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Transport in biological systems often occurs in complex spatial environments involving random struc-

tures. Motivated by such applications, we investigate an idealised model for solute transport past an

array of point sinks, randomly distributed along a line, which remove solute via first-order kinetics.

Random sink locations give rise to long-range spatial correlations in the solute field and influence the

mean concentration. We present a non-standard approach to evaluating these features based on rationally

approximating integrals of a suitable Green’s function, which accommodates contributions varying on

short and long lengthscales and has deterministic and stochastic components. We refine the results of

classical two-scale methods for a periodic sink array (giving more accurate higher-order corrections with

non-local contributions) and find explicit predictions for the fluctuations in concentration and disorder-

induced corrections to the mean for both weakly and strongly disordered sink locations. Our predictions

are validated across a large region of parameter space.

Keywords: homogenization; transport; spatial disorder

1. Introduction

Spatial disorder is intrinsic to many natural systems. In biomedical applications, for example, disorder

needs careful consideration in developing constitutive models of heterogeneous multicellular tissues

and it can influence transport processes in geometrically complex exchange organs such as the placenta

and the lung. In practice, there may be only limited knowledge of the detailed structure of a tissue

or organ of a given individual, which may simply be expressed in terms of statistics retrieved from

a population of other individuals. If they are to support sound decision-making, theoretical models

of transport or biomechanical function should account for such uncertainties, so that predictions can

quantify the variability of outcomes within and between individuals. Geophysical applications, for

example involving transport in subsurface porous media, raise many similar questions.

For materials with a multiscale structure (cells within a tissue, functional exchange units within an

organ, pores within a rock, etc.), homogenization provides a powerful analytical tool, exemplified by

the reduction of Stokes equations to Darcy’s equation for porous medium transport (Burridge & Keller,

1981; Rubinstein & Torquato, 1989). For a strictly periodic medium, a variety of approaches (partic-

ularly asymptotic two-scale convergence and spatial averaging (Pavliotis & Stuart, 2008; Davit et al.,

2013)) yield leading-order approximations for the slowly-varying component of spatial fields, having

well-studied convergence properties. Spatial fields for such problems are generally characterised by an

almost-periodic variation at the microscale, modulated by slow variation over much longer lengthscales.

Typically a unit cell problem at the microscale needs to be solved (or averaged) in order to derive an

c© The author 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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approximation capturing the macroscale variation. Such approaches can be extended to account for

smooth variation in the properties of the unit cells over long lengthscales (Davit et al., 2013; Bruna &

Chapman, 2015). For materials with a random microstructure that lacks exact periodicity, however, less

is understood about the accuracy of (deterministic) homogenization approximations, and leading-order

approximations generally capture only mean behaviour. For proper uncertainty quantification, it is nec-

essary to determine corrections that capture the stochastic variability in the quantity of interest. Such

corrections are likely to be entangled with the discrete-to-continuous corrections of the classical homog-

enization approximation and are typically nonlocal (Heitzinger & Ringhofer, 2014; Le Bris, 2014; Wood

& Valdés-Parada, 2013).

Maternal circulation in the placenta provides an interesting test-bed for such ideas (Jensen & Chernyavsky,

2019). This organ exchanges dissolved gases, nutrients and other materials between maternal and fetal

blood. Fetal blood vessels are arranged in tree-like structures called villi; maternal blood in the inter-

villous space flows past the outside of their branches, effectively passing through a disordered porous

medium. Initial models described maternal blood flow using Darcy’s equation (with a uniform perme-

ability) in two spatial dimensions (Erian et al., 1977), with solute transport being described by a slowly-

varying (macroscale) advection/uptake equation with a uniform uptake coefficient (Chernyavsky et al.,

2010). In an effort to understand the role of disorder in the arrangement of fetal vessels, Chernyavsky

et al. (2011, 2012) studied simplified models of solute transport, reducing villous branches to point

sinks (distributed along a line according to a prescribed distribution) and describing solute transport

between sinks using a one-dimensional advection-diffusion equation. These studies tested the quality

of the macroscale approximation in relation to simulations of the solute concentration under different

sink realisations. Direct evaluation of the error (the homogenization residue) revealed its varying char-

acter across parameter space, its long-range covariance structure and its dependence on the statistical

properties of the underlying sink distribution. In particular, parameter regimes were identified where the

macroscale approximation fails because stochastic sink-to-sink variations in the solute concentration

become dominant.

Chernyavsky et al. (2011, 2012) used an algebraic method to compute the homogenization residue

directly, for zeroth-order uptake kinetics, which worked only over a limited range of parameter space. A

more robust approach was presented by Russell et al. (2016), in a related problem assuming first-order

kinetics and variable sink strength (rather than sink location). When disorder is weak, an expansion can

be developed in which a deterministic periodic problem at leading order (which is readily homogenized)

is perturbed to give a stochastic linear problem at the following order. Linearity allows the disorder due

to individual sinks to be evaluated independently using a Green’s function; the individual contributions

are then assembled (exploiting the central limit theorem) to capture the overall disorder in the system,

which has an inherently nonlocal structure. This method does not suffer the parameter-space restriction

of earlier approaches, and it is developed further below. Taking the expansion to higher order, Russell

et al. (2016) demonstrated how the macroscale approximation has a small but systematic error in the

presence of weak disorder. The value of Green’s functions in evaluating corrector fields was demon-

strated also by Wood & Valdés-Parada (2013) and Heitzinger & Ringhofer (2014); the latter authors for

example considered a Poisson problem with a distributed source that is statistically uncorrelated over a

periodic array of cells.

In the present study we consider how the random spatial location (along a line) of identical first-order

sinks influences the distribution of a solute that moves between them by advection and diffusion. We

consider periodic, weakly disordered and strongly disordered sink locations. In the periodic case, we use

a Green’s function approach (instead of the traditional two-scale expansion, which relies on an ad hoc

periodicity assumption) to derive the macroscale solution and its corrections. The methods deviate in
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their predictions at sub-leading-order: we demonstrate numerically that the Green’s function approach

is more accurate than the classical approach. To address disorder, we construct an empirical expan-

sion about the macroscale solution, again exploiting Green’s functions, correcting successively for the

discrete-to-continuous and periodic-to-disordered effects. The expansion is shown to be effective both

in the weakly disordered limit (as demonstrated in Russell et al. 2016) and the strongly disordered

case (when sinks are distributed uniformly randomly in a finite interval). We do not attempt to pro-

vide rigorous convergence proofs; however having adopted a non-standard expansion, we apply careful

asymptotic techniques in order to approximate the sums and integrals that arise and to establish their

relative magnitudes.

2. Model definition

We model steady transport of a solute past a linear array of point sinks using an advection-diffusion-

uptake equation. The sinks have first-order uptake kinetics and sit at discrete locations x∗ = ξ ∗
j , j =

1, . . . ,N; see Figure 1(a). We introduce the sink density, Péclet number, Damköhler number and con-

centration scale as

ε =
ℓ

L
=

1

N +1
, Pe =

Uℓ

D
, Da =

S0ℓ

D
, C0 =

qL

D
, (2.1)

respectively, where ℓ is the average inter-sink distance, L is the domain length, U is the advection

velocity, D is the diffusion coefficient, S0 is the sink strength per unit concentration and q is the flux at

the inlet boundary. At the downstream boundary we impose zero concentration, C∗|x∗=L = 0. The Péclet

number Pe represents the strength of advection relative to diffusion and the Damköhler number Da

represents the strength of uptake relative to diffusion. The governing equation and boundary conditions

for the solute concentration C∗(x∗) are

DC∗
x∗x∗ −UC∗

x∗ = S0C∗(x∗)
N

∑
j=1

δ (x∗−ξ ∗
j ), 0 6 x∗ 6 L, (2.2a)

UC∗|x∗=0 −DC∗
x∗ |x∗=0 = q, C∗|x∗=L = 0. (2.2b)

Introducing the dimensionless variables

x = x∗/ℓ, ξ j = ξ ∗
j /ℓ, C(x) =C∗(x∗)/C0, (2.3)

(2.2) becomes,

Cxx −PeCx = DaC(x)
N

∑
j=1

δ (x−ξ j), 0 6 x 6 ε−1, (2.4a)

PeC|0 −Cx|0 = ε, C|ε−1 = 0. (2.4b)

For later convenience, we set ξ0 = 0 and ξN+1 = ε−1. Integrating over the whole domain yields the

overall flux balance

ε +Cx|ε−1 = Da
N

∑
j=1

C(ξ j) (2.5)

which provides a direct method of determining the net uptake by the internal sinks. We will consider the

following sink distributions: periodically-located, ξ j = j; normally-perturbed from a periodic arrange-

ment, ξ j ∼N ( j,σ2) for some small variance σ2; and uniformly distributed in the domain according to
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U (0,ε−1), sorted into ascending order. In the uniformly-random case, the sink locations ξ j are order

statistics of the uniform distribution and are then spatially correlated, unlike the independently drawn

uniform variates.

