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Abstract Two families of four or five-dimensional Riemannian solvable Lie groups, which

are extensions of the 3-dimensional Heisenberg group, are considered. We determine all the

homogeneous Riemannian structures on them, and the simply connected groups of isome-

tries corresponding to the associated reductive decompositions. Some of these structures are

homogeneous Kähler or homogeneous cosymplectic, and in these cases they are realized by

the complex hyperbolic plane CH(2) and by CH(2)×R, respectively.
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1 Introduction and preliminaries

Ambrose and Singer extended in [3] to the homogeneous case the classical characterization

by Cartan [6] of Riemannian symmetric spaces as those (connected) simply connected and

complete Riemannian manifolds with parallel curvature tensor, in terms of a tensor field

S on the manifold satisfying certain properties (see (1.1) below). This tensor S is called a

homogeneous Riemannian structure by Tricerri and Vanhecke in [24], where a classification
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of these structures was also given. The similar characterization for homogeneous almost

Hermitian manifolds was obtained by Sekigawa in [23], and Abbena and Garbiero obtained a

classification of homogeneous Kähler structures in [1]. The corresponding odd-dimensional

version (the homogeneousalmost contact metric structures), have been also studied (see [11,

12,17,20]).

Homogeneous Riemannian structures have shown to be useful in the study of the ge-

ometry of homogeneous Riemannian spaces and in particular to determine the groups of

isometries (or holomorphic isometries, or isometries which leave invariant an almost con-

tact structure, or even isometries which leave invariant a quaternionic structure) acting tran-

sitively on these spaces (see, for instance, [7–10,14,15,17]).

In this paper we consider two families of four or five-dimensional simply connected

Riemannian Lie groups, which we denote by A4(λ ,µ) and A5(λ ,µ,ν), respectively, where

λ ,µ,ν are real numbers, λ ,µ > 0. The groups A4(λ ,µ) are all isomorphic, and they can

be considered as the same Lie group but with different left-invariant Riemannian metrics

gλ ,µ . The groups A5(λ ,µ,ν) are not in general isomorphic. All these groups are solvable

extensions of the Heisenberg group H3 such that H3 is a normal subgroup of all of them.

If ν 6= 0, each group A5(λ ,µ,ν) is a semidirect product H3 o E, where E is an isomorphic

copy of the affine group of the line. The present study of these spaces is motivated by the

important role played by some of them, under certain relations between the parameters,

in the Alekseevsky’s classification [2] of homogeneous Einstein spaces with nonpositive

curvature and dimension n≤ 5. For each k > 0, the Ricci curvature tensor of A4

(√
6

3 k,
√

6
6 k

)

and A5

(√
6

3 k, 2
√

33
33 k,

√
33

11 k
)

is of the form Ric = −k2 g, where g is the metric, and the latter

is the unique nonsymmetric space in that classification with this property.

The aim of the present paper is to obtain the homogeneous Riemannian structures on

A4(λ ,µ) and A5(λ ,µ,ν), their associated reductive decompositions and the correspond-

ing simply connected groups of isometries. We also consider each A4(λ ,µ) as a Hermitian

homogeneous space, which is Kähler symmetric if λ = 2µ , and each A5(λ ,µ,ν) as a ho-

mogeneous almost contact metric manifold, which is a cosymplectic symmetric space for

λ = 2µ and ν = 0. After some preliminaries, Sections 2 and 3 are devoted to the metric Lie

groups A4(λ ,µ) and A5(λ ,µ,ν), respectively.

1.1 Ambrose-Singer equations

Let (M,g) be a connected Riemannian manifold, and let ∇ be the Levi-Civita connection of

g. We adopt for the curvature tensor field R of ∇ the conventions

RXY Z = ∇[X,Y ]Z−∇X ∇Y Z +∇Y ∇X Z, RXY ZW = g(RXY Z,W ),

for all X ,Y,Z,W ∈ X(M).
A simply connected and complete Riemannian manifold (M,g) is Riemannian homo-

geneous if and only if there exists a (1,2) tensor field S on M such that the connection

∇̃ = ∇−S satisfies (see [3,24]) the Ambrose-Singer equations

∇̃g = 0, ∇̃R = 0, ∇̃S = 0. (1.1)

Such a structure S is called a homogeneous Riemannian structure.

If a Riemannian manifold (M,g) is homogeneous then M = G/H, where G is a con-

nected Lie group acting transitively and effectively on M via isometries and H is the isotropy
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subgroup at a base point o ∈ M. Then the Lie algebra g of G may be decomposed into a vec-

tor space direct sum g = h+m, where h is the Lie algebra of H and m is an Ad(H)-invariant

subspace, i.e., Ad(H)m ⊂ m. As G is connected and M simply connected, H is connected,

and the latter condition is equivalent to [h,m] ⊂ m. The vector space m is identified with

To(M) under the isomorphism X ∈ m → Xo ∈ To(M), where X is the Killing vector field

on M generated by the one-parameter subgroup {exptX} of G acting on M. The canonical

connection ∇̃ of M = G/H (with regard to the decomposition g = h+m) is determined by

(∇̃
X

Y )o = −([X ,Y ]m)o , X ,Y ∈ m,

and S = ∇− ∇̃ satisfies (1.1) and it is a homogeneous Riemannian structure on (M,g).
Conversely, let S be a homogeneous Riemannian structure on a simply connected and

complete Riemannian manifold (M,g), and let R̃ be the curvature tensor of the connection

∇̃ = ∇− S. We fix a point o ∈ M and put m ≡ ToM. The holonomy algebra h̃ of ∇̃ is the

Lie subalgebra of the Lie algebra of skew-symmetric endomorphisms of (m,go) generated

by the operators R̃XY , where X ,Y ∈ m. Then (Nomizu [22], see also [3,24]), a Lie bracket is

defined in the vector space direct sum g̃ = h̃+m by

[V,W ] = VW −WV, [V,X ] = V (X), [X ,Y ] = R̃XY +SXY −SY X , (1.2)

for all V,W ∈ h̃, X ,Y ∈m, and g̃ = h̃+m is said to be the reductive decomposition associated

to the homogeneous Riemannian structure S. The simply connected Lie group G̃ generated

by g̃ acts transitively on M via isometries and M ≡ G̃/H̃, where H̃ is the connected Lie

subgroup of G̃ generated by h̃. The set Γ of elements of G̃ which act trivially on M is a

discrete normal subgroup of G̃, and the Lie group G = G̃/Γ acts transitively and effectively

on M as a group of isometries, with isotropy subgroup H = H̃/Γ . Then M is diffeomorphic

to G/H.

Now, if S is a homogeneous Riemannian structure on a Riemannian manifold (M,g), we

also denote by S the associated tensor field of type (0,3) on M defined by SXYZ = g(SXY,Z).

Then, the condition ∇̃g = 0 in (1.1) is equivalent to SXY Z =−SXZY for all vector fields X ,Y,Z

on M. Moreover, ∇̃R = 0 is equivalent to the condition

(∇ZR)X1X2X3X4
= −RSZX1 X2X3X4

−RX1 SZX2 X3X4
−RX1X2 SZX3 X4

−RX1X2X3 SZX4
, (1.3)

for all Z,X1,X2,X3,X4 ∈ X(M).

