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Abstract 

This paper addresses the usage of a simplified homogenization technique for the analysis of 

masonry subjected to out-of-plane loading. The anisotropic failure surface, based on the 

definition of a polynomial representation of the stress tensor components in a finite number of 

sub-domains, is combined with finite element triangular elements employed for the upper and 

lower bound limit analyses. Several comparisons between the proposed model and experimental 

data available in the literature are presented, for wallettes subjected to bending at different 

orientations and for different panels loaded out-of-plane. The limit analysis results allow to 

identify the distribution of internal forces at critical sections and to obtain the collapse modes, 

as well as the failure loads. Excellent results are found in all cases, indicating that the proposed 

simple tool is adequate for the safety assessment of out-of-plane loaded masonry panels. The 

combined usage of upper and lower bound approaches, and their respective simplifications, 

allow to define a narrow interval for the real collapse load.  



1. Introduction 

The prediction of the ultimate load bearing capacity of masonry walls out-of-plane loaded is of 

great relevance for the design of masonry structures. Out-of-plane failures are mostly related to 

seismic and wind loads and the lack of out-of-plane strength is a primary cause of failure in 

different forms of masonry, particularly in the case of historical buildings (Spence and Coburn 

1992). Masonry structures are often subjected simultaneously to in-plane compressive vertical 

loads (either self weight and permanent loads) and out-of-plane actions. Such loads increase 

both the ultimate out-of-plane strength and the ductility of masonry, and bring additional 

complexity to the structural analysis. 

Laboratory tests (e.g. Gazzola et al. 1985, Southcombe et al. 1995) conducted on brick masonry 

walls subjected to lateral loads, have shown that failure takes place along a well-defined pattern 

of lines. This has inspired approximate analytical solutions based both on the yield line theory 

and on the fracture line theory (Sinha 1978). The yield line approach has been adopted by many 

codes, namely BS 5628 (British Standard Institution, 2005) and Eurocode 6 (CEN, 2004), 

despite the approximations and knowledge that masonry does not behave as a rigid-plastic 

material. Therefore, the prediction of masonry ultimate strength under out-of-plane loads is still 

an open issue and a general model is far from being developed. The major difficulties in 

masonry modeling are due to masonry heterogeneity, as a regular assemblage of bricks and 

mortar, and due to the quasi-brittle behavior of joints under tension.  

Limit analysis combined with homogenization techniques is a powerful structural analysis tool 

to predict masonry behavior at collapse. This approach requires only a reduced number of 

material parameters and allows to avoid independent modeling of units and mortar. In addition, 

it provides limit multipliers of loads, failure mechanisms and, on critical sections, the stress 

distribution at collapse. A drawback of homogenization techniques is that, formally, the 

evaluation of average quantities requires the solution (usually by means of FE techniques) of a 



boundary value problem on the elementary cell, so that different loading conditions require 

different expensive computational simulations. 

In this paper, a simplified and efficient model for homogenized limit analysis of out-of-plane 

loaded masonry structures is presented. In the model, the elementary cell is subdivided along 

the thickness in several layers. For each layer, fully equilibrated stress fields are assumed, 

adopting polynomial expressions for the stress tensor components in a finite number of sub-

domains, imposing the continuity of the stress vector on the interfaces and defining anti-

periodicity conditions on the boundary surface. Furthermore, admissibility constraints are 

imposed for the constituent materials enforcing the satisfaction of the yield conditions for joints 

and bricks on a regular grid of points. Even if such stress distribution is not exactly statically 

admissible in the elementary cell, it has been shown (Milani et al. 2005) that a technically 

suitable approximation of the homogenized yield surface is obtained using the proposed 

procedure. Finally, the out-of-plane failure surfaces of masonry so recovered are implemented 

in FE limit analysis codes (both upper and lower bound) for structural analyses at collapse of 

entire panels.. 

