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Abstract. Homogenization of radially inhomogeneous spherical nonlinear elastic shells subject to

internal pressure is studied. The equivalent homogeneous material is defined in such a way that it

gives rise to exactly the same global response to the pressure load as that of the inhomogeneous shell.

For a shell with general strain–energy function and inhomogeniety, the strain–energy function of the

equivalent homogeneous material is determined explicitly. The resulting formula is used to study

layered composite shells. The equivalent homogeneous material for an infinitely fine layered

composite shell is examined, and is found to give not only the same global response, but also the

same average stress field as the composite shell does.
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1. Introduction

Homogenization theory has played a fundamental role in the development of

mathematical models for describing the constitutive response of composite

materials. The basic idea is to identify a homogeneous material that is equivalent,

in a certain sense, to a given inhomogeneous material. This idea assumes great

importance from both the theoretical and practical perspective. For this reason,

considerable research effort has been expended in developing homogenization

models during the last four decades. A fair sample of the works, which is by no

means exhaustive, includes those by Eshelby [2], Hill [6, 7], Christensen [1],

Willis [29, 30], Hashin [4], Francfort and Murat [3], Milton and Kohn [12], Kohn

[9], Nemat-Nasser and Hori [14], Ponte Castañeda [18], Suquet [27], Ponte

Castañeda and Suquet [19], Milton [11], and Sahimi [22, 23]. While it is

plausible that a composite material may be replaced, with regard to its response

characteristics, by a homogeneous material in a length scale much larger than
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that of the inhomogeneity, a complete and rigorous treatment of such a

mathematical equivalence does not appear available.

To be precisely defined, such an equivalent homogeneous material must be

understood as the limiting behavior of a sequence of composite materials with

increasing finer microstructures of common characteristics. This idea is

expounded in the review article by Kohn [9], that summarizes the theoretical

development of mathematical modeling of composite materials up to 1988. For

composites of linear elastic materials, an attempt is made to precisely define

effective moduli, i.e., the components of the elasticity tensor of the equivalent

homogeneous material. To this end, a sequence of composites involving a

parameter � is introduced. For periodic composites and random composites, �
represents the length scale of the microstructure. The characteristic functions of

this sequence of composites are generated by re-scaling a basic characteristic

function through �. For a given load, the elastostatic solutions of this sequence of

composites give a sequence of displacement fields u�. The effective moduli are

defined as those that produce, under the same load, a displacement field that is

the limit of u� as � Y 0.

This definition is certainly precise and physically well motivated. The existence

of effective moduli so defined, however, has not been fully established. Questions

arise as to whether the limit of u� exists for a given load, and if the limit does

exist, whether there exist elastic moduli that produce the limiting displacement

field for the given load. Of course, even after the existence of such effective

moduli is established for all possible loads, there remains the question whether

the effective moduli are the same for all the loads. The concept of effective

moduli would not be useful if the latter uniqueness issue is not resolved. To our

knowledge, these issues are at best partially addressed for some special

composite structures. For composites of nonlinear elastic materials, the problems

of the existence and uniqueness of equivalent homogeneous materials are even

more challenging. Among few others, a rigorous analysis is given by Müller [13]

for the integral of a scalar function which is spatially periodical with a

periodicity parameter �. In the physical context, the scalar function in question

can be the strain–energy function of a periodically inhomogeneous elastic

material. It is shown that there exist a Bhomogenized^ energy function, whose

integral is the limit of the integral of the inhomogeneous energy function as �
approaches 0. In this cited work, the displacement field is taken to be

independent of the value of �, which is not the case for solutions of the elastic

composites with varying inhomogeneity.

The above definition of the effective moduli through limit processes does not

seem to lead to a practical way of finding the effective moduli. For this reason,

researchers have developed various Boperation-based^ definitions. A detailed

review of some important developments can be found in the paper by Ponte

Castañeda and Suquet [19]. A common approach is to use a representative

volume element and the spatial averages of the field variables over the volume

194 Y.-C. CHEN ET AL.



element. For an elastic material, it has been shown that if the representative

volume element is subjected to a homogeneous (affine) displacement boundary

condition, then the derivative of the average strain–energy function with respect

to the average strain equals the average stress. The average strain–energy

function so obtained is then taken as the effective strain–energy function for the

composite. The effective moduli can be obtained by taking the second order

derivative of the effective strain–energy function.

This approach, intuitively reasonable, of replacing a complicated structure by

a simple one allows great facility in developing computational models for the

effective properties of composites. It avoids all together the difficulty associated

with proving the existence of an equivalent homogeneous material. However, the

issue of how Beffective^ the effective properties are, in terms of describing the

behavior of real composites, becomes rather elusive. A representative volume

element is clearly an idealization. To what extent this idealization is valid is

rarely quantified. For a given composite structure, a number of different

representative volume elements are often proposed, which lead to different

models to predict effective properties. While much effort has been devoted to

comparing the different models, little has been done to compare a model with the

real composite. Furthermore, the limitation of using homogeneous boundary

conditions has not been fully addressed. Indeed, spatially the stress and strain can

vary rapidly in a composite material even when it is subjected to a homogeneous

boundary condition.

As much progress has been made in deriving effective properties of the linear

elastic composite materials, relatively less has been done for large deformations

of composite materials with nonlinear constitutive functions. Many concepts

developed for small deformation deformations of linear composites need be re-

examined. For example, the volume average of a stress (or strain) measure may

not correspond to the boundary data measured in experiment. Hill [8] addressed

this issue, arguing that macro-variables defined in terms of surface data are not

necessary volume averages of their microscopic counterparts. Indeed, he shows

that the only stress whose macroscopic value always coincides with its volume

average is that formed from the contravariant components of Kirchhoff stress.

