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Abstract. We discuss the homogenization of stochastic partial differential equations whose
coefficients are rapidly oscillating and are perturbed by a diffusion process. Such class of equations
appear in nonlinear filtering problems with feedback. We specify the constant coefficients of the
limit equation. The constants are essentially different from the case where the coefficients do not
contain perturbed factors.

1. Introduction.

In this paper, we deal with the following stochastic partial differential equations (SPDEs)
with small parameterε > 0

{
dpε(t,x) = Lε(t) pε(t,x)dt+Mε(t) pε(t,x)dYt , 0≤ t ≤ T ,

pε(0,x) = p0(x) ∈ L2(RRRd),
(1.1)

where Y = (Yt)t∈[0,T] is an n-dimensional standard Brownian motion, andLε = Lε(t) and
Mε = Mε(t) = (Mε

1(t), · · · ,Mε
n(t)) represent the linear differential operator and the multiplicative

operator acting on a function onRRRd defined by

Lε(t) =

∆

xi (a
i j (x/ε,Zε

t /ε)

∆

x j ·) , Mε
k (t) = hk(x/ε,Zε

t /ε) · .

Note that

∆

xi (i = 1, . . . ,d) are the partial derivatives with respect toxi and that we use the
summation convention throughout the paper. The symbolZε = (Zε

t )t∈[0,T] stands for a solution
to the following stochastic differential equation (SDE) onRRRn

{
dZε

t = f (Zε
t /ε)dt+QdYt , 0≤ t ≤ T ,

Zε
0 = z∈ RRRn ,

(1.2)

whereQ = (Qkl) denotes an(n×n)-matrix. All coefficientsa = (ai j (x,z)), h = (hk(x,z)) and
f = ( f k(z)) are assumed to be periodic with period1 in all components.

Our aim is to show that asε goes to zero the family of solutions to (1.1) converges in law to
the solution of an SPDE having both spatially and temporally homogeneous coefficients. It turns
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out that the limit equation satisfies the SPDE

{
dp0(t,x) = L0p0(t,x)dt+M0p0(t,x)dYt , 0≤ t ≤ T ,

p0(0,x) = p0(x) ∈ L2(RRRd) ,
(1.3)

where

L0 = c̄i j ∆

xi

∆

x j · − 1̄i ∆

xi · , M0
k = h̄k · , (1.4)

and the constants̄c = (c̄i j ), 1̄= (1̄i) (i, j = 1, . . . ,d) andh̄ = (h̄k) (k = 1, . . . ,n) are characterized
by

c̄i j = 〈〈(δ i
i′ +

∆

xi′ χ
i)ai′ j ′ (δ j

j ′ +

∆

x j′ χ
j)〉〉+ 〈〈 ∆

zkχ i Akl ∆

zl χ
j〉〉 ,

1̄i = 〈〈hk Qkl ∆

zl χ
i〉〉 , h̄k =

(∫

TTTn

(∫

TTTd
hk(x,z)dx

)2

dz

)1/2

,

with the notation〈〈 · 〉〉 :=
∫

TTTd×TTTn · dxdz, whereTTTd andTTTn represent thed-dimensional andn-
dimensional unit torus respectively, and

∆

zk (k = 1, . . . ,n) denote the partial derivatives with
respect tozk. The symbols(δ i

j) (i, j = 1, . . . ,d) and (Akl) (k, l = 1, . . . ,n) stand for Kro-
necker’s delta and the(n× n)-matrix defined byA = QQ∗/2 respectively, and we denote by
χm = (χm(x,z)) (m= 1, . . . ,d) periodic functions with period1 in all components which satisfy
〈〈χm〉〉= 0 and the following auxiliary partial differential equations (PDEs) onRRRd×RRRn

∆

xi (a
i j (x,z)

∆

x j χ
m(x,z))+Akl ∆

zk

∆

zl χ
m(x,z)+(

∆

xi a
im)(x,z) = 0. (1.5)

The limit equation (1.3) does not depend onf .

