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HOMOGENEOUS WEAK SOLENOIDS

ROBBERT FOKKINK AND LEX OVERSTEEGEN

Abstract. A (generalized) weak solenoid is an inverse limit space over man-
ifolds with bonding maps that are covering maps. If the covering maps are
regular, then we call the inverse limit space a strong solenoid. By a theorem
of M.C. McCord, strong solenoids are homogeneous. We show conversely that
homogeneous weak solenoids are topologically equivalent to strong solenoids.
We also give an example of a weak solenoid that has simply connected path-
components, but which is not homogeneous.

1. Introduction

A (one-dimensional) solenoid is an inverse limit space of circles S1 = {z ∈
C : |z| = 1}, with bonding maps p(z) = zn for some n ∈ N. Solenoids were intro-
duced in 1928 by van Dantzig and van der Waerden [8]. Solenoids have topological
structure, being indecomposable continua, and solenoids have algebraic structure,
being compact abelian groups. In this paper we shall study higher-dimensional
generalizations of solenoids that were first studied by M.C. McCord [15]. We shall
be interested in the conditions that make a higher-dimensional solenoid S homo-
geneous, i.e., for each pair of points x, y ∈ S there exists a homeomorphism that
maps x to y. This interest is motivated by Hagopian’s topological characterization
of solenoids.

Theorem 1 (Hagopian, [10]). A homogeneous metric continuum is a solenoid if
and only if every proper subcontinuum is an arc.

In this characterization, the circle is a solenoid for the degenerate case in which
the bonding map is the identity. This result was conjectured by Bing [5]. Later,
different proofs were given in [18] and [2]. Both these proofs concern the local
product structure of a homogeneous one-dimensional space and, as a byproduct,
yield another characterization.

Theorem 2. A homogeneous metric continuum is a solenoid if and only if it has
a local product structure of a Cantor set cross an arc.

In this characterization, the circle is not a solenoid. The advantage of this second
characterization is that it can be extended to higher dimensions for inverse limit
spaces over covering maps of manifolds. We shall call such spaces weak solenoids
and defer their exact definition to the next section. Schori [22] showed that weak
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3744 ROBBERT FOKKINK AND LEX OVERSTEEGEN

solenoids need not be homogeneous. On the other hand, McCord [15] derived a
criterion for weak solenoids to be homogeneous. We shall say that an inverse limit
space is a strong solenoid if it satisfies McCord’s criterion. The main result of our
paper reads as follows.

Theorem 3. If a weak solenoid is homogeneous, then it is homeomorphic to a
strong solenoid.

This theorem is a modest first step towards a proof of the following conjecture,
which presents itself quite naturally from results of Alex Clark [6]. It generalizes
Theorem 2.

Conjecture 4. A homogeneous metric continuum is a strong solenoid if and only
if it has a local product structure of a Cantor set cross an n-cell.

We remark that such a local structure also occurs in the work of Williams [27]
on hyperbolic attractors.

Our main result settles Question 1 of [21]. Question 2 in that paper asks
whether a weak solenoid is homogeneous if, and only if, all its path components are
homeomorphic. We shall not settle this question; however, we give an example of a
non-homogeneous weak solenoid with simply-connected path-components. Results
of Ronald de Man [13] indicate that such components are all homeomorphic.

2. Weak solenoids

A weak solenoid is an inverse limit sequence lim←(Mi, p
i) over compact and

closed manifolds Mi such that each bonding map pi : Mi → Mi−1 is a covering
map. The composition pi ◦ pi−1 ◦ . . . ◦ pj+1 is denoted by pij : Mi → Mj. We
shall call the inverse limit space a strong solenoid if any finite composition of the
bonding maps pij is a regular covering map. The covering map pi0 : Mi → M0

shall be denoted by pi. Recall that a covering map p : (M,m) → (N,n) is regular
if p∗(π1(M,m)) is a normal subgroup of π1(N,n), where p∗ denotes the induced
homomorphism between the fundamental groups.

Theorem 5 (McCord, [15]). A strong solenoid is homogeneous.

Schori [22] gave an example of a weak solenoid that is not homogeneous, thus
settling a problem of J. Segal [24].

Theorem 6 (Schori). There exist weak solenoids that are not homogeneous.

A different example was later given by Rogers and Tollefson [19]. We shall review
both examples in this paper. Schori conjectured that McCord’s condition was both
necessary and sufficient.

Conjecture 7 (Schori). If a weak solenoid lim←(Mi, p
i) is homogeneous, then for

some index j all composite projections pij : Mi →Mj are regular.

