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Abstract

We consider the classical Merton problem of lifetime consumption-portfolio optimiza-
tion problem with small proportional transaction costs. The first order term in the asymptotic
expansion is explicitly calculated through a singular ergodic control problem which can be
solved in closed form in the one-dimensional case. Unlike the existing literature, we consider
a general utility function and general dynamics for the underlying assets. Our arguments are
based on ideas from the homogenization theory and use the convergence tools from the the-
ory of viscosity solutions. The multidimensional case is studied in our accompanying paper
[31] using the same approach.
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1 Introduction
The problem of investment and consumption in a market with transaction costs was first studied
by Magill & Constantinides [26] and later by Constantinides [10]. Since then, starting with
the classical paper of Davis & Norman [11] an impressive understanding of this problem has
been achieved. In these papers and in [12, 36] the dynamic programming approach in one space
dimension has been developed. The problem of proportional transaction costs is a special case
of a singular stochastic control problem in which the state process can have controlled discon-
tinuities. The related partial differential equation for this class of optimal control problems
is a quasi-variational inequality which contains a gradient constraint. Technically, the multi-
dimensional setting presents intriguing free boundary problems and the only regularity result to
date are [34] and [35]. For the financial problem, we refer to the recent book by Kabanov &
Safarian [22]. It provides an excellent exposition to the later developments and the solutions in
multi-dimensions.

It is well known that in practice the proportional transaction costs are small and in the
limiting case of zero costs, one recovers the classical problem of Merton [28]. Then, a natural
approach to simplify the problem is to obtain an asymptotic expansion in terms of the small
transaction costs. This was initiated in the pioneering paper of Constantinides [10]. The first
proof in this direction was obtained in the appendix of [36]. Later several rigorous results
[5, 18, 20, 32] and formal asymptotic results [1, 19, 38] have been obtained. The rigorous
results have been restricted to one space dimensions with the exception of the recent manuscript
by Bichuch and Shreve [6].

In this and its accompanying paper [31], we consider this classical problem of small propor-
tional transaction costs and develop a unified approach to the problem of asymptotic analysis.
We also relate the first order asymptotic expansion in ε to an ergodic singular control problem.

Although our formal derivation in Section 3 and the analysis of [31] are multi-dimensional,
to simplify the presentation, in this introduction we restrict ourselves to a single risky asset
with a price process {St , t ≥ 0}. We assume St is given by a time homogeneous stochastic
differential equation together with S0 = s and volatility function σ(·). For an initial capital
z, the value function of the Merton infinite horizon optimal consumption-portfolio problem
(with zero-transaction costs) is denoted by v(s,z). On the other hand, the value function for
the problem with transaction costs is a function of s and the pair (x,y) representing the wealth
in the saving accounts and in the stock. Then, the total wealth is simply given by z = x+ y.
For a small proportional transaction cost ε3 > 0, we let vε(s,x,y) be the maximum expected
discounted utility from consumption. It is clear that vε(s,x,y) converges to v(s,x+y) as ε tends
to zero. Our main analytical objective is to obtain an expansion for vε in the small parameter ε .

To achieve such an expansion, we assume that v is smooth and let

η(s,z) := − vz(s,z)
vzz(s,z)

(1.1)

be the corresponding risk tolerance. The solution of the Merton problem also provides us an op-
timal feedback portfolio strategy θ(s,z) and an optimal feedback consumption function c(s,z).
Then, the first term in the asymptotic expansion is given through an ergodic singular control
problem defined for every fixed point (s,z) by

ā(s,z) := inf
M

J(s,z,M),

where M is a control process of bounded variation with variation norm ‖M‖,

J(s,z,M) := limsup
T→∞

1
T
E
[∫ T

0

|σ(s)ξt |2

2
+‖M‖T

]
,
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and the controlled process ξ satisfies the dynamics driven by a Brownian motion B, and param-
eterized by the fixed data (s,z):

dξt = [θ(s,z)(1−θz(s,z))]dBt +dMt .

The above problem is defined more generally in Remark 3.3 and solved explicitly in the sub-
section 4.1 below in terms of the zero-transaction cost value function v.

Let {Ẑs,z
t , t ≥ 0} be the optimal wealth process using the feedback strategies θ ,c, and starting

from the initial conditions S0 = s and Ẑs,z
0 = z. Our main result is on the convergence of the

function

ūε(x,y) :=
v(s,x+ y)− vε(s,x,y)

ε2 .

Main Theorem. Let ā be as above and set a := ηvzā. Then, as ε tends to zero,

ūε(x,y)→ u(s,z) := E
[∫

∞

0
e−β ta(St , Ẑ

s,z
t )dt

]
, locally uniformly. (1.2)

Naturally, the above result requires assumptions and we refer the reader to Theorem 6.1 for
a precise statement. Moreover, the definition and the convergence of uε is equivalent to the
expansion

vε(s,x,y) = v(z)− ε
2u(z)+◦(ε2), (1.3)

where as before z = x+y and ◦(εk) is any function such that ◦(εk)/εk converges to zero locally
uniformly.

A formal multi-dimensional derivation of this result is provided in Section 3. Our approach
is similar to all formal studies starting from the initial paper by Whalley & Willmont [38].
These formal calculations also provide the connection with another important class of asymp-
totic problems, namely homogenization. Indeed, the dynamic programming equation of the
ergodic problem described above is the corrector equation in the homogenization terminology.
This identification allows us to construct a rigorous proof similar to the ones in homogenization.
These assertions are formulated into a formal theorem at the end of Section 3. The analysis of
Section 3 is very general and can easily extend to other similar problems. Moreover, the above
ergodic problem is a singular one and we show in [31] that its continuation region also describes
the asymptotic shape of the no-trade region in the transaction cost problem.

The connection between homogenization and asymptotic problems in finance has already
played an important role in several other problems. Fouque, Papanicolaou & Sircar [24] use
this approach for stochastic volatility models. We refer to the recent book [25] for information
on this problem and also extensions to multi dimensions. In the stochastic volatility context the
homogenizing (or the so-called fast variable) is the volatility and is given exogenously. Indeed,
for homogenization problems, the fast variable is almost always given. In the transaction cost
problem, however, this is not the case and the main difficulty is to identify the “fast” variable.
A similar difficulty is also apparent in a problem with an illiquid model which becomes asymp-
totically liquid. The expansions for that problem was obtained in [30]. We use their techniques
in an essential way.

The later sections of the paper are concerned with the rigorous proof. The main technique is
the viscosity approach of Evans to homogenization [13, 14]. This powerful method combined
with the relaxed limits of Barles & Perthame [2] provides the necessary tools. As well known,
this approach has the advantage of using only a simple L∞ bound which is described in Section
5. In addition to [2, 13, 14], the rigorous proof utilizes several other techniques from the theory
of viscosity solutions developed in the papers [2, 15, 17, 23, 33, 37] for asymptotic analysis.
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For the rigorous proof, we concentrate on the simpler one dimensional setting. This simpler
setting allows us to highlight the technique with the least possible technicalities. The more
general multi-dimensional problem is considered in [31].

The paper is organized as follows. The problem is introduced in the next section and the
approach is formally introduced in Section 3. In one dimension, the corrector equation is solved
in the next section. We state the general assumptions in Section 5 and prove the convergence
result in Section 6. In Section 7 we discuss the assumptions. Finally a short summary for the
power utility is given in the final Section.

2 The general setting
The structure we assume is the one developed and studied in the recent book by Kabanov &
Safarian [22]. We briefly recall it here.

We assume a financial market consisting of a non-risky asset S0 and d risky assets with price
process {St = (S1

t , . . . ,S
d
t ), t ≥ 0} given by the stochastic differential equation,

dS0
t

S0
t

= r(St)dt,

dSi
t

Si
t

= µ
i(St)dt +

d

∑
j=1

σ
i, j(St)dW j

t , 1≤ i≤ d,

where r : Rd 7→ R+ is the instantaneous interest rate function, and

µ : Rd 7→ Rd , and σ : Rd 7→Md(R),

are the coefficients of instantaneous mean return and volatility. We use the notation Md(R)
to denote d × d matrices with real entries. Under the standard Lipschitz and linear growth
conditions (which we assume without stating) the above stochastic differential equation has a
unique strong solution.

The portfolio of an investor is represented by the dollar value X invested in the non-risky
asset and the vector process Y = (Y 1, . . . ,Y d) of the value of the positions in each risky asset.
The portfolio position is allowed to change in continuous-time by transfers from any asset to
any other one. However, such transfers are subject to proportional transaction costs.

We continue by describing the portfolio rebalancing in the present setting. For all i, j =
0, . . . ,d, let Li, j

t be the total amount of transfers (in dollars) from the i-th to the j-th asset cumu-
lated up to time t. Naturally, the processes {Li, j

t , t ≥ 0} are defined as càd-làg, nondecreasing,
adapted processes with L0− = 0 and Li,i ≡ 0. The proportional transaction cost induced by a
transfer from the i-th to the j-th stock is given by ε3λ i, j where ε > 0 is a small parameter, and

λ
i, j ≥ 0, λ

i,i = 0, i, j = 0, . . . ,d.

The scaling ε3 is chosen to state the expansion results simpler. We refer the reader to the recent
book of Kabanov & Safarian [22] for a thorough discussion of the model.

