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Abstract. We discuss the homogenization of stochastic partial differential equations whose
coefficients are rapidly oscillating and are perturbed by a diffusion process. Such class of equations
appear in nonlinear filtering problems with feedback. We specify the constant coefficients of the
limit equation. The constants are essentially different from the case where the coefficients do not
contain perturbed factors.

1. Introduction.

In this paper, we deal with the following stochastic partial differential equations (SPDES)
with small parameteg > 0

1.1
pE(O,X) = pO(X) € Lz(Rd)v -

{dp‘g(t,X) =LE(t) p*(t,x) dt+ M(t) p*(t,x)d¥, O<t<T,
whereY = (M)iejo1] is an n-dimensional standard Brownian motion, ah#l = L*(t) and
M& =Mé(t) = (M (t),--- ,Mi(t)) represent the linear differential operator and the multiplicative
operator acting on a function @ defined by

LE(t) = Vx (8 (x/8,Z8 /€) V). ME(H) = hu(x/e,Zf e) - .

Note thatVy (i = 1,...,d) are the partial derivatives with respectxoand that we use the
summation convention throughout the paper. The syrdbet (Ztg)te[O,T] stands for a solution
to the following stochastic differential equation (SDE) Rh

dze = f(z¢
{ ZE = f(Zf/e)dt+QdY, 0<t<T, 1.2)
Z§=z€R",

whereQ = (Q¥') denotes argn x n)-matrix. All coefficientsa = (&) (x,2)), h = (h(x,2)) and
f = (fX(2)) are assumed to be periodic with peribih all components.

Our aim is to show that asgoes to zero the family of solutions to (1.1) converges in law to
the solution of an SPDE having both spatially and temporally homogeneous coefficients. It turns
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out that the limit equation satisfies the SPDE

{dpo(t,x) =LO%pO(t,x)dt+M2p2(t,x)dY;, O0<t<T, w3
P°(0,%) = po(x) € LA(R?), '
where

L=V V-~ V-, MI=hy-, (1.4)

and the constants= (¢), 5= (¢') (i,j = 1,...,d) andh = (hy) (k=1,...,n) are characterized
by

&1 = (3} + Vi X))@V (8 + Vg, X 1)) + (Vox A 7, X)),

7= vy, A= ([ ([, hk<x,z>dx)2dz)1/2,

with the notation((-)) := [td,n - dxdz whereT¢ andT" represent the-dimensional anah-
dimensional unit torus respectively, a@, (k= 1,...,n) denote the partial derivatives with
respect toz. The symbols(&]) (i,j = 1,...,d) and (A¥) (k| =1,...,n) stand for Kro-
necker’s delta and thén x n)-matrix defined byA = QQ*/2 respectively, and we denote by
X™=(x"(x,2)) (m=1,...,d) periodic functions with period in all components which satisfy
((x™) = 0 and the following auxiliary partial differential equations (PDEs)Rfhx R"

Vy (@ (x,2) Vg X™(x,2)) + A V5 75 x(x,2) + (V@d™) (x.2) = 0. (1.5)
The limit equation (1.3) does not depend fan

The study of homogenization for PDEs has been largely developed for the last two decades,
and numerous publications can be found at present. The b8hK®] give us large numbers
of results obtained before the nineties with an extensive bibliography. The former book treats
the homogenization of linear, second-order PDEs with periodic coefficients by two different
approaches, that is, analytic and probabilistic (see dlgp [14] and references therein). The
latter one is concerned with the homogenization on stationary random fields (we re$r to [
[10] for more recent results). The paped, [[15] deal with another sort of homogenization in
random environment; they consider second order PDEs whose coefficients are periodic function
of the space variable, and perturbed by an ergodic diffusion process.