2. Modeling approach 

Let us consider a masonry wall Ω  constituted by a periodic arrangement of bricks and mortar 

disposed in running bond texture (Figure 1). As it as been shown by Suquet (Suquet 1983) and 

further detailed for in-plane loaded brickwork (Milani et al. 2005), homogenization techniques 

combined with limit analysis can be profitably applied for the evaluation of the homogenized 

out-of-plane strength domain homS  of masonry. Under the assumptions of perfect plasticity and 

associated flow rule for the constituent materials, and in the framework of the lower bound limit 

analysis theorem, homS  can be derived by means of the following (non-linear) optimization 

problem (see also Figure 1): 
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where: 

- N  and M  are the macroscopic in-plane (membrane forces) and out-of-plane (bending 

moments) tensors; 

- σ  denotes the microscopic stress tensor; 

- n  is the outward versor of lY∂  surface; 

- lY∂  is defined in Figure 1; 

- [ ][ ]σ  is the jump of micro-stresses across any discontinuity surface of normal intn ; 

- mS  and bS  denote respectively the strength domains of mortar and bricks; 

- Y  is the cross section of the 3D elementary cell with 03 =y  (see Figure 1), Y  is its area, V  

is the elementary cell, h  represents the wall thickness and ( )321 yyyy = ; 

- condition (1-c) imposes the micro-equilibrium with zero body forces, which are usually 

neglected in the framework of the homogenisation theory; 

- anti-periodicity condition (1-e) requires that that stress vectors σn are opposite on opposite 

sides of lY∂ , Figure 2-c, i.e. 2
)(

1
)( nn nm σσ −= . 

It is stressed that experimental evidences show a typical non-associated behaviour for masonry 

in the inelastic range. On the other hand, the classical limit analysis theorems lead to simple 

linear programming problems when associated flow rules for the constituent materials are 

assumed. Nowadays, such problems can be tackled relatively easily by practitioners making use 

of both well known simplex-type and interior-point algorithms, which present robust numerical 

stability and need a very limited computational time for the simulations. Since more 



sophisticated tools are required when a non-associated flow rule is assumed for the constituent 

materials and plastic flow is mostly relevant in the cases that masonry is severely constrained to 

deform in plane, the classical associated formulation for the plastic flow is assumed in this 

paper for the sake of simplicity. 

2.1. The micro-mechanical model proposed 

A simple admissible and equilibrated micro-mechanical model for the evaluation of homS  is 

here presented. The unit cell is subdivided into a fixed number of layers along its thickness, as 

shown in Figure 2-a. According to classical limit analysis plate models (see for instance Hodge 

1959), for each layer out-of-plane components 3iσ  ( 3,2,1=i ) of the micro-stress tensor σ  are 

set to zero, so that only in-plane components ijσ  ( 2,1, =ji ) are considered active. 

Furthermore, ijσ  ( 2,1, =ji ) are kept constant along the 
Li

∆  thickness of each layer, i.e. in 

each layer ),( 21 yyijij σσ = . For each layer one-fourth of the REV is sub-divided into nine 

geometrical elementary entities (sub-domains), so that the entire cell is sub-divided into 36 sub-

domains (see Milani et al. 2005 and Figure 2-b). 

For each sub-domain )(k  and layer )( Li , simple polynomial distributions of degree (m) in the 

variables ( )21 , yy  are a priori assumed for the stress components. Since stresses are polynomial 

expressions, the generic ijth component can be written as follows: 
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representing the unknown stress parameters of sub-domain )(k  of layer )( Li ; 

- ),( LikY  represents the kth sub-domain of layer )( Li . 



The imposition of equilibrium inside each sub-domain (with zero body forces, as usual in 

homogenization procedures), the continuity of the stress vector on interfaces and the anti-

periodicity of σn  permit a strong reduction of the number of independent stress parameters. 