The solvency region Kε is defined as the set of all portfolio positions which can be trans-
ferred into portfolio positions with nonnegative entries through an appropriate portfolio rebal-
ancing. We use the notation (`i, j)i, j=0,...d ∈Md+1(R+) to denote this appropriate instantaneous
transfers of size `i, j. Then, Kε is given by,

Kε :=
{
(x,y) ∈ R×Rd : (x,y)+

d

∑
i=0

ei

( d

∑
j=0

(
` j,i− (1+ ε

3
λ

i, j)`i, j)
)
∈ R1+d

+

for some (`i, j)0≤i, j≤d ∈Md+1(R+)
}
,

4



where (e0, . . . ,ed) denotes the canonical basis of Rd+1. It is clear that for any i, j, it would not
be optimal to have both `i, j > 0 and ` j,i > 0. For later use, we also define

Λ
ε
i, j := ei− e j + ε

3
λ

i, j ei, i, j = 0, . . . ,d.

In addition to the trading activity, the investor consumes at a rate determined by a nonnega-
tive progressively measurable process {ct , t ≥ 0}. Here ct represents the rate of consumption in
terms of the non-risky asset S0. Such a pair ν := (c,L) is called a consumption-investment strat-
egy. For any initial position (X0− ,Y0−) = (x,y) ∈ R×Rd , the portfolio position of the investor
are given by the following state equation,

dXt =
(
r(St)Xt − ct

)
dt +

d

∑
j=1

(
dL j,0

t − (1+ ε
3
λ

0, j)dL0, j
t

)
,

dY i
t = Y i

t
dSi

t

Si
t
+

d

∑
j=0

(
dL j,i

t − (1+ ε
3
λ

i, j)dLi, j
t

)
, i = 1, . . . ,d.

The above solution depends on the initial condition (x,y), the control ν and also on the initial
condition of the stock process s. Let (X ,Y )ν ,s,x,y be the solution of the above equation. Then, a
consumption-investment strategy ν is said to be admissible for the initial position (s,x,y), if

(X ,Y )ν ,s,x,y
t ∈ Kε , ∀ t ≥ 0, P− a.s.

The set of admissible strategies is denoted by Θε(s,x,y). For given initial positions S0 = s∈Rd
+,

X0− = x∈R, Y0− = y∈Rd , the investment-consumption problem is the following maximization
problem,

vε(s,x,y) := sup
(c,L)∈Θε (s,x,y)

E
[∫

∞

0
e−β t U(ct)dt

]
,

where U : (0,∞) 7→R is a utility function. We assume that U is C2, increasing, strictly concave,
and we denote its convex conjugate by,

Ũ(c̃) := sup
c>0

{
U(c)− cc̃

}
, c̃ ∈ R.

Then Ũ is a C2 convex function. It is well known that the value function is a viscosity solution
of the corresponding dynamic programming equation. In one dimension, this is first proved in
[36]. In the above generality, we refer to [22]. To state the equation, we first need to introduce
some more notations. We define the second order linear partial differential operator,

L := µ · (Ds +Dy)+ rDx +
1
2

Tr
[
σσ

T (Dyy +Dss +2Dsy)
]
, (2.1)

where T denotes the transpose and for i, j = 1, . . . ,d,

Dx := x
∂

∂x
, Di

s := si ∂

∂ si , Di
y := yi ∂

∂yi ,

Di, j
ss := sis j ∂ 2

∂ si∂ s j , Di, j
yy := yiy j ∂ 2

∂yi∂y j , Di, j
sy := siy j ∂ 2

∂ si∂y j ,

Ds =(Di
s)1≤i≤d , Dy =(Di

y)1≤i≤d , Dyy :=(Di, j
yy )1≤i, j≤d , Dss :=(Di, j

ss )1≤i, j≤d , Dsy :=(Di, j
sy )1≤i, j≤d .

Moreover, for a smooth scalar function (s,x,y) ∈ Rd
+×R×Rd 7→ ϕ(x,y), we denote:

ϕx :=
∂ϕ

∂x
∈ R, ϕy :=

∂ϕ

∂y
∈ Rd .
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Theorem 2.1 Assume that the value function vε is locally bounded. Then vε is a viscosity
solution of the dynamic programming equation in Rd

+×Kε ,

min
0≤i, j≤d

{
βvε −L vε −Ũ(vε

x) , Λ
ε
i, j · (vε

x ,v
ε
y)
}
= 0. (2.2)

Moreover, vε is concave in (x,y) and converges to the Merton value function v := v0, as ε > 0
tends to zero.

Under further conditions the uniqueness in the above statement is proved in [22]. However,
this is not needed in our subsequent analysis.

2.1 Merton Problem
The limiting case of ε = 0 corresponds to the classical Merton portfolio-investment problem in
a frictionless financial market. In this limit, since the transfers from one asset to the other are
costless, the value of the portfolio can be measured in terms of the nonrisky asset S0. We then
denote by Z := X +Y 1+ . . .+Y d the total wealth obtained by the aggregation of the positions on
all assets. In the present setting, we denote by θ i :=Y i and θ := (θ 1, . . . ,θ d) the vector process
representing the positions on the risky assets. The wealth equation for the Merton problem is
then given by

dZt =
(
r(St)Zt − ct

)
dt +

d

∑
i=1

θ
i
t

(dSi
t

Si
t
− r(St)dt

)
. (2.3)

An admissible consumption-investment strategy is now defined as a pair (c,θ) of progressively
measurable processes with values in R+ and Rd , respectively, and such that the corresponding
wealth process is well-defined and almost surely non-negative for all times. The set of all
admissible consumption-investment strategies is denoted by Θ(s,z).

The Merton optimal consumption-investment problem is defined by

v(s,z) := sup
(c,θ)∈Θ(s,z)

E
[∫

∞

0
e−β t U(ct)dt

]
, s ∈ Rd

+, z≥ 0.

Throughout this paper, we assume that the Merton value function v is strictly concave in z and
is a classical solution of the dynamic programming equation,

βv− rzvz−L 0v−Ũ(vz)− sup
θ∈Rd

{
θ ·
(
(µ− r1d)vz +σσ

TDszv
)
+

1
2
|σT

θ |2vzz

}
= 0,

where 1d := (1, . . . ,1) ∈ Rd , Dsz := ∂

∂ z Ds, and

L 0 := µ ·Ds +
1
2

Tr
[
σσ

TDss
]
. (2.4)

The optimal controls are smooth functions c(s,z) and θ(s,z) obtained by the maximization of
the Hamiltonian. Hence,

0 = βv−L 0v−Ũ(vz) (2.5)

−rzvz−θ · (µ− r1d)vz−σσ
T

θ ·Dszv−
1
2
|σT

θ |2vzz,

the optimal consumption rate is given by,

c(s,z) := −Ũ ′
(
vz(s,z)

)
=
(
U ′
)−1(vz(s,z)

)
for s ∈ Rd

+,z≥ 0, (2.6)
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and the optimal investment strategy θ is obtained by solving the finite-dimensional maximiza-
tion problem,

max
θ∈Rd

{1
2
|σT

θ |2vzz +θ ·
(
(µ− r)vz +σσ

TDszv
)}

.

Since v is strictly concave, the Merton optimal investment strategy θ(s,z) satisfies

−vzz(s,z) σ(s)σT(s)θ(s,z) = (µ− r1d)(s)vz(s,z)+σ(s)σTDszv(s,z). (2.7)

3 Formal Asymptotics
In this section, we provide the formal derivation of the expansion in any space dimensions.
In the subsequent sections we prove this expansion rigorously for the one dimensional case.
Convergence proof in higher dimensions is carried out in a forthcoming paper [31]. In the
sequel we use the standard notation O(εk) to denote any function which is less than a locally
bounded function times εk and ◦(εk) is a function such that ◦(εk)/εk converges to zero locally
uniformly.

Based on previous results [38, 1, 19, 20, 32, 36], we postulate the following expansion,

vε(s,x,y) = v(s,z)− ε
2u(s,z)− ε

4w(s,z,ξ )+◦(ε2), (3.1)

where (z,ξ ) = (z,ξε) is a linear transformation of (x,y) ∈ Kε given by

z = x+ y1 + . . .+ yd , ξ
i := ξ

i
ε(x,y) =

yi−θ i(s,z)
ε

, i = 1, . . . ,d,

θ =
(
θ 1, . . . ,θ d

)
is the Merton optimal investment strategy of (2.7). In the postulated expansion

(3.1), we have also introduced two functions

u : Rd
+×R+ 7→ R, and w : Rd

+×R+×Rd 7→ R.

Notice that the above expansion is assumed to hold up to ε2, i.e. the ◦(ε2) term. Therefore,
the reason for having an higher term like ε4w(z,ξ ) explicitly in the expansion may not be clear.
However, this term contains the fast variable ξ and its second derivative is of order ε2. This
follows the intuition introduced in the pioneering work of Papanicolaou and Varadhan [29] in
the theory of homogenization.

The main goal of this section is to formally derive equations for these two functions. A
rigorous proof will be also provided in the subsequent sections and the precise statement for
this expansion is stated in Section 6.

Since (x,y) ∈ Kε 7→ (z,ξ ) ∈ R+×Rd is a one-to-one change of variables, in the sequel for
any function f of (s,x,y) we use the convention,

f̂ (s,z,ξ ) := f
(
s,z− εξ −θ(s,z),εξ +θ(s,z)

)
. (3.2)

The new variable ξ is the “fast” variable and in the limit it homogenizes to yield the convergence
of v̂ε(s,z,ξ ) to the Merton function v(s,z) which depends only on the (s,z)-variables. This is
the main formal connection of this problem to the theory of homogenization. This variable
was also used centrally by Goodman & Ostrov [19]. Indeed, their asymptotic results use the
properties of the stochastic equation satisfied by εξ ε(Xt ,Yt).

We continue by formally deriving the equations satisfied by u and w. First we directly
differentiate the expansion (3.1) and compute the terms appearing in (2.2) in term of u and w.
The directional derivatives are given by,

Λ
ε
i, j · (vε

x ,v
ε
y) =−ε

4(ei− e j) · (wx(s,z,ξ ),wy(s,z,ξ ))+ ε
3
λ

i, jvz +O(ε4).

