

isometries of M. Equipped with the compact open topology, I(M) has a Lie group
structure (Myers-Steenrod [11]). We denote by I0(M) the connected component
of the identity in I(M).

Recall that M is said to be homogeneous if I(M) acts transitively on M. In
this case, I0(M) acts transitively on M as well, the orbits of I0(M) being open in
M.   Moreover, a homogeneous Riemannian manifold is always complete
(Kobayashi-Nomizu [9, p. 176]).

For pGM, let Tp(M) denote the tangent space of M at p, < •, • )p the
Riemannian inner product on Tp(M), and |*| = (X, X)% the length of X G Tp(M).
Let R denote the Riemann curvature tensor on M. The sectional curvature of M
at p along a two-dimensional subspace V in Tp(M) is given by the formula

(1) $p(V) = -(Rp(X, Y)X, Y)p/(\X\2\Y\2 - (X, Y)2p)

where X, Y are any two independent elements in V.  The manifold M is said to
have negative curvature (respectively strictly negative curvature) at p if $p(V) <0
(respectively $p(P) < 0) for every two-dimensional subspace Fin Tp(M). If M
is homogeneous, negative curvature at a single point is of course equivalent to
negative curvature at all points.

As shown by Wolf [13], a connected, simply connected, homogeneous
Riemannian manifold with negative curvature admits a transitive solvable group of
isometries. In [4, Proposition 1], Heintze proved that in the same situation, it is
actually possible to find in I(M) a simply transitive solvable group of isometries.
Thus such manifolds can be represented as simply connected solvable Lie groups
with a left-invariant metric. This justifies the following definition.

2.2. Definition. A connected, simply connected, homogeneous Riemannian
manifold with negative curvature will be called a solvmanifold with negative
curvature.

In Proposition 2.5, we shall improve slightly the results of Wolf and Heintze
just mentioned.

On any Riemannian manifold M, the Cartan-Ambrose theorem asserts that
the stability subgroup in I(M) of any point p G M is compact (see Helgason [5,
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326 ROBERT AZENCOTT AND E. N. WILSON

pp. 167—169]).  If Mis homogeneous and has only finitely many connected
components, it follows immediately that I(M)/I0(M) is finite. When M is a com-
plete, simply connected, Riemannian manifold with negative curvature, a result of
É. Cartan [3, Appendix III] provides a converse to the Cartan-Ambrose theorem
in the sense that for any compact subgroup K of I(M), there is a point p EM
fixed by K. The first rigorous proof of this result was given by A. Borel in [2].
See also Helgason [5, p. 75]. The existence and conjugacy of maximal compact
subgroups in any connected Lie group (and thus in any Lie group with finitely
many components) is established in the work of Malcev [10, p. 176] and Iwasawa
[7, p. 532]. Combining the results just cited, we see that for M a solvmanifold
with negative curvature, I(M)II0(M) is finite, any compact subgroup of I(M) fixes
a point in M, and K is a maximal compact subgroup of I(M) if and only if K is
the stability subgroup in I(M) of some point p EM.

2.3. A Riemannian manifold M is said to have no Euclidean factor if M is
not isometric to the product of a Euclidean space of strictly positive dimension
and another Riemannian manifold.

By de Rham's decomposition theorem, (see Kobayashi-Nomizu [9, pp. 192
and 240] ), if M is a solvmanifold with negative curvature, M is isometric to a
product M0 x M+ where M0 is a Euclidean space and M+ a solvmanifold with
negative curvature having no Euclidean factor.  The factors M0 and M+ axe
uniquely determined (up to isometry) by M and the group I(M) is canonically
isomorphic to I(M0) x I(M+).

Since Wolf [13] showed that I0(M+) has trivial center, it follows trivially
from the above decomposition that I0(M) always has trivial center when M is a
solvmanifold with negative curvature.

We now establish an elementary result.

2.4. Lemma. Let M be a solvmanifold with negative curvature and G a
connected subgroup of I(M) acting transitively on M.  Suppose that K is a maxi-
mal compact subgroup of G and S a connected Lie subgroup of G acting trans-
itively on M. Denote by fl, 8, and f the Lie algebras of G, S and K. If 8 O f =
{0}, S is simply connected, closed in G, and acts simply transitively on M.

Proof.  Let p be a point in M such that K is the stability group of p in G.
The action of G on M defines a continuous map F from S onto M such that
F(s) = s • p. The stability group of p in S is S n K which is therefore closed in
«S.  Since its Lie algebra is 8 n f = {0}, S n K is discrete and F is a covering
map.  But M is simply connected, so S n K = {e} and S acts simply transitively
on M. As is easily checked, dF is everywhere nonsingular and F is a diffeomor-
phism from S onto M.  Let sn he a sequence of elements in S converging to
g EG. Then sn • p converges to q = g • p.  But q = s • p for some unique
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element s GS and it follows that sn converges to s. Therefore S is closed in G.
Q.E.D.

2.5. Proposition. Let M be a solvmanifold with negative curvature and
G any connected Lie subgroup of I(M) acting transitively on M.  Let G - Gx • G2
be a Levi decomposition of G (i.e. G2 is the radical ofG, Gx is a closed connected
semisimple subgroup of G, and Gx D G2 is discrete). Then Gx has finite center
and for each Iwasawa decomposition Gx — KXSX (Kx maximal compact in Gx,
Sx closed solvable in Gx) there is a closed subgroup S2 of G2, normal in G, such
that Sx n S2 = {e) and S = Sx • S2 is a closed simply connected solvable sub-
group of G acting simply transitively on M.

Proof.   As seen in 2.3, the center of I0(M) is trivial. Hence I0(M) and,
a fortiori, any subgroup of I0(M), is isomorphic to a group of complex matrices.
In particular, with the notations introduced in Proposition 2.5, Gx has finite
center.

Let H = 5jG2.  Since G = HKX and Kx, being compact, must leave some
pGM fixed, we conclude that H is a solvable group acting transitively on M.

Let K2 be the subgroup of H leaving p fixed. Under the isomorphism of G
with a matrix group given above, we may regard K = KXK2 as a group of unitary
matrices, and, by Lie's theorem, H as a group of upper triangular matrices. Thus
K2 = K n H is abelian and K2 C\[H, H]= {e) where [H, H] is the commutator
subgroup of H. Moreover, K2 must be a subgroup of G2. To see this note that
Sx n G2 = {e} since Gx n G2 is a subgroup of the center of Gx and hence is in
Kx.  But Sx and G2 are closed in G and Sx normalizes G2 ; it follows easily that
the topology on H = SXG2 is the product topology, and Sx is diffeomorphic to
H/G2 under the canonical map ir(g) = gG2. Therefore ir(K2) is trivial since 5!
has no nontrivial compact subgroups.

Now let J2, f2 be the Lie algebras of G2, Zsf2, and n2 the derived algebra of
B2. From above, we have f2 C g2 and f2 n n2 = {0}. Consider the connected
abelian group A = G2/N2 where N2 is the (closed) connected Lie subgroup of
G2 with Lie algebra n2. The image of K2 in A lies in the maximal torus T of A.
The action of G by automorphisms on G2 defines a continuous action of G by
automorphisms on A. The automorphisms of A leave T invariant, and the auto-
morphism group of a torus is discrete. Since G is connected we conclude that
inner automorphisms of G leave K2 fixed modulo A^. By differentiation, the
adjoint action of G leaves f2 + n2 invariant. Since Gx is semisimple we may find
a G ̂ invariant subspace a2 in g2  complementary to f2 + n2. Define i2 =
û2 +n2. Then i2 is a solvable ideal in % and g2 is the vector space direct sum
of f2 and S2. Hence Í = $x + 82 is a solvable subalgebra of 0, complementary
to f, the Lie algebra of the maximal compact subgroup K = KXK2 of G. If S is
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the connected Lie subgroup of G with Lie algebra 8, S is clearly transitive on M
and by Lemma 2.4, S is closed in G, simply connected, and acts simply transitive-
ly on M.   Q.E.D.

2.6. Corollary. Let M be a solvmanifold with negative curvature. Any
Lie subgroup of I(M) acting transitively on M contains a closed solvable subgroup
of I(M) acting simply transitively on M. In particular, if S is any connected Lie
group, and if there is on S a left-invariant metric with negative curvature, S must
be solvable.

Proof.  If a Lie subgroup G of I(M) is transitive on M we apply Proposition
2.5 to G to get the first half of the corollary. Now for S as in the second half of
the corollary, its simply connected covering S has the same property. By Lemma
2.4., S must be closed in 7(5) and hence S contains a solvable subgroup acting
simply transitively on the manifold S. But the only transitive subgroup is S itself,
so S and S axe solvable.   Q.E.D.

2.7. Clearly, Proposition 2.5 implies the Wolf-Heintze result recalled above
which represents solvmanifolds with negative curvature by solvable Lie groups en-
dowed with left-invariant metrics. This representation will be used throughout
most of the paper.

3. Computation of sectional curvature.
3.1. We continue with the solvable Lie group presentation of our manifolds.

Let 5 be a simply connected Lie group with Lie algebra 8. As usual, 8 may be
regarded either as the tangent space Te(S) ox as the collection of left-invariant
vector fields on S.   Assume S is endowed with a left-invariant Riemannian metric
defined by an inner product < • , • > on 8.  Let V be the Riemannian connection
on S.   By the invariance of this connection under isometries, VXY is a left-invar-
iant vector field on S whenever X, Y axe left-invariant vector fields. We still de-
note by V the induced mapping from ix & into 8. The classical formula for a
Riemannian connection (Helgason [5, p. 48]) reduces to

(1) 2(VXY, Z> = <[X, Y], Z> + <X, [Z, Y]) + <Y, [Z, X]>

for X, 7, Z in 8. Clearly Vx is a skew-symmetric linear endomorphism on 8 for
allXG8.

Classically, the curvature tensor 7* defines for X, y G 8 a skew-symmetric
linear endomorphism 7?(X, Y) on 8 given by

(2) 7*(X, Y) = [VX> Vr]-VIX,y,

where [V_y> Vy] = V^Vy - VyVx.
By 2.1(1), S has negative curvature if and only if
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(3) Q(X, Y) = (R(X, Y)X, Y) > 0      for all X, Y G 8.
Obviously, the operations V, R, Q are completely determined by 8 and <•,•>.
We shall then say, by abuse of language, that the Lie algebra 8, endowed with the
inner product <•,*>, has negative curvature if (3) holds.

3.2. Whenever we have a Lie algebra 8 endowed with an inner product, we
make constant use of the natural identification of A2 8, the space of alternating
2-tensors on 8, with o(8) the space of skew-symmetric linear operators on 8. This
identification is the unique linear mapping from A28 to o (8) which to the elemen-
tary tensor X AY associates the linear endomorphism on 8 defined by

(4) Z—MX, Z)Y-(Y,Z)X     for Z S 8.

Moreover, A2 8 is systematically equipped with the inner product defined,
for*, Y, U, F G 8, by

(5) (X A Y, U A V) = (X, UXY.V)- (X, VXY, U).

In particular if A G o (8) =* A2 8, (4) and (5) yield

(6) U,Uf\î.= lA(AU, V)-K(AV,U) = (AU, V)      for U.VGi.

The covariant differentiation V may then be viewed as a linear map X —► VX
from 8 into A28 defined by

(7) vxr = J4((ad X)Y - (ad X)<Y - (ad Y)*X)      for X.YGt,

where the superscript t denotes transpose with respect to < • , • >.
The curvature tensor becomes then a symmetric linear endomorphism of

A28 defined on elementary tensors by

(8) i?(IAi) = [Vx>Vy]-7|^y]      forX.YGi.

The elementary curvature form Q defined by (3) becomes the restriction to
elementary tensors of the quadratic form L —► (R(L), L) on A2 8. Thus for
S, F G 8 we write indifferently

(9) Q(X, Y) = Q(X A Y) = (R(X A Y), X A Y) = (R(X A Y)X, Y)

using scalar products in A28 the first time and in 8 the second time. The fact
that R is a symmetric endomorphism of A2 8 may be deduced readily from stan-
dard identities (Helgason [5, p. 69]).

We note that a sufficient condition for 8 to have negative curvature is that
R be a positive semidefinite linear endomorphism on A2 8.  However, easily con-
structed examples show that this condition is not necessary.  In the next two
sections, we shall focus on obtaining structural constraints on 8 and < • , • > when
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8 has negative curvature.  The following formula for Q will be used repeatedly.

