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Abstract — A neuromorphic chip that combines CMOS analog 
spiking neurons and memristive synapses offers a promising 
solution to brain-inspired computing, as it can provide massive 
neural network parallelism and density. Previous hybrid analog 
CMOS-memristor approaches required extensive CMOS circuitry 
for training, and thus eliminated most of the density advantages 
gained by the adoption of memristor synapses. Further, they used 
different waveforms for pre and post-synaptic spikes that added 
undesirable circuit overhead. Here we describe a hardware 
architecture that can feature a large number of memristor 
synapses to learn real-world patterns. We present a versatile 
CMOS neuron that combines integrate-and-fire behavior, drives 
passive memristors and implements competitive learning in a 
compact circuit module, and enables in-situ plasticity in the 
memristor synapses. We demonstrate handwritten-digits 
recognition using the proposed architecture using transistor-level 
circuit simulations. As the described neuromorphic architecture is 
homogeneous, it realizes a fundamental building block for large-
scale energy-efficient brain-inspired silicon chips that could lead 
to next-generation cognitive computing. 
 

Index Terms— Neuromorphic, Silicon Neuron, Memristor, 
Resistive Memory, Spike-Timing Dependent Plasticity, Spiking 
Neural Network, Machine Learning, Brain-Inspired Computing. 
 

I. INTRODUCTION 
HE human brain is a very energy-efficient computing 
machine: tasks like perception, object recognition, speech 

recognition and language translation are trivial to a human 
brain; whereas modern machines can do such tasks, but require 
orders of magnitude more energy, as well as specialized 
programming. Massive parallelism is one of the reasons our 
brains are so effective in the above mentioned decision-making 
tasks. Radically different from today’s predominant von 
Neumann computers (memories and processing elements are 
separated), a biological brain stores memory and computes 
using similar motifs. Neurons perform computation by 
propagating spikes and storing memories in the relative 
strengths of their synapses as well as their interconnectivities. 

By repeating such a simple structure of neurons and synapses, 
a biological brain realizes a very energy-efficient computer. 
Inspired by such architecture, artificial neural networks (ANNs) 
have been developed and achieved remarkable success in a few 
specific applications, but historically require hardware resource 
intensive training methods (such as the gradient-based back-
propagation algorithms) on conventional computers, and 
therefore making them inefficient computationally and in 
energy use. By exploiting parallel graphical processing units 
(GPUs) or field programmable gate arrays (FPGAs), power 
consumption of neural networks has been reduced by several 
orders of magnitude [1], which yet remains far higher than their 
biological counterparts.  

In the past decade, the discovery of spike-timing-dependent- 
plasticity (STDP) [2]–[8] has opened new avenues in neural 
network research. Theoretical studies have suggested STDP can 
be used to train spiking neural networks (SNNs) in-situ without 
trading-off their parallelism [9]–[12]. Further, nano-scale 
memristive devices have demonstrated biologically plausible 
STDP behavior in several experiments [13]–[17], and therefore 
have emerged as an ideal candidate for electrical synapses. To 
this end, hybrid CMOS-memristor analog very-large-scale 
integrated (VLSI) circuits have been proposed [18]–[22] to 
achieve dense integration of CMOS neurons and memristors for 
brain-inspired computing chips by leveraging the contemporary 
nanometer silicon processing technology.  

Researchers have recently demonstrated pattern recognition 
applications on spiking neuromorphic systems (with memristor 
synapses) [23]–[32] using leaky integrate-and-fire neurons 
(IFNs). Most of these systems either require extra training 
circuitry attached to the synapses (thus eliminating most of the 
density advantages gained by using memristors), or different 
waveforms for pre- and post-synaptic spikes (thus introducing 
undesirable circuit - overhead which significantly limit power 
and area budget of a large-scale neuromorphic system). There 
have been a few CMOS IFN designs that attempt to 
accommodate memristor synapses and in-situ synaptic 
plasticity together. An asynchronous IFN architecture was 
proposed in [33], [34], which provided current summing nodes, 
and propagated same-shape spikes in both the forward and 
backward directions. Another CMOS IFN with a current 
conveyor was implemented to drive the memristor as excitatory 
or inhibitory synapse [35], [36]. However, none of them 
supports pattern classification directly owing to the lack of a 
mechanism for making decisions when employed in a neural 
network. Moreover, the consideration of large current drive 
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capability for a massive number of passive memristor synapses 
was absent in these designs. 

In this paper, we describe a neuromorphic architecture that 
can scale to a large number of memristor synapses to learn real-
world patterns. To do so, a versatile CMOS spiking IFN was 
developed. A winner-takes-all (WTA) interface is embedded to 
empower competitive learning with a shared WTA bus 
topology among local neurons. A dynamic powering scheme is 
used to achieve large current drive capability without 
compromising the energy-efficiency. By exploiting a 
reconfigurable architecture inspired by [34], the neuron 
accommodates symmetric forward and backward propagation 
of spikes for online STDP. With a new tri-mode operation, the 
neuron encapsulates all functions with a single OpAmp in a 
very compact circuit, while allowing one-terminal connectivity 
between the neuron and a synapse. Consequently, it enables a 
simple repeating homogenous structure with a fully 
asynchronous communication protocol, and thus facilitates 
scaling-up to large-scale neuromorphic chips. Employing an 
industry-standard circuit simulator, we show online STDP 
learning in memristors and large current drive capability with 
high energy-efficiency of the proposed neuron, and 
demonstrate a handwritten-digits recognition application using 
the proposed architecture.  

The rest of this article is organized as follows: Section II 
introduces the system architecture and building blocks needed 
to realize a homogeneous neuromorphic system; Section III 
proposes the CMOS neuron topology and explains how it works 
as a fundamental information processing unit;  Section IV 
presents a pattern recognition application using the proposed 
system; Section V demonstrates operations of the proposed 
CMOS neuron, STDP learning in memristors and an 8×8 
handwritten-digits recognition; finally, Section VI discusses the 
limitations and future challenges. 

