HOMOGENEOUS STATE FEEDBACK STABILIZATION OF
HOMOGENEOUS SYSTEMS
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Abstract. We show that for any asymptotically controllable homogeneous system in euclidian
space (not necessarily Lipschitz at the origin) there exists a homogeneous control Lyapunov function
and a homogeneous, possibly discontinuous state feedback law stabilizing the corresponding sam-
pled closed loop system. If the system satisfies the usual local Lipschitz condition on the whole
space we obtain semi-global stability of the sampled closed loop system for each sufficiently small
fixed sampling rate, if the system satisfies a global Lipschitz condition we obtain global exponential
stability for each sufficiently small fixed sampling rate. The control Lyapunov function and the
feedback are based on the Lyapunov exponents of a suitable auxiliary system and admit a numerical
approximation.
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1. Introduction. In this paper we consider the problem of state feedback sta-
bilization of homogeneous control systems in R™. This problem has been considered
by a number of authors during the last years, see e.g. [15, 16, 17, 20, 21, 22, 25], to
mention just a few examples. Stability in this context will always mean asymptotic
stability.

Homogeneous systems appear naturally as local approximations to nonlinear sys-
tems, which inherit some local properties of their homogeneous approximations, e.g.
asymptotic controllability [14]. In order to make use of this property in the design
of locally stabilizing feedbacks for nonlinear systems the main idea lies in the con-
struction of homogeneous feedbacks, i.e. feedback laws that preserve homogenity for
the resulting closed loop system. Utilizing a corresponding homogeneous Lyapunov
function, those laws can then be shown to be locally stabilizing also for the approx-
imated nonlinear system, cf. [14, 17, 19]. Regarding the existence of homogeneous
stabilizing feedback laws, it was shown in [15] that if the system admits a continuous,
but not necessarily homogeneous, stabilizing state feedback law, then there exists a
homogeneous dynamic feedback stabilizing the system. Unfortunately, if we are look-
ing for state feedback laws, it is in general not true that any continuously stabilizable
homogeneous system is stabilizable by a continuous and homogeneous state feedback
law, as the examples in [22] show. Even worse, there exist homogeneous systems, e.g.
Brockett’s classical example [2], which—although asymptotically controllable—do not
admit a stabilizing continuous state feedback law at all.

Especially Brockett’s results inspired the search for alternative feedback concepts.
In the present paper we are going to use discontinuous state feedback laws for which
the corresponding closed loop systems are defined as sampled systems. Although this
is not a new concept, see e.g. [12, 13, 23], it has recently received new attention,
see e.g. the survey [24]. In particular, it was shown in [4] that (global) asymptotic
controllability is equivalent to the existence of a (globally) stabilizing discontinuous
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state feedback law for the sampled closed loop system. Stability in this context means
asymptotic stability for the sampled trajectories, where—in general—the intersam-
pling times have to tend to zero close to the equilibrium and far away from it. A
related but slightly different concept of a discontinuous feedback is the notion of dis-
crete feedback introduced in [7]; here also sampled trajectories are considered, but
with fixed intersampling times. With this approach it was possible to show in [10]
that for semilinear systems asymptotic controllability is equivalent to (exponential)
discrete feedback stabilizability.

The goal of the present paper is to provide a link between these two concepts in
the framework of homogeneous systems. As in [10] we use a spectral characterization
of asymptotic controllability by means of Lyapunov exponents, and obtain stability
results for fixed sampling rates; as in [4] we construct the feedback based on a suitable
(and here also homogeneous) control Lyapunov function, and obtain stability not only
for fixed intersampling times but for all sufficiently small ones. Furthermore, and this
is a key feature of our construction, the resulting stabilizing state feedback law is
homogeneous, thus rendering the corresponding closed loop system homogeneous. All
this will be done just under the assumption that the corresponding homogeneous
system is asymptotically controllable.

The organization of this paper is as follows. After defining the setup and the
concepts we pursue, in Section 3 we introduce a class of auxiliary systems we call
homogeneous-in-the-state. In some sense these systems have a built in homogenity
for each control value. These systems will be simplifyed by suitable coordinate and
time transformations, and for the resulting system we will characterize asymptotic
controllability by means of its Lyapunov exponents. In Section 4 we will use this
characterization in order to construct a suitable control Lyapunov function which will
then be used for the construction of the stabilizing feedback law. After giving some
hints about a numerical approximation of these feedback laws in Section 5, we will
return to the homogeneous systems in Section 6 and prove the stabilization result by
showing that these systems can easily be transformed into systems homogeneous-in-
the-state without loosing the asymptotic controllability property. Finally, in Section
7 we discuss two examples.

2. Setup. We consider a class of systems

(2.1) &(t) = g(2(t), w(t))

on R® where w(-) € W, and W denotes the space of measurable and locally essen-
tially bounded functions from R to W C R"™. We assume that the vector field g is
continuous, g(-,w) is locally Lipschitz on R™ \ {0} for each w € W, and satisfies the
following property.

DEFINITION 2.1. We call g homogeneous if there exist r; > 0, 1 = 1,...,n,
s;>0,7=1,...,m and T € (—min,; r;,00) such that
(2.2) g(Aqz, Aqw) = a"Ayg(z,w) for all we W, a >0
where
a0 0 a’t 0 0
Ay = 0 R and A, = 0
: ' ’ 0 0
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are called dilation matrices. With k = min; r; we denote the minimal power (of the
state dilation) and the value T € (—k,00) is called the degree of the system.

This definition generalizes the one given in [22] to the case of a multidimensional
control input, see e.g. cite [14] for an alternative definition (equivalent on R"™) for
vector fields on arbitrary manifolds. The use of dilation matrices instead of the usual
dilation functions allows a more compact notation in what follows. Observe that g
is Lipschitz in the origin iff 7 > 0 and globally Lipschitz iff 7 = 0, furthermore the
definition implies ¢(0,0) = 0.