3.3. Lemma. Let i be a Lie algebra, < • , • > an inner product on 8, and R
the associated curvature tensor. The associated elementary curvature form is, for
S, YEi, given by

<7*(X A Y), X A Y) = 3/4|(ad X)Y\2 + J4(fad X)2Y,Y) + «¿<(ad Y)2X, X)
(10)

+ <(ad X)'X, (ad Y)f Y) - K|(ad X)f Y + (ad Y)fX\2

where \Z\2 = (Z, Z) for ZE 8.

Proof.   This formula occurs elsewhere in the literature in similar forms
(e.g., Jensen [8, p. 312] and Heintze [4, p. 4]).  The proof consists of straight-
forward but lengthy calculations using (7) and (8).

3.4. Lemma   Under the same hypotheses as in Lemma 3.3., we have

(11) CR(X A Y), X A F) = <(ad X)% (ad YjY) - y4|(ad X)fY + (ad Y)fX\2

whenever X.YEi and [X, Y] = 0, while

(12) (R(H A X), 77 A X) = |(ad 77)X|2 - |^(ad 77 - (ad 77)f)X|2

whenever X G 8 and 77 G 8 is orthogonal to [8, 8].

Proof.   Formula (11) follows trivially from (10), while (12) follows from
(10) by easy manipulations and the observation that 77 orthogonal to [8, 8]
implies (ad X)f77 = 0 for all X G 8.   Q.E.D.

3.5. If (8, < • , • >) has negative curvature, we know, by Corollary 2.6, that
8 must be solvable. Hence there exists a nonempty orthogonal complement a to
[8, 8] = n in 8; for 77 G a, (12) shows that A = ad 77 must verify \AX\2 >
\Yl(A - A*)X\2 for all X G n. Trivially, {ad 77: H E a} generates a solvable sub-
algebra of gl(n), the Lie algebra of all linear operators on n. Our first task is to
study, in general, the properties of a vector space 21 of linear operators which
generates a solvable linear Lie algebra and each of whose elements satisfies the
above condition.

4. Almost normal operators.
4.1. Definition.   Let A be a linear operator on a finite dimensional real

or complex Hubert space §. We say that A is almost normal if

\Av\2 > \Vi(A -A*)o?    for all v E $,

where A* is the adjoint of A.
4.2. Notations and remarks.  For § a real Hubert space, §c denotes the

complexification of § equipped with the complex inner product
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(Uj + i'u2, Wj +i'w2>= <vxwx) + (v2w2) + i(-(vx, wf) + (v2, wf).

The complexification of a linear operator A on <p is the linear operator Ac
on §c defined by Ac(v + iw) = Av + iAw.   Note that (A*)c = (Ac)*. Occasion-
ally, we will abuse notation by continuing to write A in place of Ac. An easy
computation shows that A is almost normal on § if and only if Ac is almost
normal on $p. Although our main interest is in developing information regarding
families of almost normal operators on real Hilbert spaces, we shall find it con-
venient to obtain this information by restriction from the complex setting.

Given a linear operator A on !p, we define

Re A = HA +A*),      lmA = %(A -A*),      \A\2 = A*A,
0)

N(A) =\A\2 - |Im A\2 = (Re A)2 + [Re A, Im A].

As usual, for N a selfadjoint operator, the notation N> 0 (respectively, N > 0)
means that N is a positive (respectively, positive definite) operator.  Obviously,
Definition 4.1 may be regarded as saying that A is almost normal if N(A) > 0.
Since an operator is normal if and only if [Re A, Im A] = 0, we conclude that
every normal operator is almost normal.

The identity operator on a subspace L of £ will be denoted by IL. When
there is no possibility for confusion (in particular, for L = $), we shall simply
write I in place of IL. When / is a skew-symmetric operator commuting with A
(for example, / a pure imaginary multiple off in the complex setting), note that
N(A + J) = N(A) and hence A is almost normal if and only if A + J is almost
normal.  The study of almost normal operators is complicated by the fact that
the adjoint of an almost normal operator need not be almost normal.  Indeed,
let A he the operator on R3 defined by the matrix (af,)t</ .<3 with distinct non-
zero diagonal elements and a¡¡ = a¡fi,Xau - Ojf)~x for i ¥= j. Then N(A) > 0 but
detN(A*)<0.

4.3. Lemma. Let A be an almost normal operator on £> and L an A-invar-
iant subspace of §.   Then A\L is an almost normal operator on L IfA\L is skew-
adjoint, then A leaves invariant the orthogonal complement L1 of L.

Proof. Denote by P the orthogonal projection of Jp on L; let Ax = PAP,
A2 = (I- P)A(I - P), and Z-PAiJ- P). With respect to the orthogonal direct
sum §= L © LL, we may view A as the matrix of operators

1/    A2\.
Then
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(2) |~A041) - y4|Z*|2 A*Z + »¿(Im ̂,)Z + Z Im ¿2)1
[Z*AX - 1Á(Z*lxnAí + (Im ¿2)Z*)   A042) + %|Z|2

Consequently, A04) > 0 implies A04,) > Ya\Z*\2 > 0 so Ax = A\L is almost
normal. Moreover, if Ax is skew-adjoint, 0 = A04,) > V4¡Z*\2 imphes that Z =
Z* = 0 so A leaves LL invariant.   Q.E.D.

4.4. Lemma. Let A be an almost normal operator on §. Then Q has an
orthogonal decomposition into A-invariant subspaces ip0 and §, where A\§ is
skew-adjoint and the eigenvalues of A\§   have nonzero real parts.

Proof.   From the remarks made in 4.2, we may assume that $ is a com-
plex Hubert space.  Suppose that v is a nonzero vector in § and X a pure imagin-
ary scalar such that (A - \I)kv = 0 for some integer xc > 1. Set u, = 04 - X/)fc_ xv
and v2 = (A - \I)k~2v. Suppose u, ¥= 0. Since Avx = Xu,, the restriction of A
to the one-dimensional space spanned by u, is skew-adjoint.  By Lemma 4.3, A
leaves invariant the space of vectors orthogonal to vx. Hence

0 = <04 - X7)(u2 - <v2, vx)vx/hx II2), u,>

= <04 - X7)u2, i;,) = <y,, u,>

which is a contradiction.  Therefore u, = 0 and by a trivial induction, Av = Xu.
Now define §0 as the sum of generalized eigenspaces corresponding to pure

imaginary eigenvalues of A. Lemma 4.3 and the argument just given imply that
$0 is an orthogonal direct sum of eigenspaces. Therefore A\§   is skew-adjoint so
another application of Lemma 4.3 implies that Jp, = $)¿ is ̂ -invariant. Clearly,
$>, is the sum of generalized eigenspaces corresponding to eigenvalues of A with
nonzero parts.   Q.E.D.

4.5. We remark that Lemma 4.4 provides the following characterization of
almost normal operators. Let A be a linear operator on a finite dimensional real
or complex vector space V.  By the primary decomposition theorem, V has the
direct sum decomposition V = V0 + Vx where V0 is the sum of generalized
eigenspaces corresponding to pure imaginary eigenvalues of A and P", is the sum
of generalized eigenspaces corresponding to eigenvalues of A with nonzero real
part. Then V admits an inner product relative to which A is almost normal if and
only if A\v   is semisimple. We just proved the direct statement.  For the con-
verse, one may construct an inner product on V as follows. Take any inner
product on V0 for which A\v   is skew-symmetric.  After complexification if
necessary, take any basis u,, . . . , vn of P, in which the matrix of A\v   is upper

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HOMOGENEOUS MANIFOLDS WITH NEGATIVE CURVATURE. I 333

triangular. In the basis dxvx,.... dnvn where dx > • • • > dn, the matrix of
A\v   will have arbitrarily small off diagonal entries for proper choices of the d¡.
Hence, for suitable choices of the d¡,A\v   will be almost normal relative to the
inner product on Vx for which dxvx,. .. , dnvn is an orthonormal basis. The
definition of the inner product on Fis completed by taking V0 and Vx orthogonal.

4.6. Lemma. Let A be an almost normal operator on <p, L an A-invariant
subspace of§, P the orthogonal projection of A on L  Suppose that the operator
(I - P)A(I - P) is skew-adjoint.  Then A leaves Ll invariant.

Proof.  First consider the following special case: Ax = A\L is invertible on
L and A2 = (I - P)A(I -P) = 0. Then for any nonzero vector v G LL, Av G L,
so there exists a vector wG L such thatAv = Aw. By Lemma 4.3, the space
orthogonal to (w - v) is left-invariant by A. Consequently, for u = Afxw G L,

llwll2 = (w-v,Axu)

= <w - v, A(u - ((u, w - v)/\\w - v\\2)(w - u))> = 0.

Thus Av = 0 and we conclude that A\ x = 0.
For the general case, we may assume as before that ip is complex.   Then

the hypothesis that .42 is skew-adjoint implies that L1 is spanned by nonzero
vectors v with the property that there exists a pure imaginary scalar X such that
Av-XvG L. Fix such a vector v and let Jp' denote the .4-cyclic subspace of §
generated by v, i.e. £' = span{^4fcu: k > 0). By Lemma 4.3, A\^> is an almost
normal operator on Jp'.  By the remarks made in 4.2, the operator B = A\§- -
XZ§- is almost normal on <p'. By definition, B leaves L' = Jp' O L invariant and
Bv G L'. We now claim that B\ i> is invertible. An easy induction on n show's
that if Bv ¥= 0, the intersection of L with the span of {Akv: 0 < k < n) is the
span of {Bkv: 1 < k < «}. Hence there is an n such that L' is the span of
{Bkv: 1 < k < n). Assume that for some w = S1<fc<„ ckBkv, we have Bw = 0.
Then

0=ZJw = ZJ2(   £   c^"'^).
^Kk<n '

Using Lemma 4.4, we get BÇEX <k<n c^' xv) = 0, i.e. w = 0. Hence the hy-
potheses for the special case are verified, and we conclude that Bv = 0, i.e. Av =
Xv. It follows that A leaves LL invariant.   Q.E.D.

4.7. Definition. Let 31 be a finite-dimensional real vector space, 31* its
dual, (3l*)c the space of complex valued linear functionals on 8.  When p G 31*,
ker p denotes the kernel of p. We say that two elements Xx = px + ivx, X2 =
p2 ■+ iv2 in (3l*)c are equivalent (denoted Xj ~ X2) if ker px = ker p2 G
ker(v2-vx).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



334 ROBERT AZENCOTT AND E. N. WILSON

Obviously, this defines an equivalence relation on (3l*)c. Note that px +
ivx ~ p2 + iv2 if and only if px = cp2 and vx - v2 = dp2 where c, d are real scalars
with c =£ 0.

4.8. Theorem.   Let 31 be a real vector space of linear operators of a
(finite-dimensional) complex Hubert space ip.   The elements of 31 are almost nor-
mal and the Lie algebra generated by 31 is solvable if and only if there exist 31-
invariant subspaces Qp, 1 <p <m, ofip, and elements Xp = pp + iVp,l<p<m,
in (Sl*)c such that

(i)   §=©i<p<m§p,
(ii) for each p = 1.m there is on $  an almost normal operator Ep

whose eigenvalues have nonzero real parts and such that, for all A E 31, A |§   =
pp(A)Ep+iVp(A)I^. "

It is possible to choose the decomposition in such a way that the equivalence
classes iDefinition 4.7) of the Xp in (3l*)c are distinct; under this extra condition,
the subspaces ip   and the equivalence classes of the Xp are uniquely determined
by 31 (up to reordering).

Proof.  The sufficiency is obvious since if (i) and (ii) hold, 31 is clearly an
abelian subalgebra of fll(<p), and N(A\$ ) = pp(A)2N(Ep) > 0 (see Remarks 4.2).
The necessity will be proved by induction on n = dim ^>, the case n = 1 being
trivial.  By Lie's theorem for solvable linear Lie algebras [5, p. 134] there exists
an 3l-invariant subspace L in ip having codimension 1.  By Lemma 4.3, {A\t:
A E 31} is a vector space of almost normal operators on L.  By the induction
hypothesis, we find for p = 1, . . . , m, subspaces L_ of L, pairwise nonequiva-
lent elements Xp = pp + ivp in (3l*)c and operators Fp on Lp verifying (i) and
(ü).