7



We directly calculate that,

(wx(s,z,ξ ),wy(s,z,ξ )) =
(

wz−
1
ε

θz ·wξ

)
1d+1 +

1
ε

(
0,wξ

)
. (3.3)

To simplify the notation, we introduce

D̂ξ w(s,z,ξ ) := (0,Dξ w(s,z,ξ )) ∈ Rd+1. (3.4)

Then,

Λ
ε
i, j · (vε

x ,v
ε
y) = ε

3(
λ

i, jvz +(e j− ei) · D̂w)+O(ε4). (3.5)

The elliptic equation in (2.2) requires a longer calculation and we will later use the Merton
identities (2.5), (2.6) and (2.7). Firstly, by (2.5),

Iε := βvε −L vε −Ũ(vε
x)

= (θ − y) ·
[
(µ− r1d)vz +σσ

TDszv
]
+

1
2
(
|σT

θ |2−|σTy|2
)
vzz

+
(

Ũ(vz)−Ũ
(
vz + ε

2uz +O(ε3)
))

−ε
2
(

βu−L u
)
+

ε4

2
Tr[σσ

TDyyw]+O(ε3).

We use a Taylor expansion on the terms involving Ũ . and (2.6)-(2.7) in the first line. The result
is,

Iε =
(
−σ

T(θ − y) ·σT
θ +

1
2
(
|σT

θ |2−|σTy|2
))

vzz

−ε
2
(

βu−L u+ ĉuz

)
+

ε4

2
Tr[σσ

TDyyw]+O(ε3)

= −1
2
|σT(θ − y)|2vzz− ε

2
(

βu−L u+ ĉuz

)
+

ε4

2
Tr[σσ

TDyyw]+O(ε3)

= ε
2
(
− 1

2
|σT

ξ |2vzz−βu+L u− ĉuz

)
+

ε4

2
Tr[σσ

TDyyw]+O(ε3). (3.6)

Finally, from (3.3), we see that

∂yw = wz1d +
1
ε

(
Id−1dθ

T
z
)
wξ .

Therefore,

∂yyw = wzz1d1T
d −

1
ε

θ
T
zzwξ 1d1T

d +
1
ε

(
Id−1dθ

T
z
)
wzξ +

1
ε2

(
Id−1dθ

T
z
)
wξ ξ

(
Id−θz1T

d
)
.

We substitute this in (3.6) and use the fact that y = θ +O(ε). This yields,

Iε = ε
2
(
− 1

2
|σT

ξ |2vzz +
1
2

Tr
[
αα

Twξ ξ

]
−A u

)
+O(ε3), (3.7)

where α(s,z) is given by

α(s,z) =
(
Id−θz(s,z)1T

d
)
diag[θ(s,z)]σ(s), (3.8)
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diag[θ ] denotes the diagonal matrix with i-th diagonal entry θ i, and

A u = βu−L 0u−
(
rz+θ · (µ− r1d)− c

)
uz−

1
2
|σT

θ |2 uzz−σσ
T

θ ·Dszu. (3.9)

Observe that the above operator is the infinitesimal generator of the pair process (S, Ẑ) where Ẑ
is the optimal wealth process in the Merton zero-transaction cost problem corresponding to the
optimal feedback controls (c,θ). In particular, the dynamic programming equation (2.5) for the
Merton problem may be expressed as,

A v(s,z) =U(c(s,z)). (3.10)

We have now obtained expressions for all the terms in the dynamic programming equation (2.2).
We substitute (3.5) and (3.7) into (2.2). The result is the following equation for w and u,

max
0≤i, j≤d

max
{1

2

∣∣σT(s)ξ
∣∣2vzz(s,z)−

1
2

Tr
[
αα

T(s,z)wξ ξ (s,z,ξ )
]
+a(s,z) ,

−λ
i, jvz(s,z)+(ei− e j) · D̂ξ w(z,ξ )

}
= 0.

where D̂ξ = (0,Dξ w) is as in (3.4) and a is simply defined by,

a(s,z) := A u(s,z), s ∈ Rd
+, z > 0.

In the first equation above, the pair (s,z) is simply a parameter and the independent variable is
ξ . Also the value of the function w(s,z,0) is irrelevant in (3.1) as it only contributes to the ε4

term. Therefore, to obtain a unique w, we set its value at the origin to zero. We continue by
presenting these equations in a form that is compatible with the power case. So we first divide
the above equation by vz and then introduce the new variable ρ = ξ/η(s,z) where η is the risk
tolerance coefficient defined by (1.1). We also set

w̄(s,z,ρ) :=
w(s,z,η(s,z)ρ)
η(s,z)vz(s,z)

, ā(s,z) :=
a(s,z)

η(s,z)vz(s,z)
, ᾱ(s,z) :=

α(s,z)
η(s,z)

.

Then, the corrector equations in this context is the following pair of equations.

Definition 3.1 (Corrector Equations) For a given point (s,z) ∈ Rd
+× R+, the first corrector

equation is for the unknown pair (ā(s,z), w̄(s,z, ·)) ∈ R×C2(Rd),

max
0≤i, j≤d

max
{
− |σ

T(s)ρ|2

2
− 1

2
Tr
[
ᾱᾱ

T(s,z)w̄ρρ(s,z,ρ)
]
+ ā(s,z) , (3.11)

−λ
i, j +(ei− e j) · D̂ρ w̄(s,z,ρ)

}
= 0, ∀ ρ ∈ Rd ,

together with the normalization w̄(s,z,0) = 0.
The second corrector equation uses the constant term ā(s,z) from the first corrector equation

and it is a simple linear equation for the function u : Rd
+×R+ 7→ R1,

A u(s,z) = a(s,z) = vz(s,z)η(s,z)ā(s,z), ∀ s ∈ Rd
+, z ∈ R+. (3.12)

We say that the pair (u,w) is the solution of the corrector equations for a given utility function
or equivalently for a given Merton value function. tu
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We summarize our formal calculations in the following.

Formal Expansion Theorem. The value function has the expansion (3.1) where (u,w) is the
unique solution of the corrector equations.

Remark 3.1 The function u introduced in (1.2) is a solution of the second corrector equation
(3.12), provided that it is finite. Then, assuming that uniqueness holds for the linear PDE (3.12)
in a convenient class, it follows that u is given by the stochastic representation (1.2).

Remark 3.2 Usually a second order equation like (3.12) in (0,∞) needs to be completed by a
boundary condition at the origin. However, as we have already remarked, the operator A is the
infinitesimal generator of the optimal wealth process in the Merton problem. Then, under the
Inada conditions satisfied by the utility function U , we expect that this process does not reach
the origin. Hence, we only need appropriate growth condition to ensure uniqueness. tu

Remark 3.3 The first corrector equation has the following stochastic representation as the dy-
namic programming equation of an ergodic control problem. For this representation we fix (s,z)
and let {Mi, j

t , t ≥ 0} be non-decreasing control processes, for each i, j = 0, . . . ,d. Let ρ be the
controlled process defined by,

ρ
i
t = ρ

i
0 +

d

∑
j=1

ᾱ
i, j(s,z)B j

t +
d

∑
j=0

(
M j,i

t −Mi, j
t
)
,

for some arbitrary initial condition ρ0 and a d dimensional standard Brownian motion B. Then,
the ergodic control problem is

ā(s,z) := inf
M

J(s,z,M),

where

J(s,z,M) := limsup
T→∞

1
T

E
[1

2

∫ T

0

∣∣σT(s)ρt
∣∣2dt +

d

∑
i, j=0

λ
i, jMi, j

T

]
.

In the scalar case, this problem is closely related to the classical finite fuel problem introduced
by Benes, Shepp & Withenhaussen [4]. We refer to the paper by Menaldi, Robin and Taksar
[27] for the present multidimensional setting.

The function w̄ is the so-called potential function in ergodic control. We refer the reader
to the book and the manuscript of Borkar [7, 8] for information on the dynamic programming
approach for the ergodic control problems. tu

Remark 3.4 The calculation leading to (3.7) is used several times in the paper. Therefore, for
future reference, we summarize it once again. Let v, θ , z and ξ be as above. For any smooth
functions

φ : Rd
+×R+ 7→ R, ϖ : Rd

+×R+×Rd 7→ R,
and ε ∈ (0,1] set

Ψ
ε(s,x,y) := v(s,z)− ε

2
φ(s,z)− ε

4
ϖ(s,z,ξ ).

In the above calculations, we obtained an expansion for the second order nonlinear operator

J (Ψε) := βΨ
ε −L Ψ

ε −Ũ(Ψε
x)

= ε
2
(
− vzz

2
|σT

ξ |2 + 1
2

Tr
[
αα

T
ϖξ ξ

]
−A φ +Rε

)
, (3.13)

where α , A are as before and Rε(s,x,y) is the remainder term. Moreover, Rε is locally
bounded by a ε times a constant depending only on the values of the Merton function v, φ and
ϖ . Indeed, a more detailed description and an estimate will be proved in one space dimension
in Section 6. tu

10



4 Corrector Equation in one dimension
In this section, we solve the first corrector equation explicitly in the one-dimensional case.
Then, we provide some estimates for the remainder introduced in Remark 3.4.

4.1 Closed-form solution of the first corrector equation
Recall that w = ηvzw̄, a = ηvzā, and the solution of the corrector equations is a pair (w̄, ā)
satisfying,

max
{
− 1

2
σ

2
ρ

2− 1
2

ᾱ
2w̄ρρ + ā,−λ

1,0 + w̄ρ ,−λ
0,1− w̄ρ

}
= 0, w̄(s,z,0) = 0, (4.1)

where ᾱ = α/η and α(s,z) is given in (3.8). We also recall that the variables (s,z) are fixed
parameters in this equation. Therefore, throughout this section, we suppress the dependences
of σ ,α and w̄ on these variables.