Hill’s analysis does not invoke an overall constitutive function that relates the

macroscopic measures of stress and deformation. However, the theoretic

development in that direction is clearly implied.

Such an overall constitutive function, if it exists, would play a central role in

the analysis of nonlinear composites. In this light, considerable research efforts

have been devoted to studying its properties, assuming that it does exist. One

approach, in parallel to that for linear composites, has been to define a

macroscopic energy in terms of the macroscopic deformation, with the

presumption that the derivative of the macroscopic energy would give

the macroscopic stress. Among others, Ogden [15] studied the properties of the

macroscopic energy using the extremum principles, and established upper and

HOMOGENIZATION AND GLOBAL RESPONSES OF INHOMOGENEOUS SPHERICAL SHELLS 195



lower bounds on this energy. Various improved bounds [17, 21, 28] have been

subsequently derived. It is noted that a bound on the energy function does not in

general lead to a bound on the stress itself.

As summarized in Ponte Castañeda and Suquet’s review article [19], most

research efforts on nonlinear composites are concentrated on plasticity and creep

deformation of polycrystals with special forms (such as power law) for the

constitutive functions. It is usually assumed that the effective properties are

described by the constitutive functions of the same type as those of the

constituents. Often small deformation is assumed despite that the material

behavior is nonlinear. The analysis for large deformations of nonlinear elastic

composites is lacking to a large extent. In a series of papers, Saravanan and

Rajagopal [24 – 26] have shown that if the same types of constitutive functions

are taken for the equivalent homogeneous material and the composite, then using

the equivalence of energy or the equivalence of moduli is geometry dependent

for a special deformation, and is deformation dependent for a special geometry.

Thus, different values of the equivalent moduli can be obtained when

correlations are made with respect to different experiments.

Of course, the merit of the existing theories for composite materials should

not be understated. Among other things, they overcome the difficulty associated

with the direct stress analysis of a real composite structure. Ultimately, this is the

very reason for the development of these theories – to provide mathematical

models to predict the macroscopic behavior of composite materials. The

importance of verifying that a model does indeed give reasonably accurate

description of the global response of a composite material to the loads is not to

be ignored. In this regard, the recent work of Lahellec, Mazerolle and Michel

[10] of comparing the theoretical prediction with the finite-element solutions and

the experimental measurements should be highly appreciated. Of course, a

numerical solution, or an experiment, is for a particular material and geometry,

and therefore cannot lead to the general verification of a model, as effectively as

an analytic solution can.

While such a verification is very difficult for most composites, there are

composite structures for which analytic solutions of the equilibrium equations are

available. This makes it possible to compare the exact solution with the solution

of the homogenization model, or to evaluate the assumptions made in the model.

One such structure, a radially inhomogeneous spherical shell under internal

pressure, is studied in this work. The analytic solution can be obtained for

general incompressible isotropic elastic materials with arbitrary radial inhomo-

geneity. This enables us to define the equivalent homogeneous material as one

which gives precisely the same global response as the inhomogeneous shell does.

In particular, the inhomogeneous shell and the equivalent homogeneous shell

cannot be distinguished by the experiment that measures the boundary displace-

ments and the boundary tractions. Although this is not the definition adopted by

most researchers, it is our belief that a good micromechanics-based definition
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should be at least consistent with the definition based on equivalent global

response of the inhomogeneous and the homogenized bodies. After all, a theory,

however sophisticated, would be of little value if it gives grossly wrong

predictions with respect to the global response of a composite.

In Section 2, the boundary value problem of a spherical shell subject to

uniform internal pressure is formulated and solved. The shell is composed of a

radially inhomogeneous, incompressible, isotropic, elastic material. The form of

the strain–energy function, as well as the radial inhomogeniety, are left arbitrary.

Nonlinear elasticity theory is used to find the exact solution for large

deformations of the shell. The global response of the shell, i.e., the relationship

between the displacement and the pressure is obtained.

The equivalent homogeneous material, defined as one that gives exactly the

same global response as the inhomogeneous shell, is studied in Section 3. We do

not assume that the strain–energy function for the equivalent homogeneous

material has a particular form as related to that of the inhomogeneous shell. It is

to be determined purely by the equivalence requirement. By solving an integro-

differential equation, we explicitly establish the existence of the equivalent

homogeneous material. The strain–energy function of this material, which is

unique in terms of its restriction to spherically symmetric deformations, is

expressed in terms of the strain–energy function of the inhomogeneous material.

A spherical shell composed of two layers of neo-Hookean materials is studied

in Section 4. The strain–energy function of the equivalent homogeneous material

is found in series form. A closed-form expression for the strain–energy function

does not appear possible. However, by an asymptotic analysis, we show that the

equivalent homogeneous material is not neo-Hookean. It is worth noting that a

parallel can be drawn between the present solution and the solution of Hashin [5]

for a Mooney–Rivlin hollow spherical elastic shell under uniform tractions on

the outer surface. He stated that the exact solution of this boundary value

problem defines the effective stress–strain relation of the equivalent homoge-

neous material. The focus of his work was not on characterizing the constitutive

function of the equivalent homogeneous material for spherical shells of general

elastic materials. Nevertheless, it can be readily shown from his solution that the

equivalent homogeneous material is not of the Mooney–Rivlin type.

In the concluding Section 5 of the present paper, a much more complicated

composite shell is studied, that is composed of an arbitrary number of layers of

two homogeneous, incompressible, isotropic, elastic materials with strain–energy

functions of general form. The local volume fraction of each component is

assumed to be constant along the radius. Although the expression for the strain–

energy function of the equivalent homogeneous material, involving a double

series, is hopelessly complicated, we find that this expression reduces to a very

simple form when passing to the limit as the number of the layers tends to

infinity and the thickness of each layer tends to zero. The effective strain–energy

function for this composite of infinitely fine microstructures actually follows a
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simple mixture rule. Finally, the average strain and the average stress for this

infinitely fine structure are studied. It is shown that they agree with the strain and

stress fields of the equivalent homogeneous shell.