Define ZpiA) = PpAQ where Pp is the orthogonal projection of § on Lp
and Q = 7 - 2 Pp is the projection on the one-dimensional subspace LL. When-
ever pJA) = 0, A\¡_   is skew-symmetric by (ii), and Lemma 4.3 implies that
AilL) is orthogonal to Lp; hence ppiA) = 0 implies Z (A) = 0. Since A —*■
Zp(A) is linear and vanishes on ker pp, we may write Zp(A) = pp(A)Zp for some
fixed map Zp from LL into Lp. Clearly, Zp is uniquely determined if jtip ̂  0.
For pp = 0, we take Zp = 0. On the other hand, by linearity of A —* QAQ,
there is a unique X = p + iv in (3l*)c such that QAQ = (p(A) + iv(A))I ..

Assume first that Z   = 0 for all p. If X ~ X„ for some p, define §p = Lq
for q+p,§p = Lp® L1, and replace Ep by Ep+(c + id)Q where p = cpp,
v = v   + dpp.  If X is not equivalent to any of the Xp, define §p = Lp for
1 <p <m,§m +, = L1, Xm +, = X, and Em +, = 7 .. In both cases trivial
verifications show that (i) and (ii) still hold.

Assume now that for some p, Zp =£ 0. By Lemma 4.6, pp(A)Zp = 0
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whenever p(A) = 0. Consequently, both pp and p are nonzero, and p = cpp for
some scalar c. We will show below that ker p   Ç ker(i» - v ) and hence X ~ X„.
Assuming this has been shown, we must have Zq = 0 for all q =£ p since the Xp
are in distinct equivalence classes.  The induction step is completed as above by
replacing Lp by Jpp = Lp © LL with Ep now replaced by Ep + Zp + (c + id)Q
where v = vp + dpp.

We now prove the claim X ~ Xp.  Fix Ax in 31 with pAA) = 1 and let
A0 G ker pp. For t G R define Np(t) = (Pp + Q)N(AX + tA0)(Pp + Q).  Regard
NAt) as an operator on L„ © LL. Since p(A0) = 0 implies Z (j40) = 0 for all
q, formula (2) implies that NAt) is represented by the matrix of operators

N(Ep) - \\Z*\2 BpZp + i±(v - vp)(A0)Zp

t -i   m
Z*pB*p-i¡(v-Vp)(A0)Z*p   c2Q + ^Z\Zq(Ax)\2
. 9=1

where Bp = Re Ep - lA Im Ep + i(v - vp)(Ax)IL ¡2. By hypothesis, Np(t) > 0
for all t. But Np(t) = Np(0) + tWp where Wp =i(v - Pp)(A0)(Zp - Zp*)/2.
Clearly this is possible only if <rVpu, u> = 0 for all v G Lp © L1.  Since !Vp is
selfadjoint, we conclude that Wp = 0; on the other hand, Zp is a nonzero map
from L1 to Lp so that Z  - Z* is nonzero, and W'   = 0 implies v(A0) = vp(Af).
We have thus demonstrated our claim ker p   C ker(i» - v ) and the existence of
the decomposition described in Theorem 4.8 is proved. Its uniqueness will be an
obvious consequence of the following corollary.   Q.E.D.

For 3l,Jpas in Theorem 4.8 and X G (3l*)c, define Jpx = {v G Jp: for some
k > 1 (A- X(A)f)kv = 0). If Jpx * 0, X is called a root of 31 and Jp^ a root
space of 31.

4.9. Corollary. Let 31 be a real vector space of almost normal endo-
morphisms of a complex Hilbert space Jp. Assume the linear Lie algebra generated
by 31 in gl(Jp) is solvable.  Then % is abelian and hence Jp is a direct sum of root
spaces ofH. Root spaces Jpx and Jpx> are orthogonal whenever X is not equiva-
lent to X'.  The unique decomposition o/Jp described in Theorem 4.8 is given by
Jp   = 2X^,X Jpx where the elements Xp, 1 < p <,m,are pairwise nonequivalent
in (3l*)c. Finally, ifXG (3l*)c is purely imaginary, we have A\§   = X(A)Ifor
aOA€%.

Proof.  In view of Theorem 4.8(h), 31 is obviously abelian. Starting from
a decomposition Jp = 0pipp corresponding to pairwise nonequivalent Xp G (3l*)c,
we get a root space decomposition of Jp relative to 31 by finding a primary decom-
position for each subspace Jp   relative to the action of E . Thus for each

(3)     7Vp(0 =
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eigenvalue c + id of Ep, we get the root X = cpp + i(dpp + vp) ~ Xp of 31.  It is
then obvious that§p = 2X^X <p^ which proves simultaneously the uniqueness
(up to permutation) of the equivalence classes of the Xp, and of the subspaces
§p. Moreover, if X is not equivalent to X', ip^ and§x> he in distinct subspaces
<pp and Jp9 and hence must be orthogonal. The last statement in Corollary 4.9
is a consequence of Lemma 4.4.    Q.E.D.

It is easy to translate the results of Theorem 4.8 and Corollary 4.9 to the
case when § is a real Hubert space. We shall do it in the next section in the
particular context of solvable Lie algebras.

5. Structure of solvable algebras with negative curvature.
5.1. Notations.  Let 8 be a (real) solvable Lie algebra. Denote by n =

[8, 8] the derived Lie »algebra of 8. As Theorem 5.2 will show, in the situation
of interest to us, 8 will have, as a vector space, a direct sum decomposition 8 =
0 + n with an abelian action of a on n. Whenever we have such a decomposition,
we define, as usual, for X G (a*)c the subspaces n£ of nc by

n£ = {XGn| (ad77-\(H))kX = 0 for some k> 1 andallTTGtt}.

We call X a root of o in n whenever n£ ¥= 0 and call njj; the associated root
space of a in n. Then nc is the direct sum of the root spaces n£.

For X = a + iß E (o*)c, we define x\aS = n n (n£ +n^) = na_ß. If
(a ± iß) is a root of o in n, we call naß a generalized root space of o in n.
Clearly, n is the direct sum of the generalized root spaces na$.

§4 has shown the interest of the following equivalence relation on (a*)c:
for X = a + iß, p = y + iS, in (o*)c we say that X is equivalent to p (X ~ p)
whenever ker a = ker y Ç kex(ß - 5).

5.2. Theorem.  Let 8 be a Lie algebra endowed with an inner product.
Assume that 8 has negative curvature.  Then 8 is solvable and the orthogonal
complement a of n = [8, 8] in 8 is abelian; moreover, for all HE a, ad 77 and
(ad 77)c are almost normal on n and nc, respectively. In particular, the con-
clusions of Theorem 4.8 and Corollary 4.9 apply to the operators (ad H)c,
77G0.(2)

Proof.  We have seen in 3.5 that 8 must be solvable and that the operators
ad H, HE a,are almost normal on n. Then, by Remarks 4.2, (ad 77)c is almost
normal on nc. The subalgebra of gl(nc) generated by 31 = {(ad H)C,HE 0}
is obviously solvable since 8 is solvable. Hence Theorem 4.8 and Corollary 4.9
apply to 31 and nc. In particular 31 is abelian. Hence n has a generalized root

(2)  The authors wish to thank the reviewer for the following information: "Commu-
tativity of a was independently proved by Ernst Heintze at the end of 1973.  Heintze did not
publish, but he showed the result to some people at Berkeley".
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space decomposition n = 2na ». Fix a root a + iß = X of a in n, and suppose
77 G ker a. Thus ad x7|„     has purely imaginary eigenvalues and is almost normal
(Lemma 4.3); it must then be skew-symmetric by Lemma 4.4.

Calling Q the orthogonal projection of 8 on the orthogonal complement of
na(3, formula 3.4(12) for the elementary curvature form yields then, for XGna>(j,

{R(H A X), 77 A X> = -V4Q ° (ad TT/XI2

and hence, by negativity of the sectional curvature, Q ° (ad 77)rX = 0. In partic-
ular this implies that [77, K] is orthogonal to naß for all KE a. Since the
bracket operation is alternating bilinear and ker a has codimension < 1, we con-
clude that [a, a] is orthogonal to n^. Since n= 2na/3, [a, a] is orthogonal
to the derived subalgebra n of 8 and hence is {0}, i.e. a is abelian.     Q.E.D.

5.3. Consequences.  Let 8 = 0 © n be a solvable Lie algebra with negative
curvature as in Theorem 5.2.

Let a0 = 0. We select and fix elements ax,a2,... ,am in a* such that
the real part of any root of 0 in n is a nonzero multiple of some unique a.-
(0 </ < m). Next, we choose a finite set of pairwise nonequivalent elements
pp + iv  in (a*)c satisfying the following conditions:

each root of a is equivalent to pp + ivp for some unique index p;
each pp is equal to a,- for some / (0 < / < m);
pp and vp are independent whenever both are nonzero;
if Vp ¥" 0, there exists an index q such that pq = pp, vq = -vp.

The existence of such a set follows easily from the definition of equivalence
given in 4.7.

(i) Denote by ip   C nc the sum of all root spaces n£ with X ~ pp + iv .
By Theorem 4.8 and Corollary 4.9 we have the orthogonal direct sum decomposi-
tion nc = 0pJpp ; moreover, there exists an almost normal linear operator E on
nc such that for all p and all 77 G ó, E leaves §p invariant and ad 77|$  =
Pp(H)E\ç)   +iVp(H)I.   If Pp = 0, the restriction of F to £>p is clearly arbitrary;
we take it to be zero. Otherwise, F|$   is uniquely determined and all of its
eigenvalues have nonzero real parts. Obviously, E commutes with the action of
a and leaves n invariant. In particular, the subspaces naß and n£ are E-invariant.

(ii) From (i), it follows that for any root X of o in n, the image of n£
under E* or Re(7f) is contained in the sum of root spaces n^ for which v is
equivalent to X.

(in) Two root spaces n£ and n£ are orthogonal whenever X is not equiv-
alent to p.   In particular na¿ and n7>j are orthogonal whenever y and a are
independent.

(iv) Let X = a + 1/3 be any root of a in n. Write a = ca¡ for some c ¥= 0,
j = 0,1, ... ,m. Then, there exists d E R such that, for all 77 G a,
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ad ZZlnc = aA?l)E\nC + i(ß(H) + daßW
A. A.

(v) For; = 0, 1,. . . , m, let ny- C n be the sum of all generalized root
spaces naß for which a is a nonzero multiple of a¡. Thus nf — 2^ =a.Jpp and
n = ®o</<mn/ as an orthogonal sum of vector spaces.  For all / and all H G n,
n;- is invariant under E, Et, ad H, and (ad Hf. Let E¡ he the composition of E
with orthogonal projection from n onto n;-. For H G n, the expression for ad H
given in 5.3(i) implies that the operator ad H-'Lx<j<maj(H)Ej is skew-symmetric.

(vi) The following notations will be used frequently. We set n+ =
©i </<«"/; hen« n= n0©n+.

We denote by A the (finite) set of all a G n* such that, for some ß G o*,
a + iß is a root of a in n.

For a G a*, we call Ha the unique vector in a such that (Ha, H) = a(H) for
all H G o. We set <o, ß) = <Ha, Hf> and |a|2 = <a, a> for a, ß G a*.

5.4. Lemma. Let S be a solvable Lie algebra endowed with a scalar product
<•,•>. If 8 has negative curvature, we have (using the notations of 5.1 and 5.3):

(i) (ad xyx G n for all XGx\0;
(ii) for allaGA,XGna0,HGa,

<(ad XfX, H) = -o(H)\ar2([Ha, X], X);
(iii) in any a-invariant subspace of na/3 there exists a vector X such that

([Ha, X], X) > 0;
(iv) ifuGA and na ¿ n } =?t 0 (where } is the center of n), then (a, y)

> 0 for all 7 G A.

Proof.  Let X G naß and H G ker a. Then, by Lemma 4.4, ad H\n     is
skew-symmetric, so <(ad X)*X, H) = -(X, (ad H)X) = 0.  In particular, taking
a = 0 and ß arbitrary in a*, we get (i).  For a G A, X G na Q we see that
(ad XfX is orthogonal to ker a, i.e. P„ ((ad XfX) is a multiple of Ha, where P„
is the orthogonal projection of 8 on o. Hence

Pa((ad XyX) = \a\-2((ad X)'X, Ha)Ha = -|a|-2<[Z/a, X], X)Ha

from which (ii) follows.
Now let o be an a-invariant subspace of na>/j. Since a is abelian, we may

find Z = X + iY in oc n n£+tf such that (ad H)CZ = (a(H) + ip\H))Z for all
H G a. Hence

([Ha, X],X)= \a\2\X\2 - (a, ßXX, Y),    <[Ha, Y],Y>= \a\2\Y\2 + (a, ßXX, Y).