2 A solvable one-dimensional extension of the Heisenberg group

For each pair of positive real numbers λ ,µ , we denote by a4(λ ,µ) the metric Lie algebra with

orthonormal basis {X ,Y,P,Q} and nonzero brackets

[X ,Y ] = λ P, [Q,X ] = µX , [Q,Y ] = µY, [Q,P] = 2µP. (2.1)

Then a4(λ ,µ) is a solvable non-nilpotent Lie algebra that is the semidirect product of the

Heisenberg algebra h3 = Span{X ,Y,P}, with [X ,Y ] = λ P, and the line q generated by Q

under the homomorphism ad|q : q → Der(h3). We consider the Heisenberg group H3 as

C×R with the operation given by

(z, p)(z′ , p′) =
(

z+ z′, p+ p′ +
λ

2
Im(z̄ z′)

)
,
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so that the exponential map is exp: xX + yY + pP ∈ h3 → ((x + iy), p) ∈ H3.

We denote by A4(λ ,µ) the Riemannian, or metric, simply connected Lie group gener-

ated by a4(λ ,µ). As a manifold, it can be realized as C×R
2, and parametrized by the global

diffeomorphism

(x,y, p,q) ∈ R
4 ≡ a4(λ ,µ) −→ exp(xX + yY + pP)exp(qQ) ∈ A4(λ ,µ).

With respect to these coordinates, and writing z = x + iy, the group operation is given by

(z, p,q) · (z′ , p′,q′) =
(

z+ eµqz′, p+ e2µq p′ +
λ

2
eµq Im(z̄ z′), q+q′

)
,

and the Lie group exponential map exp: a4(λ ,µ) → A4(λ ,µ) is given by

exp(xX + yY + pP+qQ) =





(
eµq−1

µq
(x + iy),

e2µq−1

2µq
p, q

)
if q 6= 0,

(x + iy, p, 0) if q = 0.

(2.2)

The metric on A4(λ ,µ) is the left-invariant Riemannian metric defined by the scalar

product 〈 ,〉 on a4(λ ,µ) and it is given by

gλ ,µ = e−4µq
{(

e2µq +
λ 2

4
y2

)
dx2 +

(
e2µq +

λ 2

4
x2

)
dy2 +dp2

− λ 2

2
xydxdy+λ (ydxdp− xdydp)

}
+dq2.

We notice that, for each (λ ,µ) and (λ ′,µ ′), the corresponding Lie groups are isomor-

phic, but the metrics gλ ,µ and gλ ′,µ ′ coincide if and only if (λ ,µ) = (λ ′,µ ′).
The Levi-Civita connection on A4(λ ,µ) is given by the Koszul formula 2〈∇AB,C〉 =

〈[A,B],C〉−〈[B,C],A〉+ 〈[C,A],B〉 for all A,B,C ∈ a4(λ ,µ), and we have

∇X X = µQ, ∇Y X = −λ

2
P, ∇PX = −λ

2
Y, ∇QX = 0,

∇XY =
λ

2
P, ∇YY = µQ, ∇PY =

λ

2
X , ∇QY = 0,

∇X P = −λ

2
Y, ∇Y P =

λ

2
X , ∇PP = 2µQ, ∇QP = 0,

∇XQ = −µX , ∇Y Q = −µY, ∇PQ = −2µP, ∇QQ = 0.

(2.3)

Let {X∗,Y ∗,P∗,Q∗} be the basis of invariant 1-forms dual to {X ,Y,P,Q}. The curvature

tensor of ∇ is given by

RXY =
(3λ 2

4
+ µ2

)
(Y ∗⊗X −X∗⊗Y )+λ µ(P∗⊗Q−Q∗ ⊗P),

RXP =
(λ 2

4
−2µ2

)
(X∗⊗P−P∗⊗X)+

λ µ

2
(Y ∗⊗Q−Q∗ ⊗Y ),

RXQ = µ2(Q∗⊗X −X∗⊗Q)+
λ µ

2
(P∗⊗Y −Y ∗⊗P),

RY P =
λ µ

2
(Q∗⊗X −X∗⊗Q)+

( λ 2

4
−2µ2

)
(Y ∗⊗P−P∗⊗Y ),

RYQ =
λ µ

2
(X∗⊗P−P∗⊗X)+ µ2(Q∗⊗Y −Y ∗⊗Q),

RPQ = λ µ(X∗⊗Y −Y ∗⊗X)+4µ2(Q∗⊗P−P∗⊗Q).

(2.4)
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2.1 Homogeneous Riemannian structures on A4(λ ,µ)

With the previous notations and definitions we have

Theorem 2.1 (a) If λ 6= 2µ , all the homogeneous Riemannian structures on A4(λ ,µ) are

given by

S = θ ⊗ (X∗ ∧Y ∗)+2µP∗⊗ (P∗ ∧Q∗)− λ

2
Y ∗⊗ (X∗∧P∗)

+ µX∗⊗ (X∗∧Q∗)+
λ

2
X∗⊗ (Y ∗∧P∗)+ µY ∗⊗ (Y ∗∧Q∗),

(2.5)

where θ = aP∗ +bQ∗, a,b ∈ R.

(b) If λ = 2µ , the homogeneous Riemannian structures on A4(λ ,µ) are given by

S = θ ⊗ (X∗ ∧Y ∗)+ω ⊗ (P∗∧Q∗)+ρ ⊗ (X∗∧P∗)

+σ ⊗ (X∗∧Q∗)+σ ⊗ (Y ∗∧P∗)−ρ ⊗ (Y ∗∧Q∗),
(2.6)

where θ , ω, ρ , and σ are differential 1-forms on A4(λ ,µ) satisfying

∇̃θ = ∇̃ω = 2ρ ∧σ +2µ(X∗⊗ρ +Y ∗⊗σ),

∇̃ρ = σ ∧ (θ +ω)+ µ
(
P∗⊗σ −X∗⊗ (θ +ω)

)
,

∇̃σ = (θ +ω)∧ρ −µ
(
P∗⊗ρ +Y ∗⊗ (θ +ω)

)
.

(2.7)

Proof If S is a homogeneous Riemannian structure on A4(λ ,µ) then SABC = −SACB for all

A,B,C ∈ a4(λ ,µ). To determine the conditions on S such that ∇̃R = 0, where ∇̃ = ∇− S,

we replace (X1,X2,X3,X4) in (1.3) by (X ,Y,X ,P), (X ,Y,Y,Q), (X ,Y,Y,P), (X ,Y,X ,Q), and

(X ,P,X ,Q), and, by (2.3) and (2.4) we obtain, respectively,

3λ µ

2
SZXQ +(µ2 −λ 2)SZY P =

λ (4µ2 −λ 2)

2
X∗(Z), λ SZXQ = 2µSZYP, (2.8)

(λ 2 −µ2)SZXP +
3λ µ

2
SZY Q =

λ (4µ2 −λ 2)

2
Y ∗(Z), λ SZYQ = −2µSZXP, (2.9)

and

(λ 2 −4µ2)SZPQ = 2µ(λ 2 −4µ2)P∗(Z).