2. Response of an Inhomogeneous Spherical Shell to Internal Pressure

Consider a spherical shell which occupies, in a reference configuration, the

region

4 � R;D;6ð Þ : A � R � B; 0 � D � �; 0 � 6 � 2�f g;
where R, Q and F are spherical polar coordinates, and A and B are the inner and

outer radii of the undeformed shell.

The shell is assumed to be radially inhomogeneous. Subject to a load of

uniform internal pressure p, the shell undergoes a deformation of inflation. The

global response of the shell is defined by the relationship between p and the

boundary displacements of the shell. We assume that the deformation of the shell

is spherically symmetric under the uniform internal pressure as given by

r ¼ rðRÞ; � ¼ D; � ¼ 6; ð1Þ
where r, q and � denote the spherical coordinates of the material particle (R, Q,

F) after deformation, and r(R) is a C1 function. The physical components of the

deformation gradient F for the spherical deformation (1) are

F ¼
r0ðRÞ 0 0

0 rðRÞ=R 0

0 0 rðRÞ=R

0
@

1
A: ð2Þ

The deformation gradient has the polar decomposition

F ¼ RU ¼ VR;

where R is the rotation tensor, and U and V are, respectively, the right and left

stretch tensors. The principal stretches �1, �2 and �3 are the eigenvalues of U or

V. For the spherical deformation (1), we have

�1 ¼ r0ðRÞ; �2 ¼ �3 ¼
rðRÞ

R
: ð3Þ

The material of the shell is assumed to be incompressible, that is, it can undergo

only isochoric deformations and thus we require that

detF ¼ r2r0ðRÞ
R2

¼ �1�2�3 ¼ 1: ð4Þ

Integrating equation (4) yields

rðRÞ ¼ R3 � A3 þ a3
� �1

3 ; ð5Þ
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where a is the inner radius of the deformed shell. Equation (5) shows that a

spherically symmetric deformation of the form (1) is completely determined

once the displacement of the inner surface is given. Hence, if two spherical shells

have the same global response, i.e., if they have the same relationship between p

and the boundary displacements, then they have the same relationship between

the internal pressure p and the entire displacement field.

The material of the inhomogeneous shell is further assumed to be isotropic

and hyperelastic in the reference configuration. Such a material possesses a

strain–energy function of the form (see, for example, [16])

W ¼ ^
WðF;RÞ ¼ W �1; �2; �3;Rð Þ: ð6Þ

The reduced strain–energy function W is symmetric in the principal stretches:

W �1; �2; �3;Rð Þ ¼ W �2; �1; �3;Rð Þ ¼ W �1; �3; �2;Rð Þ: ð7Þ
The Piola–Kirchhoff stress tensor S is given by

S ¼ �p̂ F�T þ @
^

W

@F
;

where p̂p is the indeterminate part of the stress due to the incompressibility

constraint. The Cauchy stress tensor T is related to the Piola–Kirchhoff stress

tensor by

T ¼ SFT

For a deformation gradient of form (2), the physical components of Piola–

Kirchhoff stress are given by [16]

S ¼
SR 0 0

0 SD 0

0 0 S6

0
@

1
A;

where

SR ¼ �^p��1
1 þW1; SD ¼ S6 ¼ �^p��1

2 þW2;Wi �
@W

@�i

�1; �2; �2;Rð Þ: ð8Þ

In the absence of body forces, the equations of equilibrium take the form

Div S ¼ 0; ð9Þ
where the divergence operator is with respect to the reference configuration. For

the spherical deformation (1), the components of F are functions of R alone.

Equation (9) then implies that p̂p is also a function of R alone, and so are the

components of S. The only non-trivial component of equation (9) is

dSR

dR
þ 2

R
SR � SDð Þ ¼ 0: ð10Þ
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The boundary conditions are

SRðAÞ ¼ �p��1
1 ðAÞ; SRðBÞ ¼ 0: ð11Þ

It follows from equations (11), (10), (4), (3) and (8) that

p ¼ �1ðBÞSRðBÞ � �1ðAÞSRðAÞ

¼
ZB

A

d

dR
�1SRð ÞdR

¼
ZB

A

d�1

dR
SR �

2�1

R
SR � SDð Þ

� �
dR

¼
ZB

A

2�1

R�2

�2SD � �1SRð ÞdR

¼
ZB

A

2�1

R�2

�2W2 � �1W1ð ÞdR

ð12Þ

Equation (12) gives, with aid of equations (3) and (5), the relation between p and

a, and thus defines the global response of the spherical shell. This equation can

be written in a more explicit form in terms of the circumferential stretch

� � R3 � A3 þ a3ð Þ
1
3

R
: ð13Þ

We then have

�1 ¼ ��2; �2 ¼ �3 ¼ �: ð14Þ

The restriction of the strain–energy function W on the principal stretches

satisfying equation (14) is defined by

~
Wð�;RÞ � W ��2; �; �;R

� �
: ð15Þ

Differentiating equation (15) with respect to � and using equation (7), we find

that

@
~

W

@�
ð�;RÞ ¼ �2��3W1 þ 2W2: ð16Þ
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On substituting equation (16) into equation (12) and using equations (14) and

(13), we find that

p ¼ pðaÞ �
ZB

A

1

R�2

@
~

Wð�;RÞ
@�

����
�¼ 1þa3�A3

R3

� �1=3
dR: ð17Þ

Equation (17) shows how the internal pressure p depends on the deformed

inner radius a. Since the deformation in the entire shell is completely determined

by a through equation (5), function p(a) defined by equation (17) represents the

response of the spherical shell to the pressure load. Once the material of the shell

(radially inhomogeneous, isotropic, incompressible) is given, the response

function of the shell can be computed through equation (17). The task at hand

is to determine whether there exists a homogeneous, isotropic, incompressible,

elastic material, so that a spherical shell composed of such a material would have

exactly the same response function p(a).