The problem described by (2.4) involves a number of spatial scales (e.g. domain length and sink-

to-sink distance) over which advection, diffusion and uptake take place. Spatial disorder, in the form

of random sink locations, adds additional complexity to the problem. These features are illustrated in

Figure 1(b), which shows 103 concentration profiles generated numerically using the method described

in Appendix A. Each realisation has N = 49 sinks whose locations are uniformly randomly distributed

across the domain. The parameters are Pe = 1, Da = 1
2
ε1/2, which is a regime with strong advection

and uptake characterised by a prominent sink-to-sink “staircase” structure and uptake across a large

portion of the domain. We seek to characterise the mean and (co)variance of the concentration across

the domain.

3. Constructing an expansion

We introduce the linear differential operator L = ∂ 2
x − Pe∂x − Da and boundary conditions BC =

{(Pe−∂x)C|0,C|ε−1}, and let CH(x) satisfy the homogenized analogue of (2.4), in which point sinks are

replaced by a smoothly varying term,

LCH = 0, BCH = {ε,0}, 0 6 x 6 ε−1. (3.1)

Defining φ ≡
√

Da+Pe2 /4 and g(x)≡ Pesinh(φx)+2φ cosh(φx), (3.1) has the exact solution

CH(x) =
2ε

g(ε−1)
e

1
2 Pex sinh(φ [ε−1 − x]), 0 6 x 6 ε−1. (3.2)

CH represents the leading-order homogenized solution to (2.4) as ε → 0 for Pe = O(ε), Da = O(ε2),
when the sinks are distributed periodically; see Russell et al. (2016) and Appendix B, where we revisit

the classical two-scale expansion for this problem. We will initially work in this parameter regime,

for which there is a dominant balance between advection, diffusion and uptake across the domain.

However, unlike the classical approach, we make no assumption in what follows about C depending on

independent long- and short-range variables.

The Green’s function G(x,y) associated with L under homogeneous boundary conditions BG =
{0,0} satisfies L G = δ (x− y). We write

G(x,y) =

{
G−(x,y), 0 6 x 6 y 6 ε−1,

G+(x,y), 0 6 y 6 x 6 ε−1.
(3.3)

G(x,y) is piecewise smooth, continuous at x = y and satisfies the following jump conditions, resulting

from the point source at x = y:

G+
x (y,y)−G−

x (y,y) = 1, G−
y (x,x)−G+

y (x,x) = 1. (3.4)

The two pieces of the Green’s function can be expressed as

G−(x,y) =
g(x)

φg(ε−1)
e

1
2 Pe(x−y) sinh(φ [y− ε−1]),

G+(x,y) = ePe(x−y)G−(y,x).

(3.5)
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FIG. 1. (a) Diagram of the problem domain, with inlet and outlet conditions indicated below their respective boundaries. On

the top axis, a periodic configuration of N = 9 sinks is shown. Blue circles mark the sink locations and vertical lines delimit the

associated unit cells. The bottom axis shows one realisation of a random distribution of sinks, denoted by orange circles. The

dashed lines indicate how we label sinks in ascending order, regardless of how they were drawn from the distribution. (b) An

ensemble of 103 concentration profiles (thin black lines). Each realisation has N = 49 sinks (i.e. ε = 0.02) with uniformly random

locations, and Pe = 1, Da = 1
2

ε1/2. Also shown is the sample mean (solid blue) and two standard deviations either side of the

mean (dashed orange).

Later we will use the identity

CH(x) =−εG+(x,0). (3.6)

Figure 2 compares the leading-order approximation CH with numerical solutions of (2.4) (obtained

using the method described in Appendix A for N = 99 periodically located sinks and a range of (Pe,

Da)-values, showing good agreement. Also shown as insets in each panel are illustrative plots of the

Green’s function (3.3).
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(a) Pe = ε2, Da = ε

C(x) (numeric)

CH(x)

(b) Pe = ε , Da = ε (c) Pe = 1, Da = ε

(d) Pe = ε2, Da = ε2 (e) Pe = ε , Da = ε2 (f) Pe = 1, Da = ε2

εx

(g) Pe = ε2, Da = ε3

εx

(h) Pe = ε , Da = ε3

εx

(i) Pe = 1, Da = ε3

FIG. 2. Comparison between the numerical solution of (2.4) C(x) with a periodic sink array (solid blue) and the leading-order

homogenized approximation CH satisfying (3.2) (dashed orange), both plotted versus εx. Insets show the corresponding Green’s

function (3.3) with the point source located in the centre of the domain, y = 1
2

ε−1 for illustrative purposes. There are N = 99

sinks in all cases, so ε = 10−2, and the Pe, Da values are indicated in the panel titles, with all combinations of Pe ∈ {ε2,ε,1},

Da ∈ {ε3,ε2,ε} shown.

Inspection of (3.2) and (3.5) reveals that CH(x) and εG(x,y) vary by O(1) as x, y vary across the

domain (that is as εx, εy vary by O(1)), in the distinguished limit Pe = O(ε), Da = O(ε2). This can be

seen in Figure 2(e). Increasing uptake relative to diffusion, characterised by elevated Da, leads to more

rapid decay near the inlet (see Figure 2b); increasing advection relative to diffusion, characterised by

elevated Pe, leads to a diffusive boundary layer near the outlet and, for G, near x = y (see Figure 2f). We

introduce the notation

(GCH)|x,y ≡ G(x,y)CH(y) (3.7)

and use the corresponding notation with G+ and G− in place of G, noting that for Pe = O(ε), Da =
O(ε2), each derivative of CH and G with respect to x or y reduces its magnitude by O(ε).

To account for the discrete nature of the sinks and their spatial distribution in the domain, we pose

an expansion for solutions to (2.4) consisting of the approximation (3.2) and a series of correction terms.
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We therefore write C =CH +Ĉ, where the corrections Ĉ satisfy BĈ = {0,0} and

L Ĉ = Da

{
CH(x)

[
∑

N

j=1
δ (x− j)−1

]
+CH(x)∑

N

j=1

[
δ (x−ξ j)−δ (x− j)

]

+Ĉ(x)
[
∑

N

j=1
δ (x− j)−1

]
+Ĉ(x)∑

N

j=1

[
δ (x−ξ j)−δ (x− j)

]}
.

(3.8)

Since (3.8) is linear, we may consider the solution of the sub-problems associated with each right-hand

sum separately. The first is

L Ĉa = DaCH(x)

[
N

∑
j=1

δ (x− j)−1

]
, BĈa = {0,0}, (3.9)

which describes a transport problem modelling the difference between a periodic sink arrangement and a

smooth sink distribution, with strengths modulated by the leading-order concentration profile CH. Using

the Green’s function (3.3) we can write the solution as

Ĉa(x) = Da

∫ ε−1

0
(GCH)|x,y

[
N

∑
j=1

δ (y− j)−1

]
dy. (3.10)

We expect Ĉa to provide the dominant corrections due to discrete-sink effects to the leading-order solu-

tion CH. Similarly, the second sub-problem from (3.8) is

L Ĉb = DaCH(x)
N

∑
j=1

[δ (x−ξ j)−δ (x− j)] , BĈb = {0,0}, (3.11)

so that

Ĉb(x) = Da

∫ ε−1

0
(GCH)|x,y

N

∑
j=1

[δ (y−ξ j)−δ (y− j)] dy

= Da
N

∑
j=1

[
(GCH)|x,ξ j

− (GCH)|x, j
]
,

(3.12)

which captures the effects of displacing sinks from a periodic to a disordered arrangement, with strengths

again given by CH. We may recursively continue the expansion in the following way

C =CH +(Ĉa +Ĉb)+(Ĉaa +Ĉab +Ĉba +Ĉbb)+ · · · , (3.13)

(a form of Duhamel expansion (Bal, 2011)) where the remaining subproblems in (3.8) become

L Ĉaa = DaĈa

[
N

∑
j=1

δ (x− j)−1

]
, L Ĉab = DaĈa

N

∑
j=1

[δ (x−ξ j)−δ (x− j)]

L Ĉba = DaĈb

[
N

∑
j=1

δ (x− j)−1

]
, L Ĉbb = DaĈb

N

∑
j=1

[δ (x−ξ j)−δ (x− j)] ,

(3.14)
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etc., each with homogeneous boundary conditions. Each term with a subscript containing one or more

b involves a random variable. The problem of a deterministic, periodic sink array is fully described by

CH, Ĉa, Ĉaa, . . . . This series is not assumed to be asymptotic in general, but the size of each term can

be estimated a posteriori based on their dependence on CH, G and the parameters Da and Pe to suggest

an asymptotic reordering of terms and to assess convergence. Magnitudes of the remaining terms will

depend on the choice of sink distribution so we must analyse each case separately.