From equations (2.8) and (2.9), we have, respectively,

(λ 2 −4µ2)SZY P =
λ (λ 2 −4µ2)

2
X∗(Z)

and

(λ 2 −4µ2)SZXP =
λ (4µ2 −λ 2)

2
Y ∗(Z).

Then, if λ 6= 2µ , we have

SZXP = −λ

2
Y ∗(Z), SZY P =

λ

2
X∗(Z), (2.10)

SZXQ = µX∗(Z), SZY Q = µY ∗(Z), SZPQ = 2µP∗(Z), (2.11)
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and, in this case, the condition ∇̃R = 0 in (1.1) is satisfied if and only if equations (2.10)

and (2.11) are satisfied for all Z ∈ a4(λ ,µ). If λ = 2µ , the condition ∇̃R = 0 is equivalent to

the conditions

SZY Q = −SZXP, SZXQ = SZY P, (2.12)

for all Z ∈ a4(λ ,µ).

In any case, we put

θ (Z) = SZXY (2.13)

for any vector field Z on A4(λ ,µ), and if λ = 2µ , we put

ρ(Z) = SZXP, σ(Z) = SZY P, ω(Z) = SZPQ. (2.14)

Now, if λ 6= 2µ , from (2.10), (2.11) and (2.13), the (0,3)-tensor field S can be writ-

ten as (2.5), with θ a differential 1-form on A4(λ ,µ), and, if λ = 2µ , from (2.12), (2.13)

and (2.14), the tensor field S can be written as (2.6), where θ , ω, ρ , and σ are differential

1-forms on A4(λ ,µ).

We must now determine the conditions for these 1-forms such that the condition ∇̃S = 0

in (1.1) is satisfied. First, if we suppose λ 6= 2µ , by (2.3) and the expression (2.5) for S, we

have

∇̃X∗ = −
(λ

2
P∗ +θ

)
⊗Y ∗, ∇̃Y ∗ =

(λ

2
P∗ +θ

)
⊗X∗, ∇̃P∗ = ∇̃Q∗ = 0, (2.15)

and then we can obtain ∇̃ZS = (∇̃Zθ )⊗ (X∗∧Y ∗) for all Z ∈ a4(λ ,µ), hence ∇̃S = 0 if and

only if ∇̃θ = 0. If we put θ = f X∗ + gY∗ + hP∗ + kQ∗, where f ,g,h,k are differentiable

functions on A4(λ ,µ), then by (2.15), the equation ∇̃θ = 0 is equivalent to the equations

Z( f )+g
(λ

2
P∗ +θ

)
(Z) = 0, Z(g)− f

(λ

2
P∗ +θ

)
(Z) = 0, Z(h) = Z(k) = 0,

for any Z ∈ a4(λ ,µ). Replacing Z by X , Y , P and Q in each of the two first equations above

and using the structure equations (2.1), it follows that f = g = 0, and then θ = hP∗ + kQ∗,

where h and k are constant functions. This ends the proof of part (a) of the theorem. To finish

the proof of part (b), we suppose that λ = 2µ . By (2.3) and the expression (2.6) for S, we

obtain

∇̃X∗ = −(µP∗ +θ )⊗Y ∗− (µY ∗ +ρ)⊗P∗ +(µX∗−σ)⊗Q∗ ,

∇̃Y ∗ = (µP∗ +θ )⊗X∗ +(µX∗−σ)⊗P∗ +(µY ∗ +ρ)⊗Q∗ ,

∇̃P∗ = (µY ∗ +ρ)⊗X∗ +(σ −µX∗)⊗Y ∗ +(2µP∗−ω)⊗Q∗ ,

∇̃Q∗ = (σ −µX∗)⊗X∗− (µY ∗ +ρ)⊗Y ∗ +(ω −2µP∗)⊗P∗ ,

(2.16)

and then a computation shows that the condition ∇̃S = 0 is equivalent to the conditions (2.7).

�

If for each a,b ∈ R, we set θ = aP∗ + bQ∗, ω = 2µP∗, ρ = −µY∗, σ = µX∗, then

(θ ,ω,ρ ,σ) is a particular solution of the system of differential equations (2.7). Then, if

λ = 2µ , the tensor field S given by (2.5) is also a homogeneous Riemannian structure on

A4(λ ,µ). Then we have the following corollary.

Corollary 2.2 The tensor field S given by (2.5), with θ = aP∗ + bQ∗, is a homogeneous

Riemannian structure on the metric Lie group A4(λ ,µ) for all λ ,µ > 0.
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On the other hand, (θ ,ω,ρ ,σ) = (0,0,0,0) is other solution of the system (2.7), and

then S = 0 is a homogeneous Riemannian structure on A4(λ ,µ) if λ = 2µ; this is equivalent

to say that ∇R = 0 and it means that the simply connected complete Riemannian manifold

A4(2µ,µ) is a symmetric space. Then, as an immediate consequence of Theorem 2.1, we

also have the following corollary.

Corollary 2.3 The metric Lie group A4(λ ,µ) is a Riemannian symmetric space if and only

if λ = 2µ .

Remark 2.4 Irreducible symmetric spaces are Einstein, and in [18] Jensen showed that every

4-dimensional simply connected homogeneous Einstein manifold is symmetric. Actually, in

terms of the basis {X ,Y,P,Q} of a4(λ ,µ), the Ricci tensor of A4(λ ,µ) can be expressed, for

any λ ,µ > 0, as the matrix

Ric = diag
(
−λ 2

2
−4µ2, −λ 2

2
−4µ2,

λ 2

2
−8µ2, −6µ2

)
,

and it is a multiple of the metric if and only if λ = 2µ . If k =
√

6 µ =
√

6
2

λ , then the Ricci

tensor of this symmetric space is Ric = −k2〈 ,〉.

2.2 Reductive decompositions and simply connected groups of isometries of A4(λ ,µ)

To determine the reductive decompositions associated to the homogeneous Riemannian

structures on the metric Lie group A4(λ ,µ), we consider the identity element o of A4(λ ,µ),
and put m = To(A4(λ ,µ)) ≡ a4(λ ,µ).

For each a,b ∈ R, the (1,2)-tensor field S = Sa,b on A4(λ ,µ) corresponding to the

homogeneous Riemannian structure given by (2.5), where θ = aP∗ + bQ∗, is expressed in

terms of the basis {X ,Y,P,Q} of a4(λ ,µ) by

SXX = µQ, SY X = −λ

2
P, SPX = aY, SQX = bY,

SXY =
λ

2
P, SYY = µQ, SPY = −aX , SQY = −bX ,

SXP = −λ

2
Y, SY P =

λ

2
X , SPP = 2µQ, SQP = 0,

SX Q = −µX , SY Q = −µY, SPQ = −2µP, SQQ = 0.

