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Homogeneous Periodic Heat Flow via 
NonequiIibrium Molecular Dynamics* 

William G. Hoover,l Bill Moran,2 and James M. Haile 3 
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Two non equilibrium methods for simulating homogeneous periodic heat flow 
are applied to 108 three-dimensional soft spheres in both the fluid and face­
centered cubic;>olic-,phases. Both nonequilibrium methods use irreversible .ther· 
modynamics to"express heat conductivity in terms of the work required to 
generate heal £1ow. The Evans-Gillan method, derived from Green-Kubo 
theory. correctly reproduces Ashurst', heat conductivities. An appro:lch based 
on Gauss' principle of least constraint, in which the heat flow is constrained to 
a flxed value, fails this rest. Heat flow is an inhomogeneous, nonlinear function 
of particle velocities and coordinates. Thus. Gauss' principle cannot be relied 
upon for treating inhomogeneous nonlinear nonholonomic constraints. 

KEY WORDS: Nonequilibrium; molecular dynamics; conductivity; heat flow; 
irre\'ersible thermodynamics: steady state. 

1. INTRODUCTION 

Nonequilibrium systems are described by average values of their fluxes 
(flows per unit area and time) and the forces (usually derived from 
gradients) which drive them, as well as by distribution functions detailing the 
spread of these flow values around their means. Transport coefficients relate 
the fluxes to the forces or gradients whi.::h drive them. Nonequilibrium 
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molecular dynamics \Vas developed (1) in order to validate the linear transport 
coefficients found (2) by applying Green-Kubo theory in situations close to 
equilibrium and to provide a way to estimate nonlinear transport in systems 
far from equilibrium. 

Methods of calculation recently introduced by nonequilibrium 
molecular dynamics involve modifying Newton's equations of motion. 

Fig. 1. A periodi'c-rwo-panicle system undergoing shear n-ow. For clarity the two particles 
have been drawn as hard spheres with two different diameters. 125 periodic repetitions of the 
shearing unit cell are shown. 
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Typical modifications include "driving forces" which generate fluxes, as well 
as "damping forces," which absorb the flux-generated irreversible heat. These 
new methods do provide relatively efficient routes to transport coefficients 
and to the simulation 0: fluids{3} and solids(4) under extreme conditions, such 
as those prevailing in strong shock waves. At present the extension of ther­
modynamics and constitutive models to incorporate the new results is an 
active research area. (5) 

The principal flows of interest to nonequilibrium molecular dynamics 
are shear flows, dilational flows, and the flow of heat. Shear flows have 
undergone the most intensive study. They have been generated by a variety 

(6) Of these, those generating a homogeneous periodic flow (see 
1) appear LO be most efficient. No corresponding method fOf simulating 

heat f10w was developed until 1982, when Evans and Gillan avoided the 
usual temperature and density gradients associated with isobaric heat flow 
and suggested two similar methods for driving a heat current by using an 
energy-sensitive external force. Evans and Gillan and Dixon applied these 
schemes(7) to Lenna,d-Jones models of triple-point liquid argon, obtaining 
relatively precise linear and nonlinear heat conductivities. The linear conduc­
tivities agreed well with experimental data and with estimates based on alter­
native inhomogeneous simulation results. (8) 

In the present work we apply both the new (1982) Evans scheme and 
Gauss' venerable (1829) principle of least constraint to the heat flow 
problem. The formulation, simulation, and discussion of .the resulting heat 
flows make up the following three sections of this paper. .. . 

2. FORMULATION 

The heat flux vector Q represents the direction and magnitude of the 
flow; Q is measured as energy per unit area and unit time. Heat nux is to be 
measured in the "comoving" frame so that mass motion does not contribute 
to Q. Fourier's law relates Q to the temperature gradient 'ilT through the heat 
conductivity K: 

Q == -K 'ilT (1) 

In the linear regime the dissipation associated with homogeneous heat flow 
in a volume V can be expressed in terms of the irreversible entropy 
production S: 

(2) 

Within strong shock waves f1uids become anisotropic. Comoving measures 
of temperature parallel and perpendicular to the motion can differ by a 
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factor of 2 or moreY) It is still possible to use Fourier's expression (1). To 
do so T must first be defined. The definition can be based on local angle· 
averaged velocit), fluctuations (bu')::= 3kT/m. In this way the conductivity K 
can be defined by (1) outside the linear regime. By contrast the entropy 
production defined by (2) has no obvious thermodynamic meaning under 
such conditions. 

