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Abstract. The paper begins with a short survey of results on non-trivial
models (that is, those that are not integrable analytically) in general relativity

and gas dynamics. The investigation of these models is carried out by the
methods of the qualitative theory of many-dimensional dynamical systems,

using geometrical and topological ideas. The first section deals with the re-

sults of research on the evolution of homogeneous cosmological models with
a hydrodynamic energy tensor—the impulse about a singularity. In the sec-
ond section similar models are applied to the study of the complex oscillating

regimes of a classical ideal compressible fluid. The Appendix contains new, un-
published results due to one of the authors, describing stochastic perturbation
of a completely integrable Toda chain.

Introduction

Very few exact solutions are known either in general relativity or in gas dynamics.
The best known of them are the homogeneous and isotropic solutions of Friedmann
in relativistic cosmology, the spherically symmetric solutions of Schwarzschild and
Tolman, and solutions by Kerr, Taub, Kazner etc. Approximately similar solutions
are known also for three-dimensional problems of gas dynamics in the absence of
viscosity. All the known exact solutions have a high degree of symmetry. However,
they turn out to be unstable under compression of the material.

Anisotropic homogeneous models present a broader class of solutions, and the
investigation of them allows us to see the development of these instabilities. Since
homogeneous isotropic models are non-integrable both in general relativity and in
gas dynamics, their investigation demands the use of contemporary methods of
the qualitative theory of dynamical systems, making essential use of a number of
geometrical and topological ideas. The regimes arising here have very complex
characteristics, including stochastic ones.

A programme for the application of qualitative methods in problems of general
relativity was developed in the authors’ papers [1]–[4]; the application of these meth-
ods to the problem of the motion of a gravitating gas ellipsoid was accomplished in
the papers [5] and [6] of one of the authors.

Over the past ten years fairly extensive literature has been devoted to homoge-
neous models in general relativity, not using the qualitative theory (see the bibliog-
raphy in [7]). Firstly, a non-trivial regime with stochastic properties was discovered
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by Belinskii, Lifshits, and Khalatnikov (the BLK oscillating regime, see [8]). Mis-
ner [9] was the first to apply the Hamiltonian formalism in these problems. Collins
apparently first used the two-dimensional qualitative theory of Poincaré–Bendixson
to study special (mainly axially symmetric) cosmological models [10]1 some results
on the early stages of evolution of the universe parallel with those of the present
authors have been obtained by I. D. Novikov, Doroshkevich, and Lukash [11]. De-
spite the absence in these papers of an exact statement of the problem on typical
states of the universe in the early stages of evolution, and despite the fact that their
methods are approximate (they should rather be called analytical and numerical
experiments), nonetheless a substantial number of the conclusions in [11] agree with
results obtained at the same time by the present authors [2]. A detailed account of
our results is given in § 1 of this survey.

In the theory of an ideal compressible gas there are classes of solutions that
are in many respects like the homogeneous models of general relativity. (This was
pointed out to the authors by Anisimov and Zel’dovich.) In these solutions the
velocities of the gas are linear functions of the coordinates. The description of the
motion of a gas is formally equivalent to that of the motion of material point on
the group of matrices GL(3, R) with a certain potential. Spherically symmetric
solutions were found by Sedov, among them solutions of this type [15]. Some
broader classes of solutions are investigated in [16]–[19].2 Under compression, a
spherically symmetric regime loses stability, and oscillations are set up. In the
purely gas-dynamical problem any finite number of oscillations may occur, which
are then replaced by an infinite expansion. When the particles have gravitational
reciprocity, there arises a complex non-linear oscillating regime partially resembling
a BLK regime. These results are given in § 2.

The appendix “Oscillating regimes in systems with an exponential potential”
gives new results due to one of the authors.

§ 1. The qualitative theory of homogeneous cosmological models

I. The general theory of relativity, as is well-known, studies four-dimensional
space-time manifolds M4 with the Einstein metric gij (i, j = 0, 1, 2, 3), satisfying
the Einstein equation

(1.1) Rij −
1
2
gijR =

8πk
c4

Tij .

Homogeneous cosmological models are defined by the fact that M4 admits a group
of motions G (acting on the right, to be definite) with three-dimensional space-like
orbits (that is, on an orbit the metric is negative). As a rule, the case taken is the
simplest hydrodynamical energy-impulse tensor of matter

(1.2) Tij = (p+ ε)uiuj − pgij ,

1In recent years the methods of the two-dimensional qualitative theory of Poincaré–Bendixson

have also been applied in [12]–[14].
2We do not consider here the singular case of an incompressible liquid, to which a large classical

literature [20], [21] is devoted; even the equations have a different form. For a compressible gas

these equations were apparently first described and discussed by Ovsyannikov [16], the Hamilton-
ian form of these equations was indicated by Dyson [17].
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where ε is the energy density, p the pressure, p = kε, 0 6 k < 1, ui is the 4-velocity
of the matter, and the frame of reference is said to be synchrone, that is, g00 = 1,
g0α = 0. We suppose that the system of units is such that c = 8πk/c4 = 1.