For later reference, the stress components are derived here. Substitution of

equation (8) into equation (10) gives

dp̂

dR
¼ �1

dW1

dR
þ 2�1

R
W1 �W2ð Þ: ð18Þ

On integrating equation (18) and using the boundary conditions (11), we find that

^p ¼ pþ �1W1 þ
ZR

A

2�1

R�2

�1W1 � �2W2ð ÞdR: ð19Þ

Finally, substituting equation (19) back into equation (8), and using equations

(16) and (17), we arrive at

SR ¼ ��2

ZB

R

1

R�2

@
~

Wð�;RÞ
@�

dR; SD ¼
SR

�3
þ 1

2

@
~

Wð�;RÞ
@�

; ð20Þ

where � is given by equation (13).

3. Globally Equivalent Homogeneous Shell

For the radially inhomogeneous spherical shell discussed in the preceding section,

a response function p(a) can be computed through equation (17). A homogeneous

spherical shell (of the same geometry) is said to be globally equivalent to the

inhomogeneous shell if it has exactly the same response function p(a). We

emphasize here that the global equivalence of spherical shells defined here is

different from the local equivalence of material elements introduced in the

HOMOGENIZATION AND GLOBAL RESPONSES OF INHOMOGENEOUS SPHERICAL SHELLS 201



literature of composite materials through the average stresses and average strains

(see, for example, [1]). However, the notion of global equivalence is introduced

on the premise that if a homogeneous material that is locally equivalent to the

given inhomogeneous material does exist, then two spherical shells composed of

these two materials should also be globally equivalent. In other words, the

globally equivalent homogeneous materials should contain all candidates for the

locally equivalent materials.

In this work, we wish to find a globally equivalent material that is ho-

mogeneous, incompressible, isotropic and hyperelastic. This class of materials is

chosen as the simplest possibility and is expected to render the desired global

equivalence only for the particular load (internal pressure) under consideration.

For more general loads, a globally equivalent homogeneous material, if it exists,

is likely to be anisotropic. For the present problem, we denote the strain–energy

function of the equivalent homogeneous, incompressible, isotropic and hyper-

elastic material by

U ¼ U �1; �2; �3ð Þ;
where �i are again the principal stretches. Compared with the strain–energy

function (6) for the inhomogeneous material, the strain–energy function U(�1,

�2, �3) has no dependence on the radial coordinate R. The response function of

the homogeneous shell is determined in the same way as that presented in the

preceding section for the inhomogeneous shell. We thus adopt the same notation

for the analysis of the homogeneous shell, except for the obvious substitution of

U for W. In analogy to equation (15), we define

~
Uð�Þ � U ��2; �; �

� �
; ð21Þ

where � is again given by equation (13) with R, A and a now being used for the

homogeneous shell. The response function for the homogeneous shell is then

given by equation (17) with all appropriate replacements of the variables.

The determination of a globally equivalent homogeneous material hence

amounts to finding a function eU(�) that satisfies

ZB

A

~
U 0ð�Þ
R�2

����
�¼ 1þ a3�A3

R3

� �1=3
dR ¼

ZB

A

1

R�2

@
~

Wð�;RÞ
@�

����
�¼ 1þa3�A3

R3

� �1=3
dR; ð22Þ

for all a 2 [A, V). To solve this integro-differential equation, we first make a

change of variables (13) on the left-hand side of equation (22), yielding

Z1þ a3�A3

B3

� �1=3

a
A

~
U 0ð�Þ
1� �3

d� ¼
ZB

A

1

R�2

@
~

Wð�;RÞ
@�

����
�¼ 1þa3�A3

R3

� �1=3
dR: ð23Þ
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Introducing the circumferential stretch 0 of the inner surface through

0 � a

A
;

we can rewrite equation (23) as

Z0

1þA303�A3

B3

� �1=3

~
U 0ð�Þ
�3 � 1

d� ¼
ZB

A

1

R�2

@
~

Wð�;RÞ
@�

����
�¼ 1þA303�A3

R3

� �1=3
dR: ð24Þ

By the isotropy, the function U possesses the same symmetry as that

described by equation (7). It implies that

~
U 0ð1Þ ¼ 0:

Also, function U is assumed to be of C2, so we can define a function

f ð0Þ �
Z0

1

~
U 0ð�Þ
�3 � 1

d�: ð25Þ

It then follows that equation (24) can be further rewritten as a recurrence

equation

f ð0Þ ¼ f 1þ A303 � A3

B3

� �1=3
 !

þ
ZB

A

1

R�2

@
~

Wð�;RÞ
@�

����
�¼ 1þA303�A3

R3

� �1=3
dR;

ð26Þ

which holds for all 0 2 [1, V).