At least one of these expressions is strictly positive and (iii) follows.
Now naß n J is a-invariant since a acts by derivations on n. Given y G A

with n7>6 ¥=0 we use (hi) to find vectors X G na^ n I and Y G nyS such that

Ptt((ad X)'X) m -cHa,     Pa((ad Y)fY) = -dHy,
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with c and d strictly positive. Since X G I, (ad X)fX is in o. The curvature
being negative, formula 3.4(11) yields

cdia, y) = <(ad X)fX, (ad Yy* Y) > (R(X A Y), X A Y> > 0

and hence (a, 7> > 0.   Q.E.D.

5.5. Proposition. Let 8 be a solvable Lie algebra endowed with a scalar
product. Assume 8 has negative curvature.   Then (using the notations of 5.1,
5.3) n0 is contained in the center of n and [n, n] is contained in n+ =
^i</<mn/-  In Particular, n0 is an abelian subalgebra of 8 and n+ is an ideal
oft.

Proof.  Let n = n1 D • • • D nr+l = 0 be the lower central series of n,
i.e. ltfc+1 = [nk, tt] for k > 1. We will show by induction that

(1) n* is orthogonal to [n, n0] for all k > 1,

(2) n* is orthogonal to n0 for a\lk>2.

We then clearly get Proposition 5.5 by taking k = 1 in (1) and k = 2 in (2).
Statements (1) and (2) are trivial for k = r + 1. Now take /> 1 and

assume (1) and (2) hold for all k >j. Let YE n7 n (n7+ xf and XG n„. Then
[X, Y] is in n7+1 n [n, n0] = 0 by (1). The curvature being negative, formula
3.4(11) gives (ad Xy*Y + (ad Y)fX = 0 since the definition of Y implies (ad YjY
E a while (ad XfX G n by Lemma 5.4(i).  But (2) implies (ad YjX E a since
the range of ad y|n is in n7+1.  Therefore we obtain for all Z G n, 0 =
<(ad X)tY,Z) = {Y, [X,Z]>.

Thus n7 n (n7"1"1)-1- is orthogonal to [n0, n]. By the induction hypothesis
n;+ x is orthogonal to [n0, n] ; hence (1) holds for k = j.

Now assume / > 2 and take X G n7 n n0. By (1), [X, Y] Gn7+1 n
[n0, n] = 0 for all y G n. Hence X is in the center of n, so that the range of
(ad X)f is in 0.  In particular by Lemma 5.4(i), (ad X)fX = 0.  Using again
formula 3.4(11) we conclude that (ad XfY + (ad YfX = 0 and hence
<(ad Y)fX, Z> = 0 for all Z G n, Y En. Thus X is orthogonal to [n, n] = n2.
Since X G n7 C n2 we get X = 0, and hence n7 H n0 = 0. Being a-invariant,
n7 is a sum of generalized root spaces na¿ fot which a must be nonzero. Hence,
in view of 5.3(H), n7 is orthogonal to n0, which proves (2) for k = /'.   Q.E.D.

5.6. Proposition. Let $ be a solvable algebra endowed with a scalar
product.  Assume 8 has negative curvature.   Then (using the notations of 5.1,
5.3) there is an element p in a* such that (a, p) is strictly positive for all a G A.

Proof.  As in Proposition 5.5 we use the lower central series {nk: 1 <
k < r} of n. Set Ar+, = 0 and pr+, = 0. For k > 1, define Ak and pk
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inductively by Afc = {a G A: naj3 n nk =£ 0 for some ß, and <a, p¡> = 0 for all
l> k + l), pk = 2aeA a. We make the following inductive hypothesis: if a G
Afc, 7G A, and (7,p¡> = 0 for all I> k + 1, then <a, 7>> 0and [ßaß nnfc,n7>6]
= 0 for all/3, S.

For k = r, this hypothesis is valid by Lemma 5.4(iii) and the fact that nr is
central in n. Now, let/ > 1 and suppose the induction hypothesis holds for all
k>j + 1.  Fix a G A;-, 7 G A with (7, p¡> = 0 for all / >j + 1 and take X G
\,ß n n' ^ e n7,8 • By tne Jacobi identity, for all complex roots X, pG (a*)c,
in\' "-£] c n\+ii' which implies, by construction of the na|3 (see 5.1), that
[X, Y] G (na+yMS + na+7i/3_5) n n'+x. Suppose [X, K] * 0. Then a + 7 *
0 by Proposition 5.5, and a. + y is in A/+ j. By the induction hypothesis, <a +
7, p) > 0 for all p G A;-+ x and thus we have the contradictory inequality 0 =
<pj+ j, a + y) > |cy + 7I2 > 0. We conclude that [X, Y] must be zero.  Now let
W G nîr?. By 5.3(iii), if a and % are independent, ((ad XfX, W) = (X, [X, W]) =
0. If a and | are dependent, [X, W] = 0 by the above argument where % plays the
part of 7. Hence (ad X)*X is in a. Then for Y G nyS, we conclude from Lem-
ma 5.4(ii) that

<(ad XfX, (ad YfY) = (a, 7>|aT 2l7r2<[//a, X], XX[Hy, Y] Y).

By formula 3.4(11), negativity of the curvature implies that this expression is > 0.
Selecting X and Y as in Lemma 5.4(iii), we get (a, 7) > 0 which gives the induction
hypothesis for k = j.

Now, for any a G A, let k(a) he the unique index for which (a, pfc(a)> =£ 0
and (a, pk) ¥= 0 for all k > k(a) + 1. Note that the above argument implies
k(a) > j whenever n^nn'^O for some ß. Moreover (a, 7) > 0 for all 7 G
Afc(a)>so ̂ a' Pk(a)) *s strictly positive. Take c between 0 and 1 such that

r
c X Ka> P/>l < <a> Pk(a)>     for all a G A

/=i

and define p = pr + cpr_x + • • • + cr~xpx.
We have, for all a G A

(a, p) = c--k(a>«a, pfc(a)> + • • • + e»«»)-»««, Pt»

so that

(k(a)-l \
(a,pk,a))-c    £   <tv,P/)j>0.      Q.E.D.

5.7. Remarks.   Let 8 = a © n be a Lie algebra endowed with an inner
product for which it has negative curvature.  Consider two roots (a + iß) and
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(y + 16) of a in n with nonzero real parts. If a and y axe proportional, we must
have y = ca for a strictly positive constant c in view of Proposition 5.6. This has
useful consequences concerning the Lie algebra structure of it.

By the Jacobi identity, for all a, ß, y, 5

(3) [na,ß> n-y.8 ] C na+y,ß + S + na+y,ß-S ■

On the other hand, our definition n;- = 2c,to,/?ea*nca.,p" now implies n;- =
^c>o,/3ea»nca-,fj- m particular the subspaces n^, 0 </ < m, axe subalgebras of n.

One sees similarly that for / =£ k, [n¡, nk] and [n;-, [n;-, nk] ] axe orthog-
onal to n¡ © nfc, since cccj + dotk cannot be proportional to a¡ or ctk for c, d > 0.

5.8. We are now going to use the structural information gathered about
solvable Lie algebras with negative curvature to establish more explicit formulas
for the covariant differentiation operator V and the curvature tensor R. These
computations do not use any assumption on the negativity of sectional curvature,
but only structural constraints on the pair (8, < • , • >) which we list as follows:

(i) 8 is a solvable Lie algebra, endowed with an inner product. The orthog-
onal complement a of n = [8, 8] is abelian.

(ii) There are elements a¡, 0 </ <m, in o* with a0 = 0, and a,, . . . , am
pairwise independent such that n = 0o</<mn/ where, for each/, n;- is the sum
of all generalized root spaces na¿ for which a is a positive multiple of a.-.

(iii)  n0 is contained in the center of n and n+ = ©,^/<mn/- is a subalge-
bra of n.

(iv)  There exists a linear operator E on n which leaves each subspace n.-
invariant and commutes with ad 77 for all 77 G o. Moreover, for P- the orthogonal
projection of n on Ity and E¡ = E ° Pp ad 77 - 'Sx<j<ma/(H)Ej is skew-symmetric
for all H E a.

We introduce some additional notations.  For/ = 1, . . . , m, write 77- in
place of 77a.; thus, (H¡, H) = 0,(77) for all 77 G a. The conventions of §3.2 are
systematically used to identify A2 8 with the Lie algebra of skew-symmetric oper-
ators on 8.  For X G n, we define Dx G A2n C A28 as the component in A2n
of V^- G A2 8, i.e. Dx = P ° Vx ° P where P is the orthogonal projection of 8
onto n. It follows from 3.1(1) that for X, YEtl,

(4) DXY = >/2 {[X, Y] - (ad X\jY - (ad Y\JX}.

5.9. Lemma. Let 8 be a solvable Lie algebra endowed with an inner product
and suppose the structural conditions 5.8(i)-(iv) are satisfied.  Let V be the co-
variant differentiation operator and R the curvature tensor on 8. Recall that
Re(A) and lxn(A) stand for the symmetric and skew-symmetric parts of an opera-
tor A.   We then have

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



342 ROBERT AZENCOTT AND E. N. WILSON

(5) V# = Imfad H) for H G à;

(6) Vx = Z MFj)X AH + DX     forXGn;

(7) R(X A H) = £ ctj(H)N(Ej)X A Z/y. + [/>*, £»H] - Z)[x „,
1=1

for X G n, H G a, where N(Ef) = (Re Ef)2 + [Re £}, Im Ef] ;

ZÎ(X A Y) = £ (Dx ReiZipy - DY Re(Ef)X - Re(Ej)[X, Y] ) A ZZ)
/=i

+   £ <<*/• apReiZi-pX A Re(ZTfc)y + [Dx, DY)-D[X Y]
j,k=ï

for X, Y G n;

(R(X A F), X A £ - y A H) = (3[X, Y]/2 + (ad *)fX/2, A7 - kX)

(9) + ÜT, [X, kY] + [kX, Y])

-(Y, [hX, Y] + [X,hY])

for ail X, YGn.H.KGa, where h = Re(ad H),k = Re(ad K).

Proof.  The orthogonality of a and n yields (ad XfH = 0 for X G A,
H G a. Hence 3.2(7) implies

V„ = »¿(ad ZZ - (ad H)f) - Im(ad ZZ)

for ZZ G a and

(10) vy/ = -Re(adZZ)X

for ZZ G a, X G n.  In view of 5.8(iv) and 3.2(4), (10) may be rewritten as

m m

Using the definition of Dx given in 5.8 and skew-symmetry of V^, this implies (6).
It is easily deduced from 5.8(i)-(iv) that, for H G a, the skew-symmetric

operator J(H) = ad ZZ - Vf]=xaj(H)Ej commutes with Ef, (Eff, ad K, and (ad 0
for all / = 1, . . . , m and all K G a.  In particular, the operators Im(ad H),H G
a, form a commutative family.

To obtain formulas (7) and (8), one substitutes the expressions for Vx and
VH given by (5) and (6) into the expression 3.1(2) for the curvature.  We omit
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the details, but point out that the computation makes use of the commutative
properties just observed for the operators J(H) as well as the rule (easily deduced
from the conventions in 3.2) that [A, X A Y] = AX A Y + X A A Y for X, Y G
8 and A a skew-symmetric operator on 8.

To prove formula (9), we first use 3.1(2) and 3.2(6) to obtain for X, Y En,
KECL,

(11) <7?(X A Y), K A X> = <(VjrVy - VyV^ - V{x¡Yi)K, X).

By skew-symmetry of V^ and (10), we may write, with the notation Re(ad K) = k,

<VxVy/r, X> = -<Vy/T, VXX) = (kY, VXX)

and use 3.2(7) to evaluate V^-X.   Similar computations transform (11) into

<7*(X A Y), K A X) = -<fcy, (ad X)fX> + <JcX, (ad XfY + (ad Y)fX)l2
(12)

+ 3<[X, y],*x>/2.
Using the formula analogous to (12) for {R(X A Y), 77 A Y), (9) is deduced by
elementary manipulations.    Q.E.D.

5.10. Lemma.  Let 8 be a solvable Lie algebra endowed with an inner pro-
duct and suppose the structural conditions 5.8(i)-(iv) are satisfied.