(2.17)

Then the connection ∇̃ = ∇̃a,b = ∇−Sa,b is given by

∇̃PX = −
(λ

2
+a

)
Y, ∇̃PY =

(λ

2
+a

)
X , ∇̃QX = −bY, ∇̃QY = bX , (2.18)

with all other covariant derivatives between generators being zero, and the only components

of the curvature R̃ of ∇̃a,b which are not always zero are

R̃XY = λ
(λ

2
+a

)
(Y ∗⊗X −X∗⊗Y ), R̃PQ = 2µ

(λ

2
+a

)
(X∗⊗Y −Y ∗⊗X). (2.19)

The holonomy algebra h̃ of ∇̃ is the Lie subalgebra of antisymmetric endomorphisms of

m ≡ a4(λ ,µ) generated by the curvature operators R̃VW ∈ so(m) ∼= so(4), and g̃a,b = h̃+m,

with Lie bracket defined by (1.2), is the reductive decomposition associated to S = Sa,b.
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If a = −λ/2, the holonomy algebra h̃ is trivial, and the reductive decomposition asso-

ciated to the homogeneous Riemannian structure S = Sa,b given by (2.5) is g̃b = g̃−λ/2,b =
{0}+m = Span{X ,Y,P,Q}, with, by (1.2) and (2.17), nonzero brackets

[X ,Y ] = λ P, [Q,X ] = µX +bY, [Q,Y ] = −bX + µY, [Q,P] = 2µP,

that is, g̃b is the semidirect product of the Heisenberg algebra h3 and the line q = Span{Q}
under δ : q → Der(h3), where

δ(Q) =




µ −b 0

b µ 0

0 0 2µ


 ,

in terms of the basis {X ,Y,P} of h3. The simply connected Lie group G̃b
λ ,µ generated by g̃b

is the semidirect product H3 o∆ R, where ∆ : R → Aut(H3) is the homomorphism given by

∆t (z, p) = (e(µ+ib)tz, e2µt p). Then we have the following theorem.

Theorem 2.5 Let S = Sa,b be the homogeneous Riemannian structure on A4(λ ,µ) given

by (2.5), and a = −λ/2. For each b ∈ R, the corresponding simply connected group of

isometries acting transitively on A4(λ ,µ) is G̃b
λ ,µ = H3 o R = C×R2 with the operation

given by

(z, p,q) · (z′ , p′,q′) =
(

z+ e(µ+ib)qz′, p+ e2µq p′ +
λ

2
Im(e(µ+ib)qz̄ z′), q+q′

)
.

Remark 2.6 For each b ∈R, the Lie group G̃b
λ ,µ associated to S−

λ
2 ,b acts simply transitively

on A4(λ ,µ), then we have an infinite number of descriptions of A4(λ ,µ) provided by a

one-parameter family of non-isomorphic 3-step solvable Lie groups which are extensions

of the Heisenberg group. In particular, if b = 0, the group of isometries is A4(λ ,µ) acting

on itself by left translations. In this case, the corresponding homogeneous structure is given

by S−
λ
2 ,0

ZW = ∇ZW for all Z,W ∈ a4(λ ,µ), which means that ∇̃− λ
2 ,0 = ∇− S−

λ
2 ,0 is the

connection on A4(λ ,µ) for which every left-invariant vector field is parallel.

Suppose now that a 6= −λ/2. By (2.19), the holonomy algebra h̃ of ∇̃ is generated

by V = Y ∗⊗X −X∗⊗Y ∈ so(m). Then, by (1.2) and (2.17), the reductive decomposition

associated to Sa,b is g̃a,b = h̃+m = Span{V,X ,Y,P,Q}, with structure equations

[V,X ] = −Y, [V,Y ] = X , [V,P] = [V,Q] = 0,

[X ,Y ] = λ
(λ

2
+a

)
V +λ P, [P,Q] = −2µ

(λ

2
+a

)
V −2µP,

[X ,P] = −
(λ

2
+a

)
Y, [Y,P] =

(λ

2
+a

)
X ,

[X ,Q] = −µX −bY, [Y,Q] = −µY +bX .

(2.20)

If we set

V̂ =
(λ

2
+a

)
V +P, Q̂ = Q−b

(λ

2
+a

)−1

P, X̂ = X , Ŷ = Y, P̂ = P, (2.21)

then, with respect to the basis {V̂ , X̂ ,Ŷ , P̂,Q̂} of g̃a,b, the nonzero brackets are

[X̂,Ŷ ] = λV̂ , [Q̂, X̂ ] = µX̂, [Q̂,Ŷ ] = µŶ , [Q̂,V̂ ] = 2µV̂ ,

[P̂, X̂ ] =
(λ

2
+a

)
Ŷ , [P̂,Ŷ ] = −

(λ

2
+a

)
X̂ , [P̂,Q̂] = −2µV̂ ,

(2.22)
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that is, g̃a,b is the semidirect product of the Lie algebra g0 = Span{X̂,Ŷ ,V̂ ,Q̂} isomorphic

to a4(λ ,µ) and the line p = Span{P̂}, with respect to the homomorphism δ : p → Der(g0)
given, in terms of the basis {X̂ ,Ŷ ,V̂ ,Q̂} of g0, by

δ(P̂) =




0 −(λ
2

+a) 0 0
λ
2

+a 0 0 0

0 0 0 −2µ
0 0 0 0


 .

The simply connected Lie group G̃
a,b
λ ,µ with Lie algebra g̃a,b is a semidirect product G0 o∆ R,

where we consider G0 (which is isomorphic to A4(λ ,µ)) with global coordinates given by

the diffeomorphism

(z = x + iy, r, s) ∈ C×R
2 → exp(xX̂ + yŶ + rV̂ )exp(sQ̂) ∈ G0 ,

and by using the exponential map for G0 (see (2.2)) one has that ∆ : R → Aut (G0) is given

by ∆p(z,r,s) = (ei( λ
2 +a)pz, r+(1− e2µs)p, s). Thus we have the following theorem.

Theorem 2.7 Let S = Sa,b be the homogeneous Riemannian structure on A4(λ ,µ) given

by (2.5). For each a,b ∈R, a 6= −λ/2, the corresponding simply connected group of isome-

tries acting transitively on A4(λ ,µ) is a semidirect product A4(λ ,µ)o R and it is isomor-

phic to C×R3 with the group operation

(z,r,s, p) · (z′ ,r′,s′, p′) =
(

z+ eµs+i( λ
2
+a)pz′,

r+ e2µs
(
(1− e2µs′)p+ r′

)
+

λ

2
eµs Im(ei( λ

2 +a)pz̄ z′), s+ s′, p+ p′
)
.