On repeatedly applying the recurrence equation (26), and using equation (25)

and the fact that limmYV (A3m03
j A3m)/B3m = 0, we arrive at

f ð0Þ ¼ f 1þ
A3m 03 � 1
� �
B3m

" #1=3
0
@

1
Aþ

Xm

n¼1

ZB

A

1

R�2

@
~

Wð�;RÞ
@�

����
�¼ 1þA3n 03�1ð Þ

B3n�3R3

h i1=3dR

¼
X1
n¼1

ZB

A

1

R�2

@
~

Wð�;RÞ
@�

����
�¼ 1þ A3n 03�1ð Þ

B3n�3R3

h i1=3dR:

ð27Þ
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The last series converges uniformly. By differentiating equation (27), we obtain

~
U 0ð0Þ
03 � 1

¼
X1
n¼1

ZB

A

@

@0

1

R�2

@
~

Wð�;RÞ
@�

����
�¼ 1þ A3n 03�1ð Þ

B3n�3R3

h i1=3

8<
:

9=
;dR:

This equation can be rearranged and integrated to give the restricted strain–

energy function for the equivalent homogeneous material:

~
Uð0Þ ¼

X1
n¼1

ZB

A

Z0

1

*3 � 1
� � @

@*

1

R�2

@
~

Wð�;RÞ
@�

����
�¼ 1þ A3n *3�1ð Þ

B3n�3R3

h i1=3

8<
:

9=
;d*dR

¼
X1
n¼1

ZB

A

(
03 � 1

R�2

@
~

Wð�;RÞ
@�

����
�¼ 1þ A3n 03�1ð Þ

B3n�3R3

h i1=3

�
Z0

1

302

R�2

@
~

Wð�;RÞ
@�

����
�¼ 1þ A3n 03�1ð Þ

B3n�3R3

h i1=3d0

)
dR

¼
X1
n¼1

ZB

A

03 � 1

R

"
1

�2

@
~
Wð�;RÞ
@�

� 3
~

Wð�;RÞ
�3 � 1

#

�¼ 1þ A3n 03�1ð Þ
B3n�3R3

h i1=3
dR:

ð28Þ
Here, it has been assumed that

~
Uð1Þ ¼ 0;

~
Wð1;RÞ ¼ 0: ð29Þ

For any given inhomogeneous strain–energy function ~WWð�;RÞ, not only does

equation (28) demonstrate the existence of an equivalent homogeneous material,

it also renders a unique expression for Ũ(�). This, of course, does not imply the

uniqueness of the strain–energy function U(�1, �2, �3) for the equivalent

homogeneous material, as Ũ(�) restricts the value of U(�1, �2, �3) through

equation (21) only on the 1-dimensional set �1
j1/2 = �2 = �3 in the domain of U.

In general, we do not expect to obtain a closed-form expression for Ũ(�).

Numerical computation of the integral and summation may be necessary.

Equation (28) can be written in the following alternate form, which is more

convenient to use for further computation:

~
Uð0Þ ¼

X1
n¼1

ZB

A

03 � 1
� �( 1

�3 � 1

@
~

Wð�;RÞ
@R

����
�¼ 1þ A3n 03�1ð Þ

B3n�3R3

� 	1=3

� d

dR

~
Wð�;RÞ
�3 � 1

����
�¼ 1þ A3n 03�1ð Þ

B3n�3R3

� 	1=3

2
4

3
5
)

dR: ð30Þ
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For the special case where ~WW is independent of R, which corresponds to a

homogeneous material, equation (30) leads to, as expected,

~
Uð0Þ ¼

X1
n¼1

03 � 1
� � ~

Wð�Þ
�3 � 1

����
�¼ 1þA3n�3 03�1ð Þ

B3n�3

� 	1=3�
~

Wð�Þ
�3 � 1

����
�¼ 1þA3n 03�1ð Þ

B3n

� 	1=3

2
4

3
5

¼ 03 � 1
� � ~

Wð0Þ
03 � 1

� lim
�!1

~
Wð�Þ
�3 � 1

� �

¼ ~
Wð0Þ;

where use has been made of equation (29) and of the equation lim�!1

d ~WWð�Þ=d� ¼ 0, as implied by equation (7).

For an inhomogeneous shell, the expression of the strain–energy function Ũ

for the equivalent homogeneous material may not be obtained in closed form. In

the following sections, we will examine two composite shells, one with two

layers of neo-Hookean materials, the other with two arbitrary elastic materials in

infinitely fine structures.

4. A Two-layer Neo-Hookean Shell

In this section, we study an inhomogeneous neo-Hookean shell. The main

conclusion to be drawn from this example is that the equivalent homogeneous

shell is not composed of a neo-Hookean material. This demonstrates that the

practice of seeking equivalent homogeneous materials in the same class of

constitutive functions is not warranted.

Consider an inhomogeneous isotropic neo-Hookean shell for which

W �1; �2; �3;Rð Þ ¼
1
2
�1 �

2
1 þ �2

2 þ �2
3 � 3

� �
when A < R < C;

1
2
�2 �

2
1 þ �2

2 þ �2
3 � 3

� �
when C < R < B;

8<
:

where C 2 (A, B) is the interface between the two layers of neo-Hookean ma-

terials, and m1 and m2 are positive material constants that correspond to the shear

moduli of these two materials for infinitesimal deformations. By equation (15),

we have

~
Wð�;RÞ ¼

1
2
�1 2�2 þ ��4 � 3ð Þ when A < R < C;

1
2
�2 2�2 þ ��4 � 3ð Þ when C < R < B:

8<
: ð31Þ
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The strain–energy function of the globally equivalent homogeneous material

is obtained by substituting equation (31) into equation (30):

~
Uð0Þ ¼

X1
n¼1

03 � 1
� �" �1 2�2

A þ ��4
A � 3

� �

2 �3
A � 1

� � �
�1 2�2

C þ ��4
C � 3

� �

2 �3
C � 1

� �

þ
�2 2�2

C þ ��4
C � 3

� �

2 �3
C � 1

� � �
�2 2�2

B þ ��4
B � 3

� �
2 �3

B � 1ð Þ

#
; ð32Þ

where

�R � 1þ
A3n 03 � 1
� �

B3n�3R3

" #1=3

; ð33Þ

for R = A, B or C.