The open models of Bianchi type VII and VIII and the closed model of type IX,
where G = SU(2), are the most complex ones. Let us look in more detail at this
case, assuming in addition that the material does not move in the medium; that is,
ui = δi0.

Under these assumptions there exists a basis of right-invariant vector fields
X1, X2, X3 on the orbits of SU(2) in which the metric gij is diagonal, that is
(Xi, Xj) = gij = −qiδij . The Einstein equations (1.1) after the time change

(1.3) dτ = dt (q1q2q3)−k/2,

are equivalent to a Hamiltonian system in the phase space R6(pi, qi) (i = 1, 2, 3):

(1.4) ṗi = −∂H
∂qi

, q̇i =
∂H

∂pi
,

where the Hamiltonian H has the form

(1.5) H = (q1q2q3)−(1−k)/2

(
2

3∑
i<j

piqipjqj −
3∑

i=1

p2
i q

2
i +

1
4

(
2

3∑
i<j

qiqj −
3∑

i=1

q2i

))
.

The value of H, which is conserved by virtue of (1.4), is connected with the
energy density e by:

(1.6) H = (i+ 3k) ε (q1q2q3)(1+k)/2.

The system (1.4) admits a group of scale transformations

(1.7) ϕλ : qi → λiqi, ϕλ : pi → pi, ϕλ : τ → λ(1−3k)/2 · τ

and has the monotone scale-invariant function

(1.8) F = 3
d

dt
(q1q2q3)1/6 =

p1q1 + p2q2 + p3q3
(q1q2q3)1/3

,
dF

dτ
6 0.

In what follows we examine the system (1.4) in a domain S1 ⊂ R6, which is
distinguished by the natural physical conditions of a positive space metric and
energy density: qi > 0, H > 0. By a choice of the sign of time we have F < 0 on
the side of compression.

This is the programme for applying the ideas of the qualitative theory to this
problem. Using the scale group ϕλ (1.7), we can transform (1.4) from the domain
S1 ⊂ R6 into a system defined on a five-dimensional compact factor-manifold S
completed by a boundary Γ. The resulting system on S can be extended continu-
ously to Γ and has a set of singular points, with integrable separatrices, lying only
on Γ. We can now give a full description of the regimes of the behaviour of the met-
ric for the nearly cosmological singularity q1q2q3 = 0 by means of an approximation
of the corresponding trajectory on S by a sequence of singular point and separa-
trices past which the trajectory goes, approaching the boundary Γ of S around the
cosmological singularity q1q2q3 = 0. This programme was put into effect by the
authors in [2] and [3] for G = SU(2) and for zero velocities of the material.
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II. We now proceed to the construction of the 5-dimensional compact manifold S.
It is covered, by two local charts W1 and W2. In W1 we introduce coordinates s̄i, yi:

(1.9) s̄i = piqi/G, yi = qi/G, G = (q21 + q22 + q23)1/2

In W2 we introduce coordinates si, yi, w:

(1.10)


si = s̄i/(s̄21 + s̄22 + s̄23) = piqi/P,

w = (s̄21 + s̄22 + s̄23)
−1 = G2/P 2,

P = (p2
1q

2
1 + p2

2q
2
2 + p2

3q
2
3)1/2.

Here si and yi satisfy two relations:

(1.11) s21 + s22 + s23 = 1, y2
1 + y2

2 + y2
3 = 1.

The compact manifold S with boundary Γ in the coordinate domains W1 and
W2 is distinguished by the conditions

(1.12) yi > 0, w > 0, H1 > 0, s̄1 + s̄2 + s̄3 6 0,

where

H1 = H(q1q2q3)(1−k)/2/P 2 = 2
3∑

i<j

sisj − 1 +
1
4
w

(
2

3∑
i<j

yiyj − 1

)
.

In accordance with (1.12) y1, y2, y3 range over the ‘triangle’ ∆: yi > 0 on the
unit sphere S2 : y2

1 + y2
2 + y2

3 = 1. Let S1 be the circle inscribed in ∆; S1 is given
on S2 by the equations y1y2 + y2y3 + y3y1 = 1

2 . If the point (y1, y2, y3) lies outside
the circle S1, then the condition H1 > 0 cuts out a compact set in the coordinates
s1, s2, s3, and w. If, however, (y1, y2, y3) lies on S1 or inside, then the set H1 > 0
is non-compact in the coordinate w: 0 6 w 6∞.

The boundary Γ of S is not smooth: Γ consists of six components (boundaries)
defined by the conditions

Γ0 : H1 = 0, Γi : yi = 0 (i = 1, 2, 3),
Γw : w = 0, Γm : s̄1 + s̄2 + s̄3 = 0.