II. HOMOGENEOUS NEUROMORPHIC SYSTEM 
Fig. 1B shows a basic neuromorphic unit which comprises 

several synapses and a neuron block. It mimics a biological 
neuron as shown in Fig. 1A, where the synapse receives spikes 
from other neurons and converts them into currents according 
to their synaptic strength. The neuron block performs spatio-
temporal integration of the spikes and generates output spikes 
(or action potentials) similar to the operation of a neuron soma 
(Fig. 1C). Further, the dendrites and axons are implemented 
using interconnect circuits which model the spiking-signal 
propagation through neuronal fibers and used to realize larger 
signal processing networks [37]. 

A. Memristor as Synapse 
The memristor was first conceptually conceived in 1971 by 

Leon Chua [30] from a circuit theory perspective. In theory, a 
memristor is a two-terminal device that can retain an internal 
analog state by the value of its resistance, or conductance, that 
depends upon on the history of the applied voltage and thus the 
current flowing through the device. Since the conductance of a 
memristor can be incrementally increased or decreased by 
controlling the flux through it, it is a potential candidate for 
realizing electronic equivalent of biological synapses. 
However, memristor based neural networks have only begun to 
be explored due to the recent emergence of nano-scale 
memristor devices. 

Memristance has recently been demonstrated in nano-scale 
two-terminal devices using various material systems [13]–[19], 
[38]–[43]. Fig. 2A schematically shows a highly simplified 
model of thin-film memristors, in which a memristor is 
composed of two resistors in series, one is un-doped with high 
resistance* and the other is doped thus having low resistance. 
The total thickness of the film L is separated into doped and un-
doped regions, and the total resistance is the sum of the two 
regions. The average length of the doped region is taken as a 
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Fig. 1. (A) Simplified diagram of a typical biological neural cell. Soma receives synaptic signals from other neurons through its dendrites, and axon propagates 
signals to other neurons. A synapse is a contact between the axon of one neuron and a dendrite of another. Soma maintains a voltage gradient across neuron 
membrane. If the voltage changes by a large enough amount, an action potential pulse, called spike, is generated, then travels along the axon, and eventually 
activates synaptic connections with other cells when it arrives. (B) A neuromorphic network models the spiking neural network, and (C) Working mechanism of a 
typical integrate and firing neuron. The neuron maintains membrane voltage Vmem; once Vmem crosses a firing threshold Vthr, the neuron fires and sends a spike Vspk,out 
to pre and post-synaptic neurons which are connected to it. Synaptic strength, is also called synaptic weight w, can be modulated by the pre- and post-synaptic 
spikes, which is called synaptic plasticity. The experimental example of pair-wise STDP learning curve shown in the circle was redrawn from [3]. 
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state variable d. To increase the depth of the doped region, ions 
are forced into the film with a potential over the threshold Vp 
across two electrodes; on the contrary, to reduce the depth of 
the doped region-, ions are removed from the film with an 
opposite potential which exceeds the erasing threshold Vn. This 
modulation of the doping depth allows the control of the 
conductance of a memristor. It should be noted that the above 
two-resistor model is a simple and convenient way of 
describing a memristor. In the dielectric region of a physical 
memristor device, the doping depth is typically represented by 
complex metallic filament structures. There exist a multitude of 
models that aim to correspond to the physics/chemistry behind 
the conductance change in memristors of various types [18], 
[19], [44], [45]. In this work, a much more sophisticated device 
model pertinent to physical memristors, from [45], was used for 
circuit simulation.  

Several nano-scale memristors in literature have shown that 
their conductance modification characteristics are similar to the 
STDP rule [13]–[17], [46], and therefore act as ideal electrical 
synapses for brain-inspired computing. STDP states that the 
synaptic weight w is modulated according to the relative timing 
of the pre- and post-synaptic neuron firing. As illustrated in Fig. 
2B, a spike pair with the pre-synaptic spike arrives before the 
post-synaptic spike results in increasing the synaptic strength 
(or potentiation); a pre-synaptic spike after a post-synaptic 
spike results in decreasing the synaptic strength (or depression). 
Changes of the synaptic weight plotted as a function of the 
relative arrival timing of the post-synaptic spike with respect to 
the pre-synaptic spike is called the STDP function or learning 
window. A popular choice for the STDP function Δw is shown 
in Eq. 1, and the corresponding plot is shown in Fig 2C 

∆𝑤𝑤 = �𝐴𝐴+𝑒𝑒
−∆𝑡𝑡 /𝜏𝜏+     𝑓𝑓𝑓𝑓𝑓𝑓 ∆𝑡𝑡 > 0

𝐴𝐴−𝑒𝑒 ∆𝑡𝑡 /𝜏𝜏−      𝑓𝑓𝑓𝑓𝑓𝑓 ∆𝑡𝑡 < 0
      (1) 

A theoretical analysis in [33] illustrated a method to relate Δw 
and memristor characteristics, by mapping the over-threshold 
portion of Vnet (the shaded area of the shaded regions in Fig 2B) 
to the change in memristance through an ideal memristor 
model. However, physical devices have complicated physical 
and/or electro-chemical mechanisms. Consequently, 
researchers typically plot a memristor’s conductance ΔGmr 
versus Δt either from simulations or experimental results to 
show the STDP learning function. 

Nano-scale memristors have shown low-energy consumption 
to change their states and very compact layout footprint [18], 
[19], [47]. Recent advances even reported  these two merits in 
sub-pJ order [48], and 10-nm range [49] respectively. Thus, it 
is possible to yield a brain-inspired machine by cohesively 
packing millions of memristor synapses and thousands of 
CMOS neurons on a stamp-size silicon chip while consuming  
power density which is of the same order as a human brain (for 
a nominal 1kHz spiking rate). 

B. Silicon Neuron 
Since neuromorphic engineering emerged in 1980s [50], 

several silicon neuron design styles have appeared in literature. 
These designs model certain aspects of biological neurons [51]–
[58]. However, most of them focus on faithfully modeling the 
ionic channel dynamics in biological spiking neurons, and 
require the synapses to act as controlled current sources. As a 
result, they consume large silicon area, and therefore are not 
amenable for large-scale neuromorphic networks with a 
massive number of silicon neurons. 