The study of homogenization for PDEs has been largely developed for the last two decades,
and numerous publications can be found at present. The books [3], [9] give us large numbers
of results obtained before the nineties with an extensive bibliography. The former book treats
the homogenization of linear, second-order PDEs with periodic coefficients by two different
approaches, that is, analytic and probabilistic (see also [12], [14] and references therein). The
latter one is concerned with the homogenization on stationary random fields (we refer to [5],
[10] for more recent results). The papers [4], [15] deal with another sort of homogenization in
random environment; they consider second order PDEs whose coefficients are periodic function
of the space variable, and perturbed by an ergodic diffusion process.

On the other hand, few studies are found on the homogenization problem of SPDEs. The
literature [1] consider the homogenization of the SPDE having the operators

Lε =

∆

xi (a
i j (x/ε)

∆

x j ·)−

∆

xi (1
i(x/ε) ·) , Mε

k = hε
k(x) · , (1.6)

under the assumption of pointwise convergence :limε↓0hε
k(x) = hk(x) for all k = 1, . . . ,n. How-

ever, this assumption is rather strong since it forbids an oscillatory behavior ofhε
k written as
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hε
k(x) = hk(x/ε) by periodic functionshk. Motivated by this problem, our previous paper [8]

deals with the case wherehε
k allows such oscillation by taking, in place of (1.6), the operators

Lε = ai j (x/ε)

∆

xi

∆

x j · +ε−1bi(x/ε)

∆

xi · , (Mε
k u)(x) = Bk(x,x/ε,u(x)) ,

and studies its homogenization.
The principal interest of the present paper is to know howLε and Mε are homogenized

when we add random factors in the coefficients. In fact, we get different limit operators from
that obtained in [8] because of the presence ofZε . Besides, contrary to [8], the limit operatorL0

is determined not only byLε but also byMε since the constants̄1i contain the functionshk in
their integrand. Remark that this term does not appear in the case where the coefficients do not
depend onZε . The reason whyL0 does not depend onf will be revealed at the end of Section 4.
Roughly speaking, the constant1̄i should involve intrinsically the term of the form〈〈 f l ∆

zl χ
i〉〉,

but it can be shown that this term is equal to zero by the particularity ofχm.
Finally, we point out that the SPDEs (1.1) often appear in certain nonlinear filtering prob-

lems. Takef = 0, Q= I andσ such thatσσ∗ = 2a, and consider the following nonlinear filtering
problem with feedback terms

{
dXε

t = ε−1b(Xε
t /ε,Yt/ε)dt+σ(Xε

t /ε,Yt/ε)dWε
t , Xε

0 = ξ ,

Yt =
∫ t

0 h(Xε
s /ε,Ys/ε)ds+Ŵε

t ,

whereWε = (Wε
t ) andŴε = (Ŵε

t ) are mutually independent standard Brownian motions with
respect to the probability measurePε defined by

dPε

dP

∣∣∣∣
F ε

t

= exp

(∫ t

0
h(Xε

s /ε,Ys/ε)dYs− 1
2

n

∑
k=1

∫ t

0
|hk(Xε

s /ε,Ys/ε)|2ds

)
,

with F ε
t = σ(Wε

s ,Ys|s≤ t ). Note that in this caseZε = (Zε
t ) is identical withY = (Yt). Then,

the solution of (1.1) appears in the following representation formula for the optimal filter

EPε
[ψ(Xε

t ) |σ(Ys;s≤ t) ] =
∫

RRRd ψ(x) pε(t,x)dx∫
RRRd pε(t,x)dx

, P-a.s.

We refer to [2] for more information about physical and engineering aspects of the homogeniza-
tion in nonlinear filtering problems.

This paper is organized as follows. In the next section, we state our main result after giving
standing assumptions. In Section 3, we prove tightness of the family of solutions to (1.1) on an
appropriate function space. Section 4 is devoted to the identification of the limit measure.