(i) Call a 0 the space of elements H E a such that a(H) = 0 for any root
a + iß of a in n. The restriction of the curvature tensor R of 8 to a A tt and
(o 0 + n 0) A 8 is identically zero.

(ii) Call L the orthogonal complement of TfjL, n. A H¡ in n A a.  Denote
a typical element in n A o by 7, = 2,Xf A Kt with XtEn,KtEa.  For P},
1 </ < m, as in 5.8(iv), the following three properties are equivalent:

L is in L ;
S^/A^X, = Oforj = 1, 2.m;
2f Re(ad Kt)Xt = 0.
(iii) R(L) and L are orthogonal in A2 8.

Proof.   Formulas (5) and 3.1(2) imply R(a A tt) = {0} since, as seen in
Lemma 5.9, the operators Im(ad 77), 77 G tt, commute with one another.

For X G n0, 5.8(iii) implies that Dx = 0. Using (6), we obtain

(13) V^ = 0      forXGn0.

Since n0 is an ideal in 8, (13) and 3.1(2) imply R(nQ A 8) = {0}.
For 77 G n0, Re(ad 77) = 0 by 5.8(iv) and hence VH = Im(ad 77) = ad 77 is

a skew-symmetric derivation of 8.  But for any skew-symmetric derivation L of 8,
a tedious but routine computation based on 3.2(7) shows that
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(14) [L.Vx] = Vlx   for all ̂ f G 8.

In particular, for H G ó0, 3.1(2) gives R(H A X) = 0 for all X G 8. This com-
pletes the proof of 5.10(i).

Let L he as in 5.10(ii) and / > 1. With the help of formula 3.2(5), the
orthogonality of Sf Xt A Kt and n;- A H¡ is seen to be equivalent to "£,taÂKf)PfiXt)
= 0. Since N(E) = Re(E)2 + [Reif), lm(E)] > 0, we see that the kernel of
Re(E) is contained in the kernel of N(E) and hence is invariant under lm(E). It
follows from 5.3(iv) that the kernel of Re(£)|„. is a-invariant and spanned by root
vectors corresponding to roots with zero real parts. Since n, n n0 = {0}, we
conclude that Re(ZJ)|n. = Re(ZT)|n. is invertible. But 5.3(iv) implies that
ai(Kt)Re(Ej) = PjRt(id Kf) for all t. Hence 2f o/ZQv/*,) = 0 if and only if
Pj 2, Re(ad Kf)Xt = 0 and this proves (ii).

To check (iii), we simply note that formula (7) implies that Z?(n A n) is
contained in S• n ■ A ZZ- + n A n and this space is orthogonal to L in A2 8.
Q.E.D.

5.11. Theorem.   Let i be a solvable Lie algebra endowed with an inner
product. Assume that 8 has negative curvature, so that 8 = a © n with a abel-
ian, n = [8, 8] • Then n is the orthogonal direct sum of a-invariant subspaces
n° and n1 having the following properties.

(i) n° = 2n° p where the sum is taken over all roots a 4- iß of a in n and
na,ß - {XG na¡3: ad X\n      = 0 whenever a and y are independent).

(ii) ad H\ j is normal for all H G a.

Proof. Throughout the proof we shall use the notations and results of 5.1
and 5.3. We begin by establishing several technical formulas.

Let L G n A a be as in Lemma 5.10. We show first that whenever X, Y G
n, H, K G a, and X A K - Y A H G L, then

(X, [Re(ad K)X, Y] + [X, Re(ad K)Y])
(15) = (Y, [Re(ad H)X,Y] + [X, Re(ad H)T¡>.
Indeed, for any real scalar Met Zf = (X + tH) A (Y 4- tK) = X A Y +
t(X NK-Y A ZZ). Since the sectional curvature on 8 is negative, (R(Zf),Zp>
0 for all t.  By Lemma 5.10(iii) and the fact that Z? is a symmetric linear operator
on A2 8, we conclude that

0 < (R(Zf), Zf> = (R(X A Y), X A Y) + 2r<Z?(AT AY),XAK-YAH)
for all r. Obviously, this condition can be satisfied only if

(16) <R(X A Y), X A K - Y A ZZ> = 0.
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From Lemma 5.10(h), we have Re(ad K)X = Re(ad 77)Y. Using this and formula
(9) to compute the left-hand side of (16), we obtain (15),

Now suppose /, k, I are distinct indices (1 </, k.Km) and c, d positive
scalars such that al is a positive multiple of coy + dak. Fix K, HE a and write
a   = a (K), b   = a (77) for p = 1, 2,. . ., m. Since ay and ak axe independent,
we may assume bjbkbl(a¡bk - akbj) ^ 0. Let X = X¡ + Xk + X¡ be an arbitrary
vector in xij ® nk ® n¡ and define Y = Yf + Yk + Y, by

(17) bpYp=apXp      foxp=j,k, I.

By Lemma 5.10(h), XAtf-yAxYGLand hence (15) holds. We now expand
(15) and note that Re(K) = 2pnp Re(xTp), Re(/7) = 2ôp(Re Ep); the result is a
collection of terms each of which lies in <n_, [n^, nr]> for some choice of indices
p, q, r in {/, k, I}. The remarks in 5.7 show that such terms are automatically
zero except when either p = q = roxp = l, [q, r} = {/, k}. However, the terms
corresponding top = q = r cancel out in view of (17). After easy manipulations
with the remaining terms and systematic use of (17), we obtain

(18) Op d[Re(Ej)Xj, Xk] - c[Xj, Re(7ifc)Xfc]> = 0.

Obviously, (18) remains valid under complexification, i.e. under replacement of
X¡, Xk, X, by arbitrary vectors in nf, nk, nf, respectively.

We now define, for; = 1, 2,. .. , m, a subspace nf of nf by

n? = {XGn^: [X, Y] = 0 for all  YE n£ and 1 < k ¥=/ <m}

and call n? the orthogonal complement of nf in n^. Since nf and nk are <»-
invariant, it follows from the Jacobi identity that nf is 0-invariant.  By construc-
tion, [n;., nfc] is contained in the sum of all subspaces n¡ for which a¡ is a positive
multiple of cctj + dak with c, d > 0. Hence, (18) implies that nf is Re(x7)-invar-
iant. We now claim that n? is xT-invariant as well and hence xT*-invariant.  To see
this, fix / + k and note that X G nf if and only if ad X(n£) = {0} for all com-
plex roots p with real part a positive multiple of ak. Writing X = 2XX with
Xx G n£ and the sum taken over all complex roots X with real part a positive
multiple of tfc, it follows that X G nf if and only if Xx E nf for all X. Now fix
X G nf n n£ and Y E n£ C n£. Then there are linear functional ß and y in ft*
such that (ad 77 - a/xT^c = iß(H)I, (ad 77 - ak(H)E)\ c = iy(H)I fox all HE-
a. Using the Jacobi identity, this implies M

0 = (ad 77)[X, Y]

(19) = [ccj(H)EX, Y] + [X, <xk(H)EY) + i(ß(H) + y(H))[X, Y]

= a¡(H)[EX,Y].
By the above argument, we can conclude from (19) that EX E nf and hence nf
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is ZT-invariant.  Finally, n° is invariant under (ad H)* for all H G a since 5.3(v)
implies that on nf, (ad H)* = a^E* - (ad H - <Xj(H)E).

We now turn to n?, the orthogonal complement of n? in n;-. Since nf is
invariant under E, E*, and, for all ZZ G a , (ad H) and (ad H)*, the same is true of
n ?. The remainder of the proof of the theorem is devoted to showing that a
acts normally on nj. Once this is accomplished, the subspaces n° = n0 © n n
(0i</<mn/)) andit1 =nn(01</<mny?) clearly have the properties (i) and (ii)
stated in the theorem.

For each root v, denote by Qv the natural (direct sum) projection of nc =
2xn£ onto n£.  The O-invariance of nj implies the invariance of nj under Qv.
Now take / ¥= k, roots X = ca¡ + iß, p = dak + 17 with c, d > 0, and X G n£ n
n;?, f£njn n¿. Applying (18) with X = X¡, Y = Xk and X, arbitrary, we
conclude that

(20) d[Re(E)X, Y] - c[X, Re(E)Y]

and hence

(21) dZ [Qv MW. Y] = cZ[X,Qp Re(E)Y].
v p

By 5.3(h), Qv Re(E)X is zero unless v is of the form za.- + iß with z G C and then
[Qv Re(E)X, Y] G n°. with 0 = v + p = za¡ + dak + i(ß + 7).  Similarly,
Qp Re(E)Y is zero unless p is of the form z'ak + 17 and then [X, Qp Re(E)Y] G
n „• with 0' = X + p = cctj + z'ak + i(ß + y). Since a;- and ak are independent,
a = o if and only if v — X and p = p. Hence (21) implies

(22) [Qv Re(E)X, Y] = 0 = [X, Qp Re(E)Y]
whenever v =£ X, p ¥= p.  By holding X, X fixed and allowing p, Y to vary, we
deduce from (22) that Qv Re(E)X G n? for v ¥= X. Since nx is invariant under
Re(E) and Qv, it follows that Qv Re(E)X G nj n n? = {0} for v * X and hence
Re(£^T = Qx Re(E)X G nj n n^. Thus we have shown that Re(£) leaves nj H
n^ invariant for all roots X. These spaces are ^-invariant from above and hence
ZT*-invariant as well.

Let E = S + TV be the Jordan decomposition of E, i.e. S and A' are poly-
nomials in E with S semisimple and N nilpotent (Humphreys [6, p. 17] ).  For
any root X with real part a multiple of a;-, denote nj n n£ by ttx. Since Ox is
invariant under E and Zf*, it is invariant under S, 5*, N and ZV*. For X = ca.¡ +
iß, 5.3(iv) implies that the restriction of 5 to n£ is a scalar operator (c + ic')I
for some c G R. Since »x is both S- and 5*-invariant, S\   = (SL )* =
(c - i'c')Z.   Consequently, the restrictions of S and 5* to n^ commute, 5|ni is
normal, and Re(S)L — ci for X = ca- 4- iß. Upon replacement of Re(ZT) by
Re(S) + Re(N), (20) yields
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(23) d[Re(N)X, Y] = c[X, Re(N)Y]

for X G 0ca.+/j3, y G *da +iy. Now let N(H) be the nilpotent part of the der-
ivation ad H of nc. Then N(H) is again a derivation [6, p. 18] and, in view of
5.3(iv), is related to A by N(H)\nQ = a/TT^ç.  For X G n%.+iß, Y G ngajfc+/7,
and / the unique index for which ba¡ = ca¡ + dak for some b > 0, it follows
that

tt/TTMX, Y] = û;(77)[AX, y] + ak(H)[X, NY].

Again using linear independence of a- and afc, we conclude that

(24) cdN[X, Y]/b = d[NX,Y] = c[X, NY].

It is convenient to define a new nilpotent operator M on ©1<,<mn? by re-
quiring that M\ c = Aye I c for X = ca¡ + iß. From (23) and (24), we obtain

(25) [M*X, Y] = [X, M*Y],     M[X, Y] = [MX, Y] = [X, MY]

for all X G nj, y G nxk, j ¥= k. We also know that if X G n/ and [MX, Y] = 0
for all y G ©k#/n¿, then MX E nj O n? = {0}. We claim that these conditions
force M\ni to be zero. To see this, write o and u in place of nj and ©fc#.n¿,
denote by P and Q the restrictions of M to o and u, and consider the orthogonal
decompositions 0 = 00 © 0,, U=u0©u, where o0 (respectively, u0) is the
kernel of P (respectively, Q). Thus 0, = 7*0, u, = ß*u. First assume P2 = 0.
Then 7*0, = 0. From (25) we obtain

[70, u] = [70,, u0] + [P*v ß*uJ ■ [Op Öu0] + M[P*0,, u] = {0}

and thus 7=0.  In general, P2k = 0 for some k > 1. Since the conditions in
(25) remain valid under replacement of M by Mk, the case just considered implies
7* = 0 and hence by a trivial induction, 7 = 0.

We now have A|ni = 0 and hence x?|ni = 5lni is normal.  By 5.3(iv), ad77|ni
is normal for all 77 G tt'.   Q.E.D. ' ; '

6. A class of solvable algebras.
6.1. Notations.  As seen in §5, the existence of a metric with negative

curvature on a Lie algebra 8 imposes strong structural restrictions on 8 itself.
We gather these constraints in Definition 6.2 after establishing a few notational
conventions.