The emergence of nano-scale memristors has triggered a 
growing interest in integrating these devices with silicon 
neurons to realize novel neuromorphic systems [23]–[32]. In 
these systems, researchers have used bio-inspired leaky 
integrate-and-fire neuron (IFN) models as an alternative to the 

* Memristance, resistance, conductance, synaptic weight and synaptic strength 
are the different descriptions for the same character of a memristor synapse. 
For convenience, we use conductance, which is proportional to synaptic weight 
as used in computer science or synaptic strength as used in neuroscience, when 
we refer to memristor device. 
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Fig. 2. (A) A thin-film memristor is modeled as two resistors in series, one is undoped with high resistance Roff and the other is doped thus having low resistance 
Ron.  To increase the depth of doped region, ions are forced into the film with a potential over programming threshold, Vp, on the two electrodes; conversely, to 
reduce the depth of doped region, ions are removed from the film with an opposite potential over erasing threshold Vn. (B) Pre- and post-synaptic spikes with 
relative arriving time Δt produce a potential Vnet =Vpost-Vpre over a synapse. Vnet over a threshold Vp or Vn leads into synaptic potentiation or depression, which for a 
memristor is equivalent to conductance increment and decrement respectively, caused by doping depth modulation. (C) A example of pairwise STDP learning 
window Δw plotted as a function of Δt. Several nano-scale memristors demonstrated similar function with conductance change denoted as ΔGm. 
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complex bio-mimetic neuron models to implement large 
networks of interconnected spiking neurons. The IFN model is 
a single-compartment model, wherein the entire cell is 
abstracted as a single membrane capacitance Cm which sums 
each current Ii(t) flowing into the neuron through the ith synapse, 
and a membrane resistance Rm which causes passive leakage of 
a membrane current Vm(t) / Rm as 

𝐶𝐶𝑚𝑚
𝑑𝑑𝑉𝑉𝑚𝑚
𝑑𝑑𝑡𝑡

= ∑ 𝐼𝐼𝑖𝑖(𝑡𝑡) −
𝑉𝑉𝑚𝑚(𝑡𝑡)
𝑅𝑅𝑚𝑚𝑖𝑖 .        (2) 

The IFN model captures the transient spiking behavior of the 
neuron with reasonable accuracy for use in learning while 
requiring a relative low number of transistors for its 
implementation. Currently, the IFNs used in memristor 
neuromorphic systems need either extra training circuitry 
attached to memristor synapses (thus eliminating most of the 
density advantages gained by using memristor synapses) or 
employ different waveforms for pre- and post-synaptic spikes 
(thus introducing undesirable circuit overhead which limits 
power and area budget of a large-scale neuromorphic system). 

There have been a very few CMOS IFN designs attempting to 
address above problems in order to accommodate memristor 
synapses with in-situ synaptic plasticity ability. In [33], the 
authors proposed a reconfigurable IFN architecture which 
provided a current summing node to accommodate memristors. 
In [34], an architecture with a STDP-compatible spike 
generator was proposed, which enables online STDP by 
propagating same-shape spikes in both the forward and  
backward directions. In [35]  a CMOS IFN with a current 
conveyor was designed to drive memristor as either an 
excitatory or an inhibitory synapse, and [36] shows the 
measurement results from a ferroelectric  memristor. However, 
none of them can be directly employed to form a learning 
system because a decision making ability (e.g. competitive 
learning) was absent in these neurons. They require extra 
decision circuitry which may need a large silicon area and 
doesn’t correspond to its biological counterparts. Moreover, 

these neurons don’t provide an energy-efficient driving 
capability to interface with a large number of memristor 
synapses, which is generally desired in mimicking biological 
neural networks, e.g. a cerebellar Purkinje cell needs to form up 
to 200,000 synaptic connections [59], or for real-world pattern 
recognition applications, e.g. MNIST patterns have 784 pixels 
[60]. For instance, when a neuron drives 1000 memristor 
synapses, each of them having 1MΩ resistance, it requires 1mA 
current to sustain a 1V spike amplitude resulting in 1mW 
instantaneous power consumption. Therefore, a highly-scalable 
driver circuit solution for memristor synapses while avoiding 
large circuit overhead is truly desired [22].  

A silicon neuron amenable to build large-scale brain-inspired 
neuromorphic system with massive memristor synapses should:  

(1) Connect to a synapse at one terminal only; 
(2) Sustain a fixed voltage across the synapse in the absence 

of spikes; 
(3) Provide a current summing node to sense incoming 

spikes; 
(4) Provide large current flowing into synapses when firing; 
(5) Fire a suitable waveform to enable STDP in the synapse; 
(6) Enable pattern learning through decision-making ability; 
(7) Be compact and energy-efficient. 

Fig. 3A shows the schematic of our proposed CMOS neuron 
that fulfills all of the above criteria. This circuit effectively 
combines an OpAmp-based integrator, an STDP-compatible 
spike generator, a WTA interface and a control circuit for 
reconfiguration. By employing tri-mode operation, it provides 
a unique port, Vden, to sum the incoming currents and to 
propagate post-synaptic spikes, and another port Vaxon to 
propagate pre-synaptic spikes. These two ports also sustain a 
fixed voltage Vrefr during integration and membrane capacitor 
discharge, while driving a specific STDP-compatible waveform 
with a large current to enable online synaptic plasticity in the 
large number of memristor synapses connected in parallel. 
Moreover, an inhibitive discharge mode with a shared WTA 
bus enables competitive learning among local neurons. All of 
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Fig. 3. (A) Diagram of the proposed leaky IFN. It includes integrate-and-fire, WTA interface, STDP-compatible spike generation, large current driving ability and 
dynamic powering in a compact circuit topology with a reconfigurable architecture based on a single OpAmp. (B) A competitive learning network uses explicit 
one-on-one inhibitory connections among competitive units; whereas the same function can be implemented with implicit inhibition on a shared WTA bus. (C) A 
layer of spiking neural network with memristor synapses organized in crossbar. Each input and output neuron pair is connected with a two-terminal memristor 
synapse. An STDP spike pair is used to update synaptic weight online without extra training circuitry. The WTA bus shared among output neurons enables the 
local competitive learning. 
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these functions are assembled around a single CMOS OpAmp 
that is dynamically biased to supply large current only when 
driving the synapses while maintaining low power consumption 
during the rest of the time. Further, the neuron functions in a 
fully asynchronous manner consuming dynamic power only 
when computation is occurring. The details of the neuron circuit 
and its operation will be discussed in section III. 