2. Assumptions and main result.

Throughout this paper, we make the following standing assumptions.
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ASSUMPTION2.1.
(1) a∈C2(RRRd+n;RRRd⊗RRRd), h∈C1(RRRd+n;RRRn), and f ∈C1(RRRn;RRRn) are periodic functions

with period1 in all components.
(2) a = (ai j (x,z)) is symmetric and strictly elliptic, that is,ai j (x,z) = a ji (x,z) and there

existsα > 0 such thatα|ξ |2
RRRd ≤ (a(x,z)ξ ,ξ )RRRd ≤ α−1|ξ |2

RRRd for all ξ ∈ RRRd and(x,z) ∈ RRRd+n.

(3) A = (Akl) is positive definite.

Let H = L2(RRRd) be the Hilbert space with inner product(u,3)H :=
∫

RRRd u(x)3(x)dx and
norm|u|H :=

√
(u,u)H , and letV = H1(RRRd) be the Sobolev space of order1 with norm |u|V :=√

|u|2H +∑d
i=1 |

∆

xi u|2H . We denote byH ′ andV ′ the dual spaces ofH andV respectively. Then,

under the identificationH = H ′ by the Riesz representation theorem, we have the inclusions
V ↪→ H ↪→V ′ that are dense and continuous.

The conditions (1) and (2) of Assumption 2.1 ensure the existence and uniqueness of solu-
tion to (1.1) (see Theorem 1.3 of [13]).

THEOREM 2.1. Let(Ω ,F ,P;Ft ,Yt) be a filtered probability space with a standard(Ft)-
Brownian motion Y= (Yt) , and let Zε = (Zε

t ) be a solution to(1.2). Then, there exists an
(Ft)-progressively measurable process pε = (pε

t ) ∈ L2(Ω × [0,T] ;V) such that

(pε
t ,3)H = (p0,3)H +

∫ t

0
V ′〈Lε(s) pε

s,3〉V ds+
∫ t

0
(Mε(s) pε

s,3)H dYs , ∀3 ∈V , (2.1)

for almost all(t,ω) ∈ [0,T]×Ω , whereV ′〈 · , · 〉V stands for the duality product between V and
V ′. Such process is unique in the following sense

P
(

pε
t = qε

t in V ′ , ∀t ∈ [0,T]
)

= 1

for all pε and qε satisfying(2.1). Moreover, the solution pε satisfies the energy equality

|pε
t |2H = |p0|2H +2

∫ t

0
V ′〈Lε(s) pε

s, pε
s〉V ds

+2
∫ t

0
(Mε(s) pε

s, pε
s)H dYs+

n

∑
k=1

∫ t

0
|Mε

k (s) pε
s|2H ds, P-a.s. (2.2)

Now we are in position to state our main result. We denote byE = {3 |3e−λθ ∈ V ′ } the
weighted Sobolev space with norm|3|E := |3e−λθ |V ′ , whereλ > 0 is a fixed number andθ =
θ( ·) is a smooth and strictly positive function onRRRd such thatθ(x) = |x| for all |x| ≥ 1. Let S=
C(0,T;E) be the set of continuous functions taking their values inE equipped with the uniform
topology, and letΠ ε and Π0 be the laws onS of the solutions to (1.1) and (1.3) respectively.
Remark that (1.3) has a unique solution sincec̄ = (c̄i j ) is positive definite. Moreover, we can
show the uniqueness in law of (1.3) onSby using the uniqueness theorem of Yamada-Watanabe
type (see p. 89 of [11]).

Our main result is the following.



Homogenization for stochastic PDEs 597

THEOREM 2.2. The family of probability measures{Π ε ; ε > 0} converges toΠ0 as ε
goes to zero.

3. Tightness.

In this section, we prove the tightness of{Π ε ; ε > 0} . To begin with, we check the fol-
lowing uniform estimate.