In the linear regime, heat flow is described by Fourier's law [Eq. (1) 1 
with the limiting small·gradient value of the conductivity. The linear 
Green~Kubo approach to transport expresses the conductivity K in terms of 
the time decay of equilibrium heat flux fluctuations: 

K::= (V/kT2)) (Qx(O) Qx(t)eQ de (3) 
o 

where the microscopic heat flux component Qx has the form 

(4) 

The single sum runs over all N particles in the volume V. The double 
sum runs over all N(N _. 1)/2 pairs of particles. Evans demonstrated that a 
realistic heat flow is generated if the Newtonian forces derived from the pair 
potential VJijGrj rjl} .¢i(rij) ha,,(; added to them an 

(5E) 

If the power absorbed by this force, v . LiF = J..Q V, is equated to the rate 
of irreversible heating from (2), Q2 V/KT, we find Q = dT. Thus in the 
linear regime the conductivity K is equal to the ratio Q/).T. The extra force 
(SE) generates and maintains an average heat current Qx consistent with the 
thermodynamic relation (2) above. 

We use b in (SE) and (SG) below to indicate instantaneous fluctuations 
of particles' contributions to the energy or to the pressure tensor relative to 
the mean energy and pressure-tensor contributions at that time. By imposing 
an additional velocity-dependent force to constrain the temperature or the 
energy, a steady flow can be maintained. The heat flux generated by the 
forces (SE) exists in the absence of a temperature gradient, eliminating most 
of the size dependence of the resulting conductivity. Evans' calculation of the 
conductivity for triple-point liquid argon demonstrates that this approach is 
correct and efficient. 

An alternative to Evans' method can be based on Gauss' principle of 
least constraint. Gauss stated that constraints-constant heat flux is 
onc-should be imposed by using the smallest possible forces. "Smallest 
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possible" means that the constraint force Fc added to each particle, to 
enforce a non-Newtonian constraint, must minimize 12 F;/2m, where the 
sum runs over all particles. We show below that these constraint forces are 
generally nol those which would do the least work necessary to enforce a 
constraint. 

It should be pointed out that special constrained simulations and special 
external forces are analogous to laboratory experiments in which mechanical 
systems are coupled to electromagnetic and gravitational fields. Properly 
generalized, thermodynamics and hydrodynamics should apply to these 

simulations. In extending linear hydrodynamics it is therefore 
important to understand schemes such as Evans' and Gauss'. Such schemes 
are .also ~tO stimulate numerical few-body models for linear and 
nonlmear transport coefficlCnts. . 

The set of constraint forces which satisfies Gauss' principle for constant 
heat flow Qx with no mass flow (12 Fe = 0) resembles Evans' set of 
additional forces LlF: 

Fc =;, roE + oPxx V, JPXY V, oPxo V] (5G) 

But in (5E) }. was fixed, Q fluctuated, and only the potential contribution to 
the pressure tensor was included. In (5G) ;, varies with time, Qx V is fixed, 
and total pressure tensor contributions are included. If the calculations are 
carried out "isothermally," with 12 !mr: 2 fixed, additional forces -Cmr must 
be added to (5G). The resulti.ng constraint equations can be solved for i, 
and (: 

(6) 

. [. ( ,. '2) ,.]/ (7),= (Qx V)", Qx V + L., xmr +.:-.. H oH \Pl;' D 

where (Qx V)N is the rate at which Qx V would change with time using 
Newton's equations of motion and \PI\' is the Newtonian rate of change of the 
total potential energy. The sum L H oH and denominator D are as follows: 

') H oH '= ') {[E +Pxx V][ oE + oPx>Y] + [Px.\YJ[oPxy V] 