In order to compute the solution explicitely in terms of η , we postulate a solution of the
form

w̄(ρ) =


k4ρ4 + k2ρ2 + k1ρ; ρ1 ≤ ρ ≤ ρ0
w̄(ρ1)−λ 0,1(ρ−ρ1); ρ ≤ ρ1
w̄(ρ0)+λ 1,0(ρ−ρ0); ρ ≥ ρ0.

(4.2)

We first determine k4 and k2 by imposing that the fourth order polynomial solves the second
order equation in (ρ0,ρ1). A direct calculation yields,

k4 =
−σ2

12ᾱ2 and k2 =
ā

ᾱ2 .

We now impose the smooth pasting condition, namely assume that w̄ is C2 at the points ρ0 and
ρ1. Then, the continuity of the second derivatives yield,

ρ
2
0 = ρ

2
1 =

2ā
σ2 implying that ā≥ 0 and ρ0 =−ρ1 =

( 2ā
σ2

)1/2
. (4.3)

The continuity of the first derivatives of w̄ at the points ρ0 and ρ1 yield,

4k4(ρ0)
3 +2k2ρ0 + k1 = −λ

0,1,

4k4(ρ1)
3 +2k2ρ1 + k1 = λ

1,0.

Since ρ0 =−ρ1, we determine the value of k1 by summing the two equations,

k1 =
λ 1,0−λ 0,1

2
.

Finally, we obtain the value of ā by further substituting the values of k4, k2 and ρ0 =−ρ1. The
result is

ā =
σ2

2
ρ

2
0 and ρ0 =

(3ᾱ2

4σ2 (λ
1,0 +λ

0,1)
)1/3

. (4.4)

All coefficients of our candidate are now uniquely determined. Moreover, we verify that the
gradient constraint

−λ
1,0 ≤ w̄ρ ≤ λ

0,1 (4.5)

holds true for all ρ ∈R. Hence, w̄ constructed above is a solution of the corrector equation. One
may also prove that it is the unique solution. However, in the subsequent analysis we simply
use the function w̄ defined in (4.2) with the constants determined above. Therefore, we do not
study the question of uniqueness of the corrector equation.
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Remark 4.1 In the homothetic case with constant coefficients r,µ , and σ , one can explicitly
calculate all the functions, see Section 8. Here we only report that, in that case, all functions are
independent of the s−variable and ρ0, ā(z) are constants. Therefore, a(z) is a positive constant
times the Merton value function. tu

Remark 4.2 Pointwise estimates on the derivatives of w will be used in the subsequent sections.
So we record them here for future references. Indeed, by (4.5) and the fact that w(·,0) = 0,

|w(s,z,ξ )| ≤ λ vz(s,z)|ξ |, |wξ (s,z,ξ )| ≤ λ vz(s,z), where λ := λ
0,1∨λ

1,0. (4.6)

Moreover, under the smoothness assumption on v, we obtain the following pointwise estimates(
|w|+ |ws|+ |wss|+ |wz|+ |wzz|

)
(z,ξ )≤C(s,z)(1+ |ξ |), (4.7)(

|wξ |+ |wzξ |+ |wsξ |
)
(s,z)≤C(s,z) and |wξ ξ | ≤

(
C1[ξ0,ξ1]

)
(s,z), (4.8)

where C is an appropriate continuous function in R2
+, depending on the Merton value function

and its derivatives. tu

4.2 Remainder Estimate
In this subsection, we estimate the remainder term in Remark 3.4. So, let Ψε be as in Remark
3.4. We have seen in (3.13) that

J (Ψε)(s,x,y) :=
(
βΨ

ε −L Ψ
ε −Ũ(Ψε

x)
)
(s,x,y)

= ε
2
[
−1

2
vzz(s,z)ξ 2 +

1
2

α
2(s,z)ϖξ ξ (s,z,ξ )−A φ(s,z)+Rε(s,z,ξ )

]
,

where α , A are defined in (3.8)-(3.9), and Rε is the remainder. By a direct (tedious) calcula-
tion, the remainder term can be obtained explicitly. In view of our previous bounds (4.7)-(4.8)
on the derivatives of w, we obtain the estimate,∣∣Rε(s,z,ξ )

∣∣ ≤ −ε

[
ξ (µ− r)|φz|+

1
2

σ
2(εξ

2 +2ξ θ)|φzz|
]
(s,z)

+εC(s,z)
(
1+ ε|ξ |+ ε

2|ξ |2 + ε
3|ξ |3

)
,

+ε
−2∣∣Ũ(ψε

x )−Ũ(vz)− (ψε
x − vz)Ũ ′(vz)

∣∣
for some continuous function C(s,z). Since Ũ is C1 and convex,∣∣Rε(s,z,ξ )

∣∣ ≤ −ε

(
ξ (µ− r)|φz|+

1
2

σ
2(εξ

2 +2ξ θ)|φzz|
)
(s,z)

+εC(s,z)
(
1+ ε|ξ |+ ε

2|ξ |2 + ε
3|ξ |3

)
,

+(|φz|+ ε
2|φz|+ εθz|ϖξ |)

∣∣Ũ ′(vz + ε
2|φz|+ ε

4|ϖz|+ ε
3
θz|ϖξ |)−Ũ ′(vz)

∣∣
Suppose that ϖ satisfies the same estimates (4.7)-(4.8) as w. Then,∣∣Rε(s,z,ξ )

∣∣ ≤ −ε

[
ξ (µ− r)|φz|+

1
2

σ
2(εξ

2 +2ξ θ)|φzz|
]
(s,z)

+εC(s,z)
(
1+ ε|ξ |+ ε

2|ξ |2 + ε
3|ξ |3

)
,

+ε
2(|φz|+ εC(s,z)(1+ ε|ξ |)

)2Ũ ′′
(
vz + ε

2|φz|+ ε
3C(s,z)(1+ ε|ξ |)

)
.
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5 Assumptions
The main objective of this paper is to characterize the limit of the following sequence,

ūε(s,x,y) :=
v(s,z)− vε(s,x,y)

ε2 , s≥ 0, (x,y) ∈ Kε .

Our proof follows the general methodology developed by Barles & Perthame in the context
of viscosity solutions. Hence, we first define relaxed semi-limits by,

u∗(ζ ) := limsup
(ε,ζ ′)→(0,ζ )

ūε(ζ ′), u∗(ζ ) := liminf
(ε,ζ ′)→(0,ζ )

ūε(ζ ′)

Then, we show under appropriate conditions that they are viscosity sub-solution and super-
solution, respectively, of the second corrector equation (3.12).

We shall now formulate some conditions which guarantee that

i. the relaxed semi-limits are finite,

ii. the second corrector equation (3.12) verifies comparison for viscosity solutions.

We may then conclude that u∗ ≤ u∗. Since the opposite inequality is obvious, this shows that
u = u∗ = u∗ is the unique solution of the second corrector equation (3.12).

In this short subsection, for the convenience of the reader, we collect all the assumptions
needed for the convergence proof, including the ones that were already used.

We first focus on the finiteness of the relaxed semi-limits u∗ and u∗. A local lower bound
is easy to obtain in view of the obvious inequality vε(s,x,y) ≤ v(s,x+ y) which implies that
ūε ≥ 0. Our first assumption complements this with a local upper bound.

Assumption 5.1 (Uniform Local Bound) The family of functions ūε is locally uniformly bounded
from above.

The above assumption states that for any ν0 := (s0,x0,y0)∈R+×R2 with x0+y0 > 0, there
exist r0 = r0(ν0)> 0 and ε0 = ε0(ν0)> 0 so that

b(ν0) := sup{ uε(s,x,y) : (s,x,y) ∈ Br0(ν0), ε ∈ (0,ε0] }< ∞. (5.1)

This assumption is verified in Section 7 under some conditions on v and its derivatives by
constructing an appropriate sub-solution to the dynamic programming equation (2.2). However,
the sub-solution does not need to have the exact ε2 behavior as needed in other approaches to
this problem starting from [36, 20]. Indeed, in these earlier approaches, both the sub and the
super-solution must be sharp enough to have the exact limiting behavior in the leading ε2 term.
For the above estimate, however, this term needs to be only locally bounded.

The next assumption is a regularity condition on the Merton problem.

Assumption 5.2 (Smoothness) The Merton value function v and the Merton optimal invest-
ment strategy θ are twice continuously differentiable in the open domain (0,∞)2 and vz(s,z)> 0
for all s,z > 0. Moreover, there exists c0 > 0 such that

c0 ≤ θz(s,z)≤ 1− c0, ∀ s,z ∈ R+. (5.2)
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In particular, the above assumption implies that the diffusion coefficient α(s,z) in the first
corrector equation is non-degenerate away from the origin. For later use we record that there
exist two constants 0 < α∗ ≤ α∗ so that

0 < α∗ ≤
α(s,z)

z
≤ α

∗, ∀ s,z ∈ R+. (5.3)

We will not attempt to verify the above hypothesis. However, in the power utility case, the
value function is always smooth and the condition (5.2) can be directly checked as the optimal
investment policy θ is explicitly available.

We next formulate a natural assumption which was verified in [36] in the context of CRRA
type utilities. This assumption will be used for the proof of the sub-solution property. To state
this assumption, we first introduce the no-transaction region defined by,

N ε :=
{
(s,x,y) ∈ Kε : Λ

ε
0,1 ·Dvε(s,x,y)> 0, and Λ

ε
1,0 ·Dvε(s,x,y)> 0

}
. (5.4)

By the dynamic programming equation (2.2), the value function vε is a viscosity solution of

βvε −L vε −Ũ(vε
x) = 0 on N ε .