It is an easy matter to check that if m2 = m1 or if C = B, equation (32) gives

~
Uð�Þ ¼ �1 2�2 þ ��4 � 3

� �
:

This is the expected result when the two-layer shell reduces to a homogeneous

shell. For a true two-layer shell, there seems to be no closed form expression for

equation (32). Nevertheless, it will be shown that in general Ũ is not of the

following form for a neo-Hookean material
~
UNHð�Þ ¼ � 2�2 þ ��4 � 3

� �
; ð34Þ

m being a constant. This leads to the conclusion that the equivalent homogeneous

material of a composite of neo-Hookean materials is not neo-Hookean. To

demonstrate this, we take the following values of the geometry and material

constants

A ¼ 1; B ¼ 31=3; C ¼ 21=3; �1 ¼ 1; �2 ¼ 2: ð35Þ
Substituting equation (35) into equation (32), computing the derivatives of Ũ at

0 = 1, we find, after a tedious but straightforward calculation, that

~
Uð1Þ ¼ 0;

~
U 0ð1Þ ¼ 0;

~
U 00ð1Þ ¼ 15;

~
U 000ð1Þ ¼ � 501

8
:

Hence, for small deformations, we have the following Taylor series expansion

for Ũ(�):

~
Uð�Þ ¼ 15

2
ð�� 1Þ2 � 167

16
ð�� 1Þ3 þ : : : ð36Þ

On the other hand, the Taylor series expansion for a neo-Hookean material

(equation (34)) is

~
UNHð�Þ ¼ 6�ð�� 1Þ2 � 10�ð�� 1Þ3 þ : : : ð37Þ

Clearly, equations (36) and (37) are not compatible.
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This result reveals a limitation of the notion of effective elastic moduli which

are invariably introduced in the composite material literature as the material

constants of a homogeneous material that is equivalent to a given composite

material. This notion is based on the assumption that both the composite material

and the equivalent homogeneous material have constitutive functions of the same

form, i.e., for both the stress tensor is a linear function of the strain tensor. While

this may be the case for composites of linear elastic materials, no such claim can be

made of the form of the constitutive function of the homogeneous material that is

equivalent to a given composite of nonlinear elastic materials. In the above ex-

ample, the material of the composite shell is characterized by a simple constitutive

function with two material constants m1 and m2, but the globally equivalent

homogeneous material appears to have a complicated constitutive function.

It may seem that the two-layer neo-Hookean shell considered in this section is

one of the simplest composites of nonlinear elastic materials. Yet the equivalent

homogeneous material assumes a rather complex description. The task of finding

equivalent homogeneous materials of composites of general nonlinear elastic

materials with more complicated micro-structures appears prohibitively difficult.

It is thus particularly surprising that the homogeneous material equivalent to a

composite shell of two arbitrary nonlinear elastic materials with infinitely fine

structure actually has a very simple constitutive function, as is to be demon-

strated in the next section.

5. Composite Shells of Infinitely Fine Structure

Consider a 2m-layer composite shell of two arbitrary isotropic, incompressible,

nonlinear elastic materials. The strain–energy function of this composite material

is given by

W �1; �2; �3;Rð Þ ¼ W ð1Þ �1; �2; �3ð Þ when Ai < R < Ci;
W ð2Þ �1; �2; �3ð Þ when Ci < R < Bi; i ¼ 1; 2; . . . ;m;



ð38Þ

where W (1) and W (2) are the strain–energy functions of the two materials of the

composite, and

Ai �
i� 1

m
B3 � A3
� �

þ A3

� �1=3

;

Ci �
iþ c� 1

m
B3 � A3
� �

þ A3

� �1=3

; Bi �
i

m
B3 � A3
� �

þ A3

� �1=3

; ð39Þ

A and B being again the inner and outer radii of the spherical shell, and c the

volume fraction of material 1. Here the radii of various layers have been so

chosen that the volume fraction of material 1 remains at a constant value c

throughout the thickness of the shell. Obviously, the two-layer neo-Hookean

shell considered in the previous section is a special case where m=1 and

W (k) (�1, �2, �3) = 1/2 mk (�1
2 + �2

2 + �3
2
j 3), k = 1, 2.
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It follows from equation (15) that

~
Wð�;RÞ ¼

~
W
ð1Þð�Þ when Ai < R < Ci;

~
W
ð2Þð�Þ when Ci < R < Bi; i ¼ 1; 2; . . . ;m;

(
ð40Þ

where
~

W ðkÞð�Þ � W ðkÞ ��2; �; �
� �

; k ¼ 1; 2: ð41Þ
By substituting equation (40) into equation (30), we obtain the strain–energy

function of the homogeneous material that is globally equivalent to the

composite shell:

~
Uð0Þ ¼

X1
n¼1

Xm

i¼1

03 � 1
� � ~

W ð1Þ �Ai
ð Þ

�3
Ai
� 1

�
~

W ð1Þ �Ci
ð Þ

�3
Ci
� 1

þ
~

W ð2Þ �Ci
ð Þ

�3
Ci
� 1

�
~

W ð2Þ �Bi
ð Þ

�3
Bi
� 1

" #
;

ð42Þ
where �R is again given for various values of R by equation (33).

A closed form expression for Ũ as given by equation (42) is not available for

a finite m. However, the limit of Ũ as m tends to infinity can be obtained.

Physically, this corresponds to a composite shell of infinitely fine structure, and

thus provides a reasonable approximation for the composites of which the

characteristic length of the microstructure (layer thickness) is sufficiently small.

