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Abstract

Countable homogeneous models are 'simple' objects from a model theoretic point of view. From
a recursion theoretic point of view they can be complex. For instance the elementary theory of
such a model might be undecidable, or the set of complete types might be recursively complex.
Unfortunately even if neither of these conditions holds, such a model still can be undecidable.
This paper investigates countable homogeneous models with respect to a weaker notion of de-
cidability called almost decidable. It is shown that for theories that have only countably many
type spectra, any countable homogeneous model of such a theory that has a Z2 type spectrum is
almost decidable.

1980 Mathematics subject classification (Amer. Math. Soc): 03 C 5.7.

This paper continues an investigation of the notion of "almost decidability,"
introduced in [1], that approximates decidability with respect to countable
structures. The type spectrum of a model 21 is the set of complete types re-
alized by the model. A type spectrum of a theory is a type spectrum of one
of its models. We restrict our attention to theories whose complete types
are all recursive. The main result of this paper is that if T is a decidable
complete theory with only countably many type spectra, then every count-
able homogeneous model of T with a E° type spectrum is almost decidable.
It was shown in [2] that if T has countably many complete types and there
is a decidable model realizing all the recursive types of the theory, then ev-
ery countable homogeneous model of the theory with a Z° type spectrum is
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344 Terry Millar [2}

decidable. In [3] there is an example of a complete decidable theory with an
undecidable countable homogeneous model whose type spectrum is 1.^. In [4]
there is an example of a complete decidable theory with only countably many
type spectra, such that the theory has an undecidable countable homogeneous
model.

A tree Tr will be a subset of 2<w that is closed under predecessors. For
elements f,g in 2<wuwco, define / < g just if W < lh(f)[f(i) = g(i)]. Thus
if Tr is a tree and / < g e Tr, then / e Tr. A function / € 2W is a branch of
Tr just if every proper initial segment of / under < is in Tr. Let {7t,|/ < co}
be an effective enumeration of all formulas of L, and let Pw be the set of all
finite subsets of {TT,-|/ < co}. Let {ni\i < co} be a standard enumeration of
all partial recursive functions fi: co —> co. We will assume that we have fixed
recursive numberings of such objects as co", etc. Let TySp(2l) be the type
spectrum of 21. Let 6(x/y) denote the formula obtained from 8 by replacing
all free occurrences of 'JC' in 8 by 'y\ attending to bound variable changes
as necessary. Let 30pc]# denote the formula obtained from 6 by adjoining,
as a prefix, a block of existential quantifiers to 8. The variables in the block
are those free variables occurring in 8 that are not in j?. Let 30[JC]* denote
the formula obtained from 30pc]# by replacing all free occurrences of x(i)
in 8 by JC,, I < lh(x). This modification simply renumbers the variables in jc,
starting with '0' and ending with llh(x) - V. Let 8[fx] denote the formula
obtained from 8 by replacing all free occurrences of x, in 6 by x~(i), i < lh(x).
This modification allows a renumbering of the variables x, —> jc(/), / < lh(x).
A set of formulas will sometimes be identified with its conjunction. Most
other notation not defined is common.

Now define F to be a model tree (for the language L) just if

(1) F is a function with domain 2<(0 and range a subset of Pm,

(2)d<a^Fsc Fa, and

(3) V/ e 2to[\Ja<f F(a) is the elementary diagram of an L-structure].

If F is a model tree and g e 2W, then we shall use 21̂  to denote the L-structure
corresponding to g, as in Condition (3). An L-structure 21 is almost decidable
just if there is a recursive model tree F such that for all but countably many

THEOREM. If T is a complete theory with only countably many type spectra,
then every countable homogeneous model %ofT whose type spectrum is 1% is
almost decidable.
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[3] Homogeneous models and almost decidability 345

PROOF. We will construct a recursive model tree for St. Fix S\ e 1% such
that

Vr e TySp(a)3w« e Si[(n) is the characteristic function of F]
and V« e 5 i3 r e TySp(2l)[(/i) is the characteristic function of F]-