The following strategy will be used to estimate magnitudes in terms of ε in the distinguished limit

Pe = O(ε), Da = O(ε2), for which CH and G are piecewise smooth on the macroscale (Figure 2e). In

this limit sums, perhaps with finitely many terms excluded, and integrals over the domain will contribute

a factor of ε−1 ≈ N; G contributes a factor of ε−1 and CH a factor of 1; each successive derivative of

G and CH with respect to x or y gains an additional factor ε in magnitude, reflecting the slow variation

of these functions across the domain (see Figure 2e). Alternative scaling arguments will be required in

other parameter regimes.

4. The periodic problem

4.1 Solving for Ĉa

To solve (3.9) for Ĉa, we split the domain [0,ε−1] into unit cells ( j− 1
2
, j+ 1

2
) for j = 1,2, . . . ,N, and two

half-cells [0, 1
2
) and (ε−1 − 1

2
,ε−1] at the ends. The cell which contains x, say j = k where k ≡ ⌊x+ 1

2
⌋,

is treated separately and we split the integral at y = x to allow for careful handling of discontinuities.

We Taylor expand (GCH)|x,y inside the integral around y = j for j 6= k, around y = ±x for j = k, and

around y = 0 and y = ε−1 for the inlet and outlet half-cells, respectively. Then, (3.10) becomes

Ĉa(x) = Da

{

∑
j 6=k

∫ j+1/2

j−1/2

[
(GCH)|x, j +(y− j)(GCH)y|x, j + 1

2
(y− j)2(GCH)yy|x, j + · · ·

]
[δ (y− j)−1]dy

+
∫ x

k−1/2

[
(G+CH)|x,x +(y− x)(G+CH)y|x,x + 1

2
(y− x)2(G+CH)yy|x,x + · · ·

]
[δ (y− k)−1]dy

+
∫ k+1/2

x

[
(G−CH)|x,x +(y− x)(G−CH)y|x,x + 1

2
(y− x)2(G−CH)yy|x,x + · · ·

]
[δ (y− k)−1]dy

−
∫ 1/2

0

[
(GCH)|x,0 + y(GCH)y|x,0 + 1

2
y2(GCH)yy|x,0 + · · ·

]
dy

−
∫ ε−1

ε−1−1/2

[
(GCH)|x,ε−1 +(y− ε−1)(GCH)y|x,ε−1 + 1

2
(y− ε−1)2(GCH)yy|x,ε−1 + · · ·

]
dy

}
.

(4.1)

This expansion of (GCH) reduces each integrand to a sum of polynomials, each multiplied by [δ (x−
j)−1] or similar (except for the half-cell integrals). Integrating over the two half-cells,

−
∫ 1/2

0
[· · · ]dy =− 1

2
(G+CH)|x,0 − 1

8
(G+CH)y|x,0 − 1

48
(G+CH)yy|x,0 + · · · ,

−
∫ ε−1

ε−1−1/2
[· · · ]dy =− 1

24
(G−

y CHy)|x,ε−1 + · · · ,

where we have eliminated terms using the boundary conditions (3.1). The first two terms of the first

integral in (4.1) vanish (see Appendix C), as does the first term of the integrals over cell j = k, for which
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we also use that G+|x,x = G−|x,x. We use the identities in Appendix C again to calculate the remaining

integrals, and

Ĉa(x) = Da

{
− 1

24 ∑
j 6=k

(GCH)yy|x, j − 1
24
(GCHyy)|x,x

+(G+
y CH)|x,x

[
(k− x)H(x− k)+ 1

2
(x− k+ 1

2
)2
]

+(G−
y CH)|x,x

[
(k− x)H(k− x)− 1

2
(x− k− 1

2
)2
]

+ 1
2
(G+

yyCH +2G+
y CHy)|x,x

[
(k− x)2H(x− k)− 1

3
(x− k+ 1

2
)3
]

+ 1
2
(G−

yyCH +2G−
y CHy)|x,x

[
(k− x)2H(k− x)+ 1

3
(x− k− 1

2
)3
]

− 1
2
(G+CH)|x,0 − 1

8
(G+CH)y|x,0 − 1

48
(G+CH)yy|x,0 − 1

24
(G−

y CHy)|x,ε−1 + · · ·
}
.

Using the jump conditions (3.4), we write G−
y in terms of G+

y to give

Ĉa(x) = Da

{
− 1

24 ∑
j 6=k

(GCH)yy|x, j − 1
24
(GCHyy)|x,x − 1

12
(G+

y CHy)|x,x

+CH(x)
[
(k− x)H(k− x)− 1

2
(x− k− 1

2
)2
]

+CHy(x)
[
(k− x)2H(k− x)+ 1

3
(x− k− 1

2
)3
]

+ 1
2
(G+

yyCH)|x,x
[
(k− x)2H(x− k)− 1

3
(x− k+ 1

2
)3
]

+ 1
2
(G−

yyCH)|x,x
[
(k− x)2H(k− x)+ 1

3
(x− k− 1

2
)3
]

− 1
2
(G+CH)|x,0 − 1

8
(G+CH)y|x,0 − 1

48
(G+CH)yy|x,0 − 1

24
(G−

y CHy)|x,ε−1 + · · ·
}
.

(4.2)

Recalling that G = O(ε−1) and CH = O(1) when Pe = O(ε), Da = O(ε2), we can collect the terms in

(4.2) by magnitude:

Ĉa(x) = Da

{
− 1

2
(G+CH)|x,0 − 1

8
(G+CH)y|x,0 +CH(x)

[
(k− x)H(k− x)− 1

2
(x− k− 1

2
)2
]

− 1
24 ∑

j 6=k

(GCH)yy|x, j +O(ε)

}
.

Using (D.4) to approximate sums with integrals and using the jump condition (3.4), gives

− 1
24 ∑

j 6=k

(GCH)yy|x, j = 1
24
(GCH)y|x,0 + 1

24
CH(x)+O(ε). (4.3)

Defining f (x)≡−xH(−x)− 1
2
(x− 1

2
)2 + 1

24
, for |x|< 1/2 (and zero otherwise), so that f has zero unit

cell average
∫ 1/2

−1/2
f (x)dx = 0, it follows that

Ĉa(x) = Da
[

1
2
ε−1CH(0)CH(x)+

1
12

ε−1CHy(0)CH(x)+ f (x− k)CH(x)+O(ε)
]
, k = ⌊x+ 1

2
⌋. (4.4)

The term f (x− k)CH(x) in (4.4) varies rapidly on the scale of individual unit cells, modulated on an

O(ε−1) lengthscale by CH. The two additional contributions are slowly varying. In the distinguished
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limit, the slowly varying terms have magnitudes O(ε) and O(ε2) respectively and the oscillatory term

has magnitude O(ε2). The neglected terms are of magnitude O(ε3); however, we show below that Ĉaa

also contributes at O(ε2).

4.2 Solving for Ĉaa

With periodically located sinks, the next non-zero term in the expansion (3.13) is Ĉaa, satisfying (3.14).

Recognising the recursive nature of the expansion, Ĉaa takes the same form as Ĉa, but with the role of

CH fulfilled by Ĉa as follows,

Ĉaa(x) = Da
[
− 1

2
G+(x,0)Ĉa(0)− 1

12

(
G+(x,y)Ĉa(y)

)
y
|y=0 + f (x− k)Ĉa(x)+ · · ·

]
. (4.5)

Retaining only the leading-order, slowly varying terms in Ĉa, gives

Ĉaa(x) = Da2 ε−2
[

1
4

(
CH(0)

)2
CH(x)+ · · ·

]
. (4.6)

At sub-leading orders Ĉaa contains oscillatory terms from Ĉa and further terms arising from the f (x−
k)Ĉa(x) term in (4.5).

In the distinguished limit, Ĉaa has magnitude O(ε2) so must be included in an expansion of the

concentration up to this order. The next correction, Ĉaaa, is related to Ĉaa in the same way that Ĉaa is

related to Ĉa in (4.5). The largest terms in Ĉaaa are therefore O(ε3), and since this recursive pattern

continues for the higher corrections we conclude that all contributions up to O(ε2) are captured by the

corrections up to Ĉaa. Interestingly, our prediction of the sub-leading-order terms for the periodically-

located sinks problem contain extra terms up to order O(ε2) compared with results from classical two-

scale homogenization; see Appendix B for a derivation of the classical results.

For the purposes of comparing the theoretical predictions with simulations, we define the following

residual (using leading-order expressions for Ĉa and Ĉaa)

r(x)≡Cnum(x)−
(
CH(x)+

[
Ĉa(x)−Da f (x− k)CH(x)

]
+Ĉaa(x)

)
(4.7a)

=Cnum(x)−CH(x)
(
1+ 1

2
Daε−1

[
CH(0)+

1
6
CHy(0)

]
+ 1

4
Da2 ε−2[CH(0)]

2
)
, (4.7b)

in which we have subtracted from numerical solutions Cnum(x) of the full problem (2.4) all the terms

in Ĉa and Ĉaa appearing in (4.4, 4.6) which vary slowly across the domain, plus of course CH. What

remains, to leading-order, is the numerical prediction of the sink-to-sink oscillating part of the solution.