The boundary components Γ0, Γm lie in the “physical” domain of S, that is, to
these components there correspond non-singular states of the metric, whereas the
boundary components Γ1, Γ2, Γ3, and Γw are compactifications of the physical
domain S with degenerate states of the metric and correspond to the cosmological
singularity q1q2q3 = 0.

The intersections of pairs of the various components form the corners of Γ.
It is convenient to use the coordinates (1.9) to study the behaviour of the system

(1.4) in the neighbourhood of the maximal expanse, where p1q1 + p2q2 + p3q3 = 0,
and the coordinates (1.10) in the neighbourhood of the cosmological singularity.

III. The system (1.4) in the coordinates (1.10) and the time τ1:

(1.13) dτ1/dt = 1/2 (p2
1q

2
1 + p2

2q
2
2 + p2

3q
2
3)1/2 (q1q2q3)−1/2 > 0
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has the form

(1.14)



ṡi = w(−yi(y1 + y2 + y3 − 2yi) + siZ1) + (1− k)(1− siZ2)H1,

ẇ = 2w[Z2(4− (1− k)H1)− 8Z3 + wZ1],

ẏi = 8yi(Z3 − si), Ġ = 4G(Z2 − 2Z3),

Z1 =
3∑

k=1

skyk(y1 + y2 + y3 − 2yk),

Z3 =
3∑

k=1

sky
2
k, Z2 = s1 + s2 + s3.


.

The system (1.14) extends continuously to Γ, and the boundary components Γ0,
Γ1, Γ2, Γ3, Γw are invariant manifolds of this system, and on Γm the field (1.14) is
directed towards S.

The monotone function F (1.8) in the coordinates (1.10) has the form

(1.15) F =
s1 + s2 + s3

w1/2 (y1y2y3)1/3
,

dF

dτ1
6 0.

Since F is monotone, it follows that if the time is directed towards the compression
side, that is, s1 + s2 + s3 < 0, then all the trajectories of (1.4) approximate to the
boundary components Γ1, Γ2, Γ3, and Γw, near which F → −∞. In particular, all
singular points of (1.14) lie on Γ.

IV. The complete set of singular points of (1.14), consisting of sets of six types
ΦLK , Ni, Ti, Ai, Bi, (ψ, i) is illustrated in Fig. 1.

1) The set ΦLK lies on the boundary component Γw , is two-dimensional, and is
defined by the conditions: w = 0, si = −1/

√
3, y1, y2, y3 range over ∆.

Figure 1. General disposition of singular points of a dynamical
system of a model of type IX after accounting for scale-invariance
and augmentation of the physical domain of the boundary.
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2) Three isolated singular points Ni lie at the corners Γj ∩ Γk of the boundary
and have the coordinates

si = −21/2(3 + k)u,

sj = sk = −(5− k)2−1/2u,

w = 8(1 + 3k)(1− k)u2,

u = (43 + 2k + 3k2)−1/2.

3) Three segments of singular points Ti lie on the boundary components Γi and
have the coordinates yi = 0, yj = yk = 2−1/2, si = 0, sj = sk = −2−1/2; w > 0 is
arbitrary. One end of Ti has the coordinate w = 0 and the other end, T 0

i (w = ∞),
in the local chart W1 (1.9) has the coordinates s̄1 = s̄2 = s̄3 = 0, that is, it lies on
the intersection Γ1 ∩ Γ0 ∩ Γm.

4) Three segments of singular points Ai and three segments Bi lie on the inter-
section of the boundary components Γi ∩ Γw ∩ Γ0. At these singular points yi = 0,
y2 + y2

k = 1, w = 0. On Ai we have si = −23/2/3, sj = sk = −2−1/2/3. On Bi we
have si = 0, sj = sk = −2−1/2.

5) Three circles of singular points (ψ, i) lie at the corners of Γj ∩ Γk ∩ Γw ∩ Γ0

and we have the coordinates yk = δkl, w = 0. The coordinates s1, s2, s3 satisfy the
equations s21 + s22 + s23 = 1, s1s2 + s2s3 + s3s1 = 1

2 .
The singular sets ΦLK , Ni, Ti are non-degenerate (that is, for them the number

of eigenvalues zero of (1.14) is equal to the dimension of these sets) and unstable.
The separatrices entering these singular points from the physical domain determine
the asymptotic behaviour, in powers of t, of the metric under the contraction of
space (t→ 0):

qi ∼= Cit
4/3(1−k),(1.16)

qi ∼= Cit
(1−k)/(1+k), qj ∼= Cjt

(3+k)/2(1+k), qk ∼= Ckt
(3+k)/2(1+k),(1.17)

qi ∼= Ct2, qj ∼= qk ∼= C1.(1.18)

The asymptotic forms (1.16) for (ΦLK) generalize the Friedmann solution q1 ≡
q2 ≡ q3. They were first found by Lifshits and Khalatnikov [22]. The asymptotic
forms (1.17) for (Ni), like (1.16), occur only in occupied space (H 6= 0) and were
first found by one of the present authors [1]. The forms (1.18) for (Ti) occur both
in occupied and in empty space and were discovered by Taub [23].