To this end, we introduce variables

x � i

m
; � � 1

m
: ð43Þ

Then by equations (33) and (39), the circumferential stretches appearing in

equation (42) can be written as

�Ai
¼ 1þ

A3n 03 � 1
� �

B3n�3 ðx� �Þ B3 � A3ð Þ þ A3½ �

( )1=3

;

�Ci
¼ 1þ

A3n 03 � 1
� �

B3n�3 ðxþ ðc� 1Þ�Þ B3 � A3ð Þ þ A3½ �

( )1=3

;

�Bi
¼ 1þ

A3n 03 � 1
� �

B3n�3 x B3 � A3ð Þ þ A3½ �

( )1=3

:

ð44Þ

This allows us to write the expression under the summation signs in equation

(42) as a function of x and �:

gðx; �Þ � 03 � 1
� � ~

W ð1Þ �Ai
ð Þ

�3
Ai
� 1

�
~
W ð1Þ �Ci
ð Þ

�3
Ci
� 1

þ
~
W ð2Þ �Ci
ð Þ

�3
Ci
� 1

�
~
W ð2Þ �Bi
ð Þ

�3
Bi
� 1

" #
: ð45Þ

Since

�Ai
j�¼0¼ �Ci

j�¼0¼ �Bi
;

208 Y.-C. CHEN ET AL.



we have g(x, 0) = 0. By the definition of integral, it can be shown that

lim
m!1

Xm

i¼1

g
i

m
;

1

m

� �
¼
Z1

0

@g

@�
ðx; 0Þdx: ð46Þ

The proof of equation (46) is given in Appendix. By equation (44), we have

d�Ai

d�

����
�¼0

¼
�3

Ai
� 1

� 	
B3 � A3ð Þ

3�2
Ai

x B3 � A3ð Þ þ A3½ � ;

d�Ci

d�

����
�¼0

¼
ð1� cÞ �3

Ci
� 1

� 	
B3 � A3ð Þ

3�2
Ci

x B3 � A3ð Þ þ A3½ � ;
d�Bi

d�

����
�¼0

¼ 0: ð47Þ

It then follows from equations (42), (43), (45–47) that

lim
m!1

~
Uð0Þ ¼

X1
n¼1

Z1

0

03 � 1
� �( �3

Ai
� 1

� 	
B3 � A3ð Þ

3�2
Ai

x B3 � A3ð Þ þ A3½ �
d

d�Ai

~
W ð1Þ �Ai
ð Þ

�3
Ai
� 1

�
ð1� cÞ �3

Ci
� 1

� 	
B3 � A3ð Þ

3�2
Ci

x B3 � A3ð Þ þ A3½ �
d

d�Ci

~
W ð1Þ �Ci
ð Þ

�3
Ci
� 1

þ
ð1� cÞ �3

Ci
� 1

� 	
B3 � A3ð Þ

3�2
Ci

x B3 � A3ð Þ þ A3½ �
d

d�Ci

~
W ð2Þ �Ci
ð Þ

�3
Ci
� 1

�¼0

dx

)

¼
X1
n¼1

Z1

0

03 � 1
� �

�3 � 1ð Þ B3 � A3ð Þ
3�2 x B3 � A3ð Þ þ A3½ � c

d

d�

~
W ð1Þð�Þ
�3 � 1

þ ð1� cÞ d

d�

~
W ð2Þð�Þ
�3 � 1

� �

�¼�Bi

dx

¼
X1
n¼1

Z1

0

� 03 � 1
� �

c
d

d�

~
W ð1Þð�Þ
�3 � 1

þ ð1� cÞ d

d�

~
W ð2Þð�Þ
�3 � 1

� �

�¼�Bi

d�Bi

dx
dx

¼
X1
n¼1

03 � 1
� �( c

~
W ð1Þð�Þ
�3 � 1

þ ð1� cÞ ~
W ð2Þð�Þ

�3 � 1

� �

�¼�Bi
; x¼0

� c
~

W ð1Þð�Þ
�3 � 1

þ ð1� cÞ ~
W ð2Þð�Þ

�3 � 1

� �

�¼�Bi
;x¼1

)

¼
X1
n¼1

03 � 1
� �(c

~
W ð1Þð�Þ þ ð1� cÞ ~

W ð2Þð�Þ
�3 � 1

����
�¼ 1þA3n�3 03�1ð Þ

B3n�3

h i1=3

�c
~

W ð1Þð�Þ þ ð1� cÞ ~
W ð2Þð�Þ

�3 � 1

����
�¼ 1þA3n 03�1ð Þ

B3n

h i1=3

)

¼ 03 � 1
� � c

~
W ð1Þð�Þ þ ð1� cÞ ~

W ð2Þð�Þ
�3 � 1

����
�¼0
� lim

�!1

c
~

W ð1Þð�Þ þ ð1� cÞ ~
W ð2Þð�Þ

�3 � 1

� �

¼ c
~

W ð1Þð0Þ þ ð1� cÞ ~
W ð2Þð0Þ: ð48Þ
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The extremely simple end result of equation (48) states that the strain–energy

function of the equivalent homogeneous material for the composite of infinitely

fine structure follows the simple rule of mixture. This is not to be normally

expected when the strain and stress fields are inhomogeneous in the composite. It

is likely that such a relation holds only for special geometry and loading

conditions of which the present case is a particular example. It requires further

research to identify other boundary value problems for which the equivalent

homogeneous strain–energy functions have a simple form, or just a form that is

practically manageable.

This work is concluded by an analysis to draw possible connections between

the homogeneous material defined by the global response and the homogeneous

material defined through the average stress and the average strain, a practice

commonly followed in the literature of composites. In particular, we shall

demonstrate that for the composite with infinitely fine structures, the average

stress and the average deformation do agree with those of the homogeneous

material we have found through the global response of the composite.

It is clear from equation (5) that the spherically symmetric deformation

studied in this work is independent of the form of the strain–energy function, due

to the incompressibility. Hence, the deformation fields in the composite shell and

in the homogeneous shell are trivially identical. On the other hand, the

comparison of the stress fields is much less straightforward.

For the given 2m-layer composite shell under discussion, the strain–energy

function is given by equations (38 – 41). The stress components at any point in

the composite shell are given by equation (20). Here we shall present the analysis

for the radial stress SR. The same conclusion holds for the circumferential stress

S�.