Also fix recursive 5 such that V/i[« e5i<-» 3xV>'5'(x, y,«)]. Part of the diffi-
culty during the construction is that we will be unsure of which {«} actually
represent types in TySp(2l). Typically we will wish to determine membership
in the represented type. Therefore, we will establish a convention. During
the construction we will never be attempting to determine membership ac-
cording to {«} alone. Instead, this will be balanced against an attempt to find
a y such that -<S(r, y, n) for an associated r. If all membership questions of
interest are answered before such a y is found, fine. Otherwise we will en-
tirely abandon the pair {n, r). The point is that if VyS(r, y, n), then in fact
{«} does represent a type in TySp(2l). Even if n does belong to S\ and r is
not a witness, there will be other attempts made to verify n in such a way
that the construction succeeds. Denote by Fm the potential type of TySp(2l)
with witness m. If at some stage a y has been found such that ->S(r, y, n),
where m = (n,r), then we will say Fm has died by that stage, otherwise it
is promising. So we will now assume that if a membership question is to
be determined of T(n,r), then simultaneously a search is initiated to find a y
such that ->S(r, y, n).

The construction will proceed by induction on 2<w. The objective is to
define I.g e Pw for each 8 e 2<<a. At stage 2s + 1 of the construction, either
ns or ->ns will be put into ILg for each 8 e 2s+l. Finitely many other for-
mulas may also be put into ?.$• Fix an effective enumeration {jc,-|i < a>} of
{Xj\j < (o}<w. There are three primary strategies that will be implemented
during the construction. The first is to ensure that TySp(2l) = TySp(Sl^) for
each g e 2W. The second strategy is to ensure that in every model of the tree
each tuple of elements realizing a type in TySp(2l) has extensions realizing
the consistent extensions of the type in TySp(2t). This will give at least selec-
tive homogeneity. The third strategy is to attempt to have models in the tree
realize in common only those types that are realized in 21. This strategy will
be implemented by attempting to ensure that every finite tuple of elements
realizes a type that is principal over some finite set of elements in the em-
ployment of strategies one and two. We will now phrase these strategies as
requirements.

Pn: Fn dies, or is realized in every model of the tree.
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Q{n,m,a): either (1) Tn dies; or (2) Ym dies; or (3) ^[Tn C Tm]; or (4) for
every model of the tree, either (i) ;ca does not realize Tn or (ii) there is a j
such that xa~x~j realizes Fm.

Each of these first two kinds of requirements will be active or terminated
for a given node of 2<w at any given stage of the construction. Termination is
permanent and is precipitated by either the death of the associated type or the
fact that for the Q requirements, (1), (2), (3) or (4)(i) obtains. Condition (3)
will hold at stage 5 just if (1) or (2) holds or else the first s formulas in Fn are
not in Tm. Condition (4)(i) will hold at stage s for all / e 2a such that 6 < f
just if "Lg U Tn(xa) is inconsistent. A death will cause the termination of the
requirement for the entire tree. A failure of ~xa to realize the appropriate type
in a subtree of the tree will cause termination of the associated Q requirement
in that subtree. Let P(v, t, a) be the tuple associated with the requirement
Pv at node a at stage t. If Pv is terminated by stage t, then P(v, t, a) = ( ),
the empty sequence. Similarly, let Q(v, t,a) be the tuple ~xa~Xj associated
with requirement Qv at stage t at node a if Qv is active at stage t at node a,
and otherwise Q(v, t, a) — ( ) .

Another major difficulty is amalgamating the types associated with the
different P and Q requirements in a consistent way. The obvious candidates
for such amalgamations are the types in Sp(2l). Unfortunately types are
infinite objects. Therefore containment of one type in another type of greater
arity can not be determined in an effective manner. However, since the types
are all recursive, if one type is inconsistent with another then we can find
this out at some finite stage of the construction. Our strategy in that case
will be to abandon the candidate constants of the offending type associated
with the requirement of lowest priority. We will assign a new candidate to
the realization of that type, and simultaneously search for a new type that
amalgamates the previous types. We will treat this attempt to amalgamate
types as a requirement.

R: all the types associated with active P, Q, and R requirements of higher
priority are amalgamated by some type in tySP(2t).