Remark 2.8 If λ = 2µ , then S = 0 is a homogeneous Riemannian structure on A4(λ ,µ),
and it describes this manifold as a Riemannian symmetric space. For this structure we have

that R̃ = R, and by (2.4) the holonomy algebra h̃ of ∇̃ = ∇ is the Lie subalgebra of so(m)
generated by




0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0


 ,




0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0


 ,




0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0


 ,




0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


 ,

which is isomorphic to s(u(2)⊕ u(1)). The 8-dimensional Lie algebra g̃ = h̃+m, with the

brackets defined by (1.2), is isomorphic to su(2,1), and the reductive decomposition gives

the description of A4(2µ,µ) as the complex hyperbolic plane SU(2,1)/S(U(2)×U(1)) =
CH(2).

2.3 The Hermitian Lie group A4(λ ,µ)

An almost Hermitian manifold (M,g,J) is called a homogeneousalmost Hermitian manifold

if there exists a Lie group of almost complex isometries acting transitively and effectively

on M. In [23], Sekigawa proved that a simply connected and complete almost Hermitian

manifold (M,g,J) is homogeneous if and only if it admits a tensor field S of type (1,2)

satisfying the Ambrose-Singer equations (1.1) and ∇̃J = 0, where ∇̃ = ∇−S. Such a tensor
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field S is called a homogeneous almost Hermitian structure (or a homogeneous Hermitian

structure if (M,g,J) is a Hermitian manifold, that is, J is integrable; or a homogeneous

Kähler structure if (M,g,J) is Kähler, that is, J is integrable and the fundamental 2-form Ω
on M, given by Ω (Z,W ) = g(Z,JW), is closed, or equivalently ∇J = 0). It is well known

that J is integrable, that is, it defines a complex structure on M, if and only if NJ = 0, where

NJ is the Nijenhuis tensor, defined by

NJ(Z,W ) = [JZ,JW ]− J[JZ,W ]− J[Z,JW ]− [Z,W ].

Moreover, a homogeneous Riemannian structure on a Kähler manifold (M,g,J) is a homo-

geneous Kähler structure if and only if S ·J = 0 or, equivalently, SZAB = SZ JAJB for all vector

fields A,B,Z on M.

Suppose that G is a Lie group with the left-invariant Riemannian metric induced by a

scalar product 〈 ,〉 on its Lie algebra g. An invariant Hermitian structure on the metric Lie

group G is an endomorphism J of the Lie algebra g of G such that J2 = −id, 〈JA,JB〉 =
〈A,B〉, and NJ(A,B) = 0 for all A,B ∈ g. In this case, the underlying manifold of G is a

Hermitian manifold and the left translations on G are holomorphic isometries, and G is

called a Hermitian Lie group. If J is an invariant Hermitian structure on G such that

〈[A,B],JC〉+ 〈[B,C],JA〉+ 〈[C,A],JB〉 = 0, (2.23)

for all A,B,C ∈ g, then (g,〈 ,〉,J) is called a Kähler algebra, and G is a Kähler Lie group.

Condition (2.23) is equivalent to dΩ = 0, where Ω is the Kähler form of (G,〈 ,〉,J). In par-

ticular, solvable Kähler algebras correspond to simply connected homogeneous Kähler man-

ifolds which admit a simply transitive solvable group of holomorphic isometries (see [16]).

We equip the metric Lie algebra a4(λ ,µ) with the endomorphism J defined by

JX = Y, JY = −X , JP = −Q, JQ = P. (2.24)

Then J defines an almost Hermitian structure on A4(λ ,µ) and we have that NJ(A,B) = 0 for

all A,B ∈ a4(λ ,µ). Thus, J is an invariant Hermitian structure on A4(λ ,µ) for all λ ,µ > 0.

However, equation (2.23) is satisfied if and only if λ = 2µ .

If S = Sa,b is the homogeneous Riemannian structure on A4(λ ,µ) given by (2.5), then

∇̃ = ∇− Sa,b is given by (2.18), and it follows that ∇̃J = 0, then Sa,b is a homogeneous

Hermitian structure. If λ = 2µ and S is a homogeneous Riemannian structure on the Kähler

manifold A4(λ ,µ) given by (2.6), then by (2.24) and equations (2.12), we have SZAB =
SZ JAJB for all A,B ∈ a4(λ ,µ), and hence S is a homogeneous Kähler structure.

Then (see also Remark 2.8) we have the following.

Theorem 2.9 (A4(λ ,µ),J) is a Hermitian Lie group for all λ ,µ > 0 and it is a Kähler

Lie group if and only if λ = 2µ . All the homogeneous Riemannian structures on A4(λ ,µ)
are homogeneous Hermitian structures and they are homogeneous Kähler structures if λ =
2µ . (A4(λ ,µ),J) is a Kähler symmetric space if and only if λ = 2µ , and, in this case, its

description (which corresponds to the homogeneous Kähler structure S = 0) is the complex

hyperbolic plane SU(2,1)/S(U(2)×U(1)).

3 A solvable two-dimensional extension of the Heisenberg group

Let λ and µ be positive real numbers and ν ∈R. We consider the metric solvable Lie algebra

a5(λ ,µ,ν) admitting an orthonormal basis {X ,Y,P,Q,U} with Lie brackets

[X ,Y ] = λ P, [Q,X ] = µX , [Q,Y ] = µY, [Q,P] = 2µP, [Q,U ] = νU, (3.1)
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and the other zero. It is the semidirect product of the Heisenberg algebra h3 = Span{X ,Y,P}
and the either non-abelian (if ν 6= 0) or abelian (if ν = 0) Lie algebra e = Span{Q,U} under

the homomorphism ad|e : e → Der(h3). We denote by A5(λ ,µ,ν) the simply connected

Riemannian Lie group defined by the metric Lie algebra a5(λ ,µ,ν). Then, A5(λ ,µ,ν) can be

identified with C×R3 , with the group operation

(z, p,q,u) · (z′ , p′,q′,u′) =
(

z+ eµqz′, p+ e2µq p′ +
λ

2
eµq Im(z̄ z′), q+q′, u+ eνqu′

)
,

and the left-invariant metric

gλ ,µ,ν = e−4µq
{(

e2µq +
λ 2

4
y2

)
dx2 +

(
e2µq +

λ 2

4
x2

)
dy2 +dp2

− λ 2

2
xydxdy+λ (ydxdp− xdydp)

}
+dq2 + e−2νq du2.

The Lie group exponential map exp: a5(λ ,µ,ν) → A5(λ ,µ,ν) is given by

exp(xX +yY + pP+qQ+uU) =





(
eµq−1

µq
(x + iy),

e2µq−1

2µq
p,q,

eνq−1

νq
u

)
if q 6= 0,

(x + iy, p, 0, u) if q = 0.

(3.2)

For arbitrary (λ ,µ,ν) and (λ ′,µ ′,ν ′), the groups A5(λ ,µ,ν) and A5(λ
′,µ ′,ν ′) are

isomorphic if and only if µν ′ = νµ ′, and the corresponding Riemannian metrics gλ ,µ,ν and

gλ ′,µ ′ ,ν′ do not coincide if (λ ,µ,ν) 6= (λ ′,µ ′,ν ′).
The Levi-Civita connection on A5(λ ,µ,ν) is given by equations (2.3) and

∇U Q = −νU, ∇UU = νQ, (3.3)

with the other covariant derivatives between generators of a5(λ ,µ,ν) involving U being zero.