This conjecture was shown to be false by Rogers and Tollefson [20]. However,
as Theorem 3 shows, Schori’s conjecture is true under a slight modification, as
suggested by Question 1 in [20].
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HOMOGENEOUS WEAK SOLENOIDS 3745

3. Properties of covering spaces and covering maps

The spaces under consideration are compact, connected manifolds without
boundary and with an infinite fundamental group. We summarize some standard
properties of covering spaces and covering maps, for which [14] is a general reference.

Theorem 8. Suppose that p : M → N is a covering map and that f, g : X → M
are continuous. If p ◦ f = p ◦ g and f(x) = g(x) for some x ∈ X, then f = g.

In our case, f and g shall be continuous maps between pointed spaces, so that
the condition f(x) = g(x) is satisfied by the base point.

Theorem 9 (Lifting property). Suppose that p : (M,m) → (N,n) is a covering
map and that f : (K, k) → (N,n) is a continuous map. Then there exists a lift
f̃ : (K, k)→ (M,m), i.e., p ◦ f̃ = f , if and only if f∗(π1(K, k)) ⊂ p∗(π1(M,m)).

The fiber of a covering map p : (M,m) → (N,n) corresponds to the (right)
residue classes of p∗π1(M,m) in π1(N,n). Denote H = p∗π1(M,m) and G =
π1(N,n). Then G acts on the fiber by right multiplication of the (right) residue
classes G/H .

A deck transformation f : M → M is a map preserves the fibers of N . Deck
transformations thus form a group that acts on a fiber. The action is transitive if
and only if the covering map is regular.

For non-pointed spaces the lifting property extends as follows.

Theorem 10 (Homotopy lifting property). Suppose that p : M → N is a covering
map and that F : K× [0, 1]→ N is a homotopy. For some x0 ∈ K let γ : [0, 1]→ N
be the path defined by γ(t) = F (x0, t) and let γ̃ be a path in M covering γ. If the
restriction of F to K × {0} can be lifted, then the entire homotopy can be lifted to
a homotopy F̃ , such that F̃ (x0, t) = γ̃(t).

If no confusion is likely to arise, we shall denote a weak solenoid lim←(Mi, p
i)

by M∞. A point x ∈ M∞ then represents a sequence xi ∈ Mi. We review some
elementary properties of weak solenoids.

Lemma 11. Suppose that M∞ is a weak solenoid and that x, y ∈M∞. Then there
exists a path γ : [0, 1]→M∞ such that γ(0) = x and such that z = γ(1) has its first
coordinate in common with y, i.e., z0 = y0.

Proof. Define a path γ0 : [0, 1]→M0 with beginning point x0 and end point y0. By
Theorem 9 there exists a lift γi : ([0, 1], 0) → (Mi, xi) for every i ∈ N. Now define
γ : [0, 1]→M∞ by γ(t) = (γi(t)).

An inverse limit space lim←Xi is not affected if one disregards a finite number
of indices. Lemma 11 therefore applies more generally for any finite choice of
coordinates of y ∈M∞. It follows that path components are dense.

Lemma 12. Suppose that M∞ is a weak solenoid and that x0, x1 ∈M∞ are in the
same path-component. Then there exists a homeomorphism f : M∞ → M∞ such
that f(x0) = x1.

Proof. Suppose that γ = (γi) : [0, 1] → M∞ connects x and y. Define a isotopy
F0 : M0 × [0, 1] → M0 such that F0(x, 0) = x and such that F0(x0, t) = γ0(t).
Define homotopies Fi : Mi×[0, 1]→M0 by Fi = F0◦(pi0×id[0,1]). By the homotopy
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3746 ROBBERT FOKKINK AND LEX OVERSTEEGEN

lifting property there exist lifts F̃i : Mi× [0, 1]→Mi such that F̃i(xi, t) = γi(t). By
Theorem 8 these lifts commute with the bonding maps of the inverse limit. Hence,
the transformation F : M∞ →M∞ defined by F ((zi)) = (F̃i(zi, 1)) is well defined,
it is invertible, and it maps x to y.

It follows that a weak solenoid is homogeneous if and only if it is possible to
permute path components transitively.

Theorem 13 (McCord, [15]). A strong solenoid is homogeneous.

Proof. Suppose that lim←(Mi, p
i) is a solenoid and that x, y ∈ M∞. By the

previous lemmas we may assume that x0 = y0. By Theorem 9, the regular-
ity of the covering map pi0 : (Mi, xi) → (M0, x0) implies that there exists a lift
fi : (Mi, xi) → (Mi, yi). By Theorem 8 the lifts commute with the bonding maps:
fj ◦ pij = pij ◦ fi. Hence the map f : M∞ →M∞ defined by the fi is invertible and
f(x) = y.

Consider a solenoid as a bundle over a manifold p : M∞ → M0. The proof of
Theorem 13 implies that for any two points x, y in the same fiber, there exists
a transformation h : M∞ → M∞ that leaves all the fibers invariant and maps x
onto y. In this sense, strong solenoids are generalizations of regular coverings.