+ [Pxz V][oPxz V]} (8) 

(9) 

http:resulti.ng
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Thus, for large systems, the only difference between Evans' and Gauss' 
approaches lies in the kinetic contribution to the additional forces 

I. [(mii (mii», mi.} (mi.}), mii - (mii) 1 

It is possible to show that both approaches (5E) and (5G) agree with the 
Boltzmann-equation conductivity in the low-density limit, where -+ 

3()'Gauss). At high density, where the kinetic contribution is relatively small, 
a comparison of scheme (5G) with (5£) would be inconclusive. In the next 
section we therefore consider a relatively low-density situation, in which the 
kinc;ic and parts of the heat flux are comparable in size. This state 
has already been characterized independently in Ashurst's thesis. (8) The 
same combination of density and temperature nearly coincides with a highly 
nonequilibrium shock wave state described in Ref. 3. 

3. SIMULATION 

We study 108 soft spheres interacting with the pair 
potential, 

¢(r) = [(alr)l2 ( 10) 

in a periodic cubic box of volume V. The velocities sum to zero and the 
second moment is fixed by the thermodynamic temperature T: 

(11 ) 

Ashurst measured the compressibility factor, shear viscosity, and heat 
conductivity at reduced fluid-phase densities 

Ncr) (e ) 1/4
V .kT =x=OA,0.6,0.7,0.8 (12) 

The reduced density x at which soft spheres freeze is 0.813. We choose to 
compare the two schemes at the lowest of these fluid densities, 0.4, because 
the kinetic heat flux contribution L imf2/2V is relatively large, about half 
the potential contribution. This state also corresponds roughly to the center 
of a dense-fluid shockwave linking triple-point liquid argon to twofold 
compressed argon at 12,000 K. (3) 

First, we used Evans' scheme, over a wide range of fluid and solid 
densities, varying the driving force constant I,. We list the results in TabJe L 
Both the conductivities and the pressure data are nicely consistent with 
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Ashurst's for the densities in (12) above. See Fig. 2 for a least-squares fit 
(cubic in i. and x) of our data. The conductivity data for ). --+ 0 can be 
roughly described by Ashurst's fit (8); 

where x is the reduced density defined in (12). A considerably better 
description is the cubic: 

0.642 + +1 (Bb) 

At the reduced density 0.4 the kinetic part of the heat flux, L xmr2/2 V, 
-.:-:-:-.,
slighlt)' exceeds that predicted by the low-density Boltzmann equation 
cone uctivity K(p -> 0) 0.642(kT/c)213 V@k/0 2• The Boltzmann estimate 
gives an approximate ratio (kinetic/potential) 0.642/(2.5--0.642) = 0.34, 
agreeing with the small-lambda ratio listed in Table 1. 

Next we studied this same thermodynamic state (0.4) using Gauss' 
scheme, fixing the heat flux at the value given by Evans' scheme for 

= 0.15 and 0.30: and measuring the time average (i'G)' See .Table Il. In 
these calculations we removed the slow numerical drifts in Qx and T (in the 
fifth or sixth figure) by rescaling the x velocities to restore Qx V to its desired 
value and rescaling the y and z velocities to restore the temperature. Three or 
four iterations of the form {t'~=(1+Ex)r;x; v;.=(1+cy)Vy; v;= 
(I + e,,) 1:;} converged to fixed (to fourteen digits) {v'}. The rescaling was 
carried out at reduced time intervals of 1 or 5, roughly every thousand time 
steps. Although the programming of (Qx V}..,. is intricate, the constraints of 
fixed flux and temperature are powerful checks. The entire program was 
completed in about 40 hr. The values found in Table II suggest that Gauss' 
conductivity is lower than Evans' (correct) value and that Gauss 
overemphasizes the kinetic part of the heat flux. The reasons for the failure 
of Gauss' approach are outlined at length in the Discussion (Section 4) 
below. 