Corresponding to the dilation matrix A, we define a function N : R — [0, 00)
which can be interpreted as a “dilated norm” w.r.t. A,. Denoting d = 2], r; we
define N (z) by

(2.3) N(z) := (Z x_>

implying N(0) =0, N(z) > 0if z # 0, and N(Ayz) = aN(z).

Note that the trajectories of (2.1) may tend to infinity in finite time if 7 > 0 and
that uniqueness of the trajectory may not hold if 7 < 0, however it holds away from
the origin. As long as uniqueness holds (i.e. if 7 > 0 or the trajectory does not cross
the origin) we denote the (open loop) trajectories of (2.1) by x(t, zo,w(-)) for each
xo € R"® and each w(-) € W, where x(0, zo, w(-)) = xo, Then from Definition 2.1 we
obtain

(2.4) x(t, Agxo, Aqw(a™)) = Aqz(a™t, xo, w(-))

for zyp € R™. If uniqueness fails to hold z(-,zo,w(-)) shall denote one possible tra-
jectory; in this case we implicitely assume the following definitions to be valid for all
possible trajectories.

The following definition gives the meaning of asymptotic controllability.

DEFINITION 2.2. We call the system asymptotically controllable (to the origin), if
for each xo € R™ there exists wy, (1) € W such that ||z(t, o, we, (+))]] = 0 as t = oo.

We now discuss the concept of homogeneous state feedbacks. A state feedback law
isamap F : R* — W. A homogeneous state feedback law satisfies F(Aqz) = A F ()
for all z € R" and all @ > 0, thus implying g(Ayz, F(Aa)) = atAyg(z, F(z)), i.e. the
closed loop system using F' becomes homogeneous. Observe that W needs to satisfy
some structural condition in order to allow nontrivial homogeneous feedbacks; in what
follows we will assume

AW CW for all @ >0, where AW :={Aw|we W}

which gives a necessary and sufficient condition for the fact that given some ¢ > 0
any homogeneous map F : R* — R™ satisfying F(z) € W on {z € R? | N(z) = ¢}
satisties F'(x) € W for all z € R".

Note that we do not require any continuity property of F. This is due to the
fact, that in many examples stabilizing continuous feedbacks cannot exist, cf. e.g. [24,
Section 2.2] where also Brockett’s classical example [2] is discussed which—in suit-
able coordinates—is in fact a homogeneous system. Furthermore, even if stabilizing
continuous feedback laws exist, it is possible that no such law is homogeneous, as
the examples in [22] show (Brockett’s example and the first example from [22] will
be discussed in Section 7). However, using discontinuous feedbacks for the solutions
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of the classical closed loop system & = g(xz, F'(x)) the usual existence and uniqueness
results might not hold. In order to obtain a meaningful solution for the closed loop
system we use the following concept of a sampled closed loop system.

DEFINITION 2.3. (Sampled closed loop system) Consider a feedback law F : R* —
W. An infinite sequence m = (t;)ien, of times satisfying

O=to<t1 <ta<... and t; > 00 asi— o
is called a sampling schedule. The values

At; :=tip1 —t; and d(m) := sup At;
1€Np

is called the intersampling times and the sampling rate, respectively. For any sampling
schedule m the corresponding sampled or m-trajectory . (t,xo, F) with initial value
xg € R™ at initial time to = 0 is defined inductively by

T (t,xo, F) = x(t — t;, 25, F(2;)), for all t € [t;,tiv1],i € Ng

where x; = x:(t;, vo, F) and x(t,x;, F(x;)) denotes the (open loop) trajectory of (2.1)
with constant control value F(x;) and initial value x;.

Observe that this definition guarantees the existence and uniqueness of trajecto-
ries in positive time on their maximal intervals of existence (except possibly at the
origin if 7 < 0, in which case we use the same convention as for open loop trajecto-
ries). Moreover, the sampled m-trajectories have a meaningful physical interpretation,
as they correspond to an implementation of the feedback law F' using a digital con-
troller.

The next definition introduces control Lyapunov functions which will be vital for
the construction of the feedback.

DEFINITION 2.4. A continuous function V : R* — [0,00) is called a control
Lyapunov function (clf), if it is positive definite (i.e. V(0) =0 iff V = 0), proper (i.e.
V(z) = oo as ||z|| = 00), and there ezists a continuous and positive definite function
P : R* — [0,00) such that for each bounded subset G C R" there exists a compact
subset W C W with

min  DV(z;w) < —P(z) for all z € G.
vecog(z,Wa)

Here DV (x;v) denotes the lower directional derivative

DV (z;v) := liminf E (V(z +t') = V(z)),

t\0,v' v t
g(xz,Wg) :={g(z,w) |w € Wg}, and cog(z, Wq) denotes the convex hull of g(x, Wg).

The following definition now describes the stability concepts we will use in this
paper. For this definition recall that a function 7 : [0,00) — [0,00) is of class K,
if it satisfies 7(0) = 0 and is continuous and strictly increasing, and a function § :
[0,00)% — [0,00) is of class KL, if it is decreasing to zero in the second and of class
K in the first argument.

DEFINITION 2.5. We call the sampled closed loop system from Definition 2.3
(i) semi-globally practically stable with fixed sampling rate, if there ezxists a class
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KL function B such that for each open set B C R™ and each compact set K C R"
satisfying 0 € B C K there exists h > 0 such that

e (t,x0, F) € B = ||lox(t, w0, F)|| < B([|zol], 1)

for all xo € K and all ©# with d(7) < h,

(ii) semi-globally stable with fixed sampling rate, if (i) holds and the sampling rate
h > 0 can be chosen independently of B,

(iii) globally practically stable with fixed sampling rate if (i) holds and the sampling
rate h > 0 can be chosen independently of K,

(iv) globally stable with fixed sampling rate if (i) holds and the sampling rate h > 0
can be chosen independently of K and B.