On the other hand, few studies are found on the homogenization problem of SPDEs. The
literature [1] consider the homogenization of the SPDE having the operators

L® = Wy (2 (x/£) Vs )~ Vi (6 (¥/) ). ME =hE(x) - (16)

under the assumption of pointwise convergentieg o hg (x) = he(x) forallk=1,...,n. How-
ever, this assumption is rather strong since it forbids an oscillatory behavigr wfitten as
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ht (x) = he(x/€) by periodic functionsy. Motivated by this problem, our previous pap&f [
deals with the case whehg allows such oscillation by taking, in place of (1.6), the operators

LE =al (x/6)Vy Vy, - +&710'(x/€)Vx -, (MEU)(X) = Bi(x,X/€,u(X)),

and studies its homogenization.

The principal interest of the present paper is to know hdwand Mé are homogenized
when we add random factors in the coefficients. In fact, we get different limit operators from
that obtained ing] because of the presence®. Besides, contrary td], the limit operatorl.°
is determined not only bi¢ but also byM? since the constantg contain the functionsy in
their integrand. Remark that this term does not appear in the case where the coefficients do not
depend orZ¢ . The reason whi° does not depend ohwill be revealed at the end of Section 4.
Roughly speaking, the constagitshould involve intrinsically the term of the foraf! 7, x')),
but it can be shown that this term is equal to zero by the particularig/of

Finally, we point out that the SPDESs (1.1) often appear in certain nonlinear filtering prob-
lems. Takef =0, Q=1 ando such thato* = 2a, and consider the following nonlinear filtering
problem with feedback terms

{dxf =& th(Xf /e \/e)dt+ (X /e, %t /€) AWE,  X§ =
= Joh(X¢ /e, Yo/€) ds+ Vg,

whereW? = (W) andW¢ = (W¢) are mutually independent standard Brownian motions with
respect to the probability measupé defined by

dpP®

dP

—exp(/ h(XE /e, Ys/€) dYs — 2/ Ihe(XE /e, Ys/e)|2ds)

with Zf = o(WE,Ys|s<t). Note that in this cas&® = (Zf) is identical withY = (Y;). Then,
the solution of (1.1) appears in the following representation formula for the optimal filter

Jro W(X) p*(t, X) dX
Jre PE(E,X)dx

EP [@(XE)|o(Yss<t)] = P-a.s.

We refer to R] for more information about physical and engineering aspects of the homogeniza-
tion in nonlinear filtering problems.

This paper is organized as follows. In the next section, we state our main result after giving
standing assumptions. In Section 3, we prove tightness of the family of solutions to (1.1) on an
appropriate function space. Section 4 is devoted to the identification of the limit measure.

2. Assumptions and main result.

Throughout this paper, we make the following standing assumptions.
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ASSUMPTIONZ2.1.

(1) ae C3(R¥ " RY®RY), he CL(R¥";R"), andf € C1(R";R") are periodic functions
with period1 in all components.

(2) a= (dl(x,2)) is symmetric and strictly elliptic, that isa'l (x,z) = all (x,z) and there
existsa > 0 such thata|& |24 < (a(x,2) €, &)ga < a*|E[3 forall & € RY and(x,2) € R**™.

(3) A= (AY) is positive definite.

Let H = L?(RY) be the Hilbert space with inner produgi,v)y := Jre U(X)v(x)dx and
norm|uly ;= 1/(U,U)n, and letv = H(RY) be the Sobolev space of ordewith norm |u]y :=
\/\um +59 ;| Vxulf . We denote by’ andV’ the dual spaces ¢ andV respectively. Then,

under the identificatiomd = H’ by the Riesz representation theorem, we have the inclusions
V — H < V'’ that are dense and continuous.

The conditions (1) and (2) of Assumption 2.1 ensure the existence and uniqueness of solu-
tion to (1.1) (see Theorem 1.3 dfJ)).