Our Table I results for (Na 3/V2 V)(e/kT) 1/4 = 0.4 indicate that the 
conductivity and the temperature and pressure anisotropicities induced by 
heat flow are highly nonlinear (roughly _A 3 

). The temperature ratios Txx/T
YJI 

are l.I8, 1.55, and 2.44 for ;. 0.4, 0.6, and 0.8. The corresponding pressure 
ratios P",xiPyy are 1.04, 1.13, and 1.30. The strong Lennard-lones potential 
shock-wave state from Ref. 3, at reduced densities and temperatures of 1.098 
and 67, respectively, corresponds roughly to a soft sphere state with 
(Na 3/ \/2V)(E/kT)I!4 0.38. The heat flux for this state corresponds roughly 
to a soft sphere value of ).0 (f./kT) 1/12 = 0.7. The nonlinear{jl:niiQtroR-~ 
mentioned above are fully consistent v>/jth the temperature ratio 2.0 in the 
shock-wave and also account for most of the increase. relative to the 
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Table I. Compressibility Factor PV/NkT, Heat Conductivity K, and Ratio of 

Kinetic to Potential Heat Flux as Functions 01 p and II Using 


Evans' Method for 108 Soft Spheres for Various Reduced "Densities," 

p = (NrTl/V2 V)(E/kT) '/4 a 


p ;./TJi12 tT'/ll PV/NkT K/T2!3 QJQ" 

0.8 b 0.05 240 16.52 9.5 0.081 
0.8 b 0.10 240 16.52 10.3 0.084 
O.Sb 0.15 240 16.53 10.0 0.087 
O.S" 0.20 240 16.50 11.1 0.093 
O.S' CUD 240 16.47 12.5 0.096 
0.9.0 0.Q3 240 22.53 16.1 0.074 
0.9" 0.05 240 22.53 15.2 0.066 
0.9 b 0.07 240 22.53 16.9 0.068 
0.9 b 0.10 240 22.52 17.3 0.064 
0.9 b 0.15 240 22.53 18.7 0.066 
0.9 b 0.20 240 22.50 25 0.072 
0.9" 0.30 240 22.37 36 0.085 
LOb 0.Q3 1520 30.96 30 0.044 
LOb 0.05 240 30.96 32 0.045 
1.0" 0.Q7 240 30.96 34 0.046 
LOb 0.10 240 30.93 61 0.053 
LOb 0.15 240 30.85 90 0.062 
LOb 0.20 240 30.80 80 0.066 
LOb 0.30 240 30.74 57 0.072 
0.1 0.02 2000 1.449 0.66 3.75 
0.1 0.05 540 1.450 0.73 4.03 
0.1 0.07 240 1.452 0.87 5.02 
0.1 0.10 240 1.446 1.00 4.79 
0.1 0.15 240 1.442 1.80 5.33 
0.2 0.05 240 2.13 1.09 1.60 
0.2 0.07 240 2.12 0.89 1.53 
0.2 0.10 500 2.13 1.01 1.50 
0.2 0.15 240 2.13 1.03 1.57 
0.2 0.20 240 2.·12 1.26 1.68 __+h (a.-t.0.3 0.05 900 3.12 1.53 0.75 

.",..­

a The units of mass, length, and temperature are, respectively, m, CT, and ~/k. The soy-state 
fluid and solid simulations were carried out for total times t given in column of the table. 
The compressibility factors (PV/NkT-= (Pu + P,.\, + P::)V/3NkT agree well with Ashurst's. 
At p = 0.4 he found K!T2/3 = 2.3 ± 0.13 and 2.1 ±0.9 in calculations with equivalent J./T lm 

values of 0.008 and 0.028. The quoted pressures are reliable. The fluid-phase conductivities 
have uncertainties ranging from nearly 10% (small ;., p :;;;; 0.4) to about I % (large A, p ~ 0.4). 
The solid-phase conductivities have uncertainties ranging from near 10% (small 1, p ~ 0.9) to 
about 2% (/.-O.IS). 
b Face-centered cubic solid. 

Table continued 
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Table l. (Continued) 


p ;./TlI1 : rT7!11 PV/NkT JC/T2!l QjQ. 