We call the stability in (i)-(iv) exponential if 3 can be chosen as Ce™t||zg|| for
constants C,o > 0 which may depend on K, and uniformly exponential if C;o > 0
can be chosen independently of K.

Note that each of the concepts (ii)—(iv) implies (i) which is equivalent to the s-
stability property as defined in [4], cf. also [24, Sections 3.1 and 5.1]. Hence any of
these concepts implies global stability for the (possibly nonunique) limiting trajectories
as h — 0. The difference “only” lies in the performance with fized sampling rate. From
the applications point of view, however, this is an important issue, since e.g. for an
implementation of a feedback using some digital controller arbitrary small sampling
rates in general will not be realizable. Furthermore if the sampling rate tends to zero
the resulting stability may be sensitive to measurement errors, if the feedback is based
on a non-smooth clf, see [18, 24]. In contrast to this it is quite straightforward to
see that for a fixed sampling rate the stability is in fact robust to small errors in the
state measurement (small, of course, relative to the norm of the current state of the
system) if the corresponding clf is Lipschitz, cf. [24, Theorem E].

The main result we will prove in this paper is the following theorem on the
existence of a homogeneous clf V' and a homogeneous stabilizing feedback F'.

THEOREM 2.6. Consider system (2.1) satisfying Definition 2.1 with dilation ma-
trices Ay and A,, minimal power k > 0, and degree 7 € (—k,00), and assume
asymptotic controllability. Then there exists p > 0 and a clf V being Lipschitz on

R™ \ {0}, satisfying
V(Aa(2)) = o®*V(2)
and

i DVi(z:v) < —2uN (2)V,
peelin, 3(x;v) < —2uNT (x)Vp(x)

for the function N from (2.3) and W, = Ay, U for some suitable compact subset
ucw.

Furthermore there exists a feedback law F : R* — W satisfying F(z) € W, and
F(Ayz) = AgF(x) for all x € R™ and all a« > 0 such that the corresponding sampled
closed loop system is either

(i) semi-globally stable (if T >0), or

(ii) globally uniformly exponentially stable (if T =0), or

(iii) globally practically exponentially stable (if T <0)
with fived sampling rate.

The proof is given in Section 6.
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3. Systems homogeneous-in-the-state. In this section we define a class of
auxiliary systems which are homogeneous in the state and will turn out to be useful
for our analysis. By suitable coordinate and time transformations we will then simplify
this class of systems and and characterize controllability of the simplified system by
means of its Lyapunov exponents.

We consider the class of systems

(3.1) &(t) = f(x(t), u(t))

on R™ where u(-) € U, and U denotes the space of measurable functions from R to
some compact set U C R™. We assume that the vector field f is continuous, f(-,u)
is locally Lipschitz on R™ \ {0} for each u € U, and satisfies the following property.

DEFINITION 3.1. We call f homogeneous-in-the-state if there exist r; > 0, i =
1,...,n and 7 € (—min; r;,00) such that

(3.2) f(Apz,u) =a" Ay f(z,u) for all ueU

where A is the dilation matrix as in Definition 2.1, k = min; r; is called the minimal
power and the value T € (—k,00) is called the degree of the system.

Note that this definition implies f(0,u) = 0 for all v € U. We denote the
trajectories of (3.1) with initial value zo at the time ¢ = 0 and control function
u(-) € U again by x(t,xg,u(-)). Observe that also the trajectories of (3.1) may escape
in finite time if 7 > 0 and that uniqueness of the trajectory may not hold in the origin
if 7 < 0 (here again we use the convention as for the trajectories of (2.1)). As long as
the trajectories exist and uniqueness holds we obtain from Definition 3.1 that

(3.3) x(t, Agwo,u(a”™)) = Aqx(a”t, o, u("))

for all zo € R™.

Besides being useful auxiliary systems for our stabilization problem for homo-
geneous systems, homogeneous-in-the-state systems themselves form an interesting
class of systems. They generalize homogeneous bilinear and semilinear systems (see
e.g. [5, 6, 7, 10]). Generally speaking they model systems in which the control affects
parameters of the system rather that representing some force acting on the system,
cf. the examples in [8, 9]. Also for this class of systems there exist examples which
are stabilizable but not with a continuous feedback law, see [24, Example after The-
orem A]. Note that this class can be generalized analogously to the generalization of
semilinear systems made in [10]; all results in this paper can easily be adapted to that
case.

Applying suitable coordinate and time transformations we can considerably sim-
plify the class of systems to be considered: Using the dilated norm N from (2.3) the
function

P(z) = Ay, @

—1

defines a projection from R™\ {0} onto N~1(1) satisfying P(A,z) = P(x) for all « > 0.
We denote the n — 1 dimensional embedded unit sphere {x € R" | ||z|| = 1} by S®~1.
Then, since N (tz) is strictly increasing in ¢ > 0 the function S : N=(1) — S»71,
S(x) = z/||z| is a diffeomorphism between these two manifolds, thus we can define a
coordinate transformation y = ¥(z) by

¥o) = N@FS(P@), 10 =Ayprs (7).
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and ¥(0) = 0, ¥=1(0) = 0, which is continuous on R® and C' on R" \ {0}. This
definition implies

U(Aaz) =" U(z), T H(aty) = Aa¥H(y)
and by differentiation of ¥(A,x) and o*¥(x) one sees
DU (Ayz) = aF A DY ().
Thus defining
fly,u) = DY () (T (y),u)
we obtain (with z = U~1(y))
f(a*y,u) = DO (Agz) f(Agz,u) = aF AT DU (2)a” Ay f(z,u) = a” oF f(y,u)
implying

flay,u) = ™ f(y,w),

with v = 7/k, i.e. f is homogeneous-in-the-state with respect to the standard dilation
A, = ald, with mimimal power k = 1, and with degree 7 = 7.
Furthermore setting f(y,u) = f(y,u)||ly|]|”" (which defines a time transformation

for f) we obtain a system with degree 7 = 0. In what follows we will therefore assume
(3.4) flaz,u) = af(z,u) for all z€e R*, a >0

and will retranslate the results to the general case in Theorem 4.3. Observe that the
new f is now globally Lipschitz with a uniform constant which we will denote by L.