THEOREM2.1. Let(Q,.Z,P;.%,Y:) be afiltered probability space with a stand&é )-
Brownian motion Y= (Y;), and let Z = (Zf) be a solution to(1.2). Then, there exists an
(%1 )-progressively measurable process=p (pf) € L?(Q x [0,T];V) such that

t t
(9, 0)m :(po,v)H+/o v (LE(S) p§,v>vds+/o(M£(s) pond, eV, (2.1)

for almost all(t, w) € [0,T] x Q, wherey/( -, - )y stands for the duality product betweenV and
V’. Such process is unique in the following sense

P(pf=¢f in V', te[0,T])=1

for all pf and ¢ satisfying(2.1). Moreover, the solution fpsatisfies the energy equality
t
IPEIR = Ipolf +2 v (L(9) S pEv ds

t n t
w2 [ (Mo P pndver Yy [ Mi@pEfds.  Pas.  (@2)
k=1

Now we are in position to state our main result. We denot&by {v [ve 8 c V'} the
weighted Sobolev space with norflg := [ve*®|y,, whereA > 0 is a fixed number an@ =
6(-) is a smooth and strictly positive function & such tha®(x) = |x| for all |x| > 1. LetS=
C(0,T;E) be the set of continuous functions taking their valueB iquipped with the uniform
topology, and let7¢ and 1° be the laws orS of the solutions to (1.1) and (1.3) respectively.
Remark that (1.3) has a unique solution sirce (¢1) is positive definite. Moreover, we can
show the uniqueness in law of (1.3) 8y using the uniqueness theorem of Yamada-Watanabe
type (see p. 89 ofl[1]).

Our main result is the following.
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THEOREM2.2. The family of probability measurgg¢; € > 0} converges td1° ase
goes to zero.

3. Tightness.

In this section, we prove the tightness{dfi¢; e > 0}. To begin with, we check the fol-
lowing uniform estimate.

LEMMA 3.1. Let P = (pf) be a solution ta(1.1). Then, there exists a constantC0
such that

supkt| sup [pf 4] +supE[(/ |pt|vdt) | <clmit. (3.1)

>0 o<t<T

PROOF. By applying Ito’s formula to the semi-martingglgf |2 , which satisfies (2.2), we
can see

t
il +4a [ IpSR g ds
t t
< [pol, +C /0 IpEJ4 ds+ 4 /0 P2 (ME() p. pE)n dYe,  P-as, (3.2)

for some constant > 0. Here and in the following, we denote &> 0 different constants
independent of > 0. Making use of Burkholder’s inequality, we can estimate the stochastic
integral part as

} % [supptlH]JFCEV Ipflﬁdt]

o<t<T

4| sup | [ 1o (M°(9) B¢, Pl

0<t<T

Thus, by considering the expectation of both sides of (3.2) after taking the supremu in
[0,T], we obtain by Gronwall’'s lemma thaup...o E[supy<i<1 [Pf ¥ ] < C|polf -
On the other hand, the energy equality (2.2) yields

T 2 T 2
(2a [ Intfect) < almolfi+C sup ofli+8( [ e(opf, e )
0 0<t<T 0
form which we obtainsup.-oE[( fy |p|2dt)?] < C|polf,. Hence we have completed the

proof. O

Let us denote byC?(RY) the set of smooth functions dR® with compact supports. The
following lemma gives the equicontinuity df(p®, )4 ; € > 0} for every ¢ € C2(RY).

LEMMA 3.2. For eachy € C?(RY), there exists a constant € 0 such that

SUPE [| (p5, W)k — (P%, Wk |*] <Clpolfi [t —s?, 0<Vs<Wt<T. (3.3)

£>0
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PrRooOF. Remark first that there exists a const&ht> 0 such thatL® and M¢ satisfy

v(LE()pE, @)v < Clpflv [@lv and (ME(r)pf, @)n < CIpf[n [@[w forall r € [0, T]. Thus, we
can easily show

T 2
el (0t - pé.wm ') <cle-s2e| ([ Ipeigar) | +cit-s?e sup Iptlh].
0 o<r<T

which implies (3.3) by virtue of (3.1). 0
PrROPOSITION3.1. The family of probability measurdd1¢; € > 0} is tightin S.