C. Local Competitive Learning 
STDP enables online synaptic weight modification, but it 

doesn’t automatically lead to network learning behavior. 
Conventional ANNs employ a gradient-based back-
propagation algorithm to train a network. Although the same 
technique can be applied to SNNs as well [61], a gradient 
computation requires very sophisticated hardware and therefore 
is infeasible for a massively parallel system. In neuroscience 
studies, competitive learning has been observed and used to 
demonstrate synaptic plasticity directly together with STDP 
[12], [62]–[64], whereas no extra training circuitry is required. 
Competitive learning is also known as the winner-takes-all 
(WTA) algorithm whereby when a neuron fires, it inhibits its 
neighbors’ from firing to prevent from changing their weight. 

WTA uses a topology where an inhibit signal can be 
communicated to every other neuron in the network once it 
fires, at the same time, each neuron “listens” the inhibit signal 
from other neurons, as shown in Fig. 3B. However, such an 
explicit inhibition is resource hungry and difficult to scale-up 
in neuromorphic hardware, especially if the number of 
competing neuron units is large. Instead, an implicit inhibition 
with a bus-like operation is very efficient: several local neurons 
are connected to one shared bus together, and every neuron can 
monitor the bus status before its firing. In this scheme, a neuron 
is allowed to present an inhibitive signal only if there is no spike 
event on the shared bus; otherwise, it discharges and suppresses 
potential firing. The detailed circuit realization of the WTA bus 
will be discussed in section III. 

It is worth noting that the proposed global reset mechanism 
differs from the dynamics of traditional neural networks, in 
which, typically, the firing of one neuron in a WTA network 
will either reduce the membrane potential (and thus spiking 
probability) of other neurons or prevent firing in a short time 
window. The implications to the computational aspects of the 
network dynamics with this global reset scheme can be 
investigated in further theoretical studies. 

D. Crossbar Networks 
To build our proposed neuromorphic system, CMOS neurons 

and memristor synapses are organized in a crossbar network 
[65], [66], as shown in Fig. 3C. In this architecture, each input 
neuron is connected to another output neuron with a two 
terminal memristor to form a matrix-like connection for each 
crossbar layer. By cascading and/or stacking crossbars, a large-
scale system can be constructed. Semiconductor technologies 
now offer vertical integration capability using through silicon 
via (TSV) for multiple chips and 3D packages [67]. 

As discussed, the proposed neuromorphic system 
architecture uses only two basic building blocks; a two-terminal 
memristor and a versatile CMOS neuron, which works in fully 
asynchronous manner. As they form a simple one-node contact, 
a large-scale neuromorphic system for brain-inspired 
computing can be potentially realized by spatially repeating 
and/or hierarchically stacking the proposed WTA circuit motif 
of neurons and crossbar synapses. 

III. THE DESIGN OF CMOS NEURON  
A silicon neuron is the most critical component needed to 

realize a neural network on a chip, while the synapses and 
crossbar structure are relatively simple in terms of architectural 
complexity. In our proposed neuron, the tri-mode operation, 
WTA bus, dynamic powering and STDP-compatible spike 
generation make up the key roles to realize a cohesive 
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Fig. 4. Tri-mode operation of the proposed leaky integrate-and-fire neuron (A) Integration mode: The OpAmp is configured as a negative integrator to sum current 
on Cmem causing the membrane potential Vmem to move down until its crosses a firing threshold voltage Vthr. Without an input current, voltages at the two inputs of 
the OpAmp are held at Vrefr. Post-synapses are disconnected from the neuron. (B) Firing mode: phase signals Φi, Φf, Φ1 and Φ2 control the spike generator to create 
a STDP-compatible spike Vspk which is buffered and driven by the OpAmp. Then, the spike propagates in both backward and forward directions to pre-synapses 
and post-synapses respectively. The activation of either Vcpr or Vtch causes a firing event, which is also presented on the WTA bus by pulling-up the bus with Vwtab. 
(C) Inhibitive discharge mode: Φd is active to discharge the Cmem when an active Vwtab signal is detected on the WTA bus. The OpAmp is configured as a low-
power buffer with Φi is active and Φf is inactive. Also, the neuron is isolated from the post-synapses. 
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architecture. 

A. Tri-mode Operation 
 A spiking silicon neuron for competitive learning should 

perform three major functions: (1) current summing and 
integration, (2) firing when membrane potential crosses a 
threshold and driving resistive loads, and (3) providing an 
inhibitive discharge. These three functions are performed with 
a single OpAmp which is a key advantage of our neuron.  

(1) The integration mode is shown in Fig. 4A. In this mode, 
switch SW1 connects the “membrane” capacitor Cmem with the 
output of the OpAmp, SW2 is open,  and SW3 connects post-
synapses to a resting voltage Vrest which can be either equal to 
Vrefr or can be floated. Φd and Φf are asynchronous phase signals 
to control the switches. As the spike generator is designed to 
hold a voltage to the refractory potential Vrefr during the non-
firing time, the OpAmp’s positive port is set to Vrefr. Under this 
configuration, the OpAmp realizes a leaky integrator; currents 
flowing from the pre-synapses are summed at Vden and charge 
the capacitor Cmem resulting in “membrane potential” Vmem, with 
the voltage leak-rate controlled by a triode transistor Mleaky. 
Vmem moves down as more charge is stored on Cmem, and triggers 
a reconfiguration event of the neuron upon reaching the firing 
threshold Vthr.  