In order to obtain a way to characterize asymptotic controllability of (3.4) we
introduce the finite time exponential growth rate (cf. [10, 11])

A (o, u(-) = i W‘

It follows immediately from (3.4) that x(¢,axo,u(-)) = ax(t, o, u(-)) and thus the
growth rates satisfy Af(zo,u()) = A (awzg,u(-)) for all zop € R? \ {0} and all a > 0.
The meaning of A is described by the following proposition.

PROPOSITION 3.2. System (3.4) is asymptotically controllable if and only if there
exists a time T > 0 and some p > 0 such that for each x € R™ \ {0} there exists
ug(-) € U with

(3.5) Nz, uz (1)) < —p for all t>T

Proof. Obviously (3.5) implies exponential controllability, thus in particular
asymptotic controllability.

For the converse implication since A (x,u(-)) = X (az, u(+)) it is sufficient to show
(3.5) for ||z|| = 1, i.e. z € S?~!. Asymptotic controllability implies that for each
x € S"~! there exist @, () € U, t, > 0, and C, > 0 such that ||o(t,,z, @ ()| < 1/2,
and ||¢(t, z, @, ()| < C, for all t € [0,%,]. By compactness of S* ! and continuous
dependence on the initial value we can choose the controls such that 77 = sup, cgn—1 1,
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and C' = sup,cgn-1C, are finite. Now for each z € S"™! we define u,(-) and a
sequence t; inductively by o = 0 and

tivr =ti +tg,, Up(t) =g, (t —t;), t € [ti,tis1]

where x; = o(t;, z,uz(+))/|le(ti, z,uz())||. Choosing ¢; maximal with ¢; < t (i.e.
t—t; <7y and t; >t — T1) this implies
t—1;

N (1) = N (0, 0()) + SN (w8 +) <

t—Ty, 1 1T
In-+—InC
n2+t n

where the last expression is independent of  and negative for all ¢t > T for 7" > 0
sufficiently large, which yields the assertion. O
In fact, we can show something more than just the negativity of the finite time
exponential growth rates. We define the Lyapunov exponent of each trajectory by
Az, u(+)) := limsup A (z, u(-))

t—o0

and the supremum w.r.t. the state and infimum w.r.t. the control over these exponents
by

0 := sup inf Az, u(-)).
zeRn\{O}u(')eu( ()

Lyapunov exponents for control systems have been utilized in the analysis of bilinear
systems (see e.g. [5] for some basic concepts and [6] for a detailled exposition) and
for the global stabilization of semilinear and the local stabilization of differentiable
nonlinear systems at singular points [10]. In the homogeneous setup we obtain the
following characterization.

PROPOSITION 3.3. Consider the system (3.4) and its sup-inf Lyapunov exponent
o. Then for each p € (0,0) there exists T > 0 such that for each x € R™ \ {0} there
exists ug(-) € U with

MN(zyu, (1) < —p for all t >T

Proof. Exactly as [10, Proof of Proposition 3.4]. O

Since by Proposition 3.2 for our class (3.4) of homogeneous systems asymptotic
controllability immediately implies ¢ < 0, Proposition 3.3 establishes a spectral con-
dition for the asymptotic controllability of (3.4).

4, Stabilization of systems homogeneous-in-the-state. In this section we
will construct a Lyapunov function and a stabilizing feedback for system (3.4). Af-
terwards we retranslate this stabilization result to general systems homogeneous-in-
the-state from Definition 3.1.

We begin with the construction of a homogeneous Lyapunov function for system
(3.4). First observe that the projection

3y 2hzou) o @
5650, u0)) = T O 0 Tl

of (3.4) onto S" ! is well defined due to the homogenity of the system. A simple
application of the chain rule shows that s is the solution of

S(t) = fS(s(t)7u(t))7 fS(sau) = f(s,u) - (s,f(s,u))s



STABILIZATION OF HOMOGENEOUS SYSTEMS 9

and that for so = zo/||wo|| the exponential growth rate A\! satisfies

1

X (o, u(-)) = X (s, u(")) = ;/0 q(s(7, 50, u()), u(r))dr

with g(s,u) = (s, f(s,u)). Thus defining the discounted integral

(oo}
Toso,u() i= [ e 5T as(rs0,u),ulr)dr
0
and the corresponding optimal value function

vs(s0) 1= int Ji(s0,u()

from Propositions 3.2 and 3.3, and [10, Lemma 3.5(ii)] we obtain that if system (3.4)
is asymptotically controllable then for each p € (0,0) there exists , > 0 such that
for all § € (0,4,] and all so € S"~! the inequality

dvs(s0) < —p

holds. Note that vs is Holder continuous and bounded for each § > 0, cp. e.g. [1]. We
now fix some p € (0,0) and some ¢ € (0,9,] and define

Vo(a) i= 2o/l o 2,

LeEmMMA 4.1. The function Vo is a clf which is homogeneous with degree 1 (with
respect to the standard dilation) and satisfies

i DVy(z;v) < —2pVy(x).
Lemin o(z;v) < —=2pVo(x)

Proof. Homogeneity, positive definiteness and properness follow immediately from
the definition. Now for each ¢ > 0 the function v; satisfies the dynamic programming
principle

wston) = int, { [ atatrso,u), u(r))ar + (ot 0, u() |

see e.g. [1]. Abbreviating q(t, so,u(-)) = q(s(t, s0,u(-)),u(t)) and using e =% —1 > —6t
we obtain for the integral part of this equality
t t 2
| e atms0,utdr > [ a(rso,ut)) + (€% = D)Mydr = N (s0,u()) - My
0 0
where M, denotes a bound of |g|. Thus with so = xo/||xo|| we obtain