LEMMA 3.1. Let pε = (pε
t ) be a solution to(1.1). Then, there exists a constant C> 0

such that

sup
ε>0

E
[

sup
0≤t≤T

|pε
t |4H

]
+sup

ε>0
E

[(∫ T

0
|pε

t |2V dt

)2]
≤C|p0|4H . (3.1)

PROOF. By applying Ito’s formula to the semi-martingale|pε
t |2H , which satisfies (2.2), we

can see

|pε
t |4H +4α

∫ t

0
|pε

s|2H |pε
s|2V ds

≤ |p0|4H +C
∫ t

0
|pε

s|4H ds+4
∫ t

0
|pε

s|2H (Mε(s) pε
s, pε

s)H dYs, P-a.s., (3.2)

for some constantC > 0. Here and in the following, we denote byC > 0 different constants
independent ofε > 0. Making use of Burkholder’s inequality, we can estimate the stochastic
integral part as

4E

[
sup

0≤t≤T

∣∣∣∣
∫ t

0
|pε

s|2H(Mε(s) pε
s, pε

s)H dYs

∣∣∣∣
]
≤ 1

2
E

[
sup

0≤t≤T
|pε

t |4H
]
+CE

[∫ T

0
|pε

t |4H dt

]
.

Thus, by considering the expectation of both sides of (3.2) after taking the supremum int ∈
[0,T] , we obtain by Gronwall’s lemma thatsupε>0E[sup0≤t≤T |pε

t |4H ]≤C|p0|4H .
On the other hand, the energy equality (2.2) yields

(
2α

∫ T

0
|pε

t |2V dt

)2

≤ 4|p0|4H +C sup
0≤t≤T

|pε
t |4H +8

(∫ T

0
(Mε(t)pε

t , pε
t )H dYt

)2

,

form which we obtainsupε>0E[(
∫ T

0 |pε
t |2V dt )2] ≤ C|p0|4H . Hence we have completed the

proof. ¤

Let us denote byC∞
c (RRRd) the set of smooth functions onRRRd with compact supports. The

following lemma gives the equicontinuity of{(pε ,ψ)H ; ε > 0} for every ψ ∈C∞
c (RRRd) .

LEMMA 3.2. For eachψ ∈C∞
c (RRRd), there exists a constant C> 0 such that

sup
ε>0

E
[∣∣(pε

t ,ψ)H − (pε
s,ψ)H

∣∣4]≤C|p0|4H |t−s|2 , 0≤ ∀s< ∀t ≤ T . (3.3)
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PROOF. Remark first that there exists a constantC > 0 such thatLε and Mε satisfy

V ′〈Lε(r)pε
r ,ψ〉V ≤C|pε

r |V |ψ|V and (Mε
k (r)pε

r ,ψ)H ≤C|pε
r |H |ψ|H for all r ∈ [0,T] . Thus, we

can easily show

E
[∣∣(pε

t − pε
s,ψ)H

∣∣4]≤C|t−s|2E

[(∫ T

0
|pε

r |2V dr

)2]
+C|t−s|2E

[
sup

0≤r≤T
|pε

r |4H
]
,

which implies (3.3) by virtue of (3.1). ¤

PROPOSITION3.1. The family of probability measures{Π ε ; ε > 0} is tight in S.

PROOF. By the estimate (3.1) and the compactness of the injectionH ↪→ E (cf. Lemma
9.21 of [6]), we have only to check the tightness of the family of real valued processes
{(pε ,ψ) ; ε > 0} for eachψ ∈C∞

c (RRRd) (see for example [7]). But in view of (3.1), (3.3) and
Kolmogorov’s tightness criterion, we can conclude that{(pε ,ψ) ; ε > 0} is a tight family in
C([0,T];RRR). Hence, we get the desired result. ¤

4. Identification of the limit measure.

By Proposition 3.1, we can extract a subsequence of{Π ε ; ε > 0} having a limit Π . Here-
after we fix such converging subsequence arbitrarily and denote it by{Π ε ; ε > 0} again to
avoid heavy notation. The goal of this section is to proveΠ = Π0 as probability measures onS.
For this purpose, we adopt martingale formulation for infinite dimensional diffusion processes
following the notation in [11].