The imposition of micro-stress equilibrium ( 2,10, == ijijσ ) in each sub-domain yields: 

( ) 0SyX =∑
=

2

1

),(
,

j

Tik
ijj

L  ( 3 )

If p  is the degree of the polynomial expansion, ( )1+pp  equations can be written. 

A further reduction of the total unknowns is obtained imposing the continuity of the (micro)-

stress vector on internal interfaces ( 2,10int),(int),( ==+ inσnσ j
ir

ijj
ik

ij
LL ) for every ( )Lik,  and 

( )Lir,  contiguous sub-domains with a common interface of normal intn  (Figure 2-c). Therefore, 

additional ( )12 +p  equations in the stress coefficients can be written for each interface, as: 

( ) ( )( ) 2,10ˆˆˆˆ int),(),(),(),( ==+ in j
Tirir

ij
ikik

ij
LLLL SyXSyX  ( 4 )

Finally anti-periodicity of σn on V∂  requires ( )12 +p  additional equations per pair of external 

faces ( )Lim,  and ( )Lin,  (Figure 2-c), so that stress vectors σn are opposed on opposite sides of 

V∂ : 
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where 1n  and 2n  are oriented versors of the external faces of the paired sub-domains ( )Lim,  

and ( )Lin, . 

Elementary assemblage operations on the local variables allow to write the stress vector of layer 

Li  inside each sub-domain as: 

( ) ( ) layersidomainssubk L
iikik LLL ofnumber,,1ofnumber,,1~~~ ),(),( KK =−== SyXσ  ( 6 )

where ( )LiS~  is the vector of unknown stress parameters of layer Li . 

Equations ( 3 ), ( 4 ), ( 5 ), respectively internal equilibrium, equilibrium on interfaces and anti-

periodicity, can be written in a compact form as 0AS = , where S  is the vector of the total 



stress parameters. Moreover, not all the rows of this system are linearly independent and the 

linear dependence of some equations with respect to others can be handled easily and 

automatically (for instance by means of Symbolic Math ToolboxTM) checking the rank of 

matrix A  and progressively eliminating linearly dependent rows. 

For the in-plane case, it has been shown (Milani et al. 2005) that reliable results can be obtained 

if a fourth order polynomial expansion is chosen for the stress field. For this reason, in all the 

examples treated next, expansions of degree four are adopted. Once the polynomial degree is 

fixed, the proposed out-of-plane model requires a subdivision ( Ln ) of the wall thickness into 

several layers (Figure 2-a), with a fixed constant thickness LL nt
i

/=∆  for each layer. This 

allows to derive the following simple (non) linear optimization problem: 
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where: 

- λ  is the ultimate bending moment (load multiplier) with direction ψ  and ϑ  in the 

xyyyxx MMM −−  space (see Figure 3); 

- ψ  and ϑ  are spherical angles in xyyyxx MMM −− , given by ( ) ( )22
tan

yyxx

xy

MM

M

+
=ϑ , 

( )
xx

yy

M
M

=ψtan ; 

- ),( LikS  denotes the (non-linear) strength domain of the constituent material (mortar or brick) 

corresponding to the thk  sub-domain and th
Li  layer. 



- S~  collects all the unknown polynomial coefficients (of each sub-domain of each layer). 

The following aspects of the formulation are worth noting: 

- For the sake of simplicity, membrane actions are kept constant and independent from load 

multiplier, meaning that the effect of in-plane actions are considered only in the evaluation 

of xyyyxx MMM ,, strength domains. This assumption is acceptable for the tests analyzed 

next, since a fixed in-plane compressive load (regarded as permanent load) 0NN yy −=  is 

applied before out-of-plane actions and is kept constant until failure. 

- Condition ( )f  of equation ( 7 ) should be checked in all points of the domain V . Such 

check could be avoided imposing the material admissibility only where the stress status is 

maximum, see Belytschko and Hodge (1970). This is of course not possible for polynomial 

degrees larger that 1; hence, the discretisation proposed here consists in enforcing, in every 

sub-domain, the admissibility condition in a regular grid of “nodal points” with step rxq . 