We further define a residual based on the results of the classical method in Appendix B, which to the

same level of accuracy is

rc(x)≡Cnum(x)−CH(x)
(

1+ 1
2

Daε−1CH(0)
)
. (4.8)

We compare the two residuals, r(x) and rc(x), with the leading-order theoretical prediction Da f (x−
k)CH(x) from (4.4) in Figure 3 for a range of (Pe, Da)-values. All quantities were scaled by [DaCH(0)]

−1

to allow comparison across parameter values. For illustrative purposes, we plot the envelope of each

function, indicating the fine-scale oscillatory behaviour via f (x− k) in the inset to Figure 3(b). The

present method works exceptionally well when uptake is weak relative to diffusion and advection (Fig-

ure 3g,h; the blue and pink regions overlap precisely) and deviates less than the classical method as

uptake becomes more significant (Figure 3a,b,d,e; the blue region overlaps the pink region better than
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(a) Pe = ε2, Da = ε

[DaCH(0)]
−1r(x)

[DaCH(0)]
−1rc(x)

[DaCH(0)]
−1 Da f (x− k)CH(x)

(b) Pe = ε , Da = ε (c) Pe = 1, Da = ε

(d) Pe = ε2, Da = ε2 (e) Pe = ε , Da = ε2 (f) Pe = 1, Da = ε2

εx

(g) Pe = ε2, Da = ε3

εx

(h) Pe = ε , Da = ε3

εx

(i) Pe = 1, Da = ε3

x

f (x− k)

FIG. 3. Plots of envelopes of the residuals [DaCH(0)]
−1r(x) and [DaCH(0)]

−1rc(x), each computed from a numerical solution of

(2.4) for C(x), compared with theoretical prediction of the leading-order oscillatory component [DaCH(0)]
−1 Da f (x− k)CH(x).

We have normalised the data in each panel by the magnitude of the leading-order term in (4.4). There are N = 99 sinks in all

cases, so ε = 10−2; the (Pe,Da) values are as in Figure 2 and are indicated in the panels. The fine-scale oscillatory structure of

residuals is shown in the inset to (b). The accuracy of the classical [new] method is illustrated by the degree of overlap between

green [blue] and pink regions (the latter has a dashed boundary).

the green region does). Both methods share the same error when both advection and diffusion become

strong, however (Figure 3c). Unlike the classical analysis, the present method does not assume unit-cell

periodicity, which is perhaps where this contribution is lost. As Pavliotis & Stuart (2008) point out in

regard to the unit-cell problem, ‘the local problem cannot really see the boundary — this is the key prop-

erty of scale separation;’ the present global method avoids this difficulty and is adaptable in principle to

parameter ranges for which G and CH need not be (piecewise) slowly varying on the macroscale.

5. Stochastic contributions

5.1 Normally perturbed sink locations

We now consider sinks which are weakly perturbed from a periodic arrangement by normally-distributed

random variables so that ξ j = j+σξ̂ j, where σ ≪ 1 and ξ̂ j ∼ N (0,1). We assume that sinks do not

change places as a result of the random perturbations. Using (3.12) and Taylor expanding around the
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periodic configuration,

Ĉb(x) = Da

{

∑
j 6=k

[
σξ̂ j(GCH)y|x, j + 1

2
σ2ξ̂ 2

j (GCH)yy|x, j + · · ·
]
+[(GCH)]

y=k+σξ̂k

y=k

}
, (5.1)

where the cell in which the coordinate x falls, k = ⌊x+ 1
2
⌋, is again treated separately to avoid expanding

non-smooth functions. The contribution from O(ε−1) terms in the sum will be an order of magnitude

greater than that from the single unit cell k as ε → 0, which we therefore neglect. Assuming that the

sinks are independently distributed, which implies Cov(ξ̂ j, ξ̂ℓ) = δ j,ℓ, we write the covariance as

Cov
(
Ĉb(x1),Ĉb(x2)

)
= Da2 σ2 ∑

j 6=k1

∑
ℓ6=k2

(GCH)y|x1, j(GCH)y|x2,ℓ Cov(ξ̂ j, ξ̂ℓ)+ · · ·

= Da2 σ2 ∑
j/∈{k1,k2}

(GCH)y|x1, j(GCH)y|x2, j + · · · ,

where ki ≡ ⌊xi +
1
2
⌋, for i = 1,2. Using (D.4) to approximate sums with integrals,

Cov
(
Ĉb(x1),Ĉb(x2)

)
= Da2 σ2

∫ ε−1

0
(GCH)y|x1,y(GCH)y|x2,y dy+ · · · . (5.2)

As observed previously in related problems (Chernyavsky et al., 2011, 2012; Heitzinger & Ringhofer,

2014; Russell et al., 2016) the fluctuations at a given location depend non-locally on the concentration

profile throughout the domain, despite the small and independent perturbations to the sink locations.

In Figure 4 the theoretical prediction of the variance, Var(C(x)) ≡ Cov
(
Ĉb(x),Ĉb(x)

)
, and trans-

verse covariance, CovT (C(x))≡ Cov
(
Ĉb(x),Ĉb(ε

−1−x)
)
, given by (5.2) are compared with the sample

statistics of an ensemble of 104 Monte-Carlo simulations of the transport equation (2.4), computed using

the method described in Appendix A, with sink locations drawn from a normal distribution with vari-

ance σ2 = 10−2. The agreement is excellent for Pe = O(ε) or smaller (Figure 4a,b,d,e,g,h). When

advection is stronger, with Pe = O(1), sink-to-sink oscillations emerge in the Monte-Carlo estimates

of Var(C). Nevertheless the approximation (5.2) captures its slowly varying mean value, and its lack

of correlation across the domain (reflected by a spike in CovT (C)); we expect higher-order terms to

describe the oscillating part of the variance.

Taking the average of (5.1) across realisations of sink distributions gives

〈
Ĉb(x)

〉
= Da

{

∑
j 6=k

[
1
2
σ2(GCH)yy|x, j + · · ·

]
+
〈
[(GCH)]

y=k+σξ̂k

y=k

〉}
. (5.3)

Again neglecting the small cell-k term and approximating sums with integrals we find

〈
Ĉb(x)

〉
= 1

2
Daσ2

∫ ε−1

0
(GCH)yy|x,y dy+ · · ·

= 1
2

Daσ2
[
(GCH)y|x,ε−1 − (GCH)y|x,x+ +(GCH)y|x,x− − (GCH)y|x,0

]
+ · · ·

= 1
2

Daσ2
[
−CH(x)− (GCHy)|x,0

]
+ · · · ,

(5.4)

where we have applied the jump condition (A.1) and used Gy|x,0 = 0.
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(a) Pe = ε2, Da = ε

Var(C) (numeric)

Var(C) (theory)

CovT (C) (numeric)

CovT (C) (theory)

(b) Pe = ε , Da = ε (c) Pe = 1, Da = ε

(d) Pe = ε2, Da = ε2 (e) Pe = ε , Da = ε2 (f) Pe = 1, Da = ε2

εx

(g) Pe = ε2, Da = ε3

εx

(h) Pe = ε , Da = ε3

εx

(i) Pe = 1, Da = ε3

FIG. 4. Comparison between the sample variance (solid blue) and transverse covariance (solid orange) generated from 104

solutions of (2.4) with normally perturbed sink locations, ξ j = j+σN (0,1), with σ = 0.1, and the theoretical prediction (5.2)

of variance (dashed red) and transverse covariance (dashed purple). All variances and transverse covariances have been scaled by

ε−1[DaσCH(0)G(0,0)]−2. Other parameters are as in Figure 2.