Let X = (Xt)t∈[0,T] andX = (Xt)t∈[0,T] be the canonical process and the canonical filtra-

tion on S, respectively. Forφ ∈C∞
c (RRR) , ψ ∈C∞

c (RRRd) and t ∈ [0,T] , we define the functional
Γt = Γ φ ,ψ

t : S−→ RRR by

Γ φ ,ψ
t (w) := φ((wt ,ψ)H)−φ((w0,ψ)H)−

∫ t

0
φ ′((wr ,ψ)H)(wr ,(L0)∗ψ)H dr

− 1
2

n

∑
k=1

∫ t

0
φ ′′((wr ,ψ)H)(wr , h̄kψ)2

H dr ,

where(L0)∗ denotes the adjoint operator ofL0. Then, from the uniqueness in law of the limit
equation (1.3), we can show the uniqueness of probability measures under which(Γ φ ,ψ

t ) is a
(Xt)-martingale for everyφ ∈ C∞

c (RRR) and ψ ∈ C∞
c (RRRd) (see p. 76 of [11]). Thus, we have

only to checkEΠ [Ψs(Γ
φ ,ψ

t −Γ φ ,ψ
s )] = 0 for arbitrarily fixed 0≤ s< t ≤ T and bounded(Xs)-

measurable functionalΨs, whereEΠ stands for the expectation with respect to the probability
measureΠ .

Now, we setψε(x,z) = ψ(x)+ ε χm(x/ε,z/ε)ψxm(x) , whereψxm := ∂ψ/∂xm. Recall that
χm = χm(x,z) (m= 1, . . . ,d) are bounded and periodic solutions to (1.5) that belong toC2(RRRd+n).
Then, by Ito’s formula, we have

∫ t

0
φ ′((pε

r ,ψε( · ,Zε
r ))H)(pε

r ,(M
ε ψε)( · ,Zε

r ))H dYr (4.1)
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= φ((pε
t ,ψε( · ,Zε

t ))H)−φ((p0,ψε( · ,z))H)

−
∫ t

0
φ ′((pε

r ,ψε( · ,Zε
r ))H)(pε

r ,(L
ε ψε)( · ,Zε

r ))H dr

− 1
2

n

∑
k=1

∫ t

0
φ ′′((pε

r ,ψε( · ,Zε
r ))H)(pε

r ,(M
ε
k ψε)( · ,Zε

r ))2
H dr ,

where

(L ε ψε)(x,z) = {(ci j (x/ε,z/ε)+di j (x/ε,z/ε)}ψxix j (x)

+1i(x/ε,z/ε)ψxi (x) + ε (ai j χm)(x/ε,z/ε)ψxix j xm(x) ,

(M ε
k ψε)(x,z) = Qkl (

∆

zl χ
m)(x/ε,z/ε)ψxm(x)

+hk(x/ε,z/ε)ψ(x) + ε (hkχm)(x/ε,z/ε)ψxm(x) ,

andci j = (ci j (x,z)) , di j = (di j (x,z)) and1i = (1i(x,z)) are defined by

ci j = ai j +aim(

∆

xmχ j) , di j =

∆

xm(am jχ i) , 1i = (hkQ
kl + f l )(

∆

zl χ
i) .

PROPOSITION4.1. Let us denote the left-hand side of the equality(4.1)byΛ ε
t . Then,

lim
ε↓0

E[Ψs(pε)(Γt(pε)−Γs(pε)−Λ ε
t +Λ ε

s ) ] = 0. (4.2)

Before proving this proposition, we point out here that the convergence (4.2) implies
EΠ [Ψs(Γt−Γs)] = 0, and in consequenceΠ = Π0 . This claim can be verified as follows. ForN >

0, we defineθN : S−→S by θN(w)(t) := |wt |−1
E min{|wt |E , N}wt , and setΓ N

t (w) = Γt(θN(w)) .
Clearly, θN(pε) = pε on the event{sup0≤t≤T |pε

t |E ≤ N} . Thus, taking into account that

sup
N>0

sup
0≤t≤T

E[ |Γ N
t (pε)|2 ]≤C

(
1+E

[
sup

0≤t≤T
|pε

t |4H
])

,

we can show that for allε > 0 andN > 0,

∣∣E