Assumption 5.3 (No transaction region) The no-transaction region N ε contains the Merton
line M := {(s,z−θ(z),θ(z)) : s,z ∈ R+ }.

Finally we assume that the second corrector equation (3.12) has comparison. Recall the
function u introduced in (1.2), let b be as in (5.1), and set

B(s,z) := b(s,z−θ(z),θ(z)), s,z ∈ R+. (5.5)

Assumption 5.4 (Comparison) For any upper-semicontinuous (resp. lower-semicontinuous)
viscosity sub-solution (resp. super-solution) u1 (resp. u2) of (3.12) in (0,∞)2 satisfying the
growth condition |ui| ≤ B on (0,∞)2, i = 1,2, we have u1 ≤ u≤ u2 in (0,∞)2.

In the above comparison, we do not make assumptions on the value of these functions at
the origin. As discussed earlier, the operator A is the infinitesimal generator of the optimal
wealth process in the limiting Merton problem. So we implicitly assume that this process does
not reach the origin with probability one.

6 Convergence in one dimension
For the convergence proof, we introduce the following “corrected” version of ūε ,

uε(s,x,y) := ūε(s,x,y)− ε
2w(s,z,ξ ), s≥ 0, (x,y) ∈ Kε .

Notice that both families ūε and uε have the same relaxed semi-limits u∗ and u∗.

Theorem 6.1 Under Assumptions 5.1, 5.2, 5.3 and 5.4, the sequence {uε}ε>0 converges locally
uniformly to the function u defined in (1.2).

Proof. In the next subsections, we will show that, the semi-limits u∗ and u∗ are viscosity
super-solution and sub-solution, respectively, of (3.12). Then, by the comparison Assumption
5.4, we conclude that u∗ ≤ u ≤ u∗. Since the opposite inequality is obvious, this implies that
u∗ = u∗ = u. The local uniform convergence follows immediately from this and the definitions.

tu
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6.1 First properties
In this subsection, we only use the assumptions on the smoothness of the limiting Merton prob-
lem and the local boundedness of {uε}ε . We first recall that

λ := λ
0,1∨λ

1,0.

Lemma 6.1 (i) For all ε,s > 0, (x,y) ∈ Kε , uε(s,x,y)≥−ελvz(s,z)|y−θ(s,z)|. In particular,
u∗ ≥ 0.
(ii) If in addition Assumption 5.1 holds true, then

0≤ u∗(s,x,y)≤ u∗(s,x,y)< ∞ for all s,x,y > 0.

Proof. Since (ii) is a direct consequence, we focus on (i). From the obvious inequality vε(s,x,y)≤
v(s,x+y), it follows that uε(s,x,y)≥−ε2w(s,z,ξ ), so that the required result follows from the
bound (4.5) on wξ together with w(·,0) = 0. tu

We next show that the relaxed semi-limits u∗ and u∗ depend on the pair (x,y) only through
the aggregate variable z = x+ y.

Lemma 6.2 Let Assumptions 5.1 and 5.2 hold true. Then, u∗ and u∗ are functions of (s,z) only.
Moreover, for all s,z≥ 0,

u∗(s,z) = liminf
(ε,s′,z′)→(0,s,z)

uε
(
s′,z′−θ(z′),θ(z′)

)
,

and
u∗(s,z) = limsup

(ε,s′,z′)→(0,s,z)
uε
(
s′,z′−θ(z′),θ(z′)

)
.

Proof. This result is a consequence of the gradient constraints in the dynamic programming
equation (2.2),

Λ
ε
1,0 · (vε

x ,v
ε
y)≥ 0 and Λ

ε
0,1 · (vε

x ,v
ε
y)≥ 0 in the viscosity sense.

1. We change variables and use the above inequalities to obtain(
1+λ

1,0
ε

3(1−θz)
)
v̂ε

ξ
≥−λ

1,0
ε

4v̂ε
z ,

(
1+λ

0,1
ε

3
θz
)
v̂ε

ξ
≤ λ

0,1
ε

4v̂ε
z , (6.1)

in the viscosity sense. Since vε is concave in (x,y), the partial gradients vε
x and vε

y exist almost
everywhere. By the smoothness of the Merton optimal investment strategy θ , this implies that
the partial gradient v̂ε

z also exists almost everywhere. Then, by the definition of uε , we conclude
that the partial gradients ûε

z and ûε

ξ
exist almost everywhere. In view of Condition (5.2) in

Assumption 5.2, we conclude from (6.1) and the fact that v̂ε
z ≥ 0 that∣∣∣v̂ε

ξ

∣∣∣≤ λε
4v̂ε

z . (6.2)

We now claim that

v̂ε
z (s,z,ξ ) ≤ γ

ε(s,x,y)

:= vz(s,z− ε)+ ε
(
uε(s,x− ε,y)+uε(s,x,y− ε)

)
(6.3)

+ε
3
λvz(s,z)

(
1+ |θz(s,z)|+ |ξ |+

|θ(s,z)−θ(s,z− ε)|
ε

)
.
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We postpone the poof of this claim to the next step and continue with the proof. Then, it follows
from (6.2), (6.3) together with Assumption 5.2 and (4.5),∣∣ûε

ξ
(s,z,ξ )

∣∣ ≤ ε
2
λ̄
(
vz(s,z)+ v̂ε

z (s,z,ξ )
)

≤ ε
2
λ̄ (vz(s,z)+ γ

ε(s,z,ξ )) . (6.4)

Hence,

(e1− e0) · (uε
x ,u

ε
y) =−

1
ε

ûε

ξ
≤ ελ̄ (vz(s,z)+ γ

ε(s,z,ξ )) .

By the local boundedness of {uε}ε , for any (s,x,y), there is an open neighborhood N of (s,x,y)
and a constant K, both independent of ε , such that the maps

t 7→ uε(s,x− t,y+ t)+ εKt and t 7→ −uε(s,x− t,y+ t)+ εKt

are nondecreasing for all ε > 0. Then, it follows from the definition of the relaxed semi-limits
that û∗ and û∗ are independent of the ξ -variable.
2. We now prove (6.3). For ε > 0 and (x,y),(x−ε),(x,y−ε)∈Kε , we denote as usual z = x+y
and ξ = (y−θ(s,z))/ε . By the concavity of vε in the pair (x,y) and the concavity of the Merton
function v in z that:

vε
x(s,x,y) ≤ 1

ε

(
vε(s,x,y)− vε(s,x− ε,y)

)
≤ 1

ε

(
v(s,z)− v(s,z− ε)

)
+

1
ε

(
v(s,z− ε)− vε(s,x− ε,y)

)
≤ vz(s,z− ε)+

1
ε

(
v(s,z− ε)− vε(s,x− ε,y)

)
.

By the definition of uε ,

vε
x(s,x,y)≤ vz(s,z− ε)+ ε

(
uε(s,x− ε,y)+ ε

2w(s,z− ε,ξε)
)

where ξε := (y−θ(s,z− ε))/ε = ξ +(θ(s,z)−θ(s,z− ε))/ε . We use the bound (4.6) on w,
to arrive at,

vε
x(s,x,y)≤ vz(s,z− ε)+ εuε(s,x− ε,y)+ ε

3
λvz(s,z)

(
1+ |ξ |+ |θ(s,z)−θ(s,z− ε)|

ε

)
.

By exactly the same argument, we also conclude that

vε
y(s,x,y)≤ vz(s,z− ε)+ εuε(s,x,y− ε)+ ε

3
λvz(s,z)

(
1+ |ξ |+ |− ε +θ(s,z)−θ(s,z− ε)|

ε

)
.

Then, using the bounds on θz from Assumption 5.2,

v̂ε
z (s,z,ξ ) = ∂zvε

(
s,z− εξ −θ(s,z),εξ +θ(s,z)

)
=

(
1−θz(s,z)

)
vε

x(s,x,y)+θz(s,z)vε
y(s,x,y)

≤ vz(s,z− ε)+ ε
(
uε(s,x− ε,y)+uε(s,x,y− ε)

)
+ε

3
λvz(s,z)

(
1+ |θz(s,z)|+ |ξ |+

|θ(s,z)−θ(s,z− ε)|
ε

)
.

3. The final statement in the lemma follows from (6.4), the expression of γε in (6.3), and
Assumption 5.1. tu
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6.2 Viscosity sub-solution property
In this section, we prove

Proposition 6.1 Under Assumptions 5.1 and 5.2, the function u∗ is a viscosity sub-solution of
the second corrector equation (3.12).

Proof. Let (s0,z0,ϕ) ∈ (0,∞)2×C2(R2
+) be such that

(u∗−ϕ)(s0,z0)> (u∗−ϕ)(s,z) for all s,z≥ 0, (s,z) 6= (s0,z0). (6.5)

Our objective in the following steps is to prove that

A ϕ(s0,z0)−a(s0,z0) ≤ 0. (6.6)

1. By the definition of u∗ and Lemma 6.2, there exists a sequence (sε ,zε) so that

(sε ,zε)−→ (s0,z0) and ûε(sε ,zε ,0)−→ u∗(s0,z0), as ε ↘ 0,

where we used the notation (3.2). Then, it is clear that

`ε
∗ := ûε(sε ,zε ,0)−ϕ(sε ,zε) −→ 0 (6.7)

and

(xε ,yε) =
(
zε −θ(sε ,zε),θ(sε ,zε)

)
−→ (x0,y0) :=

(
z0−θ(s0,z0),θ(s0,z0)

)
.