Using the scaling strategy outlined earlier to analyse (5.2, 5.4) in the distinguished limit, we see

that the dominant contribution to the fluctuating part of Ĉb has magnitude ε3/2σ and its mean part has

magnitude ε2σ2. We therefore expect the correction to 〈C〉 due to stochasticity to be sub-dominant to

Ĉa provided σ ≪ 1. Figure 5 compares the mean residual,

〈rn(x)〉= 〈r(x)〉+ 1
2

Daσ2
[
CH(x)+(GCHy)|x,0

]
(5.5)

(where (4.7) is modified using (5.4)), with the leading-order oscillatory term, Da f (x− k)CH(x). The

magnitude and overall shape of the mean residuals are similar to those from the periodic array (see

Figure 3), although with a slightly reduced amplitude in some cases. This similarity demonstrates the

sub-dominant effect of the weak stochasticity on the mean compared with the periodic corrections in

this instance. Also shown in Figure 5 is the prediction of how the lower envelope of the oscillatory

mean residual is elevated as a result of averaging (see Appendix E): averaging an ensemble of ‘spiky’

oscillations of the kind shown in Figure 3(b), with each member of the ensemble displaced laterally by

a small normally distributed distance, leads to a smoother mean waveform with an elevated minimum.
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(a) Pe = ε2, Da = ε

[DaCH(0)]
−1 〈rn(x)〉

[DaCH(0)]
−1 Da f (x− k)CH(x)

[DaCH(0)]
−1 Da[− 1

12
+ s]CH(x)

(b) Pe = ε , Da = ε (c) Pe = 1, Da = ε

(d) Pe = ε2, Da = ε2 (e) Pe = ε , Da = ε2 (f) Pe = 1, Da = ε2

εx

(g) Pe = ε2, Da = ε3

εx

(h) Pe = ε , Da = ε3

εx

(i) Pe = 1, Da = ε3

FIG. 5. Plots of [DaCH(0)]
−1 〈rn(x)〉, computed from 104 numerical solutions of (2.4) for C(x) with normally perturbed sink

locations, ξ j = j +σN (0,1), with σ = 0.1, compared with [DaCH(0)]
−1 Da f (x− k)CH(x). Quantities are normalised in the

same way as in Figure 3. Other parameters are as in Figure 2. The pink regions match those in Figure 3; dashed, black lines

show the impact of averaging on their lower envelope, derived in Appendix E, where s = σ/
√

2π . The blue regions incorporate

the correction
〈
Ĉb

〉
. The accuracy of the approximation is illustrated by the degree of overlap between blue region and the pink

region above the dashed line.

This refined lower boundary agrees very well with simulations for small Da, but deviations develop as

Da is increased.

Finally, we may use (Ĉb)x|ε−1 (see (2.5)) to estimate the uncertainty in the total solute uptake by

sinks as

Var
(
(Ĉb)x|ε−1

)
= Da2 σ2

∫ ε−1

0
(GxCH)y|ε−1,y dy. (5.6)

5.2 Uniformly random sink locations

We now consider an array of N point sinks, the locations of which are drawn from a uniform distribution

U (0,ε−1), where ε = 1/(N + 1), and sorted into ascending order: ξ1 6 ξ2 6 · · · 6 ξN . Thus ξ j is the
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j-th order statistic from a set of N uniform random variables (Ahsanullah et al., 2013). In contrast to the

array of weakly perturbed sinks, we cannot Taylor expand around the periodic configuration and neglect

the single unit cell which contains the coordinate x. This is because the strong disorder allows sinks

to leave their unit cells and change order. Instead, we use results on order statistics to approximate the

moments of the concentration profile.

We first note that the sum over all N order statistics ξ j is equal to the sum of the N underlying

uniform random variables; the former is just a permutation of the latter. This basic fact is used in

David & Nagaraja (2003) and Chunsheng (1992) to prove identities involving sums of moments of

order statistics. In particular, we will use the following identity,

∑∑
j 6=k

Cov(g(X j:N),h(Xk:N)) =
N

∑
j=1

[〈
g(X j:N)

〉〈
h(X j:N)

〉
−〈g(X)〉〈h(X)〉

]
, (5.7)

where X is a random variable (with finite variance), X j:N denotes the j-th order statistic out of a sample

of size N from the distribution of X , and g, h are any real-valued functions satisfying Var(g(X)) < ∞,

Var(h(X))< ∞.

Let the uniform random variable U ∼ U (0,ε−1) with probability density function fU (x) = ε , 0 6

x 6 ε−1. Using (3.12), we write the covariance as

Cov
(
Ĉb(x1),Ĉb(x2)

)
= Da2

N

∑
j=1

N

∑
k=1

Cov
(
(GCH)x1,ξ j

,(GCH)x2,ξk

)

= Da2

[

∑∑
j 6=k

Cov
(
(GCH)x1,ξ j

,(GCH)x2,ξk

)
+

N

∑
j=1

Cov
(
(GCH)x1,ξ j

,(GCH)x2,ξ j

)]

= Da2

{
N

∑
j=1

〈
(GCH)|x1,ξ j

〉〈
(GCH)|x2,ξ j

〉
−N

〈
(GCH)|x1,U

〉〈
(GCH)|x2,U

〉

+
N

∑
j=1

[〈
(GCH)|x1,ξ j

(GCH)|x2,ξ j

〉
−
〈
(GCH)|x1,ξ j

〉〈
(GCH)|x2,ξ j

〉]}

= N Da2

[〈
(GCH)|x1,U (GCH)|x2,U

〉
−
〈
(GCH)|x1,U

〉〈
(GCH)|x2,U

〉]
,

(5.8)

where we have used (5.7) to transform averages over the order statistics into averages over the uniform

variable U . Writing the averages as integrals using the probability density function fU then yields

Cov
(
Ĉb(x1),Ĉb(x2)

)
=

(1− ε)Da2

[∫ ε−1

0
(GCH)|x1,y(GCH)|x2,y dy− ε

∫ ε−1

0
(GCH)|x1,y dy

∫ ε−1

0
(GCH)|x2,y dy

]
. (5.9)

We have made no further approximations to arrive at this expression for the covariance of Ĉb and it

contains contributions at different orders of ε . A leading-order estimate is obtained by retaining only

the 1 in (1− ε), from which we find that the covariance has magnitude ε in the distinguished limit,

implying fluctuations around the mean have magnitude ε1/2.

In Figure 6 we compare the theoretical prediction of the variance and transverse covariance, in (5.9),

with sample statistics of an ensemble of 104 Monte-Carlo simulations of (2.4), with sink locations drawn
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FIG. 6. Comparison between the sample variance (solid blue) and transverse covariance (solid orange) generated from 104

solutions of (2.4) with the ξ j drawn from U (0,ε−1) and then sorted into ascending order for each realisation, and the theoretical

prediction (5.9). All variances and transverse covariances have been scaled by [DaCH(0)G(0,0)]−2. Other parameters are as in

Figure 2.

from a uniform distribution U (0,ε−1) and labelled in ascending order. For all values of (Pe,Da) shown,

the agreement is excellent, except perhaps for a small discrepancy near the inlet when Da = O(ε) and

Pe ≪ 1. In contrast to Figure 4, sink-to-sink oscillations in the variance or transverse covariance are not

visible here. We expect that oscillations appear at higher order and are sub-dominant to the effects of

strongly disordered sink locations.

The variance in the net uptake by sinks, from (2.5), is derived analogously to (5.9) as

Var
(
(Ĉb)x|ε−1

)
= Da2

[∫ ε−1

0

[
(GxCH)|ε−1,y

]2

dy− ε

[∫ ε−1

0
(GxCH)|ε−1,y dy

]2]
. (5.10)

Interestingly, simulations show that (Ĉb)x|ε−1 has a roughly Gaussian distribution for Pe = O(ε) and

Da = O(ε2), but an asymmetric distribution when Pe = O(1) (not shown).

We now turn to the mean of the first stochastic correction. Using again the equivalence of sums over
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order statistics and their underlying random variables, the mean of Ĉb can be written as

〈
Ĉb(x)

〉
= Da

N

∑
j=1

[〈
(GCH)x,ξ j

〉
− (GCH)|x, j

]

= Da
N

∑
j=1

[〈
(GCH)x,U

〉
− (GCH)|x, j

]

= Da

[
(1− ε)

∫ ε−1

0
(GCH)|x,y dy−

N

∑
j=1

(GCH)|x, j
]
.

(5.11)

In the distinguished limit, the first integral in the brackets is O(ε−2), the second integral is O(ε−1), and

the sum is O(ε−2). Converting the sum to an integral, we expect the O(ε−2) contributions to cancel the

first integral, so we retain terms up to the size of the smaller integral term,

N

∑
j=1

(GCH)|x, j =
∫ ε−1

0
(GCH)|x,y dy− 1

2

[
(GCH)|x,0 +(GCH)|x,ε−1

]
+ · · ·

=
∫ ε−1

0
(GCH)|x,y dy+ 1

2
ε−1CH(0)CH(x)+ · · · ,

(5.12)

where we have applied the outlet boundary condition (2.4b) and (3.6). Using this approximation, we

find
〈
Ĉb(x)

〉
= Da

[
−ε

∫ ε−1

0
(GCH)|x,y dy− 1

2
ε−1CH(0)CH(x)+O(1)

]
, (5.13)

which has magnitude O(ε) in the distinguished limit.

Figure 7 compares the mean residual 〈r(x)〉, calculated using (4.7) from 105 Monte-Carlo samples,

each with sink locations drawn from a uniform distribution, and the theoretical prediction (5.13). We

compare the sample statistics with this O(ε) stochastic contribution rather than the O(ε2) oscillating

part, Da f (x− k)CH(x), since the sink-to-sink oscillations appear at higher order here. The theory pre-

dicts the overall magnitude and shape of the correction to the mean concentration for many parameter

values, especially when Da is small, and when Pe is large. However, some features, such as near the

inlet boundary in Figure 7(a,b) are not captured by the leading-order theory for this choice of ε; we

expect that further correction terms will account for these discrepancies.