(2) The firing mode is shown in Fig. 4B. In this mode, switch 
SW2 is closed and the switch SW3 bridges the OpAmp output to 
post-synapses. The OpAmp is now reconfigured as a voltage 
buffer. The STDP-compatible spike generator creates the 
required action potential waveform Vspk and relays it to the 
positive port of the OpAmp. Then, both the pre-synapses and 
post-synapses are shorted to the buffer’s output. The neuron 
propagates spikes in the backward direction from Vden which is 
the same port of current summing. The pre-synaptic spikes are 
driven in the forward direction on Vaxon  to the post-synapses. 
This firing-mode occurs either when the neuron wins the first-
to-fire competition among the local neurons connected to a 
WTA bus, or during supervised learning. In the former 
scenario, the winning neuron presents a firing signal on the 
WTA bus noted as Vwtab, and forces other neurons on the same 
bus into “discharge mode”. In the latter scenario, Vmode indicates 
a supervised learning procedure and disables competition 
among the neurons. Then, with a teaching signal Vtch, the neuron 
is forced to fire a spike and drives it into pre-synapses, and 
consequently modulates the synaptic weights under the STDP 

learning rule. For stable operation, only one Vtch of a neuron is 
active at a time in order to avoid conflict.  

(3) The inhibitive discharge mode is shown in Fig. 4C. In this 
mode, switch SW1 is closed, SW2 connects Vrefr to discharge 
Cmem, and SW3 is disconnected from the OpAmp output to 
isolate the neuron from the post-synapses. 

B. Dynamic Powering 
The energy-efficiency of the neuron is tied to the above 

discussed tri-mode operation. For dynamic powering, a two-
stage OpAmp is designed with the output stage split into a 
major branch and a minor branch. The major branch provides 
large current driving capability; while the minor low-power 
branch works with the first stage to provide the desired gain. 
Two complementary signals Φi and Φf are used to bias the 
OpAmp in low-power configuration by disabling the major 
branch during integration and discharging modes, while 
enabling it to drive large currents in the firing mode. In this 
work, we modified a compact folded-cascode topology [68] 
with an embedded split class-AB driver to realize a dynamically 
powered OpAmp.  

C. WTA Bus Interface  
Fig. 5A shows a proposed WTA bus interface that can be 

embedded in the neuron with a compact implementation, and is 
amenable to scale-up. The bus interface works in an 
asynchronous manner. A tri-state buffer is employed to isolate 
the neuron output from the bus during the non-firing state, and 
a pulled-up bus when a neuron fires. During normal operation, 
the interface circuit monitors the bus status. A firing event 
presented as logic high on the bus activates Φd and forces the 
neuron to switch to the discharge mode. When a potential firing 
is triggered by either the comparator output Vcpr or the 
supervised learning signal Vtch, the D-flip-flop (DFF) locks-in 
the instant bus state and passes it to Φf. The logic low of Φf, 
implying an existing firing event of another neuron, will 
consequently suppress neuron from firing; on the contrary, the 
logic high of Φf gives a green-light to switch the local neuron 
to the firing mode, and broadcasts an inhibitive signal via the 
shared bus. When the firing is finished, the DFF state is cleared.  

D. STDP-Compatible Spike Generator 
The shape of the action potential Vspk strongly influences the 

STDP learning function. A biological-like STDP pulse with 
exponential rising edges is very difficult to realize in circuits. 
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Fig. 5. (A) The proposed asynchronous WTA bus interface circuit. (B) STDP-compatible spike generator circuit. It produces (C) a spike with rectangular positive 
tail and ramping up negative tail. The spike shape is defined by parameters Va+, Va-, tail+, tail- and slope.  
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However, a bio-inspired STDP pulse can be achieved with a 
simpler action potential shape: a short narrow positive pulse of 
large amplitude followed by a longer slowly decreasing 
negative tail as plotted in Fig. 5C. This leads to a simple 
implementation, and yet realizes a STDP learning function 
similar to the biological counterpart [20]. The detailed spike 
generator circuit, shown in Fig. 5A, employs a voltage selector 
and RC charging circuit for the positive tail and the negative 
tail, respectively.  

IV. PATTERN RECOGNITION APPLICATION 
As an important application of machine learning, optical 

character recognition (OCR) is widely used to demonstrate and 
evaluate pattern recognition performance. An electronic OCR 
system is designed to convert the images of printed text into 
computer-readable text to be used for electronic storage, pre-
processing for machine learning, text-to-speech, and data 
mining, etc. 

Fig. 6 illustrates a single-layer OCR system with the proposed 
architecture: the text image is read by an input sensory matrix 
where each pixel maps to a neuron and is converted into spikes. 
All spikes from input neurons propagate through a synaptic 
memristor network to the output neurons. Summing of the input 
spikes causes a spike from a winning output neuron under WTA 
competition, which then back-propagates and locally updates 
weights of the synapses via a STDP learning rule. 

To effectively train this network, a supervised method is used. 
The teaching signal Vtch is provided to the assigned output 
neuron as shown in Fig. 3A. The signal Vtch forces the neuron 
to spike immediately after input pattern is received. Thus, the 
learning algorithm is tightly embedded in hardware in the 
proposed implementation. 

In a trained network, test patterns can be classified without a 
teaching signal Vtch. Output neurons sum the currents flowing 
into them and fire according to the WTA competition to 
indicate the class of an input pattern. Such a pattern recognition 
system realizes real-time performance thanks to its 
straightforward event-driven parallel operation. 

The proposed system is compatible with the spiking neural 
network model as described in [12], [62], [63]. Unsupervised 
learning of patterns can also be realized with the same circuit. 

V. EXPERIMENTAL RESULTS 

A. Simulation Setup 
The circuits were designed using the Cadence analog design 

environment and the simulations were carried out with the 
Spectre circuit simulator. 

We employed a device model in  [45] that has been matched 
to multiple physical memristors [13], [39]–[42], and resistive 
random access memory characterization results [69]. 

The silicon neuron was realized with an IBM 180nm standard 
CMOS process. A two-stage OpAmp was used with folded-
cascode topology for the first stage followed by a dynamically 
biased class-AB output stage. With an equivalent load of 1kΩ 
in parallel with 20pF, the OpAmp has 39 dB DC gain, 3V/µs 
slew rate and 5MHz unity-gain frequency in integration mode; 
and 60dB DC gain, 15MHz unit gain frequency and 15V/µs 
slew rate in firing mode. The STDP-compatible pulse generator 
circuit was designed with digital configurability to allow 
interfacing with a broad range of memristors. Such tunability 
may be also useful in the circuit implementation to compensate 
for the memristor parameter variations. For instance, spike 
parameters Va

+ = 140mV, Va
- = 30mV, tail+ = 1μs and tail- = 3μs 

were chosen for a device with Vp
 = 0.16V and Vn

 = 0.15V, where 
Va

+ and Va
-
 were small enough to avoid perturbing the 

memristor, and large enough to create net potentials across the 
memristor with a potential above the memristor programming 
thresholds Vp and Vn. 