Reliable solutions can be obtained with at least 33x  grids (see Milani et al. 2005). 

Obviously, in this way, a rigorous lower bound estimation of the homogenized failure 

surfaces is lost using interpolations with polynomial degrees larger that one, unless a second 

order (discontinuous) interpolation is used (see Sloan 1988). Nevertheless, it has been 

shown (see Milani et al. 2005) that the general procedure proposed can be adopted for 

obtaining accurate results. 

- The non-linearity of the terms ),(),(~ LL ikik S∈σ , due to the (possible) non-linearity of the 

strength functions of the components is avoided by means of a recursive algorithm, in order 

to use linear programming algorithms. On the other hand, each of the non-linear inequalities 

of equation ( 7 ) could be approximated by a set of linear inequalities (Anderheggen and 

Knopfel 1972 and Maier 1977), by replacing the yield surfaces with inscribed hyper 

polyhedrons. Alternatively and more efficiently, an iterative procedure is adopted here, 

taking advantage of the fact that the simplex method proceeds from basic solution to basic 

solution towards an optimal basic solution, i.e. on the vertices of the hyper polyhedron. The 



basic idea of the iterative procedure (Cannarozzi et al. 1982 and Milani et al. 2005) is to 

adopt, in the starting step, a coarse linear approximation of the non linear failure surfaces of 

the components, as shown in Figure 4. The application of the simplex method in the 

optimization at the thi  step leads to an optimal solution in a corner of the domain. From the 

iterative thi  solution point a new tangent plane is added in P’, as shown in Figure 4, so 

restarting an ( )thi 1+ optimization procedure. The iterations continue until a fixed tolerance 

in the error between the thi  and ( )thi 1+  solution is reached. The aim of the procedure is to 

give a precise approximation of the yield surface only near the solution of the problem. It is 

stressed here that the simplex method can rarely compete favourably with the recent and 

more efficient interior-point methods (IPMs) (see Krabbenhoft and Damkilde 2003). 

However, equation (7) has a very limited number of variables and inequality constraints, 

meaning that simplex-type algorithms can be profitably used to solve the problem. On the 

other hand, IPMs are applied next to solve the linear programming problems at a structural 

level, as given later by equations (9) and (12). 

- In what follows, wall thickness is subdivided into at least thirty layers. Authors experienced 

that more refined discretizations do not allow technically meaningful improvements in the 

accuracy of the homogenized failure surface. 

3. Finite element limit analysis of plates 

The finite elements utilized for the lower and upper bound limit analyses are briefly recalled 

next. 

• Lower bound approach 

A FE lower bound limit analysis program based on the triangular plate bending element 

proposed by Hellan and Herrmann (1967) is adopted. This triangular element has been 

preferred rather than more accurate elements, proposed by Krenk et al. (1994) and Krabbenhoft 

and Damkilde (2002), due to its simplicity and the low number of unknowns involved in the 



optimization. A constant moment field is assumed inside each element E , so that three moment 

unknowns per element are introduced; such unknowns are the horizontal, vertical and torsion 

moments ( E
xxM , E

yyM , E
xyM ) or alternatively three bending moments Ei

nnM , Ej
nnM , Ek

nnM  along the 

edges of the triangle (Figure 5-a). Continuity of E
nnM  bending moments is imposed for each 

internal interface between two adjacent elements R  and P  (i.e. Rk
nn

Pj
nn MM = , see Figure 5-b), 

whereas no constraints are imposed for the torsion moment and the shear force. 

Due to the assumption of constant moment fields, internal equilibrium for each element is 

ensured only in integral form. By means of the application element by element of the principle 

of virtual work, three equilibrium equations for each triangle are obtained: 

EE
T
EE PMBR =+  ( 8 )

where 
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the lumped load equivalent to ( )yxp , . 