The asymptotic forms (1.16)–(1.18) exhaust all the asymptotic expansions in
powers of the metric of a model of type IX in the neighbourhood of a singularity.
The singular segments Ai and Bi have extra zero eigenvalues; it can be shown
that to these points there do not correspond any asymptotic forms in powers of t.
The singular circles (ψ, i) at the corners of Γ are non-degenerate and unstable. All
their separatrices lie on Γ, therefore, to them there do not correspond asymptotic
forms in powers. The circles (ψ, i), together with their separatrices, determine an
approximation to the complex oscillating regime of the metric in the neighbourhood
of the cosmological singularity, which was first discovered in [8].

V. When the direction of time is towards the compression, all the trajectories of
(1.14), by virtue of the presence of the monotone function F (1.15), approximate to
the boundary components Γ1, Γ2, Γ3, and Γw. Along each trajectory, F → −∞. A
trajectory of (1.14), when it falls into a neighbourhood of the boundary Γ defined
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by condition |F | � 1, begins to move along those trajectories of the system that lie
on Γ. It can be shown that all trajectories of (1.14) on Γ are separatrices of singular
points and lead from one singular point to another. After finitely many transfers
(never more than 3) along the separatrices of singular points ΦLK , Ni, Ti, Ai, and
Bi, the trajectory falls into the neighbourhood of singular points (ψ, i) and begins
to travel along their separatrices. On the side of compression, all the separatrices
leaving singular points (ψ, i) go to singular points of the same kind (ψ, k). Thus,
there is an infinite sequence of separatrix transfers of the form

(1.19) · · · → (ψ1, i1) → (ψ2, i2) → (ψ3, i3) → · · · ,
leading to a “BLK regime”. (See [3] for a more detailed description.)

VI. When the direction of time is towards expansion a trajectory of (1.14) begin-
ning in a small neighbourhood of F distinguished by the condition F � 1 moves to
the “reverse side” along the separatrix on Γ until it falls into the neighbourhood of
singular points having separatrices that go into the physical domain S. When the
trajectory moves from Γ along the separatrices, the metric is approximated by the
power regimes (1.16)–(1.18), which are therefore typical states of the metric at the
early stage of expansion. The final transfers between singular points immediately
preceding the departure of the trajectory from Γ into the physical domain S are
shown in Fig. 2. Here the straight arrow → signifies a transfer along a separatrix;
the number above the arrow indicates the dimension of this separatrix; the dots
denote singular points of type (ψ, i), Ai, Bi, and the wavy arrow  indicates a
transition by continuity from the inclusion of the corners Φ∞i and sides Φ0

i in the
triangle of singular points ΦLK .

Figure 2. The final paths in the evolution of the metric towards
expansion before departure from the singularity.

The separatrix transfers shown in Fig. 2 give a complete list of all possible paths
in the evolution of the metric of a homogeneous cosmological model of type IX in
the neighbourhood of the cosmological singularity under expansion.

As further research has shown ([4], [24]–[26]), conclusions about the process of
evolution of the universe in the early stages of expansion scarcely depend upon the
type of the homogeneous model.

The programme for applying the methods of the qualitative theory to the re-
maining models (among them those accounting for the velocities of the material)
was drawn up basically in papers by Bogoyavlenskii [4], [25], [26] and for the case
of a model of type VII was completed by Persetskii.
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§ 2. Dynamics of a gravitating gas ellipsoid

I. The motion of a gravitating ideal gas filling a certain ellipsoid at a constant
density is a special case of the motion of a continuous medium in which the veloci-
ties are linear functions of the coordinates. Such motions of a continuous medium
have been studied in a large number of works of which the first were the classical
investigations of Riemann, Dirichlet and Dedekind on the theory of figures of equi-
librium of an ideal incompressible gravitating liquid (see the bibliography in [21]
and [6]). In [28] and [29] numerical methods were used in discovering the oscillating
nature of the adiabatic motion of a gravitating gas ellipsoid with the total energy
of the gas E < 0 and with the exponent of the adiabatic curve γ < 4/3.

In this section we show, with the help of methods similar to the qualitative the-
ory of homogeneous cosmological models (see § 1), that for certain values of the
parameters the oscillating regime can be approximated by a sequence of simpler
motions of a gravitating dust ellipsoid, which has been studied in [19] and [30].
The oscillating regime, in contrast to the spherically symmetrical regime of com-
pression of a gas to a point, is stable in the relevant class of gas motions. The
approximation to the oscillating regime obtained here becomes exact as E → −∞
(strong compression) or as β → 0 (β is a characteristic parameter of the problem).

II. The adiabatic motion of a gravitating ideal gas is known to be determined by
the equations

(2.1) ρ
dv
dt

= − grad p− ρ gradΦ,
dρ

dt
= −ρdiv v.