In order to be more specific about the R requirements, we must establish
the priorities of the various requirements. The priorities of the P, Q, and R
requirements are listed below:

Pn : 5«;

RniQ:5n + l;

Qn:5n + 2;

Rni : 5n + 3.

Amal(n, /, t,a) will be either undefined or the index of the type associated
with Rni at stage t in the neighborhood determined by a, / = 0,1. Define
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[5] Homogeneous models and almost decidability 347

R(n, i, t, a), i - 0,1, inductively on n:

R(0,0,t,a)=dfP(0,t,a);
R(n, \,t,a) =df R{n, 0, t, aYQ(n, t,a);
R(n+l,0, t,a) =df R{n,\, t, a)T(n, t,a).

The final set of requirements, {Sn\n < ca}, will control the attempt to make
the type spectra of the different models in the model tree as nearly disjoint
as possible. For each n, requirements Sn will have priority 5« + 4.

S{a.u) • V/, g e 2a'[if cT(0) < / and a~(l) < g then

,] * \3fi < f[6 e F(0)]} / {3d[Xj] * \3/l < g[6

Not all of these requirements will be met, but for all but countably many
branches of the tree a failure on the branch will be caused by a realization of
a type in TySp(2l), which of course should not be avoided.

DEFINITION. £{„,,,;> allows 6 through with respect to {I*s\d £ 2s+l} just
ififi.y e 2s+l [where n = (a.i.j), t = 2s + 1, a = Amal(«, 1, t,y), and
6 = Amal(«, 1, t,p)] if

{\)oT(Q)<y,or(\)<fi,
(2) gGa(R{n, 1, s, y)) U 327[x,]# U 3Y.fi[Xj] * [/x,] is consistent, and
(3) rb{R(n, 1, s, fi)) U 3X/?[x,]# u 3Zj,[]c,] * [/Xj] is consistent,

then for n equal to each of

3(Zyu{dk})[xi]*,

U {**})[*;]*, k<2,

(1) if Ta(R{n, 1,5, y)) U Z? U {n[/Xj]} is consistent then

and

(2) if rb(R{n, 1,5, P)) Ul/jU {7r[/x7]} consistent then

DEFINITION, d resolves S(aiij) past (y,fi)(lh(y) = lh(fi) = s + 1) with
respect to {T.s\S e2 s + l } [let n,a, and b be as above] just if

(1) cT(0) <yandcT(l) < p,
(2) for n as above and for some v < 2

(i) Ta(R(n, 1,5, y)) u I , U {7t"[/x,]} is consistent, and
(ii) rb(R(n, 1, s, P)) Ul^U {->7tt;[/jc;]} is consistent.
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L E M M A 1. If

(1) for each 8 e 2S+', T u Z s is consistent,
and

(2) S(a.ij) does not allow 6 through s with respect to {L6\8 e 2s+l}, then
there are y , 0 such that 8 resolves S(a,-_,-) past {y, /?) with respect to {Lg\8 e

PROOF. This is just chasing definitions, so we have the details to the reader.

For a, n, v, y, and /? as above, (nv, ->nv) is called the resolvent for S(o,,-,./>
past (y, P) with respect to {Ls\8 e 2s+l}.

DEFINITION. The requirements are variable through t at stage p + 1 with
respect to {Cs\8 e s + 1} just if for all m < t,8 e 2s+i, and / < 2, where
a = S\s and a — Amal(/w, /, p, a) then

(1) if m = 4v + 2i + 1 then ra(R(m, i, p, a)) U l j U Q is consistent,
(2) if m = 4v and Pm is active then Ym(P{m, p, a))Ul.a U Cj is consistent,

and
(3) if m = 4v+2 and Qm is active, where m = {n, v, b), then Tv(Q(m, p, a))

U Z , u Q is consistent.
By our convention of using initial sequences of variables, the arity of a

type Fn is the least / for which (JC,_I = x,_i) does not belong to Tn. This can
always be determined for any type Tn that is not deceased. Therefore we will
assume that the arity of any type is known.