Vo(xo) > (ir)lfu exp[2t\ (z,u(")) — Mqét2 + 26_5t1}5(8(t, so,u(-)))]||:v0||2
u(-) e

— 1nf eZt)\t(Jt,u(-))equ(StZ62(6_5t*1)')5(S(trSOru(')))eZUS(S(trSOYU(')))|

|zoll”

i 1220, WO 507 2o #=1)uss(tis0,u0) 208 s(0s50,40)) 1

utyeu  [lzol?
— inf e_Mq6t2+2(676t_1)v‘5(s(t’SO’u(.)))Vo(.’L'(t,.’I,'O,'U/(')))
u(-)eU

> u(“)léu e—Mq5t2+2(1—e*‘“)p/évo(x(t zo,u(-))).
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Now for each ¢ > 0 we choose u:(-) € U such that the infimum of the last expression
is attained up to ¢>. Using b —b> < 1 —e~? < b for b > 0 we can conclude

< (1 — e Mad 20T 000V Y, (o (8 g, g () + 82
< (]- - 67M95t2+2tp726t2p)V0(w(tawﬂaut('))) + tz
< (=2tp+ (My +20)0%) Vo (a(t, 2o, (")) + 2

%($(t,$0,ut('))) - VO(;UO)

for all ¢ > 0 sufficiently small. Denoting v; = (z(t, xo, ut(-)) — zo)/t we obtain

% (Vo(mo + tur) — Vo(wo)) < —2pVo(x(t, zo,u(:))) + (Mg + 2p)6tVo(x(t, zo,u("))) + ¢
and since by compactness of U there exists a v € cof(z,U) and a sequence t; — 0
such that vy, — v as i = oo the assertion follows by the definition of DV;. O

Based on 1, and using the techniques from [4] we can now construct the stabilizing
feedback law for system (3.4). To this end for 8 > 0 we consider the approximation
of Vy via the inf-convolution

(4.1) Va(z) = inf {Vg(y) + M}
yeRn" 252
Observe that V3 is locally Lipschitz and V3 =V as 8 — 0.
PROPOSITION 4.2. For each p € (0, p) there exists f > 0 such that the function
Vi is a Lipschitz continuous clf which is homogeneous with degree 1 (with respect to
the standard dilation) and satisfies

min  DVi(z;v) < —2uVa(x).
eln (x;0) < —2uVp(x)

Furthermore there exists a feedback law F : R* — U satisfying F(az) = F(x) for

all x € R*, a > 0 and constants h > 0 and C > 0 such that any w-trajectory
corresponding to some partition m with d(w) < h satisfies

(4.2) |2 (£, 20, F)[| < Ce™"[|o]|-

Proof. By its definition Vj is obviously positive definite. Now for each z € R" we
denote by yg(z) a point realizing the minimum on the right hand side of (4.1). Since
Vb is homogeneous with degree 1 we have that

_ 2 —_ ol12
{vatan) + 122 o fuq )+ 200

and thus in particular Vjz is also homogeneous with degree 1, hence proper, and we
can choose yg(z) in such a way that ys(az) = ays(x). Since Vj is strictly increasing
along the rays az in a > 0 it follows that ||ys(x)|| < ||z]|.

Now we define

CB(:L') = ? _226(:1;)

which implies (3(ax) = a(z(x).
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By [4, Lemma III.1 and II1.2] (or by straightforward calculations) for this vector
we can deduce the inequalities

(4.3) Va(z + mv) < V(x) + 7(¢s(x),v) + TQH;z”
and
(4.4) Vo(ys(z) + 1v) > Vo(ys(z)) + 7(Cs(x), v) — T2|/|3U2” ,

i.e. (g(x) is a proximal supergradient of V3 in & and a proximal subgradient of Vj in
ys(x) (see e.g. [3] for an exposition of these concepts). We choose the feedback F'(z)
in such a way that

<</3(£L“),f(ﬂ?,F(:U))> = inf <<,3($)7f($7u)>

uelU

and F(az) = F(z) for all x € R" \ {0} and all & > 0. The value F(0) can be chosen
arbitrary.

Now consider points z € R® with ||z|| = 1, i.e. # € S®!. For these points the
Holder continuity of V4 (which is inherited from the Holder continuity of vs) and the
definitions of Vg and (3 imply

1
Wllyﬁ(w) — x| < Vo(x) = Volys(x)) < Hllya(z) — 2"
and thus

(4.5) 165 @) lllys () — al] < HB==

where H > 0 and v € (0,1] denote the Holder constant and exponent of V; on
{z € R" | ||z|| £1}. From (4.5) and the definition of V3 we immediately obtain

(4.6) Vo(ys (@) — Va(z)| < HBT

Now the Lipschitz continuity of f implies that
(s (@), f(a, F())) < min{Cs(2), £(ys(x),w)) + Lll¢s()llllys (2) - 2|

and by (4.4) and the definition of DV} it follows that ((z(z),v) < DVy(ys(z),v) for
all v € R®. Thus by the linearity of the scalar product and Proposition 4.1 we can
conclude

min(Cs (), £ (ys(2), v)) = vEcofr(I;iBn(x),U)<<’8(w)7v> < —2pVo(ys (7))

Combining these inequalities with (4.5) and (4.6) yields
(4.7) (Ga(@), (2, F(2))) < ~2pVs(x) + 2pHB= + LHPZ.

Defining

r=1 ’ z(t,z, F(x T
f= - | fatto Fa), Fa)a
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and using M := sup|,|<2,ucv f(2,u) and the Lipschitz continuity of f for 7 > 0
sufficiently small we obtain

Ifz = fz, F(x))l| < MLz, |[|f7]| <M.