B. CMOS Neuron Behaviors and STDP in Memristors 
Functionality of the proposed neuron was first simulated in a 

small neural circuit with two memristor synapses connected 
between two input neurons (pre-synaptic neurons) and one 
output neuron (post-synaptic neuron) as shown in Fig. 7A. 

Fig. 7B shows the integration and firing operations of the 
neuron and the STDP learning in the memristors. In this 
simulation, one of the pre-synaptic neurons was forced to spike 
regularly with output Vpre1 (solid line), while the other spikes 
randomly with output Vpre2 (dash line). The post-synaptic 
neuron summed the currents that were converted from Vpre1 and 
Vpre2 by the two synapses, and yielded Vmem. Post-synaptic 
spikes Vpost were generated once Vmem crossed the firing 
threshold voltage Vthr = 0.3V. The bottom subplot shows 
potentiation and depression of the memristor synapses when a 
post-synaptic spike overlapped with the latest pre-synaptic 
spike, and created a net potential Va

+ + Va
- = 170mV over the 

memristors which was exceed their programming thresholds Vp 
= 160mV or Vn = 150mV. Quantitatively, a post/pre-synaptic 
spike pair with 1μs arriving time difference Δt resulted in a 
0.2μS conductance increase or decrease depending on late or 
earlier arrival of Vpost relative to Vpre respectively. Fig. 7C 
summarizes the STDP learning in memristor conductance 
change ΔGmr versus ±5µs range of Δt. The asymmetric curve 
shape with more depression peak value than potentiation was 
caused by the lower memristor negative threshold Vn than Vp.  

 

Fig. 6. A spiking neural system for the pattern recognition application of optical 
character recognition (OCR). Text images are sensed by an input neuron matrix 
with each pixel maps to a neuron, which converts it into spikes with spike rate 
proportional to the pixel darkness. All spikes from input neurons propagate 
through the memristor synapse network to the output neurons. Summing of 
input spikes causes a spike event from an output neuron with WTA 
competition. This spike from the output neuron acts as a decision signal and is 
used to update the synaptic weights with the STDP rule in training mode. 
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To evaluate energy-efficiency, the neurons were designed to 
have the capability to drive up to 10,000 memristor synapses 
with an assumption that the distribution of resistive states is 
tightly arranged around 1MΩ resistance. This yields a 100Ω 
equivalent resistive load. Fig. 7D shows the neuron consumed 
13μA baseline current in the integration mode. When firing, the 
dynamically biased output stage consumed around 56μA 
current in the class-AB stage, and drove the remaining current 
to memristor synapses: a 1.4mA peak current for 10,000 
memristor synapses sustained a spike voltage amplitude of 
140mV. The current sunk by the synapses follows Ohm’s law 
due to the nature of the memristor synapse as a resistive-type 
load. Insufficient current supplied to the memristors will cause 
a lower spike voltage amplitude that may fail STDP learning. 
Here, the widely used energy-efficiency figure-of-merit for 
silicon neuron, pJ/spike/synapse, becomes dependent on the 
resistance of synapses, and therefore, is not an appropriate 
descriptor of neuron’s efficiency. Instead, the power efficiency 
η during the maximum driving condition (at equivalent resistive 
load) should be used, i.e. 

𝜂𝜂 = 𝐼𝐼mr
𝐼𝐼mr+𝐼𝐼IFN

 .         (3) 

Here Imr is the current consumed by a memristor and IIFN is the 
current consumed by a silicon neuron. Our simulation 
demonstrated η = 97% with 100 Ω for the selected memristor, 
and a baseline power consumption of 22μW with a 1.8V power 
supply voltage. This baseline power consumption doesn’t 
change with the neuron’s driving capability thanks to the tri-
mode operation. As a comparison, a neuron without dynamical 
biasing consumes a 5-fold baseline current; a neuron based on 
dual-OpAmp architecture may consume a 10-fold static current. 
It should be noted these power consumption values are for a 
neuron design that targets a broad range of memristors, without 
optimizing for a specific device, and therefore have a 
significant room for improvement in power efficiency when 
designed for specific memristor characteristics. 

C. Handwritten Digits Recognition 
We employed handwritten digits obtained from the UCI 

Machine Learning Repository [70] to demonstrate real-world 
pattern learning and classification with the proposed system. 
Fig. 8A shows the pattern examples in this dataset. These 
images include handwritten digits from a total of 43 individuals, 
30 included the training set and a separate 13 to the test set. 
32×32 bitmaps are divided into non-overlapping blocks of 4×4 
and the number of ‘on’ pixels are counted in each block. This 
generates an input matrix of 8×8 where each element is an 
integer in the range of 0 to 15.  

In our simulations, digits “0”, “1”, “2” and “7” were selected 
from the training dataset, in which there are 376, 389, 380 and 
387 samples of each digit respectively. In the testing dataset, 
the samples number are 178, 182, 177 and 179, respectively. 
Samples in the testing dataset are different from the samples in 
the training dataset. These images were mapped onto an 8×8 
sensory neuron matrix consists of  64 IFNs, and pixel values 
were converted into currents flowing to IFNs, with a threshold 
of seven or greater for “on” values used. This results in the input 
spike trains are shown in Fig. 8D. Each dot represents a spike 
and corresponds to an image pixel in binary form. 

During the training phase, the training mode Vmode signal was 
sent to the output neurons. Digit samples were presented to the 
system in their original sequence in the dataset. Corresponding 
labels were read into the simulator to activate the teaching 
signal Vtch to the corresponding output neuron, and forced a 
post-synaptic spike Vpost at 1μs after each pattern was presented. 
All samples of the four digits in the training dataset were 
presented. 