5.3 Magnitude estimates in other regions of parameter space

Following Russell et al. (2016), we can identify three parameter regimes around the distinguished limit.

In each regime, either diffusion [D], advection [A] or uptake [U] is the dominant process. These can be

identified by balancing the various terms in (3.1). [D] is defined by the region Pe ≪ ε , Da ≪ ε2; [A] by

Pe ≫ ε , Da ≪ Pe2; and [U] by Da ≫ max(ε2,Pe2). In [D], CH varies smoothly across the whole domain

over a lengthscale x ∼ ε−1 (see Figure 2(g)). In [U], the lengthscale shrinks to x ∼ Da−1/2 (Figure 2a,b).

In [A], for ε Pe ≪ Da ≪ Pe2 this lengthscale increases to x ∼ Pe/Da (we denote this subregion [AI]),

and then encompasses the whole domain for Da ≪ ε Pe (with a short boundary layer of length x ∼ 1/Pe

at the outlet; this is subregion [AII], see Figure 2(f,i)). Other panels in Figure 2 sit at interfaces between

these regions: (c) [AI /AII]; (d) [D/U]; (e) [A/D/U], the central distinguished limit; and (h) [D/A]. We
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FIG. 7. Plots of 〈r(x)〉, each computed from 104 numerical solutions of (2.4) for C(x) with uniformly distributed sinks, ξ j drawn

from U (0,ε−1), and the theoretical prediction (5.13). All quantities have been scaled by ε Da−1 CH(0)
−2. Other parameters are

as in Figure 2.

use these lengthscales to estimate the asymptotic magnitudes of CH and G in these regions of parameter

space, from which we deduce the magnitudes of the deterministic correction Ĉa, Ĉaa in terms of CH and

G. These results are summarised in Table 1.

The macroscale approximation is slowly varying when Pe ≪ 1 (for the downstream boundary layer

to extend over multiple sinks) and Da ≪ 1 (ensuring the corrections due to discreteness to remain

subdominant to CH). Oscillatory corrections in Ĉa grow as each of these boundaries in parameter space

is approached, indicating how CH becomes an increasingly poor approximation of the gradient of the

exact solution over short lengthscales.

Turning to the stochastic corrections, we estimate the asymptotic magnitudes of the mean and fluc-

tuations (given by the standard deviation) of Ĉb for both normally perturbed and uniformly-random sink

locations. These magnitudes are summarised in Table 2. It turns out that the domain of validity of

CH remains Da ≪ 1 and Pe ≪ 1 in all cases. However in the uniformly-random case, the dominant

correction to CH is due to randomness, whereas for normally perturbed sinks, the discrete correction

dominates the stochastic one.
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Region CH G Ĉa Ĉaa

A/D/U 1 ε−1 ε(1,ε) ε2

D 1 ε−1 Daε−1(1,ε) Da2 ε−2

U ε Da−1/2 Da−1/2 ε(1,Da1/2) ε Da1/2

A ε Pe−1 Pe−1 ε DaPe−2(1,Pe) ε Da2 Pe−3

Table 1. Asymptotic magnitudes of the leading-order homogenized solution CH and the Green’s function G in various parameter

regimes (defined in the text), with corresponding estimates of the magnitudes of the deterministic corrections Ĉa and Ĉaa. In the

Ĉa column, the first term in the parentheses corresponds to the leading-order slowly varying terms and the second to the amplitude

of leading-order oscillatory terms.

Normally perturbed Uniform

Region
〈
Ĉb

〉 √
Var
(
Ĉb

) 〈
Ĉb

〉 √
Var
(
Ĉb

)

A/D/U σ2ε2 σε3/2 ε ε1/2

D σ2 Da σε−1/2 Da ε−1 Da ε−3/2 Da

U σ2ε Da1/2 σε Da1/4 ε ε Da−1/4

AI σ2ε DaPe−1 σε3/2 DaPe−2 ε DaPe−2 ε1/2 DaPe−2

AII σ2ε DaPe−1 σε Da3/2 Pe−5/2 ε DaPe−2 ε Da1/2 Pe−3/2

Table 2. Magnitude estimates of the mean and fluctuations of the stochastic correction Ĉb

6. Discussion

We have analysed a model of transport past an array of point sinks with first-order uptake kinetics.

We considered periodic, weakly perturbed and strongly disordered arrays; weak disorder was modelled

using small normally-distributed perturbations from a periodic configuration while strongly disordered

sinks had uniformly-randomly distributed locations. We posed an ad hoc expansion for the concen-

tration field, centred around the leading-order homogenized concentration (which is obtained using

classical two-scale methods described in Appendix B), in which the higher-order terms can be identi-

fied as corrections due to the discrete nature of the sinks and the effects of disorder, and combinations

thereof. However, the asymptotic ordering of the expansion is not known a priori and it contains a

mixture of expressions varying on long and short lengthscales and having deterministic and stochastic

components. We assessed the magnitudes of the different correction terms in the distinguished limit

Pe = O(ε), Da = O(ε2) for each sink distribution. This process elucidates whether the dominant cor-

rections to the homogenized mean concentration profile arise from discreteness of the sinks (as is the

case for normally perturbed sinks with σ ≪ 1) or from spatial disorder (in the uniformly-random case).

Likewise, our results demonstrate when fluctuations in the concentration become comparable in size to

the mean, signifying a breakdown of the expansion. Interestingly, for the present problem the homog-

enized approximation holds for Da ≪ 1 (with Pe ≪ 1), breaking down in region [U] as Da approaches

unity both in the strictly periodic case (when the dominant relative error is O(Da1/2), see Table 1) and

the uniformly random case (when the dominant relative error is O(Da1/4), see Table 2).

Our results provide evidence that for a periodic sink array, the classical method employing a two-

scale expansion and a unit-cell average (summarized in Appendix B) fails to account accurately for

higher-order corrections in the concentration field. The alternative method presented here neither assumes

that the concentration explicitly depends on two spatial variables nor that it is periodic across unit cells,
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and it recovers terms missing in the classical approach that improve agreement with numerical simula-

tions (up to a given order of ε), as illustrated in Figure 3. Limitations of the two-scale method in dealing

with boundary conditions have been noted previously by Pavliotis & Stuart (2008).

When sink locations are weakly perturbed, the concentration field has a spatial correlation structure

that extends across the entire domain, even though the perturbations to the sink locations are indepen-

dent. Our Green’s function-based approach provides an explicit prediction of these correlations in terms

of a non-local combination of G and the leading-order concentration profile CH which agrees well with

simulations in a large region of (Pe,Da)-parameter space (Figure 4). In the present problem the first

corrections to the mean concentration that result from weakly disordered sinks are smaller in magni-

tude than the corrections due to discreteness (arising in the periodic problem), provided σ ≪ 1. This

is confirmed by comparison with simulations of the ensemble averaged residual 〈r(x)〉 (see Figure 5).

In our previous study of the case in which sink strength, rather than sink location, was disordered, we

found that fluctuation magnitudes could be greatest towards the downstream end of the domain when

advection was strong (Russell et al., 2016), unlike the pattern of disorder shown in Figure 4.

Strongly disordered sink locations were modelled using a uniform distribution U (0,ε−1) and labelled

in ascending order from the inlet to the outlet of the domain. The location of the j-th sink, ξ j, is therefore

the j-th order statistic of the uniform distribution out of N. Before relabelling, the locations are indepen-

dent random variables but the sorting introduces correlations between the sink locations. Using results

on order statistics, we derived predictions of the long-range correlations in the concentration induced by

sink disorder, which again agree well with simulations (see Figure 6). Unlike weakly perturbed sinks,

we found that strong disorder has a significant effect on the mean concentration, contributing at O(ε) in

the distinguished limit (Table 2). This is an order of magnitude larger than the oscillatory terms arising

from a periodic array, and we therefore compare the mean stochastic corrections with the sample mean

of the residual 〈r(x)〉 from simulations, rather than with Da f (x− k)CH(x) as before (see Figure 7). Our

estimate of the perturbation to the mean concentration induced by disorder shows excellent quantita-

tive accuracy for smaller values of Da; the relative error in the mean is O(Da1/2) as uptake becomes

stronger, and this grows as Da increases towards unity. Unlike the case of variable sink strength (Rus-

sell et al., 2016), here the correction to the mean due to disordered sink locations can change sign across

the domain.

In practical applications it can be important to understand not only large-scale concentration distri-

butions across a region but also small-scale variations across unit cells. In the placenta, for example,

transfer between fetal and maternal circulation takes place at the lengthscale of individual terminal villi,

where individual fetal capillary loops within a branch come into close proximity to maternal blood out-

side the branch (Erlich et al., 2018). The size of solute fluctuations across an individual branch can be

expected to influence the transport across the surface of the branch. Given the high degree of spatial dis-

order in branches (Chernyavsky et al., 2011; Erlich et al., 2018), the fluctuations associated with spatial

disorder (reflected by the standard deviation of Ĉb in Table 2) deserve particular attention, particularly

if there are correlations between the orientation of capillary loops within the villous branch and the

position of the branch with respect to its neighbours.