Thus by (4.3), (4.7), and the fact that ||(g(z)|| < Cs for all z € S"~! and some
suitable Cz > 0 we can conclude

Vis(a(r, @, F(z))) = Va(x) = V(z + 7f7) — Va(x)

< T{G(@). F1)) + %
< 7(¢s(x), fx, F(x))) + MLT?||Cs(z)|| + T;_g/[;
< 7(=2pVs(@) + (2p + L)HBTT) 4 72 (MLCB N %>
Denoting
Vg = sup M C',@ = sup MLCpg M2

+ )
sesn1 Va(x) — 28%2Vp(x)

and exploiting homogenity of z(-,z, F'(z)) and V3 we obtain for arbitrary x # 0

zesn—1 Vﬁ(x) ’

Vi(z(r,z,F(x))) — Va(x) < 7(=2p + 75)Vs(x) + 7°CpVs ()

which immediately implies both assertions since yg =+ 0 as 3 — 0. 0

This proposition shows the stabilization for systems of type (3.4). The following
theorem shows how this result can be translated to the general homogeneous-in-the-
state system from Definition 3.1.

THEOREM 4.3. Consider system (3.1) satisfying Definition 3.1 with dilation ma-
triz A, minimal power k > 0, and degree 7 € (—k,00), and assume asymptotic
controllability. Then there exists 1 > 0 and a clf V being Lipschitz on R™ \ {0},
satisfying

V(Aa(2)) = *V ()
and

vecrg}l(r;ﬂ) DVi(x;v) < —2uN7 (2)Vs(x)
for the function N from (2.3).

Furthermore there exists a feedback law F : R* — U satisfying F(Aqx) = F(x)
for all x € R™, a > 0 such that the corresponding sampled closed loop system is either

(i) semi-globally stable (if T >0), or

(ii) globally uniformly exponentially stable (if T =0), or

(iii) globally practically exponentially stable (if T <0)
with fized sampling rate.

Proof. Obviously if the system defined by f is asymptotically controllable, then
the transformed system defined by f is asymptotically controllable. Thus from Propo-
sition 4.2 we obtain V = V3 and F = F satisfying the assertion for f which is
homogeneous-in-the-state with A, = ald, k =1 and 7 = 0.
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We start by showing the result for the system defined by f(z,u) = fla,u)|z]|”
being homogeneous-in-the-state with with A, = ald, k = 1 and 7 = v. Let V(z) =
V(z). Then we immediately obtain

min  DV(z;0) = 27 min DV (w;v) < —|le]"2u7 ().
vecof(x,U) vecof(z,U)

Now observe that for each control function u(-) € U the trajectories Z and Z of these
systems satisfy

(4.8) &(t, w0, u(")) = z(t(t), zo, u(t(")))

where #(t) denotes the inverse of #(t) which is defined by

/ 1 (r, 0, u())) " dt

and thus is well defined as long as the solution Z(t,xo,u()) exists. If both & and
uniquely exist, for all ¢ > 0 it is immediate that (t) — oo as t — oc.

Setting F'(x) = F(x) a #-trajectory &z (t,zo, F) of

(4.9) &= f(%,F(&))

on some interval [0,T] on which #, exists becomes a 7-trajectory Zz(£(t),zo, F) of
(4.10) = f(z,F(z))

where T = (£;)ien, is given by #; = £(f;) with @ = (£;);en,. Now we distinguish the

three cases:

(i) v > 0: By the choice of F' there exist C,o,h > 0 such that inequality (4.2) holds
for each 7T-trajectory T of (4.10) with d(7) < h and each x € R”. Now consider a
compact set K C R” with 0 € intK. Let Cx := sup,cg ||z[|, consider a 7-trajectory
Fx(t, w0, F) of (4.9) with d(7#) < h(CCk)™7 and = € K, and assume that there
exists a (minimal) time ¢* > 0 such that || (t*,zo, F)|| = C||lz||. W.lo.g. we may
assume t* = {; € 7 for some [ > 0, otherwise we may reduce the sampling interval
containing #*. Then since ||Zz(t, o, F)|| < CCk for all t € [0,#;] the rescaled 7
satisfies ; —t;_1 < h for all i = 1,...,l, thus we obtain

125 (F1, @0, )| = 122 (t1, 20, F)|| < Ce™# ||| < Cllo

contradicting the choice of t* = . Thus ||#z (¢, zo, F)|| < C||z|| holds for all ¢ > 0,
and hence d(7) < h, implying

125 (8, w0, F)|| < Ce™]|o]|

which implies the desired stability estimate with 3(]|z||,¢) = Ce™##®)||z|| which is of
class KL because the corresponding trajectories stay inside some compact set, thus
exist for all ¢ > 0, and are unique since v > 0, hence t(t) — oo as t — oo.

(ii) v = 0: In this case the assumption follows immediately from Proposition 4.2.
(iii) v < 0: As in case (i) there exist C,o,h > 0 such that inequality (4.2) holds for
each 7-trajectory Zz of (4.10) with d(7) < h and each z € R®. Consider a compact
set K C R” and an open set B C R* with 0 € B C K. Let Cx = sup,cx ||z||, C =
info¢p ||z||/2 > 0. By continuous dependence on the initial value and compactness we
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can choose s > 0 such that ||Z(¢, zo,u)|| < 2C~*Cp for all ||zg|| = C~1Cp, all u € U,
and all ¢ € [0,s]. Then (3.3) implies (recall 7 = v < 0 and A, = ald) the inequality
|Z(t, zo, u)|| < 2||zo|| for all ||zo]| > C1Cp, all u € U and all t € [0, 5].

Now pick an arbitrary #-trajectory &z (t,zo, F) of (4.9) with 7 satisfying d(7) <
min{h(C~1Cp)~7,s} and z¢ € K, ||xo|]| > C~'Cp, and consider an interval [t.,t*]
such that ||#z(t,z, F)|| > C~1Cp for all t € [t,,t*]. Then we either have t, = 0 = #,
or there exist sampling times such that ¢, € [f;_1,%;]. In this case by d(7) < s and
the choice of s we obtain ||Zz (;, zo, F)|| < 2||1Zz (t«, zo, F)||.