4. Group chains and the base-point fiber

A covering space of a manifold M corresponds to a subgroup of the fundamental
group π1(M). Conversely, every subgroup of π1(M) corresponds to a covering space.
We shall call a descending chain of groups G0 ⊃ G1 ⊃ G2 ⊃ . . . a group chain.
A weak solenoid lim←(Mi,mi) corresponds to a group chain π1(Mi,mi). In this
terminology, McCord’s criterion for homogeneity in [15] is that the group chain
consists of normal subgroups from some index onwards. This is not a necessary
condition for homogeneity. One can construct group chains Ni and Gi, such that
the Ni are normal subgroups and the Gi are not, while Ni+1 ⊂ Gi ⊂ Ni [20]. A
weak solenoid that corresponds to the group chain Gi then is homeomorphic to a
strong solenoid that corresponds to the group chain Ni.

There is an ambiguity in the correspondence between weak solenoids and group
chains, since the groups π1(Mi,mi) depend on the choice of mi. For a proper
analogy one needs to consider all possible choices of mi. For any weak solenoid M∞
we shall fix a base-point m∞ ∈M∞ with coordinates mi ∈Mi. We define the base-
point fiber B∞ ⊂ M∞ as the subset of all elements xi ∈ M∞ with x0 = m0. The
base-point fiber is a Cantor set. It is the inverse limit over the fibers p−1

i (m0) ⊂Mi.
The fiber p−1

i (m0) is represented by the (right) residue classes of π1(Mi,mi) in
π1(M0,m0). The base-point fiber is therefore an inverse limit over (right) residue
classes. For a strong solenoid, the residue classes are finite and the limit is called a
profinite group.

The base-point fiber represents all possible choices of base-points in Mi once we
have fixed a base point in M0. In the same way, we may consider all possible choices
of group chains. For elements in the fiber x, y ∈ p−1

i (m0), the fundamental groups
π1(Mi, x) and π1(Mi, y) are conjugate (under identification in π1(M0,m0)).

Definition 14. Suppose that G is a group and that Gi is a group chain with
G0 = G. Let K be the collection of all group chains Hi such that Hi = g−1

i Gigi
for some sequence gi ∈ G with the property that Gigj = Gigi for each j ≥ i. We
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HOMOGENEOUS WEAK SOLENOIDS 3747

say that K is a class of conjugate group chains, or, for short, we say that K is the
conjugacy class of Gi.

We silently assume that group chains have a common universe, i.e., there exists
a group G such that each chain consists of subgroups Gi ⊂ G of finite index.
The base-point fiber B∞ and the conjugacy class K both are representations of
lim←G0/Gi. For a conjugacy class K of a group chain Gi, denote by Kk the
subclass of all chains Hi that are conjugate to Gi and such that Gj = Hj for j ≤ k.
Subclasses correspond to a basis of neighborhoods for m∞ ∈ B∞.

Proposition 15. Suppose that M∞ is a weak solenoid with base-point fiber B∞.
The subsets Bi0 = {xi ∈ B∞ | xj = mj if j ≤ i0} form a neighborhood basis of m∞
that corresponds to the subclasses Ki0 ⊂ K.

The fundamental group π1(M0,m0) acts on the fiber of pi : Mi → M0 for every
index i, and, by taking the inverse limit, it acts continuously on the base-point
fiber.

Two group chains Gi and Hi are called equivalent if for every i there exists a j
such that Gj ⊂ Hi and Hj ⊂ Gi.
Definition 16. We shall say that a conjugacy class of group chains K is weakly
normal if for some index i all group chains in the subclass Ki are equivalent.

We shall show that a weak solenoid is homogeneous if and only if its associated
class of group chains is weakly normal.

Lemma 17. Suppose that (M∞,m∞) and (N∞, n∞) are weak solenoids that agree
on the first coordinate, i.e., M0 = N0 and m0 = n0. Suppose that the group
chains Gi and Hi, associated to (M∞,m∞) and (N∞, n∞), respectively, are equiv-
alent. Then there exists a base-point-preserving homeomorphism h : (M∞,m∞)→
(N∞, n∞).

Proof. This is a repeated application of Theorem 9.

Recall that the core of a subgroup H ⊂ G is defined as the intersection of all
conjugacy classes of H . It is the maximal normal subgroup in H .

Theorem 18. Suppose that M∞ is a weak solenoid and that its associated group
class is weakly normal. Then M∞ is homeomorphic to a strong solenoid.