Let 8 be a real solvable Lie algebra and n = [8, 8]. If there exists in 8 a
subalgebra tt complementary to n, tt must clearly be abelian, and we follow the
conventions of 5.1 regarding roots X = a + iß E (a*)c of tt in nc, root spaces
n£, and generalized root spaces naj3.
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In such a situation, we set

A = {a G a*: a ¥= 0, and a + iß is a root for some ß G a*},

"+ =     Z     "ajj.
aeA,ßea»

n0 =   Z   "-0,(5-
pea*

na,0 = (XEnaß: \-X< n7,s] = ° whenever 7 and a are independent},

n°=   Z  <*•
a,peo«

6.2. Definition. A Lie algebra 8 is said to be of negative curvature type
(abbreviated, 8 is an NC algebra) if 8 is solvable and has the following properties
(using the notations of 6.1):

(i) there exists in 8 a (necessarily abelian) subalgebra a complementary to
n = [8,8];

(ii) for each root X = a + iß of a in nc, ad ZZ| c is semisimple if ZZ G a
and a(H) = 0 (in particular, ad ZZ|nc = 0 if H G a and\(H) = 0);

(iii) A lies in an open half-space of 0* (i.e. there exists H0 G a such that
a(HQ) > 0 whenever a + iß is a root and a ^ 0);

(iv) n 0 lies in the center of n;
(v) for all a, ßG a*, n° ß is a-invariant and admits in naß an a-invariant

complement n¿>(3 upon which the action of a is semisimple.
63. Remarks.   If 8 is a Lie algebra endowed with an inner product and

if 8 has negative curvature, then the results of §5 show that 8 is an NC algebra.
The converse will be proved in §7.

A class of examples of NC algebras is provided by those solvable Lie algebras
which arise in the Iwasawa decomposition of semisimple Lie algebras, i.e. the Lie
algebras of groups acting simply transitively by isometries on a noncompact sym-
metric space. In this setting, conditions (i) and (iii) are automatic from the con-
struction of such algebras. The roots are real valued and the action of a is semi-
simple, so conditions (ii), (iv) and (v) are trivially satisfied.

The NC algebras for which n is abelian are easily classified and constructed
since in that case (iv) and (v) are trivially satisfied.

A particular type of NC algebra was introduced by Heintze [4] who studied
solvmanifolds with strictly negative sectional curvature. They correspond to the
case dim a = 1, n„ = 0. In this case, (iv) and (v) are trivially satisfied, while
(ii) and (iii) simply mean that all eigenvalues of ad H0, for some nonzero H0 G a,
have strictly positive real parts. We will come back to this example in 7.8. In
order to obtain a classification of NC algebras, one must in particular solve the
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apparently difficult problem of determining which nilpotent Lie algebras admit a
derivation all of whose eigenvalues have nonnegative real parts.

The class of AC algebras is clearly closed under Lie algebra direct sums and
passage to quotients by ideals. However, the class is not closed under restriction
to an ideal. In particular, the only nilpotent AC algebras are abelian by (ii) and
(iv).

Given an AC algebra 8 = tt + n as in 6.2, it is easy to see that n+ is an
ideal of 8 and that the center of 8 is a subspace of tt. Moreover, when X =
a + iß is a root, Definition 6.2 implies that ad 77|nc = a(H)Fx + 1/3(77)7 where
FK is a fixed operator on n£.

We shall now show that Definition 6.2 does not depend on the choice of a
particular subalgebra tt of 8 complementary to n. We begin with a definition
and a lemma modeled on analogous concepts for the case of Iwasawa subalgebras
of a semisimple subalgebra (e.g., see Wallach [12, p. 174]).

6.4. Definition.   Let 8 be an AC algebra. An element Z G 8 is said to
be regular if adnZ is nonsingular.

Note that for a as in 6.2,77 + X is regular whenever X G n, 77 G a, and
X(77) ¥= 0 for all roots X. Since the collection of roots is finite, the set of regular
elements is dense in 8. We let Aut(8) be the group of automorphisms of 8 and
A the subgroup of Aut(8) consisting of elements of the form v = ead x for X G
n. Thus, A is a connected nilpotent Lie group with Lie algebra ad,(n). Note
that ad, n is isomorphic to n since Definition 6.2 implies that the center of 8 is
contained in a.

6.5. Lemma. Let 8 = tt + n be a solvable Lie algebra satisfying 6.2(i)-
(iv). Let II be a regular element in tt.   Then the mapping <I>: A —► 8 defined for
vEN by <ï>(i>) = v • H - H is a diffeomorphism from N onto n.

Proof.  Since TT normalizes n, ead xiH) - 77 is in n for all X G n and
hence $ is a C°°-mapping from A onto It.  For any v E N, we identify n with
the tangent space 7„(A) in the obvious fashion. As usual, we also identify n with
the tangent space 7<t(v)(n). Then id$)v: 7V(A) —► 7<P(u)(n) is simply the map-
ping X —> [X, 77] = -ad 7T(X). Since H is a regular element, this means that $
is everywhere regular as a C°°-mapping of manifolds. Therefore, $ is a local diffeo-
morphism.

From 6.2(iv), it follows that A is the direct product of A0 = {eadX: X E
n0} and A+ = {eadX: XG n+}. Clearly, $(A+) C n+ and $(ead*i;) = [X, 77]
+ $(!)) for X G n0, v E N+. Consequently, there is no loss of generality in
assuming that n = n+. By 6.2(iii), we may find an element 770 G a with
a(770) > 0 for all a G A. Define a(I) = e~t&dHOE Aut(8). From the remarks
in 6.3, for each root X = a + iß, a(OI„c = «r Wo)<?-fcl(/io)'T for F a fixed

A
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unipotent operator onn^.  This implies limt_^„o(t)X = 0 for allA" G n.  For
XG n and v - eaàX GN, it follows that lim,.^ a^ofr)-1 = limí_>00eado(í);,r =
identity element of Aut(8). Moreover, o(t)H = H since a is abelian, and this
implies

(1) $(o(t)vo(trx) = o(t)$(p).

Because (d$)e is nonsingular, there exists a neighborhood U of the identity in N
which is mapped diffeomorphically onto a neighborhood F of 0 in n. Given any
XG n, o(i)XG Vfor sufficiently large t.  Since cr(r) normalizesN, (1) implies
that X G o(t)-x$(N) = 4>(A0.  Similarly, for vx and v2 arbitrary in N, a(fpxa(t)~l
and o(t)v2o(t)~x belong to V for sufficiently large t.  From (1) it follows that
$(vx) = *(f2) implies vx =v2.   Q.E.D.

6.6. Proposition. Let 8 be an NC algebra with n = [8, 8]. Let a be an
arbitrary subalgebra of 8 which is complementary to n.   Then a is abelian an
properties 6.2(ii)-(iv) hold. Moreover, any other subalgebra a' of 8 complemen-
tary to n is the image of a by an automorphism o of 8.  One may take o = eidX
where X G n is uniquely determined by a and a'.

Proof.   By definition, we may find an abelian subalgebra a of 8 for which
properties 6.2(i)-(v) hold.  Let a' be any other subalgebra of 8 complementary
to n.  Since properties 6.2(i)-(v) are preserved under automorphisms, to prove
6.6, it is enough to exhibit a unique element vGN (see Lemma 6.5 for notations)
such that v(0.) = a'.  Let H he a regular element in a.  The direct sum decom-
positions 8=a-t-n = a' + n guarantee the existence of an element H' G à'
such that H - H' G n.  By Lemma 6.5, we may find v G N such that v(H) = H'.
Since H is regular, a equals i(H), the centralizer of ZZ in 8.  But v is an auto-
morphism and hence v(l(H)) = l(H'), the centralizer of H' in 8.  Since a' is
necessarily abelian, a' C i(ZZ'). However, dim a = dim a' = codim n, and it
follows that a' = i(ZZ') = v(a). The uniqueness of v follows from Lemma 6.5.
Q.E.D.

7. Construction of metrics with negative curvature.
7.1. Our goal now is to prove that any NC algebra 8 carries at least one

(and, in fact, many) metrics with negative curvature. We start with a metric on
8 = a + n for which the operators ad ZZ, ZZ Go, resemble almost normal opera-

tors.  Skillful linear "deformation" transforms this metric into a metric with nega-
tive curvature. These deformations are equivalent to modifications of the Lie
algebra structure of 8 which make n "almost" abelian.

7.2. Defintion.   Let 8 be an NC algebra. An inner product on 8 is said
to be admissible if the following conditions are met (using the notations of 6.1).
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(i) The orthogonal complement tt of n in 8 is a (necessarily abelian) sub-
algebra.

(ii) Under the canonical extension (see 4.1) of the inner product from n to
nc, complex root spaces n£ and nf of tt are orthogonal whenever X and p axe
inequivalent roots (see 5.1).

(iii)  The orthogonal complement n1 of n° = 2û,(3ea«n°^ in n (see 6.1)
is a-invariant, and ad 77|ni is normal for all 77 G a.

The results of §5 show that if 8 is a Lie algebra endowed with a metric
having negative curvature, 8 must be an AC algebra and the inner product on 8
must be admissible.

Now if 8 is an AC algebra, admissible inner products on 8 obviously exist
in view of Definition 6.2 (take, for instance, the subspaces n£ to be pairwise
orthogonal and use 6.2(v) to guarantee that 7.2(iii) holds).

Whenever we have an AC algebra 8 = 0 © n endowed with an admissible
inner product, we select elements a¡, 0 </ < m, in tt* with a0 = 0 and with the
property that for any root a + iß there exists a unique index / such that a = ca¡
for some c > 0.  For / = 0, 1, . . . , m, we define 77- as the unique vector in a
such that (Hj,77) = a;(77) for all77G a and set n;- = 2C>0/Jeü,nca.ß. Hence
n = ®o«/<mn/- Using Definitions 6.2 and 7.2 instead of Theorem 4.8, Corol-
lary 4.9, and Theorem 5.2, we proceed along essentially the same steps as in
§5.3 to obtain a finer decomposition

(1) nc = ©£p
p

corresponding to equivalence classes of roots, and to construct a linear operator
E on nc which is equal to zero on n0, commutes with the adjoint action of a,
leaves invariant the subspaces na/3, n£, n;-, and Jpp, and satisfies 5.3(i)-(v).  In
particular, for xT- the composition of E with the orthogonal projection from n to
n;-, the operators

(2) 7(77) = ad 77-   £    ajiH)Ej
Kj<m

are skew-symmetric fox H E tt. By construction, for ¡p   C nf, the restriction of
7(77) to ¡p is a scalar operator. Since the complexifications of n° and n1 are
the direct sums of their intersections with the various subspaces <pp and are n-
invariant, it follows that n° and n1 are £-invariant.

We now settle the case where n is abelian which will play the role of a
"limiting situation" in our approach for the general case.

7.3. Proposition. Let 8 be an NC algebra endowed with an admissible
inner product. Assume that n = [8, 8] is abelian.  Then 8 has negative curvature
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¿/ and only if the curvature tensor R is positive when viewed as a symmetric
operator on A2 8. In general, R vanishes on the orthogonal complement of
n+ A n+ + 2i</<mn/. A Hin A28.   Using the notations of 4.1 and 7.2,R is
positive (respectively, positive definite) on n+ A n+ 4- 21</<mn/- A Hj if and
only if

(i) Re(E) and N(E) are positive (respectively, positive definite);
(ii) for 1 </, k <m, (Hj, Hk) is nonnegative (respectively, strictly positive).

Proof.  As seen in 7.2, properties 5.8(i)-(iv) hold. Consequently, we may
make use of the results and notations of 5.8, 5.9, 5.10, and 7.2.  Since n is
abelian, 5.8(4) implies that Dx = 0 for XG n. Therefore, formulas 5.9(7) and
5.9(8) simplify to

(3) R(XAH) =    Z    <Xj(H)N(Fj)X A Hf,
\<¡<m

(4) R(X A Y) =    Z    <#/> Hk)Re(Ef)X A Re(Ef)Y,
Kj<m

forX, re n.ZZGa.
By (3), when / > 1 and X G n;- is an eigenvector of N(E) for the eigenvalue

a, X A Hj is an eigenvector of R for the eigenvalue alZZyl2.  By (4), when 1 </,
k < m and X G n -, Y G nk are eigenvectors of Re(E) for the eigenvalues b, c,
then X A Y is an eigenvector of R for the eigenvalue bc(H¡, Hk). The collection
of eigenvectors for R just described span n+ A n+ 4- 21</-<mn/- A Hj. Using
the notations of 5.10, the orthogonal complement of this collection is (a0 + n0)
Ai + uAa+L  But Lemma 5.10 and formula (3) imply that R vanishes on
this subspace.  Consequently, it is possible to find an orthonormal basis of A28
with the property that each element in the basis is an elementary tensor (i.e. may
be written in the form V A W for V, W G 8) and an eigenvector of R.  It follows
that the symmetric operator R on A28 is positive if and only if (R(Z), Z) > 0 for
every elementary tensor Z G A28, i.e. if and only if 8 has negative curvature.
The above list of eigenvalues for R shows immediately that conditions (i) and (ii)
imply R > 0.