There are a number of obvious extensions of the present work, for example to consider other dis-

tinguished limits in parameter space, nonlinear uptake kinetics and unsteady effects. A similar steady

problem with zeroth-order kinetics was analysed in Chernyavsky et al. (2011, 2012) using a direct alge-

braic method to capture stochastic behaviour. A Green’s function approach may be applicable to such

cases but the effort in calculating nonlinear, nonlocal and unsteady expressions is likely to be greater

than in the present case. A further important class of problems to consider involves finite-size sinks in

two or more dimensions, where there has been substantial effort in deriving upscaled approximations
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for electrokinetics (Heitzinger & Ringhofer, 2014; Schmuck & Bazant, 2015) and reactive flow in dis-

ordered porous media (Cushman et al., 2002). The present approach should provide a useful foundation

for investigations characterising the multiscale structure of stochastic flow and solute fields in higher

dimensions.
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A. Numerics

In this section we describe a hybrid method for generating realisations of the concentration profile for

arbitrary sink distributions. We represent solutions of (2.4) exactly as an algebraic linear system, which

we solve numerically for a given sink distribution.

We first write (2.4a) as an advection-diffusion equation between sinks and a condition in the jump in

concentration gradient at each sink. Integrating in a vanishing region around sink j and using continuity

of the concentration, gives the jump condition

JCxKx=ξ j
= DaC(ξ j), j = 1, . . . ,N, (A.1)

whereas in the bulk of the domain,

Cxx −PeCx = 0, 0 < x < ε−1, x 6= ξ j, (A.2)

supplemented with the boundary conditions (2.4b) and continuity of C across sinks, JCKx=ξ j
= 0. Inte-

grating (A.2) twice, we find

C(x) = A je
Pe(x−ξ j)+B j, ξ j 6 x 6 ξ j+1, j = 0, . . . ,N, (A.3)

where the A j, B j are constants. The inlet and outlet boundary conditions yield

B0 = ε/Pe, ANePe(ε−1−ξN)+BN = 0,

respectively. Continuity of C across sinks implies,

A j −A j−1ePe(ξ j−ξ j−1)+B j −B j−1 = 0, (A.4a)

and the jump condition (A.1) gives,

A j −A j−1ePe(ξ j−ξ j−1)− Da

Pe
(A j +B j) = 0. (A.4b)

Eliminating A j−1 from (A.4b) via (A.4c), gives the following sparse linear system of 2(N+1) algebraic

equations for the A j, B j,

B0 =
ε

Pe
, (A.5a)

Da

Pe
A j +

(
1+

Da

Pe

)
B j −B j−1 = 0, j = 1, . . . ,N (A.5b)

(
1− Da

Pe

)
A j − ePe(ξ j−ξ j−1)A j−1 −

Da

Pe
B j = 0, j = 1, . . . ,N (A.5c)

ANePe(ε−1−ξN)+BN = 0. (A.5d)
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This is an exact representation of (2.4) but an explicit solution for the A j, B j is not readily available.

Therefore, for a given sink distribution, we find A j, B j via a numerical solution of the linear system

(A.5), and use the coefficients in the bulk solution (A.3) to reconstruct the concentration profile. An

ensemble of such concentration profiles with sinks placed according to some random distribution can

be used to generate sample statistics which we will use to validate theoretical predictions.

B. Classical two-scale homogenization for transport past a periodic sink array

We use a classical homogenization approach to analyse the periodic sinks problem for comparison with

the method described in Sec. 4. We begin with (2.4) with ξ j = j, i.e.

Cxx −Pe Cx = Da C(x)S(x), 0 < x < ε−1, (B.1a)

Pe C|x=0 −Cx|x=0 = ε, (B.1b)

C|x=ε−1 = 0, (B.1c)

S(x) =
N

∑
i=1

δ (x− i). (B.1d)

Let X = εx denote a “long-range” spatial variable which takes values in [0,1] across the domain. We

then seek solutions of the form C(x) = C̃(x,εx), where we expand in powers of ε ,

C̃(x,X) =C(0)(x,X)+ εC(1)(x,X)+ ε2C(2)(x,X)+ · · · , (B.2)

where C(n)(x,X) = O(1), for n = 0,1,2, . . . . The variables x and X will be treated as independent.

Derivatives transform according to

d

dx
=

∂

∂x
+ ε

∂

∂X
,

d2

dx2
=

∂ 2

∂x2
+2ε

∂ 2

∂x∂X
+ ε2 ∂ 2

∂X2
. (B.3)

We investigate solutions in the distinguished limit Pe = O(ε), Da = O(ε2). Thus, we set Pe = ε p0

and Da = ε2q0, where p0,q0 = O(1) as ε → 0. Define the linear operator and boundary condition

operator as

Lx ≡
∂ 2

∂x2
, BxC ≡ {Cx|x=0,C|X=1}, (B.4)

respectively. We have included the subscripts to distinguish these operators from those in the main text.
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Then substituting (B.2) into (B.1) and collecting terms in orders of ε , we obtain the following systems:

O(1) :

{
LxC

(0) = 0

BxC
(0) = {0,0},

(B.5a)

O(ε) :

{
LxC

(1) =−2C
(0)
xX + p0C

(0)
x

BxC
(1) = {p0C(0)

∣∣
X=0

−C
(0)
X

∣∣
X=0

−1,0},
(B.5b)

O(ε2) :





LxC
(2) = q0C(0)S(x)−2C

(1)
xX −C

(0)
XX + p0

(
C
(1)
x +C

(0)
X

)

BxC
(2) = {p0C(1)

∣∣
X=0

−C
(1)
X

∣∣
X=0

,0},
(B.5c)

O(ε3) :





LxC
(3) = q0C(1)S(x)−2C

(2)
xX −C

(1)
XX + p0

(
C
(2)
x +C

(1)
X

)

BxC
(3) = {p0C(2)

∣∣
X=0

−C
(2)
X

∣∣
X=0

,0},
(B.5d)

and so on for higher orders.

We seek x-periodic solutions and therefore we will work in a representative unit cell by defining new

coordinates, x′ ≡ x− i, so that −1/2 < x′ < 1/2 in each cell. Sinks are therefore situated at x′ = 0 in

each cell.

At O(1), we have

C
(0)
x′x′ = 0, (B.6a)

C
(0)
x′
∣∣
X=0

= 0, C(0)
∣∣
X=1

= 0, (B.6b)

JC(0)Kx′=0 = 0, JC
(0)
x′ Kx′=0 = 0, (B.6c)

x′-periodicity of C(0). (B.6d)

Using the periodicity condition, we therefore find that C(0) =C(0)(X) only, along with C(0)(1) = 0.

At O(ε), we have

C
(1)
x′x′ = 0, (B.7a)

C
(1)
x′
∣∣
X=0

=C
(0)
B , C(1)

∣∣
X=1

= 0, (B.7b)

JC(1)Kx′=0 = 0, JC
(1)
x′ Kx′=0 = 0, (B.7c)

x′-periodicity of C(1), (B.7d)

where C
(0)
B ≡ p0C(0)

∣∣
X=0

−C
(0)
X

∣∣
X=0

− 1. Similarly to the previous order, we find that C(1) = C(1)(X)

only, with C(1)(1) = 0. Additionally, applying the boundary condition on C(1) at the inlet fixes the

condition on C(0) to be C
(0)
B = 0, or

p0C(0)
∣∣
X=0

−C
(0)
X

∣∣
X=0

= 1. (B.8)
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At O(ε2), we have

C
(2)
x′x′ =−

(
C
(0)
XX − p0C

(0)
X

)
, (B.9a)

C
(2)
x′
∣∣
X=0

=C
(1)
B , C(2)

∣∣
X=1

= 0, (B.9b)

JC(2)Kx′=0 = 0, JC
(2)
x′ Kx′=0 = q0C(0), (B.9c)

x′-periodicity of C(2), (B.9d)

where C
(1)
B ≡ p0C(1)

∣∣
X=0

−C
(1)
X

∣∣
X=0

. Performing a spatial average over a unit cell and using the period-

icity and jump conditions on C(2), we obtain the macroscopic equation for the leading order solution,

C
(0)
XX − p0C

(0)
X = q0C(0)(X). (B.10)

The leading order solution is

C(0)(X) =
ep0X/2 sinh[Φ(1−X)]

p0 sinh(Φ)/2+Φ cosh(Φ)
, (B.11)

where Φ ≡
√

q0 + p2
0/4, consistent with (3.2).

Substituting the macroscopic equation for C(0) into the equation for C(2) and directly integrating in

each half of the unit cell yields

C(2) =

{
− 1

2
q0C(0)x′2 +a1x′+a2, − 1

2
6 x′ < 0,

− 1
2
q0C(0)x′2 +b1x′+b2, 0 6 x′ 6 1

2
.