Proof. Let Gi be the group chain associated to (M∞,m∞). By disregarding first
indices we may assume that the conjugacy class of Gi is weakly normal. It suffices
to show that the chain coreGi is equivalent to Gi, i.e., for every i0 there is a j > i0
such that Gj ⊂ coreGi0 . Since the index is finite, there are finitely many conjugacy
classes of Gi0 in G0, say Gg1

i0
, . . . , Ggki0 . By the normality of the class, the chains

Gg1
i , . . . , G

gk
i are equivalent to the chain Gi. Hence there exists a j ≥ i0 such that

Gj ⊂ Gg1
i0
∩ . . . ∩Ggki0 , i.e., Gj is contained in the core of Gi0 .

If the conjugacy class of a group chain Gi is normal, then the group chain is
equivalent to coreGi. All group chains then share the same kernel. For a weakly
normal class we have the following result.

Theorem 19. Suppose that a conjugacy class of group chains K is weakly normal.
Then the kernels of the group chains in K form a finite collection of conjugate
groups.
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5. Proof of the main theorem

Proposition 20. Suppose that M is a manifold and that X is an arbitrary topo-
logical space. There exists an ε > 0 such that any two maps f, g : X →M that are
ε-close are homotopic.

Proof. Recall that we only consider compact closed manifolds. A compact closed
manifold is an ANR; hence nearby maps are homotopic.

Our proof of Theorem 3 involves a property of inverse limit spaces that is some-
times referred to as Mioduszewski’s theorem [17]. It applies to homeomorphisms
between lim←(Pi, fi) and lim←(Qi, gi), where the Pi and Qi are polyhedra. The
property says that any homeomorphism between such spaces can be approximated
by a zigzag sequence of maps that almost commute with the bonding maps, as
sketched in the diagram below:

Pi0 ←− Pi1 ←− Pj1 ←− Pi2 . . .
↙ f1 ↖ g1 ↙ f2

Qj0 ←− Qi1 ←− Qj1 ←− Qi2 . . .

We include a precise statement of this property, stated for our case of pointed
spaces. For completeness we also include a proof.

Lemma 21. Suppose that h : lim←(Mi, p
i) → lim←(Ni, qi) is a homeomorphism

between weak solenoids such that h(m) = n. For every sequence εn converging to
0, there exist an infinite sequence of maps fn : (Min ,min)→ (Njn−1 , njn−1) and an
infinite sequence of maps gn : (Njn , njn) → (Min ,min) such that fn ◦ gn is εjn−1-
close to qjnjn−1

: Njn → Njn−1 and gn ◦ fn+1 is εin-close to pin+1
in

: Min+1 →Min .

Proof. We choose j0 = 0. Consider M∞ as a subspace of the product
∏
iMi.

Identify Mi with the subset of
∏
iMi given by

{(xn) | xi ∈Mi, xn = pin(xi) if n ≤ i, xn = mn if n > i}.

Let πi denote the projection on the i-th coordinate of a weak solenoid. Observe that
Mi1 is the projection of M∞ under πi1 . Furthermore, for i1 sufficiently large, Mi1

is contained in any given neighborhood of M∞ in
∏
iMi. Consider the composition

π0 ◦ h : (M∞,m) → (N0, n0). Since N0 is an ANR, there exist a neighborhood U

of M∞ in
∏
iMi and an extension f̃1 : U → N0 such that f̃1(mi) = ni. Define

f1 : (Mi1 ,mi1) → (N0, n0) as the restriction of f̃1. We may choose i1 sufficiently
large so that π0 ◦ h and f1 ◦ πi1 are ε0/2 close. This is our first map in the zigzag
sequence.

We repeat the construction for the inverse of the homeomorphism h. Choose δ0
such that for any two points in Mi1 which are δ0 close the images under f1 are ε0/2
close. Extend the composition πi1 ◦ h−1 : (N∞, n) → (Mi1 ,mi1) to g̃1 : V → Mi1 ,
where V is a neighborhood ofN∞ in the product space

∏
j Nj and g̃1(ni) = mi1 . For

j1 sufficiently large, Nj1 ⊂ V . Define g1 : (Nj1 , nj1)→ (Mi1 ,mi1) as the restriction
of g̃1. This is the second map of our zigzag sequence. Let Nj1 be the projection of
N∞ on the j1-th coordinate. By choosing j1 sufficiently large, we may suppose that
πi1 ◦h−1 and g1◦πj1 are δ0-close. Now for any x ∈ Nj1 suppose that x∞ ∈ N∞ is an
element such that its j1-th coordinate is x. By our conditions g1(x) and π1◦h−1(x∞)
are δ0-close. Hence f1◦g1(x) and f1◦πi1◦h−1(x∞) are ε0/2-close. By our conditions
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HOMOGENEOUS WEAK SOLENOIDS 3749

on i1 we have that f1 ◦ πi1 ◦ h−1(x∞) and π0 ◦ h ◦ h−1(x∞) = qj10 (x) are ε0/2 close.
Hence f1 ◦ g1 is ε0-close to qj10 . Continue the construction inductively.