PrROOF. By the estimate (3.1) and the compactness of the inje¢fion E (cf. Lemma
9.21 of [B]), we have only to check the tightness of the family of real valued processes
{(p%,W); € > 0} for eachy e C?(RY) (see for example7]). But in view of (3.1), (3.3) and
Kolmogorov’s tightness criterion, we can conclude thap®, ¢); € > 0} is a tight family in
C([0,T]; R). Hence, we get the desired result. O

4. |dentification of the limit measure.

By Proposition 3.1, we can extract a subsequendedf; € > 0} having a limit[7. Here-
after we fix such converging subsequence arbitrarily and denote {t'by; € > 0} again to
avoid heavy notation. The goal of this section is to préVe= 1° as probability measures &
For this purpose, we adopt martingale formulation for infinite dimensional diffusion processes
following the notation in 11].

Let X = (X)iejo,1) @and 2" = (Zt)rejo.1) be the canonical process and the canonical filtra-
tion on S, respectively. Fop € C2(R), ¢ € C2(RY) andt € [0,T], we define the functional
R=r*":s—Rby

RO () 1= (e, W)w) = @((Wo, W)w) = | @' (e, W) (i, (L°)" @)

12

where(L%)* denotes the adjoint operator bf. Then, from the uniqueness in law of the limit
equation (1.3), we can show the uniqueness of probability measures under(\l\'(l‘fi(”:’i) is a
(2+)-martingale for everyp € C?(R) and ¢ € C2(RY) (see p.76 of {1]). Thus, we have
only to checkE [44(;*¥ — r?Y)] = 0 for arbitrarily fixed0 < s < t < T and bounded.25)-
measurable functionaks, whereE™ stands for the expectation with respect to the probability
measure] .

Now, we sety?(x,z) = P(X) + € X™(X/&,2/€) Px, (X), Where gy, := d/Ixm. Recall that
X™=x"(x,z) (m=1,...,d) are bounded and periodic solutions to (1.5) that belof (Re").
Then, by Ito’s formula, we have

/Ot @ ((PF WE (. ZE))n) (pF, (A YF) (-, Z7))n dX (4.1)
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— Q((F. 5 (. ZE)n) — @l(Po. WF (- D))
/rd EWE(+,ZE))) (PE, (Z54F) (-, ZE)udr

/qf’ PEWE (- ZE))n) (PEL (W) (-, 2,

where
(LEWF) (x,2) = {(cT (x/g,2/¢) +d (X/&Z/f)}wmj (x)
+4'(x/,2/€) Y (X) + (@) X™)(X/€,2/€) Yxin(X)

(W) (x2) = Q (75 X™) (X/€,2/€) en (X)
+hi(x/€,2/€) Y(x) + & (X ™) (X/€,2/€) Y (%) ,

andcl = (cl(x,2)), di = (d'i(x,2)) andg' = (4'(x,2)) are defined by
ol =al +aM(Vyx!), d =V @VX), ¢ = Q'+ 1)(Vax').
PrROPOSITION4.1. Letus denote the left-hand side of the equahityl) by Af. Then,

lim E[%(p") (i(P°) = Fs(p") =A¢ +45)] =0. (4.2)

Before proving this proposition, we point out here that the convergence (4.2) implies
Eﬁ[tlls(l't —TIs)] =0, and in consequendd = I1°. This claim can be verified as follows. Rsr>
0, we defineBy : S— Sby Oy (W) (t) := [w|g* min{ |w|e, N }wt, and sef;N(w) = I (O (W)) .
Clearly, 6y (p®) = p® on the event{ sug7 |Pf|e < N}. Thus, taking into account that

Sup Sup E[IRN(DE)|2]<C(1+E[ sup |pf|‘.!.]),
N>00<t<T o<t<T

we can show that for at > 0 andN > 0O,

| E[W(pF) (R (pF) — T(pF))] — E[(pF) (RN (pF) — i (p)) ]|
<CP({ sup |pfle > N})x (1+E[ sup [pfl}]) < %
Ost<T 0<t<T

Therefore, by using (4.2) and the martingale property/gf), we obtain

fim | E[44(p°) (1™ (p) =1 (P°))] | <

zlo
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Furthermore, ifY4 is continuous orS, then the left-hand side of the above inequality is equal
to [EMY(RN —rN)]| since N is bounded and continuous @and ¢ converges tdT .
Thus, in consideration of the fastugy;.t E"[|It|] < «, we obtainE" [Y4(I; — )] = 0 by
letting N — o. This equality is also valid for all boundegd?s)-measurable functionaks by
approximation.