Further equilibrium conditions have to be imposed in order to ensure nodal equilibrium, i.e. for 

each (not-constrained) node i  ∑
=

=
p

r

E
iR

1
0 , where E

iR  is referred to element E  and p  is the 

number of elements with one vertex in i . For each element E  only one admissibility condition 



in the linearized form E
inE

in
E bMA ≤ is required, where in

EA  is a 3mx  coefficients matrix of the 

linearization planes of the strength domain, m  is the number of the planes in the linearization, 

E
inb  collects the right hand sides of these planes and [ ]TE

xy
E
yy

E
xxE MMM=M  is the vector of 

element moment unknowns. 

Finally, the following linear programming problem is obtained: 

{ }inineqeq bMAbMA ≤= ;|max λ  ( 9 )

where λ  is the limit multiplier, M  is the (assembled) vector of moment unknowns (three for 

each element), eqeq bMA =  collects elements equilibrium, continuity of the bending moment on 

interfaces, boundary conditions on bending moment and nodal equilibrium, whereas 

inin bMA ≤  collects linearized yield conditions ( elmxN  inequalities if elN  is the number of 

elements). 

• Upper bound approach 

A FE upper bound limit analysis code based on the triangular element proposed by Munro and 

Da Fonseca (1978) is adopted. The displacement field is assumed linear inside each element 

and nodal velocities are taken as optimization variables. Denoting with [ ]TE
k

E
j

E
iE www=w  

element E  nodal velocities and with [ ]TE
k

E
j

E
iE ϑϑϑ=θ  side normal rotations, Eθ  and Ew  

are linked by the compatibility equation EEE wBθ =  (Figure 6-a and –b). Plastic dissipation 

occurs only along each interface I  between two adjacent triangles R  and K or on a boundary 

side B  of an element Q  (see Figure 6-c).  

Internal power in
IP  dissipated along I  can be written as follows: 

0

0

,

,

<=

>=
−

+

IIInn
in

I

IIInn
in

I

MP

MP

ϑϑ

ϑϑ
 

( 10 )

where  

- K
j

R
iI ϑϑϑ +=  is the relative rotation between R  and K  along I  (see Figure 6-b); 



- +
InnM ,  and −

InnM ,  are positive and negative failure bending moments along I ; a rigorous upper 

bound of the collapse load can be obtained deducing +
InnM ,  and −

InnM ,  from the actual strength 

domain ( homS ) of the homogenized material in the space xyyyxx MMM ,,  by means of the 

following optimization:  
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where IΦ  is the interface rotation angle with respect to the horizontal direction. A similar 

expression can be obtained for a boundary side B  of an element Q , with the only difference 

that in this case B
QI Φ=Φ  (see Figure 6-c). 

The internal power dissipated is ∑∑ +=
BI n

B

in
B

n

I

in
I

in PPP , where in
BP  is the power dissipated on the 

thB  boundary segment. Since inP  is non linear, see equation ( 10 ), a non linear optimization 

problem is obtained. Nevertheless, this non-linearity can be easily avoided by introducing 

positive and negative rotations as: 0;,, ≥−=+= −+−+−−++
IIIIIIInnIInn

in
I MMP ϑϑϑϑϑϑϑ . 

External power dissipated can be written as ( )wPP TTexP 10 λ+= , where 0P  is the vector of 

(equivalent lumped) permanent loads, λ  is the load multiplier, T
1P  is the vector of (lumped) 

variable loads and w  is the vector of assembled nodal velocities. As the amplitude of the 

failure mechanism is arbitrary, a further normalization condition 11 =wP T  is usually 

introduced. Hence, the external power becomes linear in w  and λ , i.e. λ+= wPTexP 0 . 