Another element of the proof is Effros’ Theorem [9]. Recall that for a compact
space X , the space of homeomorphisms h : X → X is metrizable.

Definition 22. A metric space (X, d) is micro-homogeneous if for every ε > 0
there exists a δ > 0 such that if d(x, y) < δ then there is a homeomorphism
h : (X,x)→ (X, y) such that d(h, idX) < ε.

Theorem 23 (Effros). If a compact metric space is homogeneous, then it is micro-
homogeneous.

In the proof of the next lemma we shall use the fact that projection onto a
coordinate is non-expansive under the natural product metric on a weak solenoid.

Lemma 24. Suppose that M∞ is a homogeneous weak solenoid. There exists a
δ > 0 such that for any pair p, q ∈ M∞ with equal first coordinates and with
d(p, q) < ε, there exists a homeomorphism h : M∞ →M∞ which maps p onto q and
which leaves the first coordinate of M∞ invariant.

Proof. Fix ε > 0 such that self-maps of M∞ that are ε-close are homotopic. By
Effros’ Theorem, if d(p, q) < δ then there exists a homeomorphism such that h(p) =
q and d(h, id) < ε. Let h0 be the projection of h onto the first coordinate. It is
ε-close to the projection p0 : M∞ →M0. By our choice of ε there exists a homotopy
H : M∞ × [0, 1] → M0 such that H(x, 0) = h0(x) and H(x, 1) = x0. The map h0

can be lifted to M1, since it is a projection from M∞. By the homotopy lifting
property, H can be lifted to H̃ : M1 × I → M1. Inductively we get a homotopy
H̃ : M∞ × [0, 1]→M∞, and the map H̃(x, 1) has the desired property.

There is a technicality that we have ignored so far. We have associated a weak
solenoid (M∞,m) to a chain of groups Gi = π1(Mi,mi), but the Gi are not sub-
groups of G0. They are embedded in G0 by the monomorphisms pi∗ : Gi → G0. We
shall now be a little more precise.

Theorem 25. If a generalized weak solenoid is homogeneous, then its associated
group chain is weakly normal.

Proof. Suppose that (M∞,m∞) is a homogeneous weak solenoid, and that εi is
a sequence of positive numbers associated to Mi as in Proposition 20. For every
x ∈ B∞ there exists a homeomorphism hx : M∞ → M∞ such that hx(m∞) = x.
By the previous lemma there exists a neighborhood V ⊂ B∞ such that for each
x ∈ V we may assume that hx leaves the first coordinate invariant. We shall show
that all group chains associated to elements of V are equivalent. By Proposition
15 this implies that the group chain is weakly normal.

By Lemma 21 there exist sequences of maps fn : (Min ,min) → (Mjn−1 , xjn−1)
and gn : (Mjn , xin)→ (Min ,min), which give a zigzag sequence

(M0, x0)
f1←− (Mi1 ,mi1)

g1←− (Mj1 , xj1 )
f2←− . . .

Since the zigzag is induced by a map that leaves the first coordinate invariant, we
may extend it by g0 : (M0, x0) → (M0,m0) equal to the identity. The resulting
zigzag is εi-almost commutative.
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Let Gi be the group chain associated to m and let Hi be the group chain associ-
ated to x. We claim that the zigzag implies that Hjn ⊂ Gin ⊂ Hjn−1 , which implies
that the conjugacy class is normal. Observe that by the choice of the εi the induced
zigzag fn∗ : Gin → Hjn−1 and gn∗ : Hjn → Gin commutes with pinin−1∗

and pjnjn−1∗
.

Hence pjn−1
∗ ◦ fn∗(Gin) = g0∗ ◦ pin∗ (Gin) = pin∗ (Gin). Now it is time to recall that

the Gin are actually defined by the monomorphism pin∗ that maps π1(Min ,mn) into
π1(M0,m0). So we should read pjn−1

∗ ◦ fn∗(π1(Min ,min)) = Gin . We also have
that pjn−1

∗◦fn∗(π1(Min ,min)) ⊂ pjn−1
∗(π1(Mjn−1 , xjn−1)) = Hjn−1 . The inclusion

Gin ⊂ Hjn−1 now follows. The other inclusion follows by symmetry.

Theorem 3 now follows from Theorem 18 and Theorem 25.

6. The Schori and Rogers-Tollefson examples revisited

We shall now study the examples of non-homogeneous weak solenoids by Schori
[22] and by Rogers and Tollefson [19], to illustrate our results. We know that the
group chain of a homogeneous weak solenoid is interlaced with a normal chain. It
follows that for a homogeneous solenoid, all group chains in the conjugacy class
have the same core. Schori essentially shows that if a weak solenoid M∞ has a
group chain Gi with a kernel that has infinitely many conjugacy classes, then M∞
is not homogeneous. He then explicitly constructs M∞. One can also obtain this
result by using machinery from geometric group theory.