The construction.
Stage 0. ls =df 0, for 8 e 2<(0.
Stage 2s. This stage just provides the usual Henkin witnesses to existential

statements. So assume that in some consistent, uniformly effective fashion
n{x/xk) has been put into ZQ for some 'new' xk if 3xn e Z a , a e 2s+l.

Stage p + 1 = 2 ^ + 1 . This stage consists of many steps. We will exe-
cute a procedure repeatedly until a certain condition obtains. The procedure
takes and sets various parameters. Ini t ia l ize the parameters controlling the
diagrams by defining, for 8 e 2s, i < 2, Cg-^ =df Z>s- Now execute Proce-
dure on ( { Q | / < 2,8 € 2s},s,0). After the procedure call terminates, let
({Cg\8 € 2s+l},t,z) be the final values of the parameters. If the require-
ments are viable through t at stage p + 1 with respect to {C#\8 e 2S+1},
then 2,5 =df Q u ~La for 8 e 2s+l, where a - 8\s. Otherwise, choose
{Dg\8 €2s+l},Ds C {7Ts, -<7r.s} to maximize u < s such that the requirements
are viable through u at stage p + 1 with respect to {Ds\8 e 2 s + 1 } (choose ns

whenever both maximizes «). In this case, !.$ =df Ds\j?.a for 8 e2s+l, where
a = 8\s.
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[7] Homogeneous models and almost decidability 349

Procedure ({Cs\8 e 2s+l},t,z): if for every 8 e 2s+i,n$ e Q for some
k = 0 or 1, then the procedure ends. Otherwise fix the lexicographically least
/i g 2S+I such that 7t* is not in C^ for any k < 2.

Execute Function on arguments (fi,ns,fi,ns,t,z), returning, let us say,
(a, 6, p, i//, r, z). If r < t then we say that S^s.ij) has acted, where S^jj) is
the requirement of priority 5r + 4. Now execute Procedure on {{C'a\a e
2s+i},t,z + 1), where the C'a are defined as follows:

if r = t, then

{ CQU{0}, <r = a,

QUM, a = p,
Ca, otherwise;

if r < t, a G 2s+l such that 8~(0) < a and

r^l{r-u.P,S)W -l.l.P.S))*- (3Ca{Xi]# - 3Ca\x,]#),
then c ; =df Ca U {6};

if <J~(1) < a and

- 1, l.P.S)) \- (3Ca[xj]# ~ 3Cf\Xj]#),

and for all other <? 6 2J+1,
C'a =d

Function (3,6, y, y/, r, z): determine first if there is an S<a,,j> of priority
greater than 5r + 4 that does not allow 6 through s with respect to {C^n e
2s+i}. If there is no such requirement, then return {d, 6, ft, y, r, z). Otherwise
fix the S(axj) of highest priority r' <r that does not allow 6. By Lemma 1 fix
the lexicographically least fi,X e 2s+i such that 6 resolves S<a,j,./> past (0, X)
with respect to {C^fi e 2S+X}. Let (n,->n) be the corresponding resolvent.
Now execute Function on (A, -<n, p, n, r', z), and return whatever is returned.

Before the stage is over, we must tidy up. Determine the greatest u < s
for which the requirements are viable through u at stage p + 1 with respect
to 0. For all m < u, i, j < 2 and S e 2s

(1) if m = 5v then P(m, p + l,6~(j)) =df P(m,p,S);
(2) if m = 5v + 2 then Q(m,[+l,d~(j)) =df Q(m,p+l,d);
(3) if m = 5v + 2i + 1 then Amal(w, i,p + I,S~{j)) —df Amal(w, i, p, 8).