Here ρ is the gas density, v the velocity, p the pressure, γ > 1 the exponent of

the adiabatic curve
d

dt
(ργ/p) = 0, and Φ the Newtonian potential created by the

whole mass of gas. We consider a solution of the equations (2.1) satisfying the
following conditions: the Euler coordinates ri are linear functions of the Lagrange
coordinates ak:

(2.2) ri =
3∑

k=1

Fik(t) ak (i = 1, 2, 3).

(Therefore, the velocities vi = dri/dt are linear functions of the rk.) The density ρ
and pressure p of the gas for a2 = a2

1 + a2
2 + a2

3 6 1 are determined by the formulae

(2.3)

 ρ =
3M
4π

V −1(F ), p = α
3M
4π

(γ − 1)(1− a2)V −γ(F ),

V (F ) = det ‖Fik‖.

Here α and M are constants; M is the total mass of the gas. When a2 > 1, we put
ρ = 0, p = 0.

By virtue of (2.3), gas at a constant density fills the ellipsoid that is obtained
from the unit sphere a2 6 1 by the mapping Fik; p is maximal at the centre of the
ellipsoid and equal to 0 on its surface.
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Let d1, d2, d3 be the semi-axes of the ellipsoid; it is known (see [31]), that the
Newtonian potential Φ at a point (x1, x2, x3) within the ellipsoid has the form

(2.4) Φ(x1, x2, x3) =

=
3
4
GM

∫ ∞
0

(
x2

1

d2
1 + s

+
x2

2

d2
2 + s

+
x2

3

d2
3 + s

)
((d2

1 + s)(d2
2 + s)(d2

3 + s))−1/2 ds

Here G is the gravitational constant.
Following the method of [16] and [17] and using (2.2)–(2.4) we can show that for

the motions in question the equations (2.1) are equivalent to the following Lagrange
system, which is defined in the space of three-dimensional matrices:

(2.5)


d2Fik

dt2
= −α ∂V

1−γ(F )
∂Fik

+
3GM

8
∂U(F )
∂Fik

,

U(F ) =
∫ ∞

0

((d2
1 + s)(d2

2 + s)(d2
3 + s))−1/2 ds

Thus, the study of the motions of a gravitating ideal gas described above is
equivalent to that of the motions of a material point in the nine-dimensional space
of the matrices Fik in a field with the potential given by (2.5). We note that the
system (2.5) depends on a single characteristic parameter β = 8α/3 GM , which
cannot be eliminated by a time change.

Remark. Since d2
1, d

2
2, d

2
3 are eigenvalues of the matrix F ·F t, the integrand in (2.5)

can be expressed in the following way in terms of the components of Fik:

(d2
1 + s)(d2

2 + s)(d2
3 + s) =

= det(F · F t) +
1
2
s [(Tr(F · F t))2 − Tr(F · F t · F · F t)] + s2 Tr(F · F t) + s3.

Here F t is a transposed matrix and Tr(X) is the trace of a matrix X.

III. In the phase space with the coordinates Pi = Ḟjk, qi = Fjk (i = 1, . . . , 9;
j = 1, . . . , 9), the energy E (the Hamiltonian) has the form (n = 9)

(2.6) E =
1
2
(P 2

1 + · · ·+ P 2
n) + αV 1−γ(qi)−

3
8
GMU(qi).

We introduce new coordinates in the phase space:

pi = Pi

(
αV 1−γ(qi) +

3
8
GMU(qi)

)−1/2

,{
u = U(qi)

(
β · V 1−γ + U(qi)

)−1
,

yi = qi(q21 + · · ·+ q2n)−1/2.
(2.7)

The yi range over the unit sphere Sn−1 : y2
1 + · · · + y2

n = 1; the pi over the whole
Euclidean space Rn, and the u over the interval 0 < u < 1. Note that when the u
and yi become dependent for γ = 4/3; from now on we put γ < 4/3.

The Lagrangian system (2.2) in the coordinates (2.6) and the time

(2.8)
dτ1
dt

=

(
αV 1−γ(qi) + 3

8 GMU(qi)
)1/2

(q21 + · · ·+ q2n)1/2 V (y)
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has the following form:

(2.9)



ṗi = (1− γ)(1− u)
(
−∂V
∂yi

− 1
2
piW1

)
+ u

V (y)
U(y)

(
∂U

∂yi
− 1

2
piW2

)
,

ẏi = V (y)(pi − yi(pkyk)),

u̇ = u(1− u)
(
V (y)
U(y)

W2 − (1− γ)W1

)
,

W1 =
∂V

∂yk
pk, W2 =

∂U

∂yk
pk

(summation takes place over repeated indices k). Below we examine the system
(2.9) for E < 0. The energy E in the coordinates (2.7) has the form

(2.10)


E =

3
8
GMβmV m(1−γ)(y) (U(y)/u)3m(1−γ)×

× (1− u)−m

(
1
2
(p2

1 + · · ·+ p2
n) + 1− 2u

)
,

m = 1/(4− 3γ).