Definition 26. A group G is geometrically residually finite if every subgroup H ⊂
G is equal to the kernel of a group chain Gi of finite index.

Theorem 27 (Scott, [23]). The fundamental group of a closed surface is geomet-
rically residually finite.

If a closed surface has negative Euler characteristic, then the fundamental group
has at least three generators and only one relation, containing all generators.
Schori’s example now follows from the following observation.

Proposition 28. The fundamental group of a hyperbolic surface contains an infi-
nite cyclic subgroup with infinitely many conjugate subgroups.

Proof. Suppose that x1 is one of the generators of the fundamental group. If the
infinite cyclic group 〈x1〉 has only finitely many conjugacy classes, then x1 commutes
with some iterate xk2 . However, there is no relation between x1 and x2 only.

Rogers and Tollefson construct a non-homogeneous weak solenoid as an inverse
limit space over Klein bottles. Their original argument for non-homogeneity is
that one of the path components is non-orientable while all other components are
orientable. We shall study their example in terms of group chains.

The fundamental group of the Klein bottle B has two generators and one relation,
π1(B) = 〈a, b : bab−1 = a−1〉. The torus T is a double cover of the Klein bottle, that
corresponds to the abelian subgroup generated by a and b2. Represent the torus
as R/Z × R/Z and the Klein bottle as its quotient under i : (x, y) → (x + 1

2 ,−y).
The linear map L : T → T given by L(x, y) = (x, 2y) is a double cover of the torus
by itself. Since L and i commute, L induces a double cover of the Klein bottle by
itself p : B → B. The non-homogeneous solenoid B∞ of Rogers and Tollefson is the
inverse limit over p. It is a quotient space of the cartesian product of a circle and
the standard 2-solenoid, under a fixed-point free involution.
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Since p : B → B is a 2-to-1 map, it is a regular covering. The induced homomor-
phism p∗ : π1(B)→ π1(B) is given by p∗(a) = a2 and p∗(b) = b. The composition p2

is not a regular covering map since the subgroup 〈a4, b〉 is not normal. Indeed, it is
conjugated to 〈a4, a2b〉 under conjugation by a. A group chain Gi associated to B∞
is of the form Gi = 〈a2i , akib〉 for a sequence ki+1 = ki mod 2i. Since Gi contains
b2, the kernel of each such chain contains the normal subgroup 〈b2〉. We shall show
that the kernel of a chain is either equal to 〈b2〉, or conjugate to 〈b〉, which is not
a normal subgroup. This implies that the solenoid is not homogeneous.

Denote the normal subgroup π1(T ) by N = 〈a, b2〉. For a group chain Gi let
Ni be the chain given by Ni = Gi ∩N , Observe that Ni = 〈a2i , b2〉 is normal and
independent of the choice of the group chain Gi. Let N∞ be the kernel of Ni, and
G∞ the kernel of Gi. As the index [Gi : Ni] ≤ 2 and as N∞ is a normal subgroup,
one verifies that G∞/N∞ is a group of at most order two.

Let H be the subgroup of π1(B) generated by b and let N be the normal subgroup
generated by a. Then π1(B) is the semi-direct product of H and N . The action
of H on N is prescribed by the one relation, bab−1 = a−1. Each element can be
represented uniquely as anbm for n,m ∈ Z. One verifies that the following is true.

Proposition 29. Suppose that H = 〈a2i , akib〉 is a subgroup of π1(B). Then each
element of H can be represented uniquely as anbm with n = 0 mod 2i if m is even
and n = k mod 2i if m is odd.

This proposition implies that the kernel of the group chain is equal to 〈b2〉
unless the sequence ki stabilizes. In that case the group chain is conjugate to
the chain 〈a2i , b〉, which has kernel 〈b〉. This implies that the weak solenoid K∞ is
not homogeneous.

7. Weak solenoids are G-bundles

One-dimensional solenoids fiber over the circle. The standard dyadic solenoid, for
instance, is a principal Z2-bundle, where Z2 denotes the group of 2-adic integers.
This characterization extends to generalized solenoids, the weak solenoids being
Γ-bundles and the strong solenoids being principal Γ-bundles, for a profinite
group Γ.

Definition 30. Suppose that G is a group and that Ni is a descending chain of
normal subgroups of finite index. The inverse limit Γ = lim←G/Ni, endowed with
the natural topology, is called a profinite group.

A general reference on the subject is [28]. The following characterization is
convenient.

Theorem 31. A topological group Γ is profinite if and only if it is compact, zero-
dimensional and there exists a descending chain Γ ⊃ H1 ⊃ H2 ⊃ . . . of open
subgroups with kernel {e}.