Fig. 8B plots conductance changes in the memristor synapses 
connecting to each of the four output neurons. Before training, 
all synapses were initialized with Gaussian randomly 
distributed conductances (μ = 8.5nS, σ = 4nS). During training, 
their conductances were gradually increased and separated to 
different values, due to the STDP learning of the memristors. 
Because of computing resource restrictions on circuit-level 
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Fig. 7.  (A) A small spiking neural network with two input neurons and one output neuron is used to demonstrate CMOS neuron operation. A memristor model in 
[45] was employed. (B) Neuron operation and STDP learning. Output neuron sums input current and yields the membrane potential Vmem. Post-synaptic spikes Vpost 
fired when Vmem crossed Vth, and caused synaptic potentiation or depression, which depends on the relative arriving time with respect to the pre-synaptic spikes Vpre.  
(C) Simulated pairwise STDP learning window around 1µS conductance and 5µs relative time range. (D) Current proportional to synapse numbers was required 
to sustain spike voltage amplitudes for desired STDP  learning in memristors, which causes large current being pulled when a large number of memristor are 
interfaced. Dynamic biasing based on dual-mode operation kept the neuron in very low power phase with only baseline (or static) current in integration mode, and 
extra current for output drive in firing mode. The embedded plot shows the current consumption breakdown versus the number of memristor synapses, assuming 
that the distribution of resistive states is tightly arranged around 1MΩ.  
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simulations, we have limited the training demonstration to only 
one epoch here. However, the weights stabilize eventually after 
several epochs of training based on Matlab simulations as 
shown later using the IFN model of Eq. (2) instead of a 
transistor-level circuit. 

Fig. 8C is a rearrangement of the conductance into an 8×8 
bitmap with each pixel corresponding to an input image. It is 
remarkable that the synaptic networks abstracted several 
distinctive features of the digits: The loop of the digit “0”, the 
vertical line of the “1”, and the bone of “2” and “7”.  
 Fig. 8D shows a testing simulation with 20 samples from 
each digit (out of four) and presented to the system for 
recognition in a class-by-class fashion. With an untrained 
synaptic network, the four output neurons responded to the 
inputs with random spiking. After training, each output neuron 
responds to the input patterns in the same class most of time 

showing clear selectivity, and only one neuron fired under the 
local competition rule. 

Fig. 9A zooms into the details of currents and membrane 
voltages during testing. Due to the modulation of the synaptic 
network (causing different integration speeds), the total current 
flowing into the output neurons were separated; the neuron with 
the largest current (I0) had its membrane voltage Vmem0 cross the 
firing threshold Vth first winning the competition to fire first; 
whereas the current flowing into neuron “7” (I7) was too small 
to make its Vmem7 reach the firing threshold. The other two 
neurons had their Vmem reach the firing threshold, but their 
potential firing events were suppressed by the winner neuron. 
Membrane voltages of all neurons were reset by the WTA 
signal on the shared bus (not shown), and the actual circuit 
behavior introduced a 50ns delay from Vth crossing to Vmem 
resetting.  
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Fig. 8.  (A) Examples of digits from UCI optical handwriting dataset. First line shows the first 20 digits images in the original training dataset, second line shows 
the first 20 digits samples used to train the network which is listed in the same sequence of original dataset, and the third line shows an examples of digits samples 
rearranged in class-by-class fashion used in testing but 5 samples for each digit. (B) Direct plot of memristor conductance learned in a circuit-level simulation with 
4 output neurons during one epoch of training. (C) Conductance evolution rearranged as 8×8 bitmap. Before training, all synapses were initialized with a Gaussian 
random distributed conductance (μ = 8.5nS, σ = 4nS). After training, the maximum conductance is 53μS, and the minimum conductance is 6.6 nS. With the training 
moving on, the memristor network abstracted distinctive features of digits: loop of the digit “0”, the vertical line of the “1”, or the bone of “2” and “7”. (D) Test 
results of the neural network with an input spike train composed of 20 samples for each digit and presented in class-by-class fashion. Without learning, a random 
synaptic network caused decision neurons spiking arbitrarily. After learning, each of these 4 output neurons is mostly selective to one of the 4 classes and spiking 
in the same class-by-class fashion of input. 
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To illustrate this competitive learning in another way, we 
define spiking ‘opportunities’ of the output neurons based on 
the total currents flowing into them, 

𝑝𝑝𝑛𝑛 = ∑ 𝐼𝐼𝑛𝑛,𝑖𝑖(𝑡𝑡) 𝑖𝑖 / ∑ ∑ 𝐼𝐼𝑛𝑛,𝑖𝑖(𝑡𝑡) 𝑖𝑖𝑛𝑛         (4) 

where pn is the relative spiking opportunity of the nth output 
neuron and In,i is the current flowing into the nth output neuron 
by the ith input. With the same synaptic weights and the all In,i 
equal, it follows that  pn = 1/n, which means the same chance to 
fire and no winner (for this reason, the synapses can’t be 
initialized to all zero values. And such a condition doesn’t exist 
in a real-world environment too). Once the synaptic weights are 
well modulated, they create different currents flowing into 
neurons. With a larger current, a neuron has the higher 
opportunity to spike in the same timeslot, which distinguishes 
the winner neuron from the others.  

In this pattern recognition example, a 96% correction rate 
was achieved with the selected 4 digits. Matlab simulations 
with the IFN mathematical model show 83% correction rate 
with all 10 digits. These results are encouraging especially 
considering the system is a simple single-layer network, and no 
input encoding was applied. Applying symbolic patterns that 
were used in [24], [25], [28], [29], [71], [72], 100% correction 
rates were achieved simply because each pattern produced a 
unique synaptic network with their weights having exactly the 
same shape as the identical pattern of each class. 

VI. DISCUSSION 
The described CMOS spiking neuron architecture is 

generalized for memristor synapses. By selecting appropriate 
CMOS technology with sufficient supply voltage, online STDP 
learning can be achieved with the memristors, but not limited 
to, as reported in [39]–[42], [69]. However, the memristor in 
[13], with its Vp

 = 1.5V and Vn
 = 0.5V, would be difficult to fit 

into this architecture. With these threshold voltages, it is 
impossible to find a STDP pulse that can produce both 
potentiation and depression while not disturbing the memristor. 
In other words, for generalized STDP learning, assuming 
symmetric the pre- and post-synaptic spikes, a memristor is 
expected to have its thresholds satisfy the condition: �𝑉𝑉𝑝𝑝 −
𝑉𝑉𝑛𝑛� < 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑉𝑉𝑝𝑝,𝑉𝑉𝑛𝑛). 