0.3 0,10 240 3.13 1.57 0.73 
0.3 0.i5 240 3.11 1.53 0.73 
0.3 0.20 240 3.13 1.60 0.70 
0.3 0.30 240 3.11 1.89 0,82 
0.4 0,05 450 4.58 2.54 0.38 
O.~ 0.10 240 4.58 2.23 0.36 
0.4 0.15 240 4.57 2.24 0.38 
O.'l 0.20 240 4.57 2.35 0,37 

0.4 0.30 240 4.57 2.,49 0.40 
0.4 0.40 240 4.56 2.65 0.41 
0.4 0.60 240 4.46 4.27 0.66 
0.4 0.80 240 4.24 6.89 0.95 
0.5 0.05 468 6.64 3.47 0.21 
0.5 0.10 240 6.63 3.65 0.21 
0.5 0.15 240 6.63 3.55 0.20 
0,5 0.20 240 6.64 3.62 0.21 
05 0.30 240 6.62, 3.74 0.22 
0,6 0.05 240 9.52 5,09 0.103 
0.6 0.10 240 9.52 5.54 0.116 
0.6 0.15 240 9.51 5.52 0.14 
0.6 0.20 240 9.51 5.36 0.13 
06 0.30 240 9.50 5.59 0.14 
0.7 0.05 2000 13.41 7.96 0.082 
0.7 0.10 240 13.43 8.04 0.088 
0.7 0.15 1000 13.42 7.88 0.086 
0.7 0.20 240 13.43 0,091 
0.7 0.30 240 13.42 0.091 
0.8 0.Q3 500 18.61 0.070 
0,8 0.05 240 18.60 
0.8 0.10 240 18.61 0.062 
0.8 0.15 240 18.62 0.060 

0.8 0.20 240 18.64 0.061 

Newtonian value,' in the shock-wave shear stress. This nonlinear and 
nonreciprocal effect, shear stress resulting from heat flow, is the only effect 
so far characterized that accounts for the effective increase of viscosity in a 
strong shockwave. The other known effects-frequency, wavelength, and rate 
dependence of the shear viscosity-all predict decreases relative to the 
Newtonian value. For this reason further study of the coupling between 
momentum and energy flows is highly desirable. 

Evans' scheme seems to work well in the anharmonic solid phase too. 
Provided that the solid-phase number dependence can be ignored, the results 
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Fig. 2. Comparison of soft-sphere small-lambda fluid-phase thermal conductivities with 
Ashurst's values based on heat-reservoir simulation. The data exhibit overail consistency and 
approach the Boltzmann equation value at low density. The surface is a cubic Chebyshev 
least-squares fit of the fluid data in Tabie 1. Ashurst's results, including error bars, are 
indicated by vertical heavy lines. 

from Table I suggest that conductivities correct within 5 % or so can be 
obtained. These conductivities can be compared with two different theoretical 
models. The simpler model (9) is based on energy transfer between adjacent 
planes of particles at a fate calculated from the Debye frequency. For the 
inverse twelfth power potential the Debye frequency varies as the 7/3 power 
of density. Including also the dependence of the interplanar spacing and 
temperature gradient on density leads to the prediction 

(14) 

Table t{. Compressibility factor PV/NkT, Heat Conductivity 1(, and Ratio of 

Kinetic to Potential Heat Flux as Functions of 0"V using 


Gauss' Method for 108 Soft Spheres with 

p = (Na-3/J2V)(e/kT) 1/4= O.4a 


(T'/l2 PVINkT QJQ~ 

68 0.104 250 4.58 0.04 1.9 0.60 
143 0.200 240 4.56 0.16 2.1 0.60 

a The units o~ mass. length, and temperature are, respectiveIY~.m::&. and Elk. The steady-state 
simulations were carried out fOf total times f given in colum twopf the table. 
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This dependence on density is somewhat weaker than that indicated by the 
results in Table L An alternative model considers anharmonic three-phonon 
interactions.(lO) This model should be most accurate at high density, and 
leads to the result 

(15) 

This dependence is stronger than that found in Table 1. We hope to carry out 
a more definitive solid phase study of number dependence in the future in 
order to determine the range 0; validity of the anharmonic theory. 