Since (uε) is locally bounded from above (Assumption 5.1), there are r0 := r0(s0,x0,y0) > 0
and ε0 := ε0(s0,x0,y0)> 0 so that

b∗ := sup{uε(s,x,y) : (s,x,y) ∈ B0,ε ∈ (0,ε0]}< ∞, where B0 := Br0(s0,x0,y0) (6.8)

is the open ball centered at (s0,x0,y0) with radius r0. We may choose r0 ≤ z0/2 so that B0 does
not intersect the line z = 0. For ε,δ ∈ (0,1], set

ψ̂
ε,δ (s,z,ξ ) := v(s,z)− ε

2`ε
∗− ε

2
ϕ(s,z)− ε

4(1+δ )w(s,z,ξ )− ε
2
φ̂

ε(s,z,ξ ),

where, following our standard notation (3.2), φ̂ ε is determined from the function,

φ
ε(s,x,y) := C

[
(s− sε)4 +(x+ y− zε)4 +(y−θ(s,x+ y))4] ,

and C > 0 is a large constant that is chosen so that for all sufficiently small ε > 0,

φ
ε ≥ 1+b∗−ϕ, on B0 \B1 with B1 := Br0/2(s0,x0,y0). (6.9)

The constant C chosen above may depend on many things including the test function ϕ , s0,z0,δ ,
but not on ε . The convergence of (sε ,zε) to (s0,z0) determines how small ε should be for (6.9)
to hold.
2. We first show that, for all sufficiently small ε > 0, δ > 0, the difference (vε −ψε,δ ), or
equivalently,

Iε,δ (s,x,y) :=
vε(s,x,y)−ψε,δ (s,x,y)

ε2

= −uε(s,x,y)+ϕ(s,z)+ `ε
∗+φ

ε(s,x,y)+ ε
2
δw(s,z,ξ ),
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has a local minimizer in B0. Indeed, by the definition of uε , ψε,δ and `ε
∗, (6.9), (6.8), and the

fact that w≥ 0 that, for any (s,x,y) ∈ ∂B0,

Iε,δ (s,x,y) ≥ −uε(s,x,y)+ `ε
∗+1+b∗+ ε

2
δw(s,z,ξ ) ≥ 1+ `ε

∗ > 0,

for sufficiently small ε in view of (6.7). Since Iε,δ (sε ,xε ,yε) = 0, we conclude that Iε,δ has a
local minimizer (s̃ε , x̃ε , ỹε) in B0 with z̃ε := x̃ε + ỹε , ξ̃ ε := (ỹε −θ(s̃ε , z̃ε))/ε satisfying,

min
(s,z,ξ )∈B1

(v̂ε − ψ̂
ε,δ ) = (v̂ε − ψ̂

ε,δ )(z̃ε , ξ̃ε)≤ 0, |s̃ε − s0|+ |z̃ε − z0|< r0, |ξε |< r1/ε,

for some constant r1. Since vε is a viscosity super-solution of the dynamic programming equa-
tion (2.2), we conclude that(

βvε −L ψ
ε,δ −Ũ

(
ψ

ε,δ
x
))

(s̃ε , x̃ε , ỹε) ≥ 0, (6.10)

and

Λ
ε
1,0 ·
(
ψ

ε,δ
x ,ψε,δ

y
)
(s̃ε , x̃ε , ỹε) =

(
ψ

ε,δ
x − (1−λ

1,0
ε

3)ψε,δ
y

)
(s̃ε , x̃ε , ỹε) ≥ 0,

Λ
ε
0,1 ·
(
ψ

ε,δ
x ,ψε,δ

y
)
(s̃ε , x̃ε , ỹε) =

(
ψ

ε,δ
y − (1−λ

0,1
ε

3)ψε,δ
x

)
(s̃ε , x̃ε , ỹε) ≥ 0.

By direct calculation using the boundedness of (s̃ε , z̃ε ,εξ̃ ε), we rewrite the last gradient in-
equalities into the following

−4ε
2(εξ̃

ε)3 + ε
3vz(s̃ε , z̃ε)

[
λ

1,0− (1+δ )wρ(s̃ε , z̃ε , ρ̃ε)
]
+◦(ε3) ≥ 0, (6.11)

4ε
2(εξ̃

ε)3 + ε
3vz(s̃ε , z̃ε)

[
λ

0,1 +(1+δ )wρ(s̃ε , z̃ε , ρ̃ε)
]
+◦(ε3) ≥ 0, (6.12)

where ρ̃ε := ξ̃ ε/η(s̃ε , z̃ε).
3. Let ρ0(s,z) be as in (4.3). In this step, we show that

|ρ̃ε |< ρ0(s̃ε , z̃ε) for all sufficiently small ε ∈ (0,1]. (6.13)

Indeed, assume that ρ̃εn ≤−ρ0(s̃εn , z̃εn)= ρ1(s̃εn , z̃εn) for some sequence εn ∈ (0,1] with εn→ 0.
Then, wρ(s̃εn , z̃εn , ρ̃εn) = −λ 0,1, and it follows from inequality (6.12), together with the fact
ρ̃εn ≤ ρ1(s̃εn , z̃εn)≤ 0, that

0≤ 4ε
2
n (εnξ̃

εn)3− ε
3
n vz(s̃εn , z̃εn)δλ

0,1 +◦(ε3
n )≤−εn

3vz(s̃εn , z̃εn)δλ
0,1 +◦(εn

3).

Since δ > 0, this can not happen for large n. Similarly, if ρ̃εn ≥ ρ0(s̃εn , z̃εn) for some sequence
εn→ 0, we have wρ(s̃εn , z̃εn , ρ̃εn) = λ 1,0, and it follows from inequality (6.11), together with the
fact that ρ̃εn ≥ ρ0(s̃εn , z̃εn)≥ 0, that

0≤−4ε
2
n (εnξ̃

εn)3 + ε
3
n vz(s̃εn , z̃εn)(−δλ

1,0)+◦(εn
3)≤−ε

3
n vz(s̃εn , z̃εn)δλ

1,0 +◦(ε3
n ),

which leads again to a contradiction for large n, completing the proof of (6.13).
4. Since (s̃ε , z̃ε) is bounded and (s,z) 7→ ρ0(s,z) is continuous, we conclude from (6.13) that
the sequence (ξ̃ ε)ε is bounded. Hence, there exists a sequence εn→ 0 so that

(sn,zn,ξn) := (s̃εn , z̃εn , ξ̃ εn) −→ (ŝ, ẑ, ξ̂ ) = (s0,z0, ξ̂ )

for some ξ̂ ∈ R. The fact that the limit of (sn,zn) is equal to (s0,z0) follows from standard
arguments using the strict minimum property of (s0,z0) in (6.5). We now take the limit in (6.10)
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along the sequence (εn). Since the function ψε,δ has the form as in Remark 3.4, we do not
repeat the computations given in Section 3 and, given the remainder estimate of section 4.2, we
directly conclude that

0 ≤ lim
εn→0

ε
−2
n

(
βvεn −L ψ

εn,δ −Ũ
(
ψ

εn,δ
x
))

(sn,zn,ξn)

=
1
2
(ησ

2)(s0,z0)ξ̂
2 +

1
2
(1+δ )α2(s0,z0)wξ ξ (s0,z0, ξ̂ )−A ϕ(s0,z0) (6.14)

In the above, we also used the fact that all derivatives of φ ε vanish at the origin as ε tends to
zero.
5. In the Step 3, we have proved that |ρε | ≤ ρ0(zε). Hence, |ξ̂ | ≤ (ηρ0)(s0,z0). Since w=ηvzw̄,
a = ηvzā, the first corrector equation (3.11) implies that

a(s0,z0) =
1
2
(σ2

η)(s0,z0)ξ̂
2 +

1
2

α
2(s0,z0)wξ ξ (s0,z0, ξ̂ ).

We use the above identity in (6.14). The result is

A ϕ(s0,z0) ≤ 1
2
(σ2

η)(s0,z0)ξ̂
2 +

1
2
(1+δ )α2(s0,z0)wξ ξ (s0,z0, ξ̂ )

= a(s0,z0)+
1
2

δα
2(s0,z0)wξ ξ (s0,z0, ξ̂ ).

Finally, we let δ go to zero. However, ξ̂ = ξ̂ δ depends on δ and care must be taken. But since
|ξn| ≤ (ηρ0)(sn,zn), it follows that ξ̂ δ is uniformly bounded in δ . Hence the second term in the
above equation goes to zero with δ , and we obtain the desired inequality (6.6). tu

6.3 Viscosity super-solution property
In this section, we prove

Proposition 6.2 Let Assumptions 5.1, 5.2, and 5.3 hold true. Then, the function u∗ is a viscosity
super-solution of the second corrector equation (3.12).

We first need the following consequence of Assumption 5.3 and the convexity of vε . Similar
arguments are also used in [36].

Lemma 6.3 Assume the hypothesis of Proposition 6.2. Let (x,y) be an arbitrary element of Kε .
Then,
(i) for y≥ θ(s,z) (or equivalently, ξ ≥ 0), we have Λε

0,1 · (vε
x(s,x,y),v

ε
y(s,x,y))> 0,

(ii) for y≤ θ(s,z) (or equivalently, ξ ≤ 0), we have Λε
1,0 · (vε

x(s,x,y),v
ε
y(s,x,y))> 0.

Proof. For z ∈ R+ set

θ
ε
+(s,z) := sup

{
y : (z− y,y) ∈ Kε , and Λ

ε
0,1 · (vε

x ,v
ε
y)(s,z− y,y) = 0

}
.