In terms of energy-efficiency, an optimized design is the one 
with driving capability tailored according to the desired 

application and the memristor used. In the presented 
simulations, the neuron was tailored to support up to 1.5mA 
current in order to sustain Va

+ = 140mV to a memristor network 
which has a peak average resistance around 93Ω. With MNIST 
patterns, each output neuron would have 784 input synaptic 
connections, thus the average resistive loading of these 784 
synapses should be evaluated for both training and testing 
scenarios. The neuron driving capability is selected to sustain 
the least spike voltage amplitudes on the lowest equivalent 
resistive load while achieving the highest power efficiency. If 
the resistance of the memristor in its low resistance state (LRS) 
is 1kΩ and (say) 1% of the memristors are in their LRS, 
7,840µA current is required to maintain a 1V spike voltage. For 
VGA (480640 pixels) images, this number skyrockets to 
32,700µA. It can be concluded that to implement low-power 
brain-inspired computing chip, the memristor synapses should 
have fairly high resistances (more than a MΩ) in their LRS, or 
a mechanism to isolate non-active synapses from the network 
during neurons’ firing without large overheads becomes 
necessary. 

On physical device side, a memristor passive crossbar 
architecture generally suffers from sneak paths (undesired paths 
parallel to the intended path for current sensing) [18], [66], 
[73]–[75]. The sneak-paths problem is caused by directly 
connecting resistive-type cells on sensing grid to the high-
impedance terminations of the unselected lines. As stated in 
section II. B, a fixed voltage across a memristor is required for 
brain-inspired computing. Therefore, every path without a spike 
in the crossbar is tied to Vrefr, and so the above discussed large 
current pouring into memristor networks becomes costly in 
terms of power consumption. Theoretically, a non-firing neuron 
could have a floating output thus reducing the current, but 
consequently sneak paths may bridge spiking neurons to other 
neurons and cause malfunction. So far, none of the existing 
solutions for sneak-paths work for memristor synapses, and 
thus further studies are required. 

Device variability is another challenge when using nano-
scale memristors as synapses. Large variations in time and 
space of memristor synapses could cause unpredictable 
dynamics in the network, or simply fail to do learning. 
Although a spiking neural network offers some tolerance to 
device variation [76], the memristor threshold variations can 
easily fail network training especially when a low voltage spike 
is applied. There is a careful design trade-off between the low-

A 

 

B 

 
Fig. 9.  (A) In a test case with one digit presented to the system, total current flowing into decision neurons were separated due to the modulation of synaptic 
network, which caused different integration speeds. The neuron with the largest input current I0 had its membrane voltage Vmem0 cross the firing threshold Vth first, 
and then won the competition of the race-to-fire first. (B) Firing opportunity and spike outputs of 4 output neurons for the spike input shown in Fig. 7D. All neurons 
have almost equal opportunities to spiking at the beginning. After learning, their spiking probabilities are modulated by their synaptic connections and distinguished. 
As result, a winner emerges. 
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voltage amplitudes of a spike required for energy-efficiency, 
and the high net potential margin over the memristor’s 
characteristics required for reliable STDP learning. For 
instance, a memristor with Vp = 160mV and Vn = 150mV 
requires the spike voltage must higher than 80mV while a 
practical value typically in the range of 100 to 140mV to 
minimize the impact from device variations and spike noise. 
Some recent works have tried to address device variability by 
combining binary memristors to form a multi-level memristor 
cell for stochastic computing [32], [77]. Our proposed 
architecture works for stochastic computing as well, however, 
a stochastic firing mechanism is needed for the silicon neuron 
implementation instead of deterministic firing. Leveraging the 
stochastic behavior of nano-devices, a solution was proposed in 
[78] but its hardware realization feasibility still needs 
evaluation. 

Finally, it should be noted that the circuit-level simulations 
with faithful modeling of electrical behavior consumes 
significant amount of time as well as computing resources. Due 
to these restrictions, we limited the training demonstration to 
one epoch in the circuit-level simulations in shown this work. 
Based on the behavioral Matlab simulation results (see Fig. 10) 
with the IFN mathematical model of Eq. (2), the network 
optimally trains for the desired patterns and the weights 
eventually stabilize. This is expected if the circuit-level 
simulations were continued for several training intervals. 
Moreover, in our Matlab simulation, one has the flexibility to 
randomly initialize the weights. However, in a circuits 
approach, the memristors are expected to ‘pre-formed’ using a 
voltage pulse (or a photo-induced pre-forming step) which sets 
them in a high-resistance initial state. Therefore, the circuit 
simulations presented in this paper were initialized with all the 
memristors in their high-resistance state (low conductance) and 
then were potentiated to their final weights.  

VII. CONCLUSION 

This paper describes a homogenous spiking neuromorphic 
system. It combines standard CMOS design of a novel silicon 
integrate-and-fire neuron with a memristor crossbar which can 
be realized in contemporary nano-scale semiconductor 
technology. This system naturally embeds localized online 
learning and computing by employing STDP learning in the 
memristor synapses with a winner-takes-all strategy among the 

local neurons. The CMOS neuron combines its circuit functions 
in a compact manner based on a single OpAmp, using a tri-
mode operation. It also enables one-terminal connectivity 
between a neuron and a synapse, this fully exploits the synaptic 
density gain obtained by using memristor crossbar synapses. 
Supported by its reconfigurable architecture, a dynamic 
powering scheme allows the neuron to interface with a large 
number of memristor synapses without compromising energy-
efficiency. Circuit simulations verified the functionality of the 
proposed neuron, and demonstrated an application of real-
world pattern recognition with handwriting digits.  In 
conclusion, the described system is homogenous, fully 
asynchronous, energy-efficient, and compact. Thus, it realizes 
a fundamental building block for a large-scale brain-inspired 
computing architecture. 
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