The Riemannian curvature tensor is now given by (2.4) and

RXU = µν(U∗⊗X −X∗⊗U), RYU = µν(U∗⊗Y −Y ∗⊗U),

RPU = 2µν(U∗⊗P−P∗⊗U), RQU = ν2(U∗⊗Q−Q∗⊗U),
(3.4)

where {X∗,Y ∗,P∗,Q∗,U∗} is the basis of invariant 1-forms on A5(λ ,µ,ν) dual to {X ,Y,P,
Q,U}.

3.1 Homogeneous Riemannian structures on A5(λ ,µ,ν)

We now determine the homogeneous Riemannian structures on A5(λ ,µ,ν) in terms of the

basis {X∗,Y ∗,P∗,Q∗,U∗} of a5(λ ,µ,ν)∗. If S is a homogeneous Riemannian structure on

A5(λ ,µ,ν), we know that the condition ∇̃g = 0 in (1.1) means that the (0,3)-tensor field S

is antisymmetric in its second and third arguments. To get the conditions on S in order that

∇̃R = 0, we also use the Levi-Civita connection ∇ on A5(λ ,µ,ν), given by (2.3) and (3.3),

and its curvature tensor, given by (2.4) and (3.4). So if we replace (X1,X2,X3,X4) in (1.3) by

(Y,P,U,Q), (X ,P,U,Q), (X ,Y,U,Q), (X ,Y,P,U), we obtain, respectively

SZXU = 0, SZYU = 0, SZPU = 0, SZQU = −νU∗(Z), (3.5)
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and replacing (X1,X2 ,X3,X4) by (X ,Y,X ,Q), (X ,Y,Y,Q), respectively, we have

λ SZYQ +2µSZXP = 0, λ SZXQ −2µSZY P = 0. (3.6)

If ν 6= 0, and we replace (X1,X2,X3,X4) in (1.3) by (X ,U,P,U), (Y,U,P,U), we obtain,

respectively,

SZXP = −λ

2
Y ∗(Z), SZY P =

λ

2
X∗(Z), (3.7)

and by (3.6) and (3.7), we also have

SZY Q = µY ∗(Z), SZXQ = µX∗(Z). (3.8)

Then, if ν 6= 0, by (3.5), (3.7) and (3.8), we can write

S = θ ⊗ (X∗ ∧Y ∗)+ω ⊗ (P∗∧Q∗)− λ

2
Y∗⊗ (X∗∧P∗)+ µX∗⊗ (X∗ ∧Q∗)

+
λ

2
X∗⊗ (Y ∗∧P∗)+ µY ∗⊗ (Y ∗∧Q∗)−νU∗⊗ (Q∗ ∧U∗),

(3.9)

where

θ (Z) = SZXY , ω(Z) = SZPQ.

On the other hand, we have

(∇̃Z S)WXY = (∇̃Zθ )(W), (∇̃ZS)W XP = µ(ω −2µP∗)(Z)X∗(W ),

and in particular, if ∇̃S = 0 then ω = 2µP∗. A calculation shows that S in (3.9), with ω =

2µP∗, satisfies ∇̃R = 0, and it satisfies ∇̃S = 0 if and only if ∇̃θ = 0. Moreover, by using

the structure equations (3.1), one obtains that ∇̃θ = 0 if and only if θ = aP∗ + bQ∗ + cU∗,

where a,b,c are real numbers, and we conclude with the following theorem.

Theorem 3.1 If ν 6= 0, all the homogeneous Riemannian structures on the metric Lie group

A5(λ ,µ,ν) are given by

S = θ⊗(X∗∧Y ∗)+2µP∗⊗(P∗∧Q∗)− λ

2
Y ∗⊗(X∗∧P∗)+ µX∗⊗(X∗∧Q∗)

+
λ

2
X∗⊗ (Y ∗∧P∗)+ µY ∗⊗ (Y ∗∧Q∗)−νU∗⊗ (Q∗ ∧U∗), (3.10)

where θ = aP∗ +bQ∗ + cU∗, a,b,c ∈ R.

Suppose now that ν = 0. By (3.5) we have SZU = 0 for all Z ∈ a5(λ ,µ,0), and by the

second equation in (3.3), we also have ∇̃U = 0 and ∇̃U∗ = 0. Then, using the same reasoning

as in the proof of Theorem 2.1, we obtain all the homogeneous Riemannian structures in this

case, and we can state the following theorem.

Theorem 3.2 (a) If λ 6= 2µ , all the homogeneous Riemannian structures on A5(λ ,µ,0)
are given by (2.5), where θ = aP∗ +bQ∗ + cU∗, with a,b,c ∈ R.

(b) If λ = 2µ , all the homogeneous Riemannian structures on A5(λ ,µ,0) are given

by (2.6), where θ , ω, ρ , and σ are differential 1-forms on A5(λ ,µ,0) satisfying (2.7).

Corollary 3.3 For each λ ,µ,ν ∈ R, λ ,µ > 0, and for each a,b,c ∈ R, the tensor field S

given by (3.10), where θ = aP∗ + bQ∗ + cU∗, is a homogeneous Riemannian structure on

A5(λ ,µ,ν). If ν 6= 0 or λ 6= 2µ , these are all the possible such structures.
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By Theorems 3.1 and 3.2, S = 0 is a homogeneous Riemannian structure on A5(λ ,µ,ν)
if and only if λ = 2µ and ν = 0. Then we have the following corollary.

Corollary 3.4 The metric Lie group A5(λ ,µ,ν) is a Riemannian symmetric space if and

only if λ = 2µ and ν = 0.

Remark 3.5 The metric Lie group A4(λ ,µ) is a symmetric space if and only if λ = 2µ
(Corollary 2.3), and it is also Einstein, but the Riemannian symmetric space A5(2µ,µ,0) =
A4(2µ,µ)×R is not Einstein. For each λ ,µ > 0, ν ∈R, the Ricci tensor Ric of A5(λ ,µ,ν)
is expressed in terms of the basis {X ,Y,P,Q,U} of a5(λ ,µ,ν) as the matrix

diag
(
−λ 2

2
−4µ2 −µν , −λ 2

2
−4µ2 −µν ,

λ 2

2
−8µ2 −2µν , −6µ2 −ν2, −4µν −ν2

)
,

and it is easy to see that Ric is a multiple of the metric if and only if

λ =

√
6

3
k, µ =

2
√

33

33
k, ν =

√
33

11
k, k > 0,

and in this case Ric = −k2〈 ,〉, with k2 = 6µ2 +ν2. We notice that for each k > 0, the metric

Lie group

A5

(√
6

3
k,

2
√

33

33
k,

√
33

11
k

)

is the unique, up to isometries, nonsymmetric Einstein space in the Alekseevsky’s clas-

sification [2] of homogeneous Einstein spaces (Ric = −k2 g) with nonpositive curvature

and dimension n ≤ 5 (see also Nikonorov [21], where it is proved that each 5-dimensional

noncompact homogeneous Einstein manifold is locally isometric to some standard Einstein

solvmanifold).