Hence it remains to prove Proposition 4.1.

PROOF OFPROPOSITION4.1. We setli(pf) —I5(p?) —AE +AS = f + @5+ P+ @,
where

OF = ((BE, W) — 0150 (-, ZE D)~ (9U(PE, W) — B((PE.UF (- ZEDw) ).

@ = [ {6/ (9F. 0 (- Z6))0) — /((BE, W)} (95, (250 (- ZE
#3540 (B0 2000 = 0 (5.0 (O, AU 20

@ = [ /(50 (5, (259~ (L) @) 20,

O =5 3 [ (0.0 (B AN .20 (B P

We provelimg o E[¥(p®) @] = 0 one by one for each=1,...,4.

Note first thaty? satisfies|®(-,2) — Y|n < €|X™|L= |k, |1 for all ze R" by definition,
where | - |~ stands for the.*-norm. Thus, we getE[¥4(p?)®f || < eCE[supy<T |PfIH],
which implieslim, o E[$4(pf)®¢] = 0. Similarly, we can easily show that

E(4(0) 98] < oC(E] sup IRER] +E1 sup IRER]) 5 0

since|.Z¢Y*(-,2)|y and|.ZfY*(-,2)|n are bounded, uniformly ia > 0andze R".
In order to proveim, o E[Y5(p®) @5 ] = 0, we prepare the following lemma.

LEMMA 4.1. Let a € CL(R*") be a periodic function with period in all components
such that{(a)) = 0. Then, for every € CZ(RY), we have

lim E {%(ps)/std((pf,w)H)(pf,at/s,Zf/s)fb)H dr| =0. (4.3)

€0
PROOF. For eachze R", we setd(z) := [7a a(x,2)dx, and consider the PDE R
Axn('7z):a('az)_a(z)a (44)

where Ay stands for the Laplace operator with respeckte (xi,...,Xq). Recall that (4.4)
admits a unique periodic solutian(-,z) € CZ(R") with period1 in all components such that
f1(2) := Jtan(x,2)dx=0. Then, by the integration by parts formula,
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d

(0 a(-/e.Z7/e))n = (PF, $)n G (27 /e) —€ Z(in prs (Vxn)(-/€,27 /&) )u

i=
d

=& 3 (B (Tun)(-/.2/2) V).
I=
Thus, it is sufficient for (4.3) to prove
im | 44(6%) [/ 0/(0t. ) (0. 0w 25 ) o | 0. @9
Let us take théN-partition (s,t] := UN.; (s, S +1], wheres = s+ N~1(t—s)(i—1). Then,

&[5 [ o o 2 )|

N s
SC_ZL E[|(Pf = P&, @)l [pf 1 +1(pf — S, @)udr
1=

S+1
[ D055 ) 500 | a(Zf/s)dr] TS

By (3.3) and Hblder’s inequality,

|f§c{1 (e [OgttipTpt|4/3D3/4}§|(/:“(r—s)zdr>l/4(5+1—s)3/4s\%- (4.6)

On the other hand, by usinigm o E[( /s & (ZF/€)dr)?|.%5 ] = 0 (see p.400 ofg]), we can
verify that for each fixedN > O,

2
§<C E sup |pfl3 a(ze/e)dr) | — 0.
<o el s ] 3, 2] [ omronr) ]

Thus, in combination with (4.6), we obtain (4.5). O

Now we return to the proof alim o E[44(p®) 5] = 0. First, we check(c)) =&, ((d')) =
and {((¢")) = 4'. By the integration by parts formula, we can géd’ )) =0 and