Hence it follows that the domain E 6 0 (or p2
1 + · · ·+ p2

n 6 4u− 2), is bounded.

IV. The domain S1 on which the system (2.9) is defined is given in the coordinates
(2.7) by the conditions 0 < u < 1, w > 0, V (yi) > 0. (To the points of the surface
V (yi) = 0 there corresponds in accordance with (1.3) a physical singularity of the
solution.) To S1 we add the boundary Γ, which consists of four components defined
by the following conditions: Γ0 : u = 0; Γ1 : u = 1; Γ2 : V (yi) = 0; Γw : w = 0. We
denote by S the manifold obtained as the result of this addition of the boundary.
(On S we have 0 6 u 6 1, w > 0, V (yi) > 0.) It is obvious that the system
(2.9) can be extended continuously to the boundary components Γ0,Γ1,Γw. Using
simple properties of the potential U(qi) (see [31]) we can show that V (y)/U(y) ·
∂U/∂yi → 0, as V (y) = det ‖Yik‖ → 0. Therefore, on the boundary component Γ2

we supplement these expressions by zero, their limiting value. As a result of this
process the system (2.9) is extended continuously to the boundary component Γ2.

It is not difficult to verify that all the components of Γ and their intersections are
invariant submanifolds of the dynamical system (2.9) in S. The system so defined
on the component Γ0 (u = 0), is identical with the system describing the motion
of a gaseous non-gravitating ellipsoid, and that defined on Γ1 (u = 1) is identical
with the system describing the motion of a gravitating dust-ellipsoid.

All the singular points of (2.9) on S lie on Γ when E 6 0 and γ < 4/3 and form
four sets: K, Ψ+, Ψ−, and L.

1) The singular points K (u = 1, V (y) = 0) are the intersection of the invariant
submanifolds Γ1 (u = 1) and Γ2 (V (y) = 0). These singular points are non-
degenerate (when W1 6= 0) and unstable, and have two non-zero eigenvalues (the
directions of the corresponding eigenvectors are shown in brackets)

(2.11)

{
λ1 = (1− γ)W1 (variables u),

λ2 = W1 (variables yi).

The remaining 2n− 2 zero eigenvalues correspond to directions touching the man-
ifolds K. Since γ > 1, the signs of the eigenvalues λ1 and λ2 are opposite, that
is the points are of the saddle type. It is convenient to divide K into two parts
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K+ (W1 > 0) and K− (W1 < 0). Each singular point of K+ has one entering
separatrix going along Γ2, and one departing separatrix going along Γ1, and vice
versa for the points of K−.

2) The singular points Φε (u = 1, pi = ε21/2yi, ε = ±1, yi = Yjk = 3−1/2Qjk;
Qjk is an orthogonal matrix). The calculation of the eigenvalues of (2.9) at the sin-
gular points Φε shows that. they are non-degenerate and unstable. Here each point
of the three-dimensional manifold Φ− has a four-dimensional entering separatrix
formed by diagonal solutions (with a spherically symmetric compressive character)
generalizing the exact spherically symmetrical solutions, and an eleven-dimensional
entering separatrix (lying on Γ2 at zero-level of energy). In view of this, the spher-
ically symmetric compression is unstable. The properties of the singular points Φ+

are identical with those of Φ−, but with the opposite directions of time.
3) The degenerate singular points L : V (y) = 0, ∂V/∂yi = 0; pi, u are arbitrary.

At these singular points Yjk is doubly degenerate.
Thus, when E 6 0 and γ < 4/3, there are no stable singular points in the system

(2.9); this is one of the reasons for the existence of an oscillating regime.

V. As was mentioned above, the separatrices of the singular points K+ and K−
lie on the invariant manifolds Γ1 and Γ2. Let us examine the system (2.9) on these
manifolds.

1) The system (2.9) on Γ1 (u = 1) describes the motion of a gravitating dust-
ellipsoid. This form of motion is studied in [19], where it is shown, in particular,
that along each solution with negative energy E the volume V (F ) = det ‖Fjk‖ of
the ellipsoid vanishes of order 2, that is, the expansion from the compressed state
is changed into contraction. For almost all solutions the ellipsoid in the initial and
final stage is compressed into a disk, that is, d1 = 0, d2 6= 0, d3 6= 0. In the
coordinates (2.7) this result means that almost all trajectories of the system (2.9)
on Γ1 for E < 0 have their beginning and their end in the set of singular points K
(V (y) = 0, u = 1), or for almost every singular point of K+ the separatrix departing
from it goes to a certain singular point of K−.