3.2 Reductive decompositions and simply connected groups of isometries of A5(λ ,µ,ν)

By Corollary 3.3, the tensor fields S given by (3.10) are all the homogeneous Riemannian

structures on A5(λ ,µ,ν) if ν 6= 0 or λ 6= 2µ , and they are also homogeneous Riemannian

structures (but not the only ones) if ν = 0 and λ = 2µ . For each a,b,c ∈ R, let S = Sa,b,c

be the corresponding (1,2)-tensor field, where θ = aP∗ + bQ∗+ cU∗. Then, in terms of the

basis {X ,Y,P,Q,U} of a5(λ ,µ,ν), S is given by (2.17) and

SUX = cY, SUY = −cX , SUQ = −νU, SUU = νQ, (3.11)

the other components involving U being zero. The connection ∇̃ = ∇̃a,b,c = ∇− Sa,b,c is

given by (2.18) and

∇̃UX = −cY, ∇̃UY = cX , (3.12)

with the other covariant derivatives between generators vanishing. The components of the

curvature R̃ of ∇̃a,b,c which are not always zero are those given in (2.19) and

R̃QU = cν(Y∗⊗X −X∗⊗Y ). (3.13)

We put m = To(A5(λ ,µ,ν)) ≡ a5(λ ,µ,ν), where o is the identity element of A5(λ ,µ,ν).
The reductive decomposition associated to S = Sa,b,c is g̃a,b,c = h̃+m with the Lie bracket

in (1.2) and h̃ being the holonomy algebra of ∇̃ = ∇̃a,b,c.
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Theorem 3.6 Let S = Sa,b,c be the homogeneousRiemannian structure on A5(λ ,µ,ν) given

by (3.10), a = −λ/2, and let G̃
b,c
λ ,µ,ν be the simply connected group of isometries defined by

the reductive decomposition associated to S−
λ
2 ,b,c.

(a) If cν = 0, the holonomy algebra of ∇̃− λ
2
,b,c is trivial, and G̃

b,c
λ ,µ,ν is a semidirect

product H3 o E, where E is isomorphic to the affine group of the line Aff(1) if ν 6= 0 and it

is the abelian group R2 if ν = 0. The group operation of G̃
b,c
λ ,µ,ν = C×R3 is given by

(z, p,q,u) · (z′ , p′,q′,u′)

=
(

z+ eµq+i(bq+cu)z′, p+ e2µq p′ +
λ

2
eµq Im(ei(bq+cu)z̄ z′), q+q′, u+ eνqu′

)
.

In particular, G̃
0,0
λ ,µ,ν = A5(λ ,µ,ν).

(b) If cν 6= 0, the holonomy algebra of ∇̃− λ
2 ,b,c is one-dimensional, and G̃

b,c
λ ,µ,ν

is a

semidirect product H3 o F, where F is isomorphic to Aff(1)×R. The group operation of

G̃
b,c
λ ,µ,ν

= C×R4 is given by

(z, p,q,t,r) · (z′ , p′,q′,t ′,r′)

=
(

z+ eµq+i(bq−r)z′, p+ e2µq p′ +
λ

2
eµq Im(ei(bq−r)z̄ z′), q+q′, t + eνqt ′, r+ r′

)
.

Proof By (1.2), the Lie algebra g̃b,c = g̃−λ/2,b,c is generated by X ,Y,P,Q,U , and cνV , where

V =Y ∗⊗X−X∗⊗Y ∈ so(m)∼= so(5), and from the expression for S = Sa,b,c given in (2.17)

and (3.11) and the components of the curvature R̃ of ∇̃ = ∇̃a,b,c given in (3.13) (those

in (2.19) vanish), the Lie brackets are

[X ,Y ] = λ P, [Q,X ] = µX +bY, [Q,Y ] = −bX + µY, [Q,P] = 2µP,

[X ,U ] = −cY, [Y,U ] = cX , [Q,U ] = ν(cV +U),

and

[V,X ] = −Y, [V,Y ] = X , if cν 6= 0,

with the rest vanishing.

(a) If cν = 0 then g̃b,c = {0}+m = Span{X ,Y,P,Q,U} is the semidirect product of the

Heisenberg algebrah3 = Span{X ,Y,P} and the either non-abelian (if ν 6= 0, c = 0) or abelian

(if ν = 0) Lie algebra e = Span{Q,U} with respect to the homomorphism δ : e → Der(h3)
given in terms of X ,Y,P by

δ(Q) =




µ −b 0

b µ 0

0 0 2µ


 , δ(U) =




0 −c 0

c 0 0

0 0 0


 .

The group law of the simply connected Lie group E generated by e is given by (q,u)(q′,u′) =
(q+q′, u+eνqu′). If ν 6= 0, E is isomorphic to the (unique) two-dimensional connected non-

abelian real Lie group Aff(1). Now, the group G̃
a,b
λ ,µ,ν

is the semidirect product H3 o∆ E,

where ∆ : E → Aut (H3) is given by ∆(q,u)(z, p) = (e µq+i(bq+cu)z, e2µq p).

(b) If cν 6= 0 then g̃b,c = h̃+m = Span{V,X ,Y,P,Q,U}, and if we set T = U + cV , then

g̃b,c can be written as the semidirect product of the Heisenberg algebra h3 = Span{X ,Y,P}
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and the 3-dimensional Lie algebra f = Span{Q,T,V} with non-null bracket [Q,T ] = νT ,

under the homomorphism δ ′ : f→ Der(h3) given, with respect to X ,Y,P, by

δ ′(Q) =




µ −b 0

b µ 0

0 0 2µ


 , δ ′(T ) = 0, δ ′(V ) =




0 1 0

−1 0 0

0 0 0


 .

The group operation of the simply connected Lie group F (isomorphic to Aff(1)×R) gen-

erated by f is defined by (q,t,r)(q′,t ′,r′) = (q + q′, t + eνqt ′, r + r′), and the exponential

map exp: f → F is given by

exp(qQ+ tT + rV ) =





(
q,

eνq −1

νq
t, r

)
if q 6= 0,

(0, t, r) if q = 0,

then we get that the homomorphism ∆ ′ : F →Aut (H3) induced by δ ′ is given by ∆ ′
(q,t,r)(z, p)

= (eµq+i(bq−r)z, e2µq p), and since G̃
a,b
λ ,µ,ν

is in this case the semidirect product H3 o∆ ′ F , the

proof concludes. �

Theorem 3.7 For each λ ,µ > 0, ν ∈ R, let S = Sa,b,c be the homogeneous Riemannian

structure on A5(λ ,µ,ν) given by (3.10). For all a,b∈R, a 6=−λ/2, the corresponding sim-

ply connected group of isometries acting transitively on A5(λ ,µ,ν) is a semidirect product

A5(λ ,µ,ν)oR and it is isomorphic to C×R
3 with the group operation

(z,r,s,t, p) · (z′ ,r′,s′,t ′, p′) =
(

z+ eµs+i( λ
2 +a)pz′,

r+ e2µs
(
(1− e2µs′)p+ r′

)
+

λ

2
eµs Im(ei( λ

2 +a)p z̄ z′), s+ s′ , t + eνst ′, p+ p′
)
.