After elementary assemblage operations, the following optimization problem is derived: 

{ }1;;;|min 10 =≥≥=−−+ −+−+−−++ wP0θ0θBwθθwPθMθM TTTT
( 12 )

where; 

- +M  and −M  vectors collect positive and negative failure bending moments along interfaces 

and boundary sides; 



- +θ  and −θ  vectors collect positive and negative interface and boundary rotation angles; 

- B  is a geometrical matrix built up assembling EB  element matrices, introduced previously. 

4. Out-of-plane strength for different orientations ϑ  of the loading 

with respect to the bed joint 

In this section, the ability of the homogenization procedure proposed to reproduce the strength 

of different masonry walls subjected to out-of-plane loads is tested for different orientations ϑ  

of the bending moment with respect to the bed joint direction. 

A complete set of experimental strength data for specimens subjected to out-of-plane loading is 

given by Gazzola et al. (1985) and Gazzola and Drysdale (1986), who tested 25 wallettes of 

hollow concrete block masonry, with different dimensions and with the bed joints making a 

variable angle ϑ  with the direction of loading, in four-point bending. 

In order to compare experimental data with the proposed model, mechanical properties of 

mortar and bricks are taken in order to reproduce exactly the experimental value of ftf  reported 

by Gazzola and Drysdale (1986) for °= 90ϑ . Mechanical properties of mortar and bricks are 

reported in Table I, whereas bricks dimensions and joints thickness are equal 

3150190390 mmxx  and mm10  respectively. 

A comparison between experimental values and results from the numerical model for different 

orientation of the ϑ  angle is given in Figure 7, which shows the average and standard deviation 

of the tests for each orientation of loading. 

5. Comparison with experimental data for out-of-plane loaded 

panels 

In this section, the proposed homogenized model is employed in order to reproduce 

experimental data for entire masonry panels out-of-plane loaded. In the experimental data 

reported next, only the tension regime is active, which means that no comparison can be made 



for the out-of-plane compression regime. The experimental data available from different 

authors is reported in terms of maximum bending moments or flexural tensile strengths along 

horizontal and vertical directions. Usually, flexural tensile strengths tf  are quantities derived 

from experimental failure moments uM  by means of the simple elastic relation 

)/(6/ 2bhMWMf uelut == , where h  is the wall thickness and b  is a unitary length. Of course, 

such value of tf  is not the real uniaxial tensile strength, being usually defined as the flexural 

tensile strength. As the current model assumes fully plastic behavior, simple equilibrium 

equations (see Lourenço 2000) indicate that the experimental values of flexural tensile strength 

must be divided by 3. 

5.1. McMaster University experimental tests 

The first series of panels analyzed here consists of hollow concrete block masonry. The tests 

were carried out by Gazzola et al. (1985) and are denoted by W. Five panels were tested (WI, 

WII, WIII, WP1 and WF), with a height of 2800 mm and a length of 3400, 5000, 5800, 5000 

and 5000 mm, respectively. The panels are all simply supported on the four edges, with the 

exception of panel WF (free at the top edge). The only panel with in-plane action was WP1, 

which differs from WII only for the compressive in-plane load. This panel was loaded, prior to 

the application of the out-of-plane loading, with an in-plane vertical pressure of 2/2.0 mmN , 

which was kept constant until failure of the specimen due to the pressure p . The panels were 

loaded until failure with increasing out-of-plane uniform pressure p , applied by means of air-

bags. For each configuration, three different tests were carried out and the results reported by 

the authors represent the average of the tests. 

For the sake of conciseness, only the analyses conducted on panels WII, WP1 and WF are 

reported here. Moreover, it is stressed that, according to a previously developed incremental 

non-linear finite element analysis (Lourenço 2000), these panels exhibit a relatively ductile 

behavior and are therefore suitable for the present homogenized limit analysis. 



Inelastic properties of mortar and bricks are reported in Table II, as reported by Gazzola et al. 