& — ((e1) = — (X {7, (@ 0, X1) + A 75, 75 X1 + T 1) =

The equality (4')) = g' can be seen as follows. Farc R" andm=1,...,d, we define
XM(2) == Jrax™(x,2)dx. Then, in view of (1.5),¥™ satisfy AV, V,¥™(z) = 0. Since
(A4 is positive definite angg™ are periodic, the strong maximum principle implies tfjét
are constant functions; in particulaV; X™(z) = 0 for all z€ R". Therefore ((f'V, x™) =
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Jrn £(2) V4 X™( )dz 0, and we obtair{(g')) =¢' - Hence applying Lemma4.1w=cl ¢,
a=dl anda =4 —g', we getlim o E[¥(pf) 5] =

Finally, we shall showlim, o E[Y4(p®) @] = 0 Recall thatQ{' v, ¥™(2) = 0 for all ze
R". Then, by takinga(x,z) = QV, x(x,2) and a(x,z) = hk(x,2) — h«(2), where h(z) :=
J¢ hk(x,2) dx, we can show similarly to the proof of Lemma 4.1 that

|E[W(pF)@f]| < Z
k=1

wtosro{el sp ] <[ ([ ]}

Since the first term of the right-hand side converges to zero by the same argument as in the
proof of (4.5), we obtairlimg o E[%(p®)®; | = 0, and the proof of Proposition 4.1 has been
completed.

€| () [ 0((0F W) B 00 { (20 /2)) - ) o

ACKNOWLEDGMENT. The author would like to express his sincere thanks to the referee.
He pointed out the errors in the first version of this paper.

References

[1] A. Bensoussan, Homogenization of a class of stochastic partial differential equations, Composite media and
homogenization theory, Trieste, 1990, Progr. Nonlinear Differential Equations Agfi991), 47-65.

[2] A.Bensoussan and G. L. Blankenship, Nonlinear filtering with homogenization, Stoch&3t{¢986), 67—90.

[3] A.Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures, Stud. Math. Appl.,
5, North-Holland, New York, 1978.

[4] R.Bouc and E. Pardoux, Asymptotic analysis of P.D.E.s with wide-band noise disturbances, and expansion of
the moments, Stochastic Anal. Apf2.(1984), 369-422.

[5] F. Castell, Homogenization of random semilinear PDEs, Probab. Theory Related EB1¢2001), 492-524.

[6] T. Funaki, The scaling limit for a stochastic PDE and the separation of phases, Probab. Theory Related Fields,
102(1995), 221-288.

[7] R.A.HolleyandD.W. Stroock, Generalized Ornstein-Uhlenbeck processes and infinite particle branching Brow-
nian motions, Publ. Res. Inst. Math. Sdi4 (1978), 741-788.

[8] N. Ichihara, Homogenization problem for stochastic partial differential equations of Zakai type, Stoch. Stoch.
Rep.,76 (2004), 243-266.

[9] V. V.Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals,
Springer, 1994.

[10] A.Lejay, Homogenization of divergence-form operators with lower-order terms in random media, Probab. Theory
Related Fields120(2001), 255-276.

[11] M. Métivier, Stochastic partial differential equations in infinite dimensional spaces, Quaderni, 1988.

[12] G. Papanicolaou, D. Stroock and S. R. S. Varadhan, Martingale approach to some limit theorems, Papers from
the Duke Turbulence Conference, Duke Univ., Durham, N. C., no. 6, 1977.

[13] E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes, StocBa&t#z9),
127-167.

[14] E. Pardoux, Homogenization of linear and semilinear second order parabolic PDEs with periodic coefficients,
Journal of Funct. Anal167(1999), 498-520.

[15] E. Pardoux and A. L. Piatnitski, Homogenization of a nonlinear random parabolic partial differential equation,
Stochastic Process. Appl04(2003), 1-27.



Homogenization for stochastic PDEs 603

Naoyukil CHIHARA

Laboratoire de Matematiques

Universi€ de Bretagne Occidentale

6, Avenue Victor Le Gorgeu, B. P. 809, 29285 BREST CEDEX
France

E-mail: naoyuki@ms.u-tokyo.ac.jp