In view of the form of Kε , we have y≥−z/(ε3λ 0,1) and by convention the above supremum is
equal to this lower bound if the set is empty. By the concavity of vε , we conclude that

Λ
ε
0,1 · (vε

x ,v
ε
y)(s,x,y)

{
= 0 for all y≤ θ ε

+(s,z),
> 0 for all y > θ ε

+(s,z).
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Let N ε be as in (5.4). Therefore it is included in the set {(s,x,y) : y > θ ε
+(s,z)}. Since As-

sumption 5.3 states that the Merton line {(s,x,y) : y = θ(s,z)} is included in N ε , we conclude
that θ(s,z)> θ ε

+(s,z). This proves the statement (i). The other assertion is proved similarly. tu

Proof of Proposition 6.2. Let (s0,z0,ϕ) ∈ (0,∞)2×C2(R+) be such that

(u∗−ϕ)(s0,z0)< (u∗−ϕ)(s,z) for all s,z≥ 0, (s,z) 6= (s0,z0). (6.15)

Our objective in the following steps is to prove that

A ϕ(s0,z0)−a(s0,z0) ≥ 0. (6.16)

1. By the definition of u∗ and Lemma 6.2, there exists a sequence (sε ,zε) so that

(sε ,zε)−→ (s0,z0) and ûε(sε ,zε ,0)−→ u∗(s0,z0), as ε ↘ 0,

where we used the notation (3.2). Then, it is clear that

`∗ε := ûε(sε ,zε ,0)−ϕ(sε ,zε)−→ 0

and
(xε ,yε) =

(
zε −θ(sε ,zε),θ(sε ,zε)

)
−→ (x0,y0) :=

(
z0−θ(s0,z0),θ(s0,z0)

)
.

Since uε(s,x,y)≥−ε2w(s,z,ξ )≥−εC(s,z)|y−θ(s,z)|, for some continuous function C, there
are r0 := r0(s0,x0,y0)> 0 and ε0 := ε0(s0,x0,y0)> 0 so that

b∗ := inf
(s,x,y)∈B0

uε(s,x,y)>−∞, where B0 := Br0(s0,x0,y0).

We also choose r0 sufficiently small so that B0 does not intersect the line z = 0. For ε ∈ (0,1]
and δ > 0, define

ψ̂
ε,δ (s,z,ξ ) := v(s,z)− ε

2`∗ε − ε
2
ϕ(s,z)− ε

4(1−δ )w(s,z,ξ )+ ε
2
φ̂

ε(s,z,ξ ),

where, following our notation convention (3.2), the function φ̂ ε is obtained from the function
φ ε defined by,

φ
ε(s,x,y) :=C

[
(s− sε)4 +(x+ y− zε)4 +(y−θ(s,x+ y))4]]

and, similar to the proof of the super-solution property, C > 0 is a constant chosen so that,

−b∗+ `∗ε +
(
ϕ−φ

ε
)
(s,x,y)< 0 on ∂B0. (6.17)

2. Set

Iε,δ (s,z,ξ ) := ε
−2(vε −ψ

ε,δ
)
(s,x,y)

= −uε(s,x,y)+ϕ(s,z)+ `∗ε −φ
ε(s,x,y)− ε

2
δw(s,z,ξ ).

Since w(s,z,0) = 0, we have Iε,δ (sε ,zε ,0) = 0. On the other hand, it follows from (6.17) that

Iε,δ (s,z,ξ )≤−b∗+ `∗ε +
(
ϕ−φ

ε
)
(s,x,y)<−ε

2
δw(s,z,ξ )< 0 on ∂B0.

Then, the difference vε −ψε,δ has an interior maximizer (s̃ε , z̃ε , ξ̃ ε) in B0,

max
B0

(
vε −ψ

λ ,ε
)
= (vε −ψ

λ ,ε)(s̃ε , x̃ε , ỹε), and |s̃ε − s0|+ |z̃ε − z0|+ |εξ̃ε | ≤ r1, (6.18)
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for some constant r1. By the sub-solution property of vε , at (s̃ε , x̃ε , ỹε),

min
{

βvε −L ψ
ε,δ −Ũ

(
ψ

ε,δ
x
)
,Λε

0,1 · (ψε,δ
x ,ψε,δ

y )Λε
1,0 · (ψε,δ

x ,ψε,δ
y )
}
≤ 0. (6.19)

3. In this step, we show that for all sufficiently small ε > 0,

Λ
ε
0,1 · (ψε,δ

x ,ψε,δ
y )(s̃ε , x̃ε , ỹε)> 0 and Λ

ε
1,0 · (ψε,δ

x ,ψε,δ
y )(s̃ε , x̃ε , ỹε)> 0. (6.20)

By Lemma 6.3, it suffices to prove that

D0,1 := Λε
0,1 · (ψ

ε,δ
x ,ψε,δ

y )(s̃ε , x̃ε , ỹε)> 0 for ξ̃ < 0,
D1,0 := Λε

1,0 · (ψ
ε,δ
x ,ψε,δ

y )(s̃ε , x̃ε , ỹε)> 0 for ξ̃ > 0.
(6.21)

We directly compute that

ψx = vz− ε
2
ϕz− ε

4(1−δ )
(
wz−

θz

ε
wξ

)
+4ε

2C
(
(z− zε)3−θz(y−θ)3),

ψy = vz− ε
2
ϕz− ε

4(1−δ )
(
wz +

1−θz

ε
wξ

)
+4ε

2C
(
(z− zε)3 +(1−θz)(y−θ)3).

Then, it follows from the estimates (6.18) that

D0,1 = ε
3(+(1−δ )wξ +λ

0,1vz
)
(s̃ε , z̃ε , ξ̃ ε)−4Cε

2(εξ̃
ε)3 +◦(ε3)

D1,0 = ε
3(− (1−δ )wξ +λ

1,0vz
)
(s̃ε , z̃ε , ξ̃ ε)+4Cε

2(εξ̃
ε)3 +◦(ε3).

Since w solves (4.1), wξ +λ 0,1vz ≥ 0 and −wξ +λ 1,0vz ≥ 0. Then,

D0,1 ≥ −ε
3
δwξ (s̃

ε , z̃ε , ξ̃ ε)−4Cε
2(εξ̃

ε)3 +◦(ε3)

≥ −ε
3
δwξ (s̃

ε , z̃ε , ξ̃ ε)+◦(ε3) for ξ̃ ≤ 0,

and

D1,0 ≥ ε
3
δwξ (s̃

ε , z̃ε , ξ̃ ε)+4Cε
2(εξ̃

ε)3 +◦(ε3).

≥ ε
3
δwξ (s̃

ε , z̃ε , ξ̃ ε)+◦(ε3) for ξ̃ ≥ 0.

Hence, (6.21) holds for all sufficiently small ε > 0.
4. In this step, we prove that ξ̃ε is bounded in ε ∈ (0,1]. Indeed, in view of (6.19) and (6.20),
we conclude that

0 ≥
(

βvε −L ψ
ε,δ −Ũ

(
ψ

ε,δ
x
))

(s̃ε , x̃ε , ỹε)

= ε
2
[ (−σ2vzz)(sε , z̃ε)

2
|ξε |2 +

1−δ

2
α

2(s̃ε , z̃ε)wξ ξ (z̃ε , ξ̃ε)

−A u(s̃ε , z̃ε)+Rε(s̃ε , x̃ε , ỹε)
]
, (6.22)

where we used the fact that the function ψε,δ is exactly as in the form assumed in Remark 3.4.
Then, by the remainder estimate of section 4.2, we deduce that,

|Rε(s̃ε , x̃ε , ỹε)| ≤C(s̃ε , z̃ε)
[
ε + ε|ξ̃ε |+ ε

2|ξ̃ε |2
]
. (6.23)

In Section 4, the function w is explicitly constructed. Since w is linear in ξ for large values of
ξ , there is a continuous function Ĉ(s,z) so that

0≤ wξ ξ (s,z,ξ )≤ Ĉ(s,z), for all (s,z,ξ ) ∈ R2
+×R1.
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Then, since (s̃ε , z̃ε) is uniformly bounded in ε ∈ (0,1], there are constants C,C̃ > 0 so that:

0≥ ε
2C̃
[
ξ̃

2
ε −C

(
1+ ε|ξ̃ε |+ ε

2|ξ̃ε |2
)]

.

Hence (ξ̃ε)ε is also uniformly bounded in ε ∈ (0,1] by a constant depending only on δ and the
test functions.
5. Since (zε ,ξε)ε∈(0,1] is bounded, there exists a sequence (εn)n such that

εn↘ 0 and (zn,ξn) :=
(
zεn ,ξεn

)
−→ (ẑ, ξ̂ ) = (z0, ξ̂ ) ∈ (0,∞)×R,

where ẑ = z0 follows from the strict maximum property in (6.15) by a classical argument in the
theory of viscosity solutions. We finally conclude from (6.22) and (6.23) that

0 ≥ −1
2
(σ2vzz)(s0,z0)ξ̂

2−A ϕ(s0,z0)−A φ(0)+
1
2
(1−δ )α2(s0,z0)wξ ξ (s0,z0, ξ̂ )

= −A ϕ(s0,z0)−
1
2
(σ2vzz)(s0,z0)ξ̂

2 +
1
2
(1−δ )α2(s0,z0)wξ ξ (s0,z0, ξ̂ ),

since A φ(0) = 0. Now, from the first corrector equation (3.11), this implies that:

0 ≥ −A ϕ(s0,z0)+a(s0,z0)+
1
2

δα
2(s0,z0)wξ ξ (s0,z0, ξ̂ ).