(1985). Figure 8 shows a comparison among the failure loads obtained numerically (both upper 

and lower bound approaches), the load-displacement diagrams obtained by Lourenço (2000) 

with an orthotropic elasto-plastic continuum model and experimental failure loads. It is worth 

noting that no information is available from Gazzola et al.(1985) regarding experimental load-

displacement diagrams or scatter of the tests. 

In Figure 9, the meshes utilized for the limit analyses and principal moments distributions at 

collapse from the lower bound analysis are shown. In Figure 10, failure mechanisms and yield 

line patters from the upper bound analyses are represented. The comparison shows that reliable 

predictions can be obtained using the homogenized model proposed. 

5.2. University of Plymouth experimental tests 

The second series of panels analyzed here consists of solid clay brick masonry. The tests were 

carried out by Chong et al (1994) and Southcombe et al (1995) and are denoted by SB. The 

panels analyzed next yield an additional assessment of the ability of the homogenized model to 

reproduce the behavior of panels with openings and made of a different masonry type. All the 

panels from the experiments, SB01, SB02, SB03, SB04 and SB05 are analyzed with the 

proposed model. Panels SB01 and SB05 are replicates and, therefore, only four different 

configurations are tested. Each panel, with dimensions 35.10224755600 mmxx , was built in 

stretcher bond between two stiff abutments with the vertical edges simply supported (allowance 

for in-plane displacements was provided) and the top edge free. A completely restrained 

support was provided at the base because of practical difficulties in providing a simple support. 

The panels were loaded by air-bags until failure with increasing out-of-plane uniform pressure 

p . The air pressure and the displacement d for the middle point of the free edge were 

monitored during testing. Mechanical properties at failure adopted for the constituent materials 



are given in Table III, according to Chong et al. (1994). Bricks dimensions are 

35.10265215 mmxx  and joint thickness is mm10 . 

Figure 11 shows a comparison among collapse loads obtained with the present model, 

experimental pressure-displacement curves by Chong et al. (1995) and numerical pressure-

displacement curves obtained by means of an orthotropic elasto-plastic macro-model (Lourenço 

1997). The comparison shows that technically useful predictions on the collapse loads can be 

obtained simply and efficiently using the homogenized model at hand. In Figure 12, the meshes 

employed for the limit analyses and principal moments distributions at collapse from the lower 

bound analysis are reported for all the panels studied. Finally, in Figure 13 failure mechanisms 

and yield line patterns from the upper bound analyses are represented. Also in this case, the 

agreement with experimental results is worth noting. 

6. Conclusions 

An anisotropic homogenized model for masonry plates and shells was proposed. The model is 

an extension from an in plane model developed by the authors (Milani et al. 2005). The model 

is capable of reproducing different behavior along the material axes, which is typical of 

masonry behavior in flexure. The numerical calculations were compared with results available 

in the literature for different tests in masonry panels subjected to out-of-plane loading. Good 

agreement was found in all cases. The results illustrate the large possibilities of using limit 

analysis finite elements for the design of masonry structures subjected to out-of-plane loading. 

Using a relative low number of material parameters, failure loads, failure modes and 

distribution of internal forces can be found, using standard and efficient linear programming 

tools. On the other hand, some typical limitations of the limit analysis approach should be 

considered, as for instance its inability to predict displacements at collapse and the assumption 

of an infinite plastic deformation capacity of the material, hypothesis which should be checked 

case by case, depending both on the geometry and on the distribution of loads applied. 
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Notation 

in
EA  3mx  coefficients matrix of the linearization planes of the strength domain, element E  

E
inb  right hand sides of the linearization planes, element E  

EB  geometric matrix of element E  

mc  mortar cohesion 
E  triangular element 

cbf  brick compressive cut-off 

tf  flexural masonry strength 

tmf  mortar tension cut-off 
h  wall thickness 
I  interface between adjacent triangles 