Proof By the expression for the curvature R̃ of ∇̃ = ∇̃a,b,c given by (2.19) and (3.13), the

holonomy algebra h̃ of ∇̃ is generated by V = Y ∗⊗X −X∗⊗Y ∈ so(m) ∼= so(5). By (2.17)

and (3.11), which give the components of S = Sa,b,c, and from (1.2), the reductive decompo-

sition associated to S is g̃a,b,c = h̃+m = Span{V,X ,Y,P,Q,U}, with the Lie bracket defined

by equations (2.20) and

[V,U ] = 0, [X ,U ] = −cY, [Y,U ] = cX , [P,U ] = 0, [Q,U ] = ν(cV +U).

We set V̂ , X̂ ,Ŷ , P̂,Q̂ as in (2.21), and Û =U +cV . Then, with respect to the basis {V̂ , X̂ ,Ŷ , P̂,

Q̂,Û} of g̃a,b,c, the Lie brackets are given by equations (2.22) and [Q̂,Û ] = νÛ , with the

other zero. Then g̃a,b,c is the semidirect product of the Lie algebra k0 = Span{X̂ ,Ŷ ,V̂ ,Q̂,Û}
isomorphic to a5(λ ,µ,ν) and the line p = Span{P̂} under δ = ad|p : p→ Der(k0). We consider

the Lie group K0 generated by k0 with coordinates defined by the diffeomorphism

(z = x + iy, r, s, t) ∈ C×R
3 −→ exp(xX̂ + yŶ + rV̂ )exp(sQ̂)exp(tÛ) ∈ K0.

Then, by using the exponential map (3.2) for K0
∼= A5(λ ,µ,ν) one obtains easily that the

homomorphism ∆ : R → Aut (K0) defined by δ is given by ∆p(z,r,s,t) = (ei( λ
2 +a)pz, r +

(1− e2µs)p, s, t), and we conclude the proof. �

Remark 3.8 If λ = 2µ and ν = 0, then S = 0 is a homogeneous Riemannian structure on

A5(λ ,µ,ν), and its associated reductive decomposition defines a 9-dimensional symmetric

Lie algebra g̃ = h̃+m, where the holonomy algebra h̃ of the connection ∇̃ = ∇ is isomorphic

to s(u(2)⊕u(1)), and g̃∼= su(2,1)⊕R. The corresponding description of A5(2µ,µ,0) as a

Riemannian symmetric space is (SU(2,1)×R)/S(U(2)×U(1)) = CH(2)×R.
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3.3 The almost contact metric manifold A5(λ ,µ,ν)

The odd-dimensional analogues of the almost Hermitian manifolds are the almost contact

metric manifolds (see Blair [4,5]). A (2n + 1)-dimensional manifold is called an almost

contact metric manifold if it is equipped with a quadruple (ϕ,ξ ,η,g), where ϕ is a tensor

field of type (1,1), ξ a vector field, η a differential 1-form, and g a Riemannian metric on

M such that

ϕ2 = −id+η ⊗ξ , η(ξ) = 1, g(ϕZ,ϕW ) = g(Z,W )−η(Z)η(W ), (3.14)

for every Z,W ∈ X(M). Then ϕξ = 0, η ◦ϕ = 0, and η(Z) = g(Z,ξ) for all Z ∈ X(M). If

∇ϕ = 0, M is called a cosymplectic manifold (see also the recent paper by Fino and Vezzoni

[13])

An almost contact metric manifold (M,ϕ,ξ ,η,g) is called a homogeneous almost con-

tact metric manifold if (M = G/H,g) is a homogeneous Riemannian manifold such that ϕ
is invariant (and hence so are ξ and η) under the action of G (see [11,17,20]). From [19]

it follows that if (M,ϕ,ξ ,η,g) is an almost contact metric manifold such that M is simply

connected and g is complete then (M,ϕ,ξ ,η,g) is a homogeneous almost contact metric

manifold if and only if there exists a (1,2)-tensor field S on M satisfying (1.1) and ∇̃ϕ = 0

(and hence ∇̃ξ = 0 and ∇̃η = 0), where ∇̃ = ∇− S. Such a tensor field S is called a homo-

geneous almost contact metric structure (or a homogeneous cosymplectic structure if M is

cosymplectic).

Now we define a quadruple (ϕ,ξ ,η,g) on A5(λ ,µ,ν) in terms of the basis {X ,Y,P,

Q,U} of a5(λ ,µ,ν) and its dual basis {X∗,Y ∗,P∗,Q∗ ,U∗}. We set

ϕ = X∗⊗Y −Y ∗⊗X −P∗⊗Q+Q∗ ⊗P, ξ = U, η = U∗, g = gλ ,µ,ν , (3.15)

where gλ ,µ,ν is the metric of A5(λ ,µ,ν) (for which {X ,Y,P,Q,U} is orthonormal). Then

(ϕ,ξ ,η,g) satisfies (3.14), and A5(λ ,µ,ν) becomes an almost contact metric manifold for

all λ ,µ > 0,ν ∈R. Moreover, by the equations (2.3) and (3.3) of the Levi-Civita connection

on A5(λ ,µ,ν), we have that ∇ϕ = 0 if and only if λ = 2µ and ν = 0.

Let S = Sa,b,c be the homogeneous Riemannian structure on A5(λ ,µ,ν) given by (3.10)

(see also Corollary 3.3). The connection ∇̃ = ∇−Sa,b,c is given by (2.18) and (3.12) and we

have ∇̃ϕ = 0, then Sa,b,c is a homogeneous almost contact metric structure. If λ = 2µ and

ν = 0, let S be an arbitrary homogeneous Riemannian structure in (b) of Theorem 3.2 on

the cosymplectic manifold A5(2µ,µ,0), and ∇̃ = ∇−S. From the expressions for ∇̃X , ∇̃Y ,

∇̃P, ∇̃Q (which immediately follow from equations (2.16)), and ∇̃U = 0, we have ∇̃ϕ = 0,

then S is a homogeneous cosymplectic structure. We can thus state the next result.

Theorem 3.9 A5(λ ,µ,ν), with (ϕ,ξ ,η,g) defined by (3.15), is an almost contact met-

ric manifold for all λ ,µ > 0, ν ∈ R, and it is a cosymplectic manifold if and only if

λ = 2µ and ν = 0. All the homogeneous Riemannian structures on A5(λ ,µ,ν) are ho-

mogeneous almost contact metric structures, and if λ = 2µ and ν = 0 they are homoge-

neous cosymplectic structures. Moreover, the almost contact metric manifold A5(λ ,µ,ν)
is a cosymplectic symmetric space if and only if λ = 2µ and ν = 0. The description of

A5(2µ,µ,0) as a cosymplectic symmetric space (which corresponds to the structure S = 0)
is (SU(2,1)×R)/S(U(2)×U(1)).
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