Recall that a fiber bundle p : Y → B is a principal G-bundle if the fibers are
homeomorphic to G and the transition maps are induced by G translations, see
[25]. The following observation is due to McCord [15].

Theorem 32. A strong solenoid is a principal Γ-bundle for a profinite group Γ.
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Proof. The base-point fiber of a strong solenoid (M∞,m∞) has the natural struc-
ture of a profinite group. For a simply connected neighborhood m0 ∈ U ⊂ M0,
consider the open subset U∞ = {x ∈ M∞ | x0 ∈ U} and the natural chart
pU,m∞ : U∞ → U × B∞. Note that the chart depends on the choice of the base-
point. A different choice of the base-point corresponds to a translation h→ g ◦h of
the base-point fibre. Thus, transition maps between charts are Γ-translations.

Weak solenoids are bundles, though not necessarily principal.

Theorem 33. A weak solenoid is a Γ-bundle for a profinite group Γ.

Proof. As for the choice of the charts, there is no difference with strong solenoids.
However, the base-point fiber of a weak solenoid may not admit a group structure.
Suppose that M∞ is a weak solenoid with group chain Gi. The normal chain coreGi
gives an inverse limit Γ = lim←G0/(coreGi) that is a profinite group, which acts
on lim←G0/Gi by right multiplication. Thus the weak solenoid is a Γ-bundle.

8. Weak solenoids with simply connected path components

Rogers and Tollefson posed the following question in [20].

Question 34. Is a weak solenoid homogeneous if all its path-components are
homeomorphic?

It is not easy to decide whether path components of weak solenoids are homeo-
morphic. In the one-dimensional case, Ronald de Man has shown that path com-
ponents of solenoids are homeomorphic, even if the solenoids are not themselves
homeomorphic [13]. We shall not settle this question, but we shall give the fol-
lowing example that, as indicated by De Man’s result, is a good candidate for a
negative answer.

Theorem 35. There exists a weak solenoid that is non-homogeneous but all of its
path components are simply connected.

The construction of such a weak solenoid is an algebraic problem.

Lemma 36. There exists a non-homogeneous weak solenoid M∞ with simply con-
nected path-components if and only if there exists a group chain Gi with conjugacy
class K such that

(a) G0 is finitely presented,
(b) the kernel of all group chains in K is {e}, and
(c) K is not weakly normal.

Proof. We know that a weak solenoid M∞ with simply connected path-components
has a group chain Gi with the given algebraic properties. Conversely, for every
finitely presented group G there exists a closed manifold with fundamental group
G, see e.g. [14]. Hence the existence of a group chain Gi that satisfies the conditions
(a), (b), (c) implies the existence of a weak solenoid that is non-homogeneous and
has simply connected path components.

Hendrik Lenstra constructed a group chain that satisfies the three algebraic
conditions (a), (b), (c), during one of his swims. The key idea in his construction
is to translate the rather awkward conditions on group chains of Lemma 36 into
elegant conditions on subgroups of profinite groups.
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Lemma 37 (Lenstra). Suppose that Γ is a profinite group with a closed subgroup
H ⊂ Γ that has infinitely many conjugacy classes. Suppose that G ⊂ Γ is a finitely
presented, dense subgroup that intersects each conjugation class of H in {e}. Then
there exists a group chain that satisfies (a), (b), (c) of Lemma 36.

Proof. Since H is a closed subgroup, there exists a descending chain of subgroups
Hi of finite index in Γ and kernel H =

⋂
Hi. Then Gi = G ∩Hi is a group chain

with kernel G ∩ H = {e}. Since G is finitely presented, it satisfies condition (a)
of Lemma 36. Suppose that Ggii is a conjugate chain. To satisfy condition (b), its
kernel has to intersect H in {e}. For every i we have gi+1Gi = giGi, and by the
density of G it follows that gi+1Hi = giHi. The chain giHi is descending, and by
compactness its kernel

⋂
giHi is non-empty. For any element h in the kernel, the

chain Ggii is equal to Ghi . Since G intersects every conjugacy class of H in {e}, the
kernel of Ghi is equal to {e}, and condition (b) is satisfied.

We verify that the chain Gi satisfies condition (c) by contradiction. Suppose
that K is weakly normal, i.e., for some index k all conjugate chains Ggii with gi = e
for i ≤ k are equivalent to Gi. In the profinite group, the elements with gi = e
for i ≤ k form an open subgroup V ⊂ Γ. For every γ ∈ V the chains (G ∩ Hi)γ

and G ∩Hi are equivalent; hence they have the same kernel. By the density of G,
H = Hγ for every γ ∈ V . Since V has finite index, this contradicts the fact that
H has infinitely many conjugacy classes.