For all m such that u < m < s, and for /, j <2 and 8 e 2s

(1) if m = 5v and Pm is active, then let P(m, p + l,8~(j}) =df xa A Xk,
where k is the least integer such that

(i) 3c;t has the same arity as Tm,
and

(ii) no element of x* occurs in any formula of
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(2) if m = 5v and Pm is terminated, then P(m, p + 1, 8^{j)) =df { );
(3) if m = 5v + 2 and Qm is active, then let Q(m, p + 1, 8~(j)) =# xa ^3c^,

where m = (n, c, a) and k is the least integer such that
(i) Jca ~Xfc has the same arity as Tc, and
(ii) no element of 3ĉ  occurs in any formula of %s~{j) 5
(4) if m = 5v + 2 and £>OT is terminated, then Q(m,p + 1, 8~{j)) =# ( ) ;
(5) if m = 5v +2i + I then Amal(/w, /, /? + 1,6~{j)) =<#• k, where k is the

least integer such that
(i) k > Amal(/w, /', p, 5) (if the latter is defined),
(ii) Fj. has the same arity as R(m, i, p + 1, S~(j)).

This ends the stage and the construction.

LEMMA 2. Each Function call in the construction terminates.

PROOF. This is immediate, since the fifth argument on successive calls of
Function from Function is strictly decreasing and bounded below by 0.

LEMMA 3. Each Procedure call in the construction terminates.

PROOF. It is enough to see that only finitely often at stages 25 + 1 can a
given 8 € 2s+l be the lexicographically least such that TT£ does not belong to
Q for either k = 0 or k = 1. So fix such a 8. Notice that, once 8 is least such,
then until 7t£ shows up in Q for some k = 0 or k = 1, Procedure continues
to select 8 on each of its subsequent calls from within Procedure. But why
is the condition eventually satisfied? The only way it is not automatically
satisfied as if Procedure calls Function on {8, -, 8, -,-,-) which then returns
{y,-,fi,-,—,-) for the sake of S(a.ij). But then by the change in Cr and
Cp at that point in the construction, it can not happen that a subsequent
Function call on {8, -,8, -,-,-) returns {y,—,fi,-,-,—) for the sake of
S(ajj). This is because once the changes are made in Cy and Cp.y, 0 do not
satisfy (2) and (3) in the definition of "allows". Therefore Function will be
called from Procedure for the sake of 8 at most {s)(22s) times.

LEMMA 4. V/ e 2w[{d\3a < f[d e Xa]} is the elementary diagram of a
model of T\

PROOF. This is routine to check. Notice that for each s, and a < fa e
2J+1,TT* e Ea for one of k < 2. Consistency is proved by induction and
depends on the construction and the definition of 'allows' and 'resolves'. The
details are left to the reader.
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[9] Homogeneous models and almost decidability 351

D E F I N I T I O N . .£<<$,/,;) is clear through (a, /?) bys with respect to {Ca\o e 2 J + 1 }
jus t if Vy,X € 2s+l [where (d,i,j) - n,p = 2s,a = A m a l ( « , \,p,a), a n d
b = Amal(/i, \,p,X)],

ifa<y and /? < k then either

Ta{R{n, l,p,y)U {3Cy{x,]#, 3Cx[xj] * (3P,-)}

is not consistent, or

rb(R(n, 1, p.X) U {3Ca[Jc,-]#, BC^x,] * (/3c,-)}

is not consistent. If Ca = £CT, a e 2J+1, then we just say that S^.ij) is clear
through (a, ft) by stage s.

LEMMA 5. For all f e 2W, for all m < co the following limits exist:
(i)LimsP(m,s,f\s);
(ii) LimsR(m,0,s,f\s);
(iii) LimsAmal(m,O,s,f\s);
(iv) UmsQ(m,s,f\s);
(v)LimsR(m,l,s,f\sy,
(vi) LimiAmal(m, l,s,f\s).

And
(vii) Sm acts only finitely often.

PROOF. The proof is by induction on m and for all / e 2W simultane-
ously. So fix such an / and assume that the lemma is true for all n < m.
If m = 0 or Ym ever dies, then by the construction it is easy to see that
U.msP{m,s,f\s) = P(m,0,( )) or ( ) and that (ii) and (iii) also hold. So
assume that m > 0 and Fa never dies, and let a = LimsAmal(w - 1,1, s,f\s)
(by the induction hypothesis). Also, fix a stage So such that all the limits
for smaller n < m for (i)-(vi) have been permanently achieved, and such
that no Sn acts after stage SQ. Since Ta never dies, Ym e TySp(2t). Also,
we have that Ya e TySp(2t). Therefore there is some type £ e TySp(2t)
such that ra{1) u rm(W) C Z(z1Zf). By the construction, it follows that if
Amal(/n,0, t,f\,) is ever defined as a witness for £ for some t > So, then
Lim5Amal(m, 0, s, f\s) = Amal(w, 0, t, f \ t ) . But since each type in TySp(2t)
has infinitely many representatives, it follows from the construction that the
only way such a witness for Z could be avoided as if LimsAmal(/n, 0, s, f\s)
existed and were finite. But then clearly, from the construction, (i) and (ii)
also hold. In either case we have the lemma for (i)-(iii).