2) The system (2.9) on Γ2 (V (y) = 0) can be integrated explicitly. The trajecto-
ries of this system in time τ are determined by the expressions dτ = 21/2(γ − 1)×
(1− u) |gradV (y0

i )| dτ1, has the form

(2.12)

{
yi = y0

i , pi = (21/2si(sin τ − sin τ0) + p0
i cos τ0)/cos τ ,

u = cos2 τ0/cos2 τ .

where y0
i , si = gradV (y0

i )/|gradV (y0
i )|, τ0, p0

i —are constants, where V (y0
i ) = 0,

p0
1s1 + · · · + p0

n = 21/2 tan τ0 < 0, |τ0| < π/2, p1s1 + · · · + pnsn = 21/2 tan τ .
The trajectory (2.12) is defined for τ0 6 τ 6 −τ0 and goes from the singular
point (p0

i , y
0
i , u = 1) in K− to the singular point (p1

i = pi(−τ0), y0
i , u = 1) in K+.

(Consequently, all trajectories (2.12) are separatrices of the singular points of K+

and K−.) It is easy to see that the end-point of the trajectory (2.12) (p1
i = pi(−τ0))

is reached from the initial point (p0
i ) along the path reflected in the plane tangential

to the surface V (yi) = 0 at (y0
i ).

The results obtained lead to the following separatrix diagram:

(2.13) · · · → K+
I−→ K−

II−→ K+
I−→ · · ·

Here the mappings marked by arrows indicate the passage along a separatrix from
its initial to its final point. The mappings I and II are effected by the separatrices
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going along Γ1 and Γ2, respectively. The separatrix transition between the sets
K+, K− and Φε, L are not shown in diagram (2.3) because for almost all singular
points of K+ and K− the whole infinite sequence of mappings (2.13) does not go
outside K+ and K−.

VI. The infinite sequence of separatrices defined in (2.13) is an approximation
to the trajectories of the system (2.9) for large negative energy E, and also for
β = 8α/3 GM → 0. For the function E (see (2.10)) is bounded below everywhere
on S except for the boundary components Γ1 (u = 1) and Γ2 (V (y) = 0), where E →
−∞. Therefore, the trajectories of (2.9) with large negative energy E remain all
the time in a small neighbourhood of Γ1 and Γ2 (this is also true for any E < 0, but
β → 0 see (2.7), the definition of the coordinate u). Consequently, these trajectories
follow the trajectories of (2.9) on Γ1 and Γ2, that is, the general trajectory of (2.9)
follows the sequence of separatrices of the singular points of K+ and K−.

This approximation to the trajectories of (2.9) by the sequence of separatrices
(2.13) proves that the general motion of a gravitating gas ellipsoid with large neg-
ative energy E, or with small parameter β, has a pulsating, oscillatory character.
For according to (2.13) the trajectory periodically appears in the neighbourhood
of singular points of K+, K−, where det ‖Yjk‖ = V (yi) = 0; that is, the ellipsoid is
periodically compressed into a disc. Moreover, from the equations

(2.14)
dV (qi)
dτ1

= V (qi)W1

it follows that the volume det ‖Fjk‖ = V (qi) of the ellipsoid attains a maximum
for motion of the trajectory of (2.9) along the separatrix transition I, and a min-
imum for motion of the trajectory along the separatrix transition II (see (2.13)).
Therefore, the variation in the density p (2.3) of the gas filling the ellipsoid also
has oscillatory character. By (2.8) and (2.10) the period of each pulsation of the
ellipsoid becomes arbitrarily small as E → −∞.

The pulsating motion of the ellipsoid so described, as E → −∞, arises in a state
of strong compression in so far as (see (2.7)) the quantity

(2.15) d2
1 + d2

2 + d2
3 = q21 + · · ·+ q29 = β−2m(U(y)(1− u)/u)2m V (y)2m(γ−1).

m = 1/(4 − 3γ), tends to zero as E → −∞ (that is, for V (y) → 0 or u → 1).
We note, however, that in the presence of rotation of the gas the ellipsoid cannot
be compressed beyond a definite dimension. As is known [17], Lagrangian systems
of type (2.5) have first integrals J and K (connected with the full moment of the
amount of motion of the gas and with vorticity):

J = F ◦ Ḟ t − Ḟ ◦ F t, K = F t ◦ Ḟ − Ḟ t ◦ F.
It can be shown that when E 6 0, L 6= 0 (L = max{|J |, |K|}), the following
inequalities hold:

A2B2/(γ−1)/ lnB < di < (β(γ − 1))1/(3γ−4),

where

B = D/2 logD, D = A(β(γ − 1))1/2(4−3γ), A =
2
3
L((γ − 1)/GM)1/2.

The separatrix approximation (2.13) means that asymptotically the motion of
the trajectories of the system (2.9) in the coordinates yi, as E → −∞ or β → 0,
proceeds in the following way.
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1) In the domain V (yi) < 0 the motion occurs along the trajectory corresponding
to the gravitating dust-ellipsoid. In general, this trajectory is cut by the surface
V (yi) = 0 at a certain point y0

i (transition I).
2) At the point of intersection the trajectory is elastically reflected from the

surface V (yi) = 0 (transition II, see (2.13)).
3) Then motion again occurs along the trajectory corresponding to the grav-

itating ellipsoid up to the next intersection with the surface V (yi) = 0, and so
on.