Analogously to the case v > 0 the choice of d(7) now implies d(7) < h and thus

(4.11) %5 (t, mo, F)|| < Cefu(t_(t)ft_(ﬂ))||5ﬁ(fi,$0,ﬁ’)||

for all ¢ € [t;,t*]. This estimate implies that for each trajectory there exists a (mini-
mal) time 7' > 0 such that the trajectory hits the set {z € R* |||z|]| < C~'Cg}, and
up to that time (4.11) implies the desired estimate with (||zo||,t) = Ce=#®)||z|| <
Ce MECK) |20 After that time 7', whenever the trajectory leaves this set at some
time ¢, > T inequality (4.11) implies that it will enter again at some time t* > ¢, and
satisfies ||z (t, 20, F)|| < CCp/2 < Cp for all t € [t.,t*]. Hence ||z (t, 20, F)|| < Cp
for all ¢ > T, and since ||z|] < Cp implies x € B we obtain the practical stability
property.

So far we have shown the existence of V and F satisfying the assumptions of the
theorem for f, hence it remains to translate the results to f. To this end we define
V(z) = V(¥(z)) and F(z) = F(¥(x)). This implies

DV (z; f(z,u)) = DV (¥(x); f(¥(x),u))

and

Tp(t,z, F) = T, (t,¥(z), F)

and thus immediately the assertion since ||¥(z)|| = N*(z). O

5. Numerical approximation of V and F. In this section we briefly explain
how a numerical approximation to the clf V' and the feedback law F' can be computed.

Unfortunately, up to now no numerical method for the approximation of vs, Vj or
V3 is known, which also gives an approximation of the super- or subgradients and thus
allows the approximation of F'. However, if we slightly change our feedback concept
(or, more precisely, the notion of a closed loop system) an approximation is possible.
For this purpose we introduce the following definition.

DEFINITION 5.1. Let h : R* — Rt be an arbitrary map. A feedback law F" :
R™ — U is called a discrete feedback, if we apply it as a sampled feedback according
to Definition 2.3 with fized intersampling times At; = h(x, (t;, o, F?)).

This definition generalizes the one given in [7] in the sense that the time step h
now may depend on z. The name “discrete feedback” is motivated by the fact that the
resulting system can be written as a discrete time system ;1 = x(h(x;), zs, F"*(2;))
for which F™* is a feedback law in the classical sense.

Returning to our simplified system (3.4), and again fixing some p > 0 and ¢ €
(0, p) we can apply the results from [7, 8], observing that the structural assumptions on
the system in these references (i.e. bi- or semilinearity, accessibility, convexity of U) are
only needed in order to show vs(z) < 0. In particular all the numerical approximation
results remain valid, thus we can proceed as in [7, 8] and (i) approximate U/ by
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piecewise constant control functions, (ii) approximate the trajectories and the integral
by numerical schemes, and (iii) compute an approximation of vs on a grid discretizing
the state space S? 1. Proceeding this way for any given ¢ > 0 we find A > 0 and
numerically computable functions v} : S"71 — R and F# : S"1 — U such that

(5.1) of(s) < —p+e

and
h
(5.2) vy (s) +¢ 2/0 q(s(t, s, F2(s)), F& (5))dt + e 0f (s(h, 5, F£(s)))

hold for each s € S*~1. This function v? is the function @¢ from [7]; Inequality (5.1)
follows from [7, Theorems 3.3, 5.3, and Inequality (5.4)], Inequality (5.2) is easily
extracted from the proofs of [7, Lemma 5.1, Lemma 5.2, and Proposition 5.4] using
again [7, Inequality (5.4)]. The feedback F* is defined by choosing a control value
minimizing the right hand side of (5.2) using the numerical approximations of the
trajectory and the integral. Observe that the state space S ! to be discretized here
is somewhat more difficult to handle that the projective space P*"~! appearing in
[7, 8], since for n > 3 a single map cannot be sufficient for the parametrization of
S”~! without introducing singularities. Hence numerically one either needs to work
directly on S?~1, or one has to compute the solution using two parametrizations (e.g.
the stereographic projection from the north and south pole), and consequently two
grids for the representation of v? in local coordinates. This method was used for the
second example in Section 7.

Defining F"(x) = F'(z/||z||) analogous to Proposition 4.1 we can conclude that
the function

Vh(z) = 205 @/llel) | )|
is homogeneous, proper, positive definite, and satisfies
Vi(z(h,z, F"(2))) < (1 —2hp+ M (g + eh + h*)V"(x)

for some suitable constant M > 0 independent of h and ¢, i.e. for any p' € (0, p) there
exist sufficiently small A > 0 and € > 0 such that

(5.3) VA(w(h,z, F' () < (1 — 2k )V" (2).

Thus the function V* is a (discrete time) Lyapunov function for the system con-
trolled by the discrete feedback F'* according to Definition 5.1 with h(z) = h, which
immediately implies (exponential) stability.

As in Theorem 4.3 we can retranslate this result to arbitrary homogeneous-in-the-
state systems. Analogous to the proof of this theorem denote the functions obtained
for (3.4) by F", V" and h. For the retranslation from f to f we can use F* = F" and
Fh = V' however, following (4.8) we now have to use h(z) = i(h, ) as intersampling
times, where

h
i(h, ) = / |2 (r, 2, F"(2))]| " dr.

Passing from f to f we define—again analogously to the Proof of Theorem 4.3—
the feedback F"(z) = F"(¥(z)), the Lyapunov function V*(z) = V*(¥(x)) and
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the intersampling time h(z) = h(¥(x)). This way it is straightforward to see that
(5.3)—mnow for the z-dependent h—remains valid and thus stability follows.

Observe that the time steps h(x) are bounded from below by some positive con-
stant on each compact set iff 7 > 0, and they are bounded on each open set not
containing the origin iff 7 < 0. In this way they behave just like the sampling rate
for the theoretical feedback law from Theorem 4.3, however, here the stability is only
guaranteed for these fixed intersampling times h(z) and not for smaller ones as allowed
in Definition 2.5.