Finally, we conclude that A ϕ(s0,z0)−a(s0,z0)≥ 0, by sending δ to zero. tu

7 Verifying Assumption 5.1
In this section, we verify Assumption (5.1). This is done by constructing an appropriate sub-
solution of the dynamic programming equation (2.2). Clearly, this construction requires as-
sumptions and here we present only one possible set of assumptions. To simplify the presenta-
tion, we first suppose that the coefficients are independent of the s-variable. Next, we assume
that there exist constants 0 < k∗ ≤ k∗ so that the limit Merton value function satisfies

0 < k∗z≤ η(z)≤ k∗z. (7.1)

Let c be the optimal Merton consumption policy given as in (2.6). We assume that

U(c(z))≥ k∗zv′(z), (7.2)

for some constant k∗ > 0. Notice that all the above assumptions hold in the power utility case.
First, using (5.3) and the explicit representation of a, one may directly verify that there is a
constant a∗ > 0 so that

a(z)≤ a∗zv′(z).

Then, the definition of A and the above assumptions imply that

A v(z) =U(c(z))≥ k∗zv′(z)≥ k∗
a∗

a(z) =
k∗
a∗

A u(z). (7.3)

In view of the comparison assumption, we conclude that

0≤ u(z)≤ a∗

k∗
v(z). (7.4)
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Moreover, since we assume that coefficients are independent of the s variable, (2.7) is equivalent
to θ(z) = η(z)(µ− r)/σ2. Hence, (5.3) implies that

−v′′(z)≤ η(z) v′′′ ≤−2v′′(z). (7.5)

We now use these observations to construct a sub-solution of the dynamic programming
equation of the form

V ε(x,y) := v(z)−Kε
2v(z)+ ε

4W̃ (z,ξ ), (7.6)

with a sufficiently large constant K ≥ a∗/k∗ and a slightly modified corrector,

W̃ (z,ξ ) := zv′(z)w̃(ξ/z),

where the function w̃(z) and the constant ã > 0 are the unique solution of w̃(0) = 0 and

max
{
−k∗σ2

2
ρ

2− (α∗k∗)2

2
w̃ρρ + ã ; −2λ

1,0 + w̃ρ ; −2λ
0,1− w̃ρ

}
. (7.7)

The solution of the above equation is explicitly available through the general solution obtained
earlier in Section 4.1.

The fact that V ε is a sub-solution of (2.2) follows from a tedious but otherwise direct calcu-
lation. To streamline these calculations, we first state an estimate that follows from the explicit
form of W̃ .

Lemma 7.1 There is a constant k∗ > 0 so that

z
∣∣W̃ξ ξ (z,ξ )

∣∣≤ k∗v′(z),∣∣W̃z(z,ξ )
∣∣≤ k∗v′(z)

(
1+ |ξ |z

)
,

z
∣∣∂xW̃ (z,ξ )

∣∣+ z
∣∣∂yW̃ (z,ξ )

∣∣≤ k∗zv′(z)
(

1
ε
+ |ξ |z

)
,

z2
∣∣∣∂yyW̃ (z,ξ )− (1−θ ′(z))2

ε2 W̃ξ ξ (z,ξ )
∣∣∣≤ k∗zv′(z)

(
1
ε
+ |ξ |z

)
.

Proof. These estimates follow directly from straightforward differentiation and the estimates
(7.1), (7.5). tu

Lemma 7.2 (Lower Bound) Assume (7.1), (5.2) and (2.6). Then, for sufficiently large K > 0,
V ε defined in (7.6) is a sub-solution of (2.2) in R2

+. Moreover,

ūε(x,y)≤ Kv(z)+ ε
2W̃ (z,ξ )

on R2
+ and Assumption 5.1 holds.

Proof. We need to show that at any point (x,y) ∈ R2
+ one of the three terms in (2.2) is non-

positive. Since (x,y) ∈ R2
+, by assumption (5.2), we have

|ξ |= |y−θ(z)|
ε

≤ z
ε
, ⇒ Ξ :=

ξ

z
∈ 1

ε
[−1,1].

Let ρ0 > 0 be the threshold in the equation (7.7). We analyze several cases separately.
Case 1. ρ0 ≤ Ξ≤ 1/ε .
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In this case, W̃ξ (z,ξ ) = 2λ 1,0v′(z). We use the previous Lemma and (5.2), to arrive at,

Λ
ε
1,0 · (V ε

x ,V
ε
y ) =

1
ε

V̂ ε

ξ
+ ε

2
λ

1,0(1−θ
′)V̂ ε

ξ
+ ε

3
λ

1,0V̂ ε
z

= ε
3 [(1− ε

3
λ

1,0(1−θ
′))W̃ξ +(1−Cε

2)v′−λ
1,0

ε
4W̃z
]

≤ ε
3
λ

1,0v′
(
−1+ k∗ε3)≤ 0,

provided that ε is sufficiently small.

Case 2. −1/ε ≤ Ξ≤−ρ0.
A similar calculation, shows that Λε

0,1 · (V ε
x ,V

ε
y )≤ 0, for all sufficiently small ε .

Case 3. |Ξ| ≤ ρ0. We now use Remark 3.4 to conclude that

J (V ε) = ε
2
[
−σ2v′′(z)

2
ξ

2 +
α2(z)

2
W̃ξ ξ (z,ξ )−KA v(z)+Rε(z,ξ )

]
.

We first use (7.1), (5.2), (7.7), (7.3) and set ρ := ξ/z. The result is

I :=
J (V ε)

ε2

≤ ε
2v′(z)η(z)

[
k∗σ2

2
ρ

2 +
(α∗k∗)2

2
w̃ρρ(ρ)−K(k∗)2

]
+ ε

2Rε(z,ξ )

= ε
2v′(z)η(z)

[
ã−K(k∗)2]+ ε

2Rε(z,ξ ).

If K is sufficiently large then K(k∗)2 is larger than ã and by (7.1), the above estimate implies
that

I ≤−zv′(z)+Rε(z,ξ ).

We now estimate Rε by recalling the results of subsection 4.2. We split this in three terms
coming from the value function v, the corrector W̃ and from the utility function,

|Rε | := Rε
v +Rε

w +Rε
U .

We estimate each one using Lemma 7.1. Then,

Rε
v ≤ K

[
εΞ(µ− r)zv′(z)+

σ2

2
(
ε

2
Ξ

2 +2εΞ(θ/z)
)

z2v′′(z)
]

≤ εKk∗zv′(z).

Also

Rε
w ≤ ε

2
[
βW̃ − rz((1− (θ/z))+ εΞ)W̃x−µz(εΞ+(θ/z))W̃y

−σ2

2
z2 (εΞ+(θ/z))2 (W̃yy−W̃ξ ξ (1−θz)

2/ε
2)

σ2

2
z2W̃ξ ξ

(1−θz)
2

ε2

(
ε

2
Ξ

2 +2εΞ(θ/z)
)

≤ k∗zv′(z).

Finally

Rε
U = Ũ(v′)−Ũ(V ε

x )

≤ Ũ(v′)−Ũ(v′[1− ε
2K + k∗ε4])≤ 0.
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Hence, there is k∗ so that.
|Rε | ≤ εk∗zv′(z).

Hence if K is sufficiently large, V ε is a sub-solution for all small ε .
Boundary y = 0.

Then, again by (5.2), for all sufficiently small ε > 0,

Ξ =
y−θ(z)

ε
=
−θ(z)

ε
<−ρ0.

Hence, by the second case, and Lemma 6.3

Λ
ε
1,0 · (V ε

x ,V
ε
y )(x,0)≤ 0 = Λ

ε
1,0 · (vε

x ,v
ε
y)(x,0), ∀ x > 0.

Boundary x = 0.
By a similar analysis, we can show that

Λ
ε
0,1 · (V ε

x ,V
ε
y )(0,y)≤ 0 = Λ

ε
0,1 · (vε

x ,v
ε
y)(0,y), ∀ y > 0.

Then, on R2
+, V ε is a sub-solution of (2.2) while vε is a solution. Also on the boundary of R2

+

again V ε is a sub-solution of an oblique Neumann condition and vε is a super-solution. Then,
by comparison, we conclude that vε ≥ φ on R2

+. This proves the lower bound on uε on the
positive orthtant. tu

8 Homothetic case
In this short section, we consider the classical CRRA utility function

U(c) :=
c1−γ

1− γ
, c > 0,

for some γ > 0 with γ = 1 corresponding to the logarithmic utility. Then,

v(z) =
1

(1− γ)

z1−γ

vγ

M
,

with the Merton constant

vM =
β − r(1− γ)

γ
− 1

2
(µ− r)2

γ2σ2 (1− γ).

Hence the risk tolerance function and the optimal strategies are given by

η(z) =
z
γ
, θ(z) =

µ− r
γσ2 z := πMz, c(z) = vMz.

Since the diffusion coefficient α(z) = σθ(z)(1−θz),

ᾱ =
α(z)
η(z)

= γσπM(1−πM).

The constants in the solution of the corrector equation are given by,

ρ0 =

(
3ᾱ2

4σ2

(
λ

1,0 +λ
0,1))1/3

,
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a(z) = η(z)v′(z)ā =
σ2(1− γ)

2γ
ρ

2
0 v(z).

Since
A v(z) =U(c(z)) =

1
1− γ

(vMz)1−γ = vMv(z),

the unique solution u(z) of the second corrector equation

A u(z) = a(z) =
σ2(1− γ)

2γ
ρ

2
0 v(z)

is given by

u(z) =
σ2(1− γ)

2γ
ρ

2
0 v−1

M v(z) = u0z1−γ ,

where
u0 := (πM(1−πM))4/3 v−(1+γ)

M .

Finally, we summarize the expansion result in the following.

Lemma 8.1 For a power utility function U,

vε(x,y) = v(z)− ε
2u0z1−γ +O(ε3).

The width of the transaction region for the first correction equation 2ξ0 = 2η(z)ρ0 is given by

2ξ0 =

(
6
γ
(λ 0,1 +λ

1,0)

)1/3

(πM(1−πM))2/3 .

The above formulae with λ i, j = 1 are exactly the same as equation (3.13) in [20] .
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