)( Li  thi  layer 
)(k  sub domain 

M  macroscopic out-of-plane tensor 
+M  ( −M ) assembled vector of positive (negative) failure bending moments 
uM  ( uhM ) ultimate experimental (horizontal) bending moment 
E
xxM , E

yyM , E
xyM  moments 

Ei
nnM , Ej

nnM , Ek
nnM  edge bending moments 

n  outward versor of lY∂  
intn  normal to an internal interface 

N  macroscopic in-plane tensor 
( )yxp ,  out-of-plane load 
exP  total external power 
inP  internal power 
in

IP  internal power dissipated along I  

EP  lumped external out-of-plane load for element E  

ER  vector of nodal reactions of element E  
mS  ( bS ) mortar (brick) strength domain 

),( LikS  (non-linear) strength domain, thk  sub-domain, th
Li  layer. 

homS  homogenized strength domain 
S~  unknown polynomial coefficients 
V  elementary cell 

Ew  nodal velocities, element E  
Y  cross section of elementary cell with 03 =y  
Y  Y  area 

lY∂  internal boundary surface of the elementary cell 

Li
∆  thi  layer thickness 
ϑ  angle 

Eθ  side normal rotations, element E  
λ  load multiplier 

IΦ  interface rotation angle with respect to the horizontal direction 



mΦ  mortar friction angle 
σ  microscopic stress tensor 
[ ][ ]σ  jump of micro-stresses across intn  
Ω  generic masonry panel 
ψ  angle 
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Figure 12: University of Plymouth experimental tests, meshes used for the analyses and lower 
bound FE limit analysis results (principal moments at collapse). –a: Panel SB01/SB05; -b: Panel 
SB02; -c: Panel SB03; -d: Panel SB04. 
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Figure 13: University of Plymouth experimental tests, upper bound FE limit analysis results 
(deformed shape at collapse and yield lines patterns). –a: Panel SB01/SB05; -b: Panel SB02; -c: 
Panel SB03; -d: Panel SB04. 
 



Tables 
 
Table I: Comparison with experimental data by Gazzola and Drysdale (1986) on concrete 
block wallettes. tmf : mortar tension cut-off; mc : mortar cohesion, mΦ : mortar friction 

angle, cbf : brick compressive cut-off. 
Data assumed for the homogenized model 

Mortar (thickness: 10 mm) Brick (height x width 190mm x 390mm) 
Wallettes thickness 150 mm 

Mohr Coulomb plane strain with tension cut-off 

⎥⎦
⎤

⎢⎣
⎡= 2

2 )6//(
mm

NhMf uhtm  (tension cut-off) 

tmm fc 2= (cohesion) 
°=Φ 36m  (friction angle) 

Compression cut-off 

27.22
mm

Nfcb =  



 
Table II: Comparison with experimental data by Gazzola et al. (1985) on out-of-plane loaded 

panels. tmf : mortar tension cut-off; mc : mortar cohesion, mΦ : mortar friction angle, cbf : 
brick compressive cut-off. 

Mechanical and geometrical characteristics assumed 
Mortar (thickness: 10 mm) Brick (height x width 190mm x 390mm) 

Wall thickness 150 mm 

2157.0
mm

Nftm =  (tension cut-off) 

tmm fc 8.3=  (cohesion) 
°=Φ 36m  (friction angle) 

 

27.22
mm

Nfcb =  

 

 



 
 

Table III: Comparison with experimental data by Chong et al. (1995) on out-of-plane loaded 
panels. tmf : mortar tension cut-off; mc : mortar cohesion, mΦ : mortar friction angle, cbf : brick 

compressive cut-off. 
Mechanical characteristics assumed 

Mortar Brick 
Mohr Coulomb plane strain with tension cut-

off (thickness 10 mm) 
Compression cut-off 

232.0
mm

Nftm =  (tension cut-off) 

tmm fc 1=  (cohesion) 
°=Φ 36m  (friction angle) 

220
mm

Nfcb =  

 

 