Conversely, if R > 0, we have a > 0 whenever a is an eigenvalue of N(E)
and be > 0 whenever b and c are eigenvalues of Re(ZT|n.) for/ — 1, 2,. . . , m.
Thus N(E) > 0 and all eigenvalues of Re(ZT|n.) have the same sign. However, all
eigenvalues of E\n. have strictly positive real parts for / = 1, 2.m, and this
implies

(5) trace Re(£ïn.) = trace(£ïn.) > 0.

Since EL   = 0 by convention, Re(E) must be positive.  By (5), for 1 </, k<m,
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we may select eigenvalues b of Re(x7|n.) and c of Re(xT|n ) with be > 0. From
above, bc(H¡, Hk) > 0 and we deduce that (H¡, 77fc> > 0.

The statements in Proposition 7.3 regarding positive definite operators follow
trivially.    Q.E.D.

7.4. Lemma. Let Abe a linear operator on a finite dimensional real Hubert
space §.  Let C be a set of linear operators on <p such that CE C implies C*E C
and CA = AC.  Then there exist linear operators Tx, T2,. . . on Q which are
invertible, selfadjoint, commute with the elements of C, and have the property
that lim,,^,,, TnAT~x exists and is normal.

Proof. We first handle some special cases. If A is a scalar operator (in
particular, if Q is one-dimensional), then A is already normal and there is nothing
to prove. Now suppose A is semisimple and has only the eigenvalues X and X for
some complex scalar X. Thus §c, the complexification of £, is the direct sum of
the eigenspaces ip£ andip£. Denote by < • , • > the canonical extension to§c of
the inner product on Jp. Let { • , • } be the unique Hermitian form on Jpc satis-
fying the conditions

jo       ifue$c we$Jt,
{v, w}= < r r>

( (v, w)   if v, w E ip£ or v, w E %%.

Trivially { • , • } is an inner product and hence there exists a positive definite
operator 7 on §c such that {v, w} = (Pv, w) for all v, w E ip. Note that relative
to { • , • }, Ac is normal since its eigenspaces are orthogonal. An easy computa-
tion shows that this impliesPV2AciPVl)~x is normal relative to < • , • > where, as
usual, PVl denotes the unique positive definite operator whose square is 7.  We
now claim that 7" is the complexification of an operator 7 (necessarily selfadjoint)
on ip commuting with the elements of C. Given this claim, we obtain TAT~X
normal on ip and hence the theorem holds for this case.  To prove the claim, we
must show that PVl commutes both with the conjugation operator / on ¡pc and
the operators obtained by complexification of the elements of C. It is enough to
show that 7 commutes with these operators since any operator commuting with
7 automatically commutes with any function of 7. For C G C, we continue to
write C in place of C° and note that C and C* leave invariant the eigenspaces
ip£ and Jp£. Consequently, if v and w belong to the same eigenspace, the defini-
tion of { • , • } implies that

<PCv, w) = (Cv, w) = (v, C*w> = (Pv, C*w) = (CPv, w).

If v and w belong to different eigenspaces, however, we obtain

(PCv, w) = {Cv, w} = 0 = {v, C*w} = <Pv, C*w) = (CPv, w).
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It follows that PC = CP. Making use of the fact that / interchanges the eigen-
spaces of A and has the property (Jv, w) = (v, Jw) for all v, w G Jpc, a similar
computation shows that PJ = JP.

For the general case, we use induction on dimip. We pick any (real or complex)
eigenvalue X of A and set Jpt = Jp n (Jp£ 4- Jpj*).  If Jpj = Jp, then A belongs to
one of the two special operator classes considered above. Otherwise, define
Jp2 = Jpj.  Trivially, Jpx is C-invariant; since C is closed under the transpose oper-
ation, Jp2 is C-invariant as well. For; = 1,2, let Q¡ he the orthogonal projection
of Jp on Jpy, Aj = 0/^40/. and Cy = {C|$.: CGC}. Apply the induction hypoth-
esis to (Aj, Cj, Jp;) and thereby obtain sequences TH , (n > 1) of selfadjoint
invertible operators on Jp. which commute with C.- and have the property that
Bj = lim„^.+ 00 Tn jAjT'j exists and is normal.

Let an, n > 1, he any sequence of strictly positive real numbers such that

um a„iir„)1iiii(r„>2r1ii = o.
n-*+<*>

Define Tn = anTnXQx + Tn2Q2. It is easily checked that Tn is selfadjoint,
invertible, commutes with C and hmn_>+00 TnAT~x = BXQX + B2Q2 is normal.
Q.E.D.

7.5. Lemma.  Let (V, (•,-)) be a finite-dimensional real Hilbert space and
Bx: V x V—* Va Lie algebra structure, i.e. Bx is alternating bilinear and satis-
fies the Jacobi identity.  Suppose T is an invertible linear operator on V.  Let
(81 > < " > " \ ) denote the pair consisting of the Lie algebra 8, defined on V by
Bx and the inner product < • , • >j defined by (X, Y)x = (TX, TY).  Let
(82, < • , • >2) denote the pair consisting of the Lie algebra 82 defined on V by
the Lie algebra structure B2(X, Y) = TBX(T~XX, T~xY)and the inner product
< • , • >2 = < • , • >.   Then <Z?(2)(7T A TY), TX A TY)2 = <Z?(1)(Z A Y), X A Y)x
for all X, YGV, where R^'\ j = 1,2, is the curvature tensor of (8;-, < " , • >,•).

Proof.  The definitions imply that T: 8, —* 82 is both a Lie algebra
isomorphism and a vector space isometry. Then formulas 3.1(1) and 3.1(2) imply,
for X.YGV,
(6) v^ = rv^1)r-1,

(7) Z?(2)(7T A TY) = TRlx)(X A Y)^1,

where V^ and R^ are the covariant differentiation and curvature tensors associ-
ated with (ij, < • , • )j). The lemma follows from (7) and 3.2(6).   Q.E.D.

We are now ready to complete the proof of the main result of this paper,
characterizing the Lie algebras which admit metrics with negative curvature. The
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case of strictly negative curvature has already been studied by Heintze [4] and
we compare his results to ours in 7.8 below.

7.6. Theorem.   Let & be a Lie algebra.  There exists a metric on 8 with
negative curvature if and only if 8 is an NC algebra (see Definition 6.2).

7.7. Corollary. Let S be a connected Lie group.   There exists on S a
left-invariant Riemannian metric with negative sectional curvature if and only if
the Lie algebra of S is an NC algebra.

Proof.  Corollary 7.7 follows immediately from Theorem 7.6. As we have
already pointed out, the results of §5 prove the "only if part of Theorem 7.6.
To show the converse, we assume that 8 is an AC algebra and select arbitrarily
an admissible inner product < • , • > on 8 • We use the notations of 6.1 and 7.2
and write 8 = tt + n.  Replacement of the inner product on a by any other
inner product still results in an admissible inner product on 8.  By 6.2(iii), the
real parts of the roots lie in an open half-space of tt* and hence we may assume
our chosen inner product satisfies (H¡, Hk) > 0 for 1 </, k < m.   As seen in 7.2,
conditions 5.3(i)-(v) and 5.8(i)-(iv) and all of the results of 5.9 and 5.10 are
valid.

Define tt0 = {77 G 0: a(77) = 0 whenever a is the real part of a root} and
let n+ be the orthogonal complement of tt0 in o.  Let 80 = tt0 © n0 and
8+ = tt+ © n + .  Then 80 and 8+ are subalgebras of 8 with [80, 8 + ] = {0}
and 8 = 80 © 8+. Associated with 8 we have, as usual, the curvature tensor 7?
and the covariant differentiation operators Vz for Z G 8.  From 5.8(4), 5.9(5),
and 5.9(6), we see easily that Vz = 0 for Z G 80 while, for Z E 8+, Vz is zero
on 80, leaves 8+ invariant, and its restriction to 8+ agrees with the corresponding
covariant differentiation operator on the Lie algebra g+ endowed with the re-
stricted inner product.  By 3.1(2), it follows that (8 ,<•,•>) has negative curva-
ture if and only if (8+ , <*,•>) has negative curvature.  Since our proof will
involve modifications of < • , • > only on 8+, we may assume from now on that
80 = {0} and hence n = n+ = 'Zl<¡<mnl:  In this situation, the eigenvalues of
the operator E on n introduced in 7.2 all have strictly positive real parts.

As seen in 7.2, the subspaces §, n°, and n1 are invariant under the oper-
ators E, ad 77, and 7(77) for H E o. From the decomposition nc = 0pipp, we
obtain the decompositions n° = 00° and n1 = ©0p where 0° = n° n
(§/> + %)> 0¿ = n1 n (<pp + $p), and §p is the image of §p under conjugation.
By applying Lemma 7.4 for each index p to the operator 7|eo on 0p relative to
the class Cp = {7(77)1,0: 77Go}, we obtain invertible selfadjoint operators
7,, 72, . . . on n which commute with 7(77) for all 77 G a, reduce to the identity
operator on n1, leave the subspaces 0p and 0p invariant, and have the property
that limn_>00 7„xT7^" ' = £■„ is a normal operator on tt.  Then 7£ leaves invariant
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the complexification J£_ + Jp. of Dp + ttp. Let pp + ivp be the element of (a*)c
associated with Jp   as in 5.3.  By construction, p   - iv   is the element associated
with ipp, Jpp = ipp if vp = 0, and J(H) = ivp(H)I on Jpp.  Since T% commutes
with J(H) for all H G a, it follows that T% leaves each subspace Jp   invariant.

Now for each n > 1, let a„ = n \\Tn || \\T~x II2 and define a linear operator
Un on 8 by

UAH) = H for H G a,
(8)

Un(X) = anTnXîorXGn.

It follows easily that

(9) \xmUn[U-xX,U-xY] = 0
n-*<*>

for X, YGn, while for H G n, X G n¡,

(10) lim Un[U~xH, U-XX] = lim (Tn ad HT~X)X= (cxj(H)E„ + J(H))X.
n-nx> n-*<*>

By construction, E„ is normal and commutes with J(H) for all ZZ G a. Moreover,
the eigenvalues of E^ coincide with those of E and hence have strictly positive
real parts.  Therefore, Re E„ and N(E00) = (Re E„)2 are positive definite opera-
tors.

Define Lie algebra structures Bn (n = 1, 2, . . . ) and Z?«, on the vector
space 8 by

(11) Bn(V, W) = Un[U-xV, U~XW],

(12) B„(y, W) = lim Bn(V, HO,

for V, W G 8.  Denote by 8„ (respectively, 8„) the Lie algebra with underlying
vector space 8 and bracket operation given by Bn (respectively, BM). Then 8„
and 8„ are NC algebras and the admissible inner product < • , • > on 8 is an
admissible inner product on these new algebras as well.  Indeed, note that the
properties of the operators Tn given above imply that the vector spaces n, n°,
n1, Jpp, a, the linear functionals cx.¡, pp,vp, and the vectors Hj G a retain the
same interpretations for these new algebras.  In particular, as subalgebras of 8,
8n, or 8«,, a is abelian and n is the derived subalgebra. The crucial point, how-
ever, is that (9), (10), and (12) imply that as a subalgebra of 8,», n is abelian and
the adjoint action of a on n in 8«, is normal.