Thus, we can say that many-dimensional billiards in the domain det ‖Yjk‖ =
V (yi) > 0 on the eight-dimensional sphere S8 (Tr(Y ◦ Y t) = 1) with the elastically
reflecting surface det ‖Yjk‖ = 0 provides a model for the oscillating regime of the
motion of a gravitating gas ellipsoid. Between collisions with the boundary, the
point moves along trajectories describing the motion of a gravitating dust-ellipsoid.
The presence of hydrodynamic pressure is shown in the property of elastic reflection
of the trajectory from the boundary det ‖Yjk‖ = 0.

Note. Owing to the fact that the system (2.9), on the manifolds Γ1 and Γ2, does
not depend on γ when γ > 4/3, there also exists an oscillating regime of motion of
an ellipsoid approximated by the separatrix diagram (2.13). However, the physical
content of this oscillating regime is quite different. For when γ > 4/3, E is close
to zero according to (2.10) in the neighbourhood of Γ1 and Γ2, and the quantity
d2
1 + d2

2 + d2
3 is unbounded by (2.15). Therefore, in the oscillating regime when

γ > 4/3, E < 0, the ellipsoid has small energy and the gas is in a rarified state,
and the period of each oscillation as E → 0 becomes arbitrarily large.

Appendix
Oscillating Regimes in Systems with Exponential Potential

O. I. Bogoyavlenskii

There is an important class of Hamiltonian systems in which complicated non-
linear oscillating regimes can be studied by qualitative methods. These systems
have the form

(3.1)


ṗi = −∂H/∂qi, q̇i = ∂H/∂pi,

H =
1
2

n∑
i,j

aijpipj +
n+1∑
k,m

bkm exp({α, q}+ {αm, q}).

Here α1, . . . , αn+1 are vectors in Rn having the coordinates αk = (dk1 , . . . , dkn
),

and q is the vector (q1, . . . , qn). In Rn inner products are given by

(x, y) =
n∑
i,j

aijxiyj , {x, y} =
n∑

i=1

xiyi.

Subject to α1 + · · ·+ αn+1 = 0 all the systems (3.1) under the mapping

Qk = exp(αk, q) (k = 1, . . . , n+ 1)

become systems of hydrodynamical kind in the terminology of [32]. Particular cases
of systems of the form (3.1) are given by a periodic Toda chain with the Hamiltonian

(3.2) H =
1
2

n+1∑
i=1

p2
i +

n∑
i=1

exp(qi − qi+1) + exp(qn+1 − q1)
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and by periodic permutations of a Toda chain, and also as a homogeneous cosmo-
logical model of type IX (on the level H = 0) with the Hamiltonian

(3.3) H = 2
3∑

i<j

pipj −
3∑

i=1

p2
i + 2

3∑
i<j

exp(qi − qj)−
3∑

i=1

exp(2qi).

In systems (3.1) there arises an infinite oscillating regime if the vectors α1, . . . ,
αn+1 and the quadratic forms in aij , bkm satisfy the following conditions A and B:

A. maxk(αk, p) > 0 for each vector p in Rn;
B. (αkαk), βkk > 0 for each k.
The oscillating regime in case (3.3) goes over into the standard oscillating regime

in relativistic cosmology (see § 1).
The separatrix approximation to the oscillating regime in (3.1) is connected with

the Coxeter group G generated by the reflections τk (k = 1, . . . , n + 1); τk(p) =

p− 2(αk, p)
(αk, αk)

αk. For a positive definite metric aij this approximation is applicable

when H � 1.
For the periodic Toda chain (3.2), G is a permutation group Un+1. The property

of G being finite distinguishes an integrable Toda chain (3.2) among its general non-
integrable perturbations (3.1). In general, G is infinite and the oscillating regime
in (3.1) has stochastic qualities.

There are exceptional Hamiltonian systems of the form (3.1) connected with the
simple Lie algebras G, which admit, like the Toda chain, a presentation in the form
L − A pairs, having therefore a large set of first integrals (in these systems G is
finite, and stochastization is impossible). Let ω1, . . . , ωn be the basis of simple roots
of the Lie algebra G, let Ω = k1ω1 + · · · + knωn be a maximal root, and let the
scalar product (x, y) in G be defined by the Killing–Cartan form. The Hamiltonian
system in the 2n-dimensional phase space pi, qi with the Hamiltonian

(3.4) H =
1
2

n∑
i,j

(ωi, ωj)pipj +
n∑

i=1

exp(qi) + b exp(−k1q1 − · · · − knqn)

admits a presentation in the form of L − A pairs, where the operators L and A
belong to a certain faithful linear presentation of Lie algebra G. For a simple Lie
algebra of type An the Hamiltonian (3.4) defines a periodic Toda chain (3.2) (with
zero total impulse p1 + · · ·+ pn+1 = 0). For algebras of the types Bn, Cn, Dn the
Hamiltonian systems (3.4) have the form of a Toda chain with special boundary
conditions.
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