(B.12)

Applying the jump conditions gives b2 = a2 and b1 = a1 + q0C(0). We then impose that
〈

C(2)
〉

is a

constant, where 〈 f 〉 = ∫ 1/2

−1/2
f dx′, which gives a2 =

〈
C(2)

〉
− 1

12
q0C(0). Periodicity then implies that

a1 =− 1
2
q0C(0).

It remains to find C
(1)
B and

〈
C(2)

〉
which allow C(2) to satisfy the global boundary conditions. We

therefore find from the inlet condition that

C
(2)
x′
∣∣
X=0

=− 1
2
q0C(0)

∣∣
X=0

(−1) =C
(1)
B , (B.13)

or

C
(1)
B = 1

2
q0C(0)(0). (B.14)

Similarly, applying the outlet condition gives
〈

C(2)
〉
= 0. Therefore the expression for the second

correction is

C(2) =− 1
2
q0C(0)

(
x′2 −|x′|+ 1

6

)
, − 1

2
6 x′ 6 1

2
. (B.15)
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At O(ε3), we have

C
(3)
x′x′ =−

(
2C

(2)
x′X − p0C

(2)
x′

)
−
(

C
(1)
XX − p0C

(1)
X

)
, (B.16a)

C
(3)
x′
∣∣
X=0

=C
(2)
B , C(3)

∣∣
X=1

= 0, (B.16b)

JC(3)Kx′=0 = 0, JC
(3)
x′ Kx′=0 = q0C(1), (B.16c)

x′-periodicity of C(3), (B.16d)

where C
(2)
B ≡ p0C(2)

∣∣
X=0

−C
(2)
X

∣∣
X=0

. Again we average over a unit cell, and find that the first correction

satisfies the same macroscopic equation as the leading order solution,

C
(1)
XX − p0C

(1)
X = q0C(1)(X). (B.17)

Therefore the first correction is proportional to the solution at leading order and is given by

C(1)(X) =
1

2
q0C(0)(0)C(0)(X), (B.18)

finally giving C =CH(x)+
1
2
εq0CH(0)CH(x)+ ε2q0CH(x) f (x′)+O(ε3), missing one term in (4.4) and

the O(ε2) term in (4.6).

C. Unit cell integration identities

For j = 1,2, . . . ,N,
∫ j+1/2

j−1/2
(y− j)n[δ (y− j)−1]dy =

{
0, n = 0,1,

− 1
12
, n = 2.

(C.1)

For k−1/2 < x < k+1/2 (i.e. k = ⌊x+1/2⌋),

∫ x

k−1/2
[δ (y− k)−1]dy = H(x− k)− x+ k− 1

2
, (C.2a)

∫ k+1/2

x
[δ (y− k)−1]dy = H(k− x)+ x− k− 1

2
, (C.2b)

∫ x

k−1/2
(y− x)[δ (y− k)−1]dy = (k− x)H(x− k)+ 1

2
(x− k+ 1

2
)2, (C.3a)

∫ k+1/2

x
(y− x)[δ (y− k)−1]dy = (k− x)H(k− x)− 1

2
(x− k− 1

2
)2, (C.3b)

∫ x

k−1/2
(y− x)2[δ (y− k)−1]dy = (k− x)2H(x− k)− 1

3
(x− k+ 1

2
)3, (C.4a)

∫ k+1/2

x
(y− x)2[δ (y− k)−1]dy = (k− x)2H(k− x)+ 1

3
(x− k− 1

2
)3. (C.4b)
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D. Approximating sums with integrals

Let f (y) be a smooth function, except possibly at y = k, with f (y) = O(εa) as ε → 0 for some a ∈ R.

Additionally assume that successive derivatives of f (y) fall in magnitude by a factor of ε; i.e.
dn f
dyn =

O(εa+n). We decompose the integral
∫ x−

0 f (y)dy into contributions from unit cells, centred at y = j,

j = 1,2, . . . ,k − 1, a half-cell from y = 0 and the remaining interval [k − 1
2
,x]; we split the integral

∫ ε−1

x+ f (y)dy similarly. Then

∫ x−

0
f (y)dy =

∫ 1/2

0
f (y)dy+

k−1

∑
j=1

∫ j+1/2

j−1/2
f (y)dy+

∫ x−

k−1/2
f (y)dy

∫ ε−1

x+
f (y)dy =

∫ k+1/2

x+
f (y)dy+

N

∑
j=k+1

∫ j+1/2

j−1/2
f (y)dy+

∫ ε−1

ε−1−1/2
f (y)dy

(D.1)

Taylor expanding around y = 0 and y = ε−1 for the half-cells, around the centre of each unit cell and

y = x± for the intervals from and up to x,

f (y) = f (0)+ y fy(0)+
1
2
y2 fyy(0)+ · · · ,

f (y) = f ( j)+(y− j) fy( j)+ 1
2
(y− j)2 fyy( j)+ · · · ,

f (y) = f (x±)+(y− x) fy(x
±)+ 1

2
(y− x)2 fyy(x

±)+ · · · ,
f (y) = f (ε−1)+(y− ε−1) fy(ε

−1)+ 1
2
(y− ε−1)2 fyy(ε

−1)+ · · · .

(D.2)

Integrating each term in (D.2),

∫ 1/2

0
f (y)dy = 1

2
f (0)+ 1

8
fy(0)+

1
48

fyy(0)+ · · · ,
∫ j+1/2

j−1/2
f (y)dy = f ( j)+ 1

24
fyy( j)+ · · · ,

∫ x−

k−1/2
f (y)dy = f (x−)(x− k+ 1

2
)− 1

2
fy(x

−)(x− k+ 1
2
)2 + 1

6
fyy(x

−)(x− k+ 1
2
)3 + · · · ,

∫ k+1/2

x+
f (y)dy = f (x+)(k− x+ 1

2
)+ 1

2
fy(x

+)(k− x+ 1
2
)2 + 1

6
fyy(x

+)(k− x+ 1
2
)3 + · · · ,

∫ ε−1

ε−1−1/2
f (y)dy = 1

2
f (ε−1)− 1

8
fy(ε

−1)+ 1
48

fyy(ε
−1)+ · · · .

(D.3)

Using (D.3) in (D.1) and rearranging, we have

∑
j 6=k

f ( j) =

(∫ x−

0
+
∫ ε−1

x+

)
f (y)dy

− 1
2
[ f (0)+ f (ε−1)]− [ f (x+)(k− x+ 1

2
)+ f (x−)(x− k+ 1

2
)]

− 1
8
[ fy(0)− fy(ε

−1)]− 1
24 ∑

j 6=k

fyy( j)− 1
2
[ fy(x

+)(k− x+ 1
2
)2 − 1

2
fy(x

−)(x− k+ 1
2
)2]

+ · · ·

(D.4)
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E. Averaging unit-cell fluctuations

We seek F(x) = 〈 f (x− k−φ)〉 where k = ⌊x+ 1
2
⌋ and f (x) = − 1

2
(x2 −|x|+ 1

6
) in |x| 6 1

2
(and is zero

otherwise), with φ ∼ N (0,σ2), with σ ≪ 1. We restrict attention to the cell k = 0. Where f varies

smoothly with respect to x (away from x = 0), F(x) = f (x)+O(σ2). However the spike in f near x = 0

is smoothed more dramatically. Let g(φ) = (2πσ2)−1/2 exp(−φ 2/(2σ2)) be the probability density of

the shift φ . Then for x in a region of width O(σ) near the origin,

F(x) =
∫ ∞

−∞

(
− 1

12
+

1

2
|x−φ |+ . . .

)
g(φ)dφ +O(σ2)

=− 1

12
+
∫ x

−∞

1

2
(x−φ)g(φ)dφ +

∫ ∞

x

1

2
(φ − x)g(φ)dφ + . . .

=− 1

12
+

σ√
2π

exp

(
− x2

2σ2

)
+

x

2
erf

(
x

σ
√

2

)
+ . . .

(E.1)

The outer limit of this approximation, for x ≫ σ , gives F ≈ − 1
12

+ 1
2
|x|+O(σ2), matching with the

region where f varies smoothly. For x ≪ σ ,

F ≈− 1

12
+

σ√
2π

+
1

2σ

x2

√
2π

+O(σ2). (E.2)

Thus small normal perturbations of sink locations reduce the amplitude of unit-cell fluctuations from

(− 1
12
, 1

24
) (the range of f ) to (− 1

12
+σ/

√
2π, 1

24
) (the range of F , with error O(σ2)). Stronger disorder

suppresses the range completely: when φ ∼ U (− 1
2
, 1

2
),

F(x) =
∫ 1/2

−1/2
∑
k

f (x− k−φ)dφ =
∫ x+1/2

x−1/2
∑
k

f (u− k)du = 0. (E.3)
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