With this translation in hand, one may construct various group chains satisfying
the conditions of Lemma 36. Recall that an (external) semi-direct product G =
H n N is induced by a group homomorphism α : H → Aut(N), and that every
element of G can be represented uniquely as hn for h ∈ H and n ∈ N . For profinite
groups, the automorphism group Aut(N) is endowed with the topology of uniform
convergence. If the group homomorphism α : H → Aut(N) is continuous, then the
natural topology turns H nN into a profinite group.

Proposition 38. Suppose that H,N are (non-discrete) profinite group and that
α : H → Aut(N) is a continuous group homomorphism. If for every n ∈ N \ {e}
there exists an h ∈ H such that α(h)(n) 6= n, then Γ = H nN is a profinite group
and H has infinitely many conjugacy classes.

Proof. Let Ni ⊂ N be a chain of open normal subgroups. By the continuity of α,
there is a corresponding chain Hi ⊂ H of open subsets such that α(hi)(Ni) = Ni
for all hi ∈ Hi. In H nN , the subgroups HiNi are open and have intersection {e}.
By Theorem 31, H nN is a profinite group.

Suppose that n ∈ N and that Hn = H in HnN . Since nhn−1 = h(α(h)(n))n ∈
H , and by the uniqueness of the representation, α(h)(n) = n for every h ∈ H .
Hence, the normalizer {n ∈ N : Hn = H} coincides with the subgroup {n ∈
N : ∀h ∈ H, α(h)(n) = n}. This subgroup is trivial provided that for every
n ∈ N \ {e} there exists an h ∈ H such that α(h)(n) 6= n. As N is infinite,
H has infinitely many conjugacy classes.

We denote the action of H on N by nh.

Lemma 39. There exist a profinite group Γ and subgroups G,H ⊂ Γ that satisfy
the conditions of Lemma 37.

Proof. Let C = {e, h} be the cyclic group of order two and let Zp denote the
additive group of p-adic integers. Then C acts freely on Z3 under nh = −n. By the
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previous proposition C n Z3 is a profinite group, in which C has infinitely many
conjugacy classes. Now consider the product Γ = C nZ3×Z5×Z7. The subgroup
H = C × Z5 × {0} ⊂ Γ is closed and has infinitely many conjugation classes. The
subgroup N = Z3 × {0} × Z7 is normal. Consider the subgroup G ⊂ Γ generated
by s = (h, 1, 1) and t = (1, 0, 0). It is finitely presented: G ∼= 〈s, t : sts−1 = t−1〉;
indeed, it is isomorphic to the fundamental group of the Klein bottle. By the
Chinese remainder theorem, G is dense in Γ.

We need to show that G intersects each conjugation class ofH in the identity. Let
sn1tm1sn2tm2 . . . snitmi an arbitrary element of G ∩H . Since the third coordinate
of elements of H is zero, the sum n1 +n2 + . . .+ni is zero. Since Γ is a semi-direct
product, we can move all the powers of s to the left, to get an element of the form
sn1+n2+...+nitk for some integer k. The exponent of s is zero and tk is contained in
N . It follows that G intersects each conjugation class of H in the identity.

Proof of Theorem 35. From the previous lemma we obtain a weak solenoid M∞
that is not homogeneous, but has simply connected path components. As we re-
marked already, the group G in that lemma is isomorphic to the fundamental group
of the Klein bottle, 〈s, t : sts−1 = t−1〉. A group chain that is not weakly normal,
but has kernel {e} under every conjugation, is Gi = 〈s35i , t3

i〉. Denote the one-
dimensional n-adic solenoid by Sn and recall that it is a compact abelian group.
One may verify that M∞ is a quotient space of the product S3 × S35 under the
involution (x, y)→ (x+ 1

2 ,−y), reminiscent of Rogers and Tollefson’s example.

9. Final remarks

A logical next step in the study of weak solenoids would be a study of their self-
homeomorphisms. Rogers and Tollefson showed that the group of auto-homeomor-
phisms H(S) determines a solenoid up to homeomorphism. Now H(S) is a very
large group, and it would be interesting to obtain information on the much smaller
group of homeomorphisms up to isotopy. A forthcoming paper [7] studies the action
of the homeomorphism group on path components of solenoids. The main result of
that paper is a criterion for solenoids to be bihomogeneous. Recall that a continuum
K is bihomogeneous if for every x, y ∈ K there is a self-homeomorphism h such
that h(x) = y and h(y) = x. An example of a homogeneous continuum that is
non-bihomogeneous was first constructed by Krystyna Kuperberg [12], satisfying
the strong additional condition of local connectivity. Kuperberg has noted that a
subsequent example of Minc [16] can be adapted to construct strong solenoids that
are not bihomogeneous.
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