4. DISCUSSION 

The failure of Gauss' principle to reproduce the linear-regime 
. dissipation predicted by irreversible thermodynamics indicates that 

specifying the comoving momentum and energy fluxes (P and Q) and ther­
modynamic state (p and T) is an incomplete description of the 
hydrodynamic states studied here. The difficulty lies in the rapid coupling of 
kinetic heat fiow Qk ~imr2l!V and potential heat flow Q", = 
[') ') (i)9 + iF· (r)l!V. These variables are not "slow" variables in the 
absence of supporting gradients. By fixing the ratio of ~nd Q"" the 
correct linear-regime thermodynamic dissipation -c..; 

~ - If: 

(16) 

can indeed be reproduced, but the resulting conductivity, K, will only be 
correct if the initial ratio QJQQ is also correct. Gauss provides no a priori 
prediction of this ratio. 

In the linear regime the error inherent in Gauss' principle can be 
analyzed by using linear-response theory. An initial canonical phase-space 
density fo - exp[-EjkT] varies with time when Evans' (a = 1) or Gauss' 
(0 = 3) heat-flux schemes are used: 

(17) 


Thus the average steady heat flux is different in the two schemes: 

(18) 
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Likewise, the irreversible heating differs: 

Finally, using the connection (2) between conductivity and irreversible 
heating, 

(2) 

we can express the ratio of Evaas' conductivity [0 Gauss'; in terms of the 
three heat current correlation functions we have 

r::J 
KE = J«Qk + Q"MQk + Q~)r> dt f «~Q,; + Q,,)<3 Qk + Q6)t~~ (20) 
KG lJ «3Qk ' Q")O(Qk ' Qd,)t) dt J-

This ratio can be estimated using Enskog's approximate hard-sphere theory 
of dense-fluid transport,ol) with the result 

(J + 1.2y + 0.755y2)(9 + 3.6), + 0.755y2) 
(21 ) 

K G 
Jol 

The error in the Gauss' principJe conductivities from Eq. %> is too 
small. This shows that Enskog theory predictions are inaccurate for soft 
spheres. Enskog theory predicts a kinetic heat flux proportional to 0.6 + y-I. 
This corresponds to a factor-of-2 variation in kinetic heat flux along a fluid­
phase isotherm. In fact, the kinetic contribution is nearly constant, equal to 
the low-density Boltzmann-equation value. 

For a soft-sphere fluid Enskog's effective hard-sphere compressibility 
factor, PVjNkT= 1 + y, varies between 1 and 7. The maximum value of the 
ratio (21), 1.0540, occurs at y = 1.993, close to the value y 1.837 
corresponding to reduced density 0.4 studied in Section 3. The predicted 
ratio at y 1.837 from (18), 1.0538, is considerably less than 1.2, the 
molecular dynamics result. Thus the linear conductivity can be in error by as 
much as twenty percent if Gauss' principle is used. 

Although Gauss does minimize the rms constraint force, he does not 
minimize the work of constraint. Thus TSjV = 0.056 and 0.224 for Evans' 
method with (Qx V) = 68 and 143. For Gauss' slightly larger losses result, 
0.063 and 0.265, respectively. 

In almost all situations Gauss' principle is precisely equivalent to 
Newtonian mechanics. But for inhomogeneous nonlinear nonholonomic 
constraints, Gauss' principle goes beyond Newton. We have here a concrete 
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case-the only one known so far-in which the use of Gauss' principle 
produces false results. 

The failure arises for two reasons. First, the kinetic and potential paris 
of the heat flux are, respectively, cubic and linear in the particle velocities. 
Second, the equilibrium decay rate of the flux is not sufficiently slow, relative 
to the kinetic-potential interconversion time. 

There seems to be no analog of the Evans-Gillan scheme applicable to 
the measu,ement of viscosity. In the viscous case the kinetic and potential 
parts of the stress are quadratic and zeroth-order functions of velocity. 
Because pocential contribl;tion is velocity it is neceSS:iry IO 

use periodic defo1ffiing boundaries to drive that pan of the viscous stress. 
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