Let R 2 [A, B] be fixed. There is a unique integer j such that

j < 2þ m R3 � A3ð Þ
B3 � A3

� jþ 1:

It follows from equation (39) that

Aj�1 < R � Aj;

i.e., Aj is the closest material 1 point to R from above. Substituting equation (40)

into equation (20) and applying the mean-value theorem, we find that

SRðRÞ ¼ ��2

ZB

R

~
W�ð�;RÞ

R�2
dR

¼ ��2

ZAj

R

~
W�ð�;RÞ

R�2
dR� �2

Xm

i¼j

ZBi

Ai

~
W�ð�;RÞ

R�2
dR

210 Y.-C. CHEN ET AL.



¼ ��2

ZAj

R

~
W�ð�;RÞ

R�2
dR� �2

Xm

i¼j

ZCi

Ai

~
W
ð1Þ
� ð�Þ
R�2

dRþ
ZBi

Ci

~
W
ð2Þ
� ð�Þ
R�2

dR�

2
64

¼ ��2

ZAj

R

~
W�ð�;RÞ

R�2
dR

��2
Xm

i¼j

Ci � Aið Þ
~

W
ð1Þ
� �̂i

� 	

R̂i �̂
2
i

þ Bi � Cið Þ
~

W
ð2Þ
�

� ^̂

�i

�

^̂

Ri

^̂

�2
i

dR

2
64

3
75

¼ ��2

ZAj

R

~
W�ð�;RÞ

R�2
dR� �2

Xm

i¼j

Bi � Aið Þ

� Ci � Aið Þ ~
W
ð1Þ
� �̂i

� 	

Bi � Aið Þ R̂i �̂
2
i

þ
Bi � Cið Þ ~

W
ð2Þ
�

^

�i

� 	

Bi � Aið Þ

^

Ri

^

�
2

i

�;

2
4

ð49Þ

where R̂Ri 2 Ai;Cið Þ; �RRi 2 Ci;Bið Þ, and

�̂i �
R̂i � A3 þ a3

� 	1
3

R̂i

;

^

�i �

^

Ri � A3 þ a3

� �1
3

^

Ri

:

The last summation in equation (49) corresponds to a partition of the interval [Aj,

B]. Hence, it represents an approximation of an integral over [Aj, B]. This

approximation becomes exact as m Y V. By equation (39), we have

lim
m!1

Ci � Ai

Bi � Ai

¼ c; lim
m!1

Bi � Ci

Bi � Ai

¼ 1� c:

Hence, the integrand in question is

c
~

W
ð1Þ
� ð�Þ þ ð1� cÞ ~

W
ð2Þ
� ð�Þ

R�2
:

Moreover, the last integral in equation (49) tends to zero as m Y V. We thus

arrive at

lim
m!1

SRðRÞ ¼ ��2

ZB

R

c
~

W
ð1Þ
� ð�Þ þ ð1� cÞ ~

W
ð2Þ
� ð�Þ

R�2
dR; ð50Þ

where � is given by equation (13).
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The average radial stress �SSRðRÞ is defined by the volume average of SR(R)

over a representative volume element. Since SR(R) given by equation (50) for the

composite shell of infinitely fine structure is a continuous function of R, the limit

of �SSRðRÞ as the representative volume element approaches zero is the same as

SR(R) given in equation (50). On the other hand, the radial stress in the

equivalent homogeneous shell is obtained by substituting the strain–energy

function (48) into equation (18). This results in exactly the same expression on

the right-hand side of equation (50). It can thus be concluded that the radial stress

in the homogeneous shell that is globally equivalent to the composite shell of

infinitely fine structure is identical to the average stress in the composite shell.

A similar analysis for the circumferential stress S� has been carried out. For

the sake of brevity, the details are omitted. One remark is that unlike the radial

stress, the circumferential stress is discontinuous across the interface between

two layers, due to the presence of the last term @ ~WW=@� in equation (20). As a

result, the limit of S�ðRÞ as m Y V does not exist, in contrast to equation (50).

However, the limit of the average circumferential stress over a fixed

representative volume element exists as m Y V. Furthermore, this limit tends,

as the representative volume element approaches zero, to

� 1

�

ZB

R

c
~
W
ð1Þ
� ð�Þ þ ð1� cÞ ~

W
ð2Þ
� ð�Þ

R�2
dRþ 1

2
c

~
W
ð1Þ
� ð�Þ þ ð1� cÞ ~

W
ð2Þ
� ð�Þ

�
;

�

which is precisely the circumferential stress in the globally equivalent

homogeneous shell. Therefore, not only do the composite shell and the globally

equivalent homogeneous shell have exactly the same relationship between the

boundary deformation and the boundary load, they also have the same average

stress and average deformation when the composite has infinitely fine structure.
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Appendix: Proposition. If g 2 C2ð½0; 1� � ½0; 1�;RÞ satisfies g(x, 0) = 0, then

equation (46) holds.
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Proof. By the mean-value theorem, we have

g
i

m
;

1

m

� �
¼ g

i

m
; 0

� �
þ 1

m

@g

@�

i

m
; 0

� �
þ 1

2m2

@2g

@�2

i

m
;
�

m

� �
;

where q 2 (0, 1). Since g is of C2, there exists M > 0, such that

@2g

@�2
ðx; �Þ

����
���� < M :

By the definition of integral, we find that

lim
m!1

Xm

i¼1

g
i

m
;

1

m

� �
�
Z1

0

@g

@�
ðx; 0Þdx

������

������

¼ lim
m!1

Xm

i¼1

g
i

m
;

1

m

� �
� lim

m!1

Xm

i¼1

@g

@�

i

m
; 0

� �
1

m

�����

�����

¼ lim
m!1

Xm

i¼1

1

2m2

@2g

@�2

i

m
;
�

m

� ������

�����

� lim
m!1

M

2m
¼ 0:

Ì
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