Next let m = (u,v,a). If Vu or Fv ever die, or it is not the case that
Tu C Fv, or ~xa does not realize FM, then from the construction it is clear
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that LimsQ(m,s,f\s) = () and that (v)-(vi) also holds. So assume otherwise
and fix so as above, and let a = L,imsAma\(m,0, s,f\s). Again we have that
rv, Ta € TySp(a), and thus there is a E e TySp(2l) such that ra{J)urv(w) c
S(z ~w). Now the argument is just as before.

Finally we must show that (vii) holds. Let m — (d, i,j). By the induction
hypothesis, our proof of (i)-(vi), and the compactness of 2m, fix an r such that
for any / e 2W the various limits in (i)-(v) for n < m have been permanently
achieved. Also pick r large enough that no Sn acts after stage r, for n < m. It
is now sufficient to show that if S^.ij) acts at stage 2s + 1 > 2r + 1, then each
time it does so it becomes clear through some (a, /?) by s such that it was not
clear through (a, ft) by s — 1, where a, /? e 2r; this is because there are less
than 22r such (a, ft). Therefore fix a stage 2t + 1 > 2r + 1 where S^jj) acted.
Let {Ca\a e 2'+1} be the value of the Cs just before Function returns, let us
say (y, n, X, -in, v), to Procedure at stage 2t+ 1, where the priority of S^.ij) is
v < t. So in particular S^jj) is not clear through (a, /?) by t with respect to
{Ca\a e 2'+ 1}, where a <y and 0 < X, a, /? e 2r. Now by the construction
we are done as long as for all y', X' e 2'+1 such that a <y' and /? < X' (where
a = Lim.sAmal(m, \,s,a),y = \AmsR{m, \,s,a), b = LinVsAmaltm, \,s,fi),
and ~z — LimsR(m, l.s.fi)),

ra(y) i

and

Assume that this is false in order to obtain a contradiction. Fix the least
s, r < s < t, such that there are y,y',X,X' e 2s+i, a < y,y' and 0 < X,X'
such that the above fails. Now fix the least z during stage 2s + 1 such that
Procedure on some ({Q|<J € 2s+i}, t, z) satisfying

and

returns {{Ds\d e 2S+1}, u, z + 1) such that one of the following fails:

rb(z) h (3D,[xj]# «- 3DAXJ]#).

Therefore u < s and let us assume the first one fails; the other is argued
similarly. Let ( ,̂ 8,x, V, u, z + 1) be the last Function return and S^^ be
the requirement of priority 5M + 4. Notice that by our choice of r, u > v.
Also it must be that o^{p) < y or a^(p) < y' for some p < 2. Let us assume
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<r~(0) < y; all the other cases are argued similarly. It is easy to check then
that

Ya{y) U {3Q[X,]#, 3(Cy U

is consistent and

ra(y) u {BCyixt]*, ^(3(cy u

is consistent. Therefore, since s < t and thus R{s,ij) is not cleared through
(a,/?) by s with respect to {Ca\a e 2s+l},R^,ij) does not allow 6 through s
with respect to {Ca\a e 2 i + 1}. But then by the definition of Function in the
construction, it must be that u = v and so S^./u) is actually S^s.i.j)- However,
since by our assumptions

then by the construction the same remains true after the redefinition, so this
is a contradiction. This completes the proof of the lemma.