Denote by Rn and Z2«, the curvature tensors associated with (8„, < • , • >)
and (8,„, < • , • >).  Using the properties of E„ listed above, Proposition 7.3
shows that R„ is a positive operator on A2 8  = A28M. is positive definite on
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n A n + 21<<mn, A 77-, and vanishes on the orthogonal complement tt A tt +
L of this subspace in A28. Since B„ = lim/J_>005„, we have R^ = limn_>+0O7?n,
and hence, for sufficiently large n, Rn is positive definite on

(n A n ©    £   nx A 77,   )
\ Kj<m r

Unfortunately, although (by Lemma 5.10) Rn vanishes on a A tt, Rn
need not vanish on L since n as a subalgebra of 8„ is in general not abelian. We
shall nevertheless be able to show that for large n the quadratic form Qn defined
on A28„ by

(13) Ö„(Z) = (RnZ, Z>
for Z G A2 8 „ and 1 < n < +°° is positive on elementary tensors.   This does not
imply that Rn is a positive operator, but of course guarantees negative sectional
curvature on (8 „,(",• )).

Let V = X + H,W=Y + K with X, Y E n and 77, K E o. From Lemma
5.10, and symmetry of Rn, we get

Ö„(FA W0 = ö„(XAA--yA7T)

(14) + 2(RniX r\Y),XAK-YMI> + Ô„(X A Y).

Let 7 be the orthogonal projection of n A tt on 2,</<m n- A T7;-. Since Rx is a
positive operator with kernel (o A tt © L), there exists a scalar a > 0 such that
for all X, y G n  and H,KEa,

QJ(X r\Y)>alXA Y\2,      ßM(X t\K-Yi\H)> xi|7(X A K - Y A H)\2.

Given e > 0, it follows that for n sufficiently large,

(2n(XA/Y-yA77) + ß„(XAy)

> ia - e) {IX A y|2 + |7(X A K - Y A 77)|2 }.

We will show below that for n sufficiently large,

(16)       k7*„(X A Y), X A K - Y A 77)1 < e|X A y| |7(X A K - Y A H)\

holds for all X, Y E n, TT, K E tt. Supposing this has been shown, (14)—(16)
imply that for « sufficiently large,

Q„(P"A rV)>(fl-e){|XAy|2 + |7(XAy-yAT7)|2}

-2e|XAy||7(XAA:-yA77)|.
Taking e < xx/2, it follows that there exists n0 > 0 such that (8 „,<•,• >) has
negative curvature for all n>n0. Now define new inner products <-,->„ on the
original Lie algebra 8 by (V, W)n = (UnV, UnW) for V, WE 8.  It follows from
Lemma 7.5 and the definitions of 77„ and <-,•>„ that («,<•, • >n) has negative
curvature for all « > nn.
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It remains to verify (16). For this, we shall apply repeatedly the following
elementary observation. Suppose

(i) An in > 1) is a sequence of alternating bilinear maps from n x n into
n such that lixnn_t,a,An = 0, and

(ii) C„ in > 1) is a sequence of linear maps from n A tt into n such that
lim„_>0OC„ exists and C„ vanishes on the kernel Í. of 7 for all n.

Then, given e > 0, there exists n0 such that whenever n> n0,v/e have

|C4„(X, Y), C„(X A K - Y A 77)>| < e|X A y| |7(X A K - Y A 7T)|

for all X, y G n, TT, K G o.
From formula 5.9(9), we may write (Rn(X AY), XAK-YaH) = Z„ +

@n where

£„ = <3x9„(X, Y)I2 + (ad,n X)fY/2 - (ad<n Y)fX/2, hnY - knX),

e„ = (Bn(X, knY) + BniknX, Y), X) - (Bn(X, hnY)-B„ihnX, Y), Y),

and hn = Re(adt/j 77), kn - Re(ad<n K).
For the expression H„, we let An(X, Y) be the term appearing on the left-

hand side of the inner product and define C„: n A n —► n by Cn(X AK) =
Re(ad4 K)X. Then (i) is trivially verified since n is abelian in 8„ while Lemma
5.10 and formula (10) imply that (ii) is verified. We now turn to Qn. We use the
decompositions X = SaXa, Y = ~2yY  where Xa and Y   axe the components of
X and y in ^ßtiaß and 26n7g, respectively.  By expanding the expressions in-
volving Bn in terms of these components, 0n becomes a sum over a and y of ex-
pressions involving the inner product of X or y with elements in BnCZßnaß, 26n76).

We first examine the contribution i>n to 0„ consisting of the partial sum
over all a and y which are dependent.  For this, we recall that a and y are depen-
dent if and only if there exists an index / (1 </ < m) such that a = ca-, y = da,
for some positive scalars c and d. Furthermore, ity = %c>o,ßea*nca-,ß 1S a SUD"
algebra of 8„ orthogonal to nfc for / + k. Set Djn = Re(TnE¡T~x), X¡ =
Sc>0Xca/) and y;- = 2d>oydû/. Since hn = S1</<may(77)D/(„ and kn =
Sl^mOyW/.r,' we obtain

*n =    £    <Bn(DjnX¡, Yj) + Bn(X¡, D,n), otßVC, - ol¡(H)Y¡).
1 </<m

By (9)-(ll), the first factors in these inner products satisfy (i).  By Lemma 5.10,
the second factors satisfy (ii) with Cn independent of n.

Next we examine *„ = 0„ - $„.  Fix a pair of independent elements a and
7 in a* which arise as the real parts of roots of tt in n. Then a = ca¡, y = dak
for c, d > 0 and 1 </ i= k <m. Call X¿ (respectively, Yx) the component of X
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(respectively, Y) in n1 n Eptt^ (respectively, n1 n 26n7>5). Since E\ai is
normal and T„\ni = I, it follows from (8) and (11) that knXxa = a(ZO*¿, kn(Yxy)
= y(K)Yx. Moreover, Bn(n¡, nfc) = ^„(n1 n n;, n1 n nfc) and thus

with a similar expression for kn replaced by hn. Now let / be the unique index
such that a + 7 = t¡a¡ for some t¡ > 0. Then B^X^, Yx) G n¡ and hence is
orthogonal to x\h for all h =£ I. Consequently, the contribution to *„ involving
Xa and Yy is given by

(B„(Xa, knYy) + Bn(knXa, Yy), X) - (Bn(Xa, hnYy) + Bn(hnXa, Yy), Y)

= t,W„(Xxa, Yx), afftX, - a0)Y¿.

Combining this with the contribution involving X  and Ya, we obtain

t,(B„(Xxa, Yy) + Bn(Y\, Xjf), al(K)Xl - a,(H)Y,).

As before, this expression is expressible in terms of operators satisfying (i) and (ii).
Since ̂ n is simply the sum of such expressions over all independent a and 7, we
have shown that (R„(X A K - Y A H), X A Y) is a finite sum of expressions sat-
isfying (i) and (ii).  Since the number of summands depends only on the number
of roots and hence is independent of n, we conclude that the desired inequality
(16) holds for « sufficiently large.   Q.E.D.

7.8. Corollary (see Heintze [4] ). Let 8 be a Lie algebra.  Then 8 carries
a merri'c with strictly negative curvature if and only if 8 is an NC algebra with
dim a = 1 and n0 = {0}, i.e. if and only if 8 is solvable, codim[8, 8] = l,and
there exists X G 8 such that the eigenvalues of adnA' have strictly positive real
parts.

Proof.  The necessity follows directly from Lemma 5.10 and Theorem 7.6.
The sufficiency is a direct consequence of the proof of Theorem 7.6 since for n
sufficiently large, Rn is positive definite on (n+ A n+ + 21<;.<mny AZZ;) and
this space coincides with A28 when n0 = {0}, dim a = 1.   Q.E.D.

7.9. Remarks.   Corollaries 7.7 and 7.8 show that among manifolds with
negative curvature, those with strictly negative curvature play approximately the
role of rank 1 symmetric spaces among all noncompact symmetric spaces. Heintze's
paper [4], in contrast to ours, shows that the study of the strictly negative case
may be handled directly since most of the complexities of the general situation
(e.g. deciding that a is abelian, examining the subspace L in A28, and establishing
the decompositions naß = n°u + n¿j(3) are then absent. The inner product on8
constructed in Theorem 5.10 had the special property that all angles between real
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parts of roots (as elements of a*) were acute. As was seen in Proposition 7.3
this is a necessary condition when n is abelian. Our argument shows, roughly,
that it is sufficient if n is "almost" abelian.  In general, however, this condition is
by no means necessary. Indeed for S an Iwasawa factor in a noncompact semi-
simple Lie group G, transportation of the metric from the symmetric space G/K
(K a maximal compact subgroup of G) to the Lie algebra of S results essentially
on a in the inner product induced by the Killing form of fl.  As is well known,
angles between simple roots relative to the Killing form are obtuse. The solvmani-
folds with negative curvature actually constructed in the proof of Theorem 7.6 are
thus clearly of a special nature which will be elucidated in Part II of this paper.

8. Conclusion.
8.1. Our approach throughout this paper has been to pass by an isometry

from an arbitrary solvmanifold M with negative curvature to a Lie group S equipped
with a left-invariant metric. We have shown that an arbitrary simply connected
Lie group S can arise in this way if and only if its Lie algebra 8 is an AC algebra.
Part II of our study will be devoted in large measure to a deeper look at the corre-
spondence between M and S. We note that at first glance, the correspondence
seems to be rather weak. Indeed, it is not difficult to see that for a fixed M, there
are, in general, infinitely many nonisomorphic Lie subgroups of I(M) acting simply
transitively on M and consequently infinitely many structurally distinct choices for
S. Conversely, for a fixed AC algebra 8, we have explicitly obtained in §7 infi-
nitely many distinct inner products on 8 relative to which 8 has negative curvature.
It follows easily that there exist infinitely many nonisometric solvmanifolds M all
of which may be realized by various left-invariant metrics on the same topological
group S. We now summarize the way in which the results of Part II will tighten
up the correspondence.

In one direction, given M, one is interested in discovering the extent to
which the Riemannian structure on M determines the group structure of 5. For
this, it is of course necessary to examine the family ^(M) consisting of all Lie sub-
groups of I(M) which act simply transitively on M.  We will show that every ele-
ment of 3(Af) may be obtained from any fixed element by certain modifications
and in the process determine which structural properties are common to all mem-
bers of 3(M).  In particular, we will see that there is a canonical isomorphism class
within 5(xW), i.e. for each M we can use certain criteria to select a group S(M) E
3(xW) in such a way that M isometric to M' implies S(M) isomorphic to S(M').
Among all isomorphism classes of %(M), the class of S(M) will be shown to have
optimal structural simplicity.

Conversely, suppose we have a fixed AC algebra 8.  Let M be a solvmanifold
with negative curvature realized on the associated group S.  We will see that
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knowledge of the root space structure of 8 allows one to read off the de Rham
decomposition of M   Furthermore, for any inner product < • , • > on 8 relative to
which 8 has negative curvature, the use of linear algebra alone allows one to
explicitly construct G = I0(M) and there is a group-theoretic characterization of
the Lie groups G which can arise in this way.

8.2. We conclude by mentioning several related problems and lines of in-
quiry which we have not yet attempted to look into.

(i) Examine those manifolds which have a Kählerian (or, more generally,
Hermitian) complex structure, are acted upon transitively by the group of holo-
morphic isometries, and have negative holomorphic curvature.  In particular, deter-
mine which of these manifolds have negative Riemannian curvature. Recall that
the holomorphic curvature of a Hermitian manifold M at a point p is just the
Riemannian curvature restricted to those two-dimensional subspaces of Tp(M)
invariant under the complex structure map J : TAM) —► TAM).

(ii)  Discover the extent to which well-known results in harmonic analysis on
noncompact symmetric spaces generalize to solvmanifolds with negative curvature.
In particular, for any such manifold M, relate the geometry of M to an explicit
Plancherel formula for L2(M, p) where p is the unique (up to scalar multiple)
Borel measure on M invariant under I(M).

(iii) For 5 as in 8.1, study a problem which strongly motivated one of the
authors involving "laws of large numbers" for 5-valued random variables. Thus,
assign to 5 a left-invariant metric with negative curvature and denote by D(x, y)
the associated Riemannian distance between two points x and y in S.   Fix a Borel
probability measure p on S and suppose there exists a number a > 1 for which
the integral

J(a,p,x)= fsL*>(x, y)dp(y)

is finite for some (and hence all)x GS. Classical convexity properties of D show
that there exists a unique point x(a, p) in S at which J(a, p, x) reaches an absolute
minimum. What is the asymptotic behaviour of x(a, p*k) as k —► °°? Here, for
k a positive integer, p*k denotes the fc-fold convolution power of p. When a = 2
and S = R", x(2, p) is simply the barycenter of p and it is well known that
x(2,p*k) = k-x(2,p).
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