6. Stabilization of homogeneous systems. We now return to the homoge-
neous system from Definition 2.1. The idea of the proof of Theorem 2.6 lies in the fact,
that for any asymptotically controllable homogeneous system we can find an asymp-
totically controllable homogeneous-in-the-state system. For this we find a clf and a
stabilizing feedback law by Theorem 4.3, which—retranslated to the homogeneous
system—have the properties as stated in Theorem 2.6.

We start by constructing the desired system: Given some homogeneous system
satisfying

g(Aaz, Aju) = a” Ay (z,u)
we define

(6.1) f(z,u) == g(x, An(z)u).

Then it is immediate from the property N(Ayz) = aN(x) of the dilated norm N that

f(AOz:U: U’) = g(Aaxa AN(AQJ))U’) = g(Aaxa AozN(z)U')
= g(Aaxa AQAN(E)U) = O[TAag(LE, AN(al:)u')
=a Ay f(z,u),

i.e. f is homogeneous-in-the-state.

The following proposition gives the asymptotic controllability.

PROPOSITION 6.1. Consider a system (2.1) satisfying Definition 2.1. Assume
that the system is asymptotically controllable. Then there exists a compact set of
controlvalues U C W such that the homogeneous-in-the-state system (6.1) is asymp-
totically controllable using control functions with values in U.

Proof. First observe that due to (3.3) it is sufficient to show that there exists a
compact U C W and a time T > 0 such that any initial value xg with N(xz¢) = 1 can
be steered to some point z; with N(z1) < 1/2 in some time ¢ < T using a measurable
control u(-) with u(t) € U for almost all ¢ > 0. With this property asymptotic
controllability easily follows by induction from (3.3).

In order to show the existence of this U first observe that, denoting the trajectories
of f and g by =y and z,4, respectively, the equality

(6.2) zf(t,xo,u(-)) = z4(t, wo, w(-)), with u(t) = AEl(zg(tvwovw(.)))w(t)

holds. Now consider the initial values zo € N~!(1). For each of these points there
exists a control wg, (-) € W such that N (z4(tz,, o, Wa, (-))) = 1/3. Now by continuous
dependence of the solution on the initial value we obtain that for each zy there exists
an open neighbourhood B, 3 z( such that

N (g (teo, 2wz, () < 1/2
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for all # € B,,. Since N~1(1) is compact and is covered by the B,, we find a finite
number M € N of points o}, i = 1,..., M, such that the sets Umg, it=1,..., M cover
N~!(1). Thus setting ¢; = t,; and w;(-) = w,; (-) for each zo € N"*(1) there exists a
number i € {1,..., M} such that

N(zg(ti, zo, wi(-))) < 1/2.
Now we choose u;(t) = A} (yywi(t) for all t € [0, ], ui(t) € W arbitrary for

N(zg(t,xo,w;
t > t;. Then by (6.2) we immediately obtain

N(zy(ti, e, ui(-) < 1/2

for each xg € N~!(1) and some suitable i € {1,..., M}. Since the functions w;(-) are
locally essentially bounded, i.e. essentially bounded on [0, ¢;], we can conclude that the
functions w;(-) are essentially bounded. Thus ||u;(+)||co is finite for each i =1,..., M
and also sup;_; s [|ui(")]|co is finite, hence there exists a compact U C W such that
u;(t) € U for almost allt >0 and all¢=1,...,M. O

Now we can turn to the proof of Theorem 2.6.

Proof of Theorem 2.6. Consider the system homogeneous-in-the-state as defined
by (6.1) with U C W from Proposition 6.1. For this system from Theorem 4.3 we
obtain a clf V; and a feedback Fy. Setting V' = V; and F(z) = Ay Fr(r) we
immediately obtain the assertion. O

7. Examples. Let us, finally, illustrate our results by two examples. The first
example

(r1) sew) = (5" o)

3z + xqWw

for x = (z1,72)T € R?, w € W = R, is taken from [22] where it has been shown that
a stabilizing continuous and homogeneous feedback law cannot exist for this system.
The vector field g is homogeneous with A, = diag(a, a®) and A, = a. Thus we obtain
N(z) = (% 4+ 22)'/5. For system (7.1) a stabilizing discrete feedback F" has been
computed numerically using the techniques of Section 5. Analyzing the switching
curves of the numerical feedback in this case it was easy to derive the feedback

_ N(:L“), Ea S _:Eg
Fz) = { —N(z), = > -z

stabilizing the sampled system for all sufficiently small sampling rates. Figure 7.1
shows the corresponding (numerically simulated) sampled trajectories for some initial
values, here the intersampling times have been chosen as At; = 0.01 for all i € Ny.

The second example is the nonholonomic integrator given by Brockett [2] as an
example for a system being asymptotically null controllable but not stabilizable by
a continuous feedback law. In suitable coordinates (cf. [24], where also the physical
meaning is discussed) it reads

wy
(7.2) g(z,w) = wa
T1W2

forz = (71,22, 23)"7 € R®, w = (wy,wz) € W = R?. For this g we obtain homogenity
with A, = diag(a,a,a?) and A, = diag(a,a), hence N(z) = (z} + =3 + 23)V/*.
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F1G. 7.1. Trajectories for stabilized system (7.1)

X2
o

F1G. 7.2. Trajectories for stabilized system (7.2), projected to the (z1,x2) plane

Again a stabilizing discrete feedback law Fj, has been computed numerically following
Section 5.

Also in this example it is in principle possible to derive an explicit formula from
the numerical results, it is, however, considerably more complicated, since a number
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F1G. 7.4. Trajectories for stabilized system (7.2), projected to the (xz2,x3) plane

of switching surfaces have to be identified. Hence we directly used the numerical
approximation F" of F for the simulation shown in the Figures 7.2-7.4 in different
projections; the time step is h = 0.01, the controlvalues were chosen as U = {—1,1}.
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