LEMMA 6. For every S^jj) there is an s such that Va, /? e 2s+l,
(I) V / e SwVt > s if a <f then Amal(m, \,t,f\t) = Amal(w, l,s,f\s) and

R{m,\, t, / | , ) = R(m, 1,s, f \ s ) ; and
(II) if
(1) S~{0) <a [let AmdX{m, \,s,a) = a andR{m,\,s,a) = y],
(2)6~{l) <P [let Ama\{m, \,s,p) = b and R{m, l,s,y?) = z],
(3) r a(7) uZt tU {3£/)\Xj] * (/*,)} is consistent,

and
(4) rb(z) ulfiU {3Za[Xi] * (/xj)} is consistent,

then
Za[jc,]# is a complete formula in the theory ra(y).

PROOF. Let v be the priority of S(sjj) and fix an s such that no require-
ment of priority u < v acts after stage 2s, and all limits associated with
requirements of higher priority have permanently achieved their final value;
this can be done by Lemma 5. It is enough to show that this s works for
the lemma. Assume not, in order to obtain a contradiction. Fix a, /? € 2s+l

so that (l)-(4) above are true, but for which the conclusion fails. Since
3IQfx,]# is not a complete formula in rfl(y), there is an r > s such that
r a(7) U Zo U {E(Za U {Kr})[*,]#} and Ta(7) U l a U {-3(Za u {*,})[*,]#} are
both consistent. Thus S(s,ij) does not allow nr through 5 with respect to
{Lo\o € 2s+l}. By the construction, it must be that by the end of stage
2r + 1, S(g,i.j) does allow 7ir through r with respect to {La\(J e 2r + 1}. There-
fore fix the greatest t such that S^jj) does allow nr through t with respect
to {La\a € 2'+1}. Fix the least z during stage 2t + 1 such that S^jj) does
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not allow nr through t with respect to {Ca\a e 2l+l}, but S^.ij) does al-
low nr through t with respect to {Da\a G 2'+ 1}, where Procedure returns
({Ds\d G 2t+l},w, z + 1) from input ({CS\S G 2t+l},v,z). Then it is not
difficult to check that some requirement of priority u < v must have acted at
stage It + 1. Since O s w e have the desired contradiction.

Now we complete the proof of the theorem. Define F(a) =% Za for
a G 2<w. By Lemma 5 and the construction it follows that F is a recursive
model tree. Now suppose that f,g€.2w. We claim that every type realized
in both 21/ and 21̂  is also realized in 21. For suppose that 7 e |2l/|n and
z G |2t?|" realize the same type, for some n. Fix the corresponding x, and
Xj respectively. Let 5 € 2<0} be such that for some k < 2,8^{k) < f and
8"{\ -k) < g, and let m = (S, i,j) (assume without loss that / = 0). If y and
1 were to realize the same type, then, letting a — LinifAma^/w, 1, t, f \ t ) , w =
Lim,R(m,l,t,f\t)>b = Lim,Amal(m, \,t,g\t) and u = LimtR(m, \,t,g\t),
we would have that

Ta(w) U {30[*,]#|Va < f[6 € I a ]} U {3e[Xi] * (/*,)|V£ < g[0 G

and

rb(u) U {3d[Xj)*\iP < g[6 € 5^]} U {3d[xj] * (/x,)|Va < f[6 G

would be consistent. From this and Lemma 9, there would be an a < f such
that {30pc,]#|3/? < a[d G Zp]} generates a principal type in ra(W). But then
since Ta is realized in 2t, the type realized by J in 21/ must also be realized
in 21. This establishes the claim.

Thus, since T is assumed to have only countably many complete types, at
most countably many 21/ realize a type that is not realized in 21. But then
that says that all but at most countably many of the 21/ satisfy TySp(2l/) c
TySp(2l). By Lemma 8(i)-(iii) and the construction it follows that for every
/ G 2ft), TySp(2l) c TySp(2l/). Therefore, for all but countably many / G 2W,
TySp(2l/) = TySp(2t). Finally, by Lemma 8(iv)-(vi) and the construction,
it follows that except for countably many / G 2W, 21/ is homogeneous. So,
except for countably many / G 2W, 21/ and 21 are isomorphic. This concludes
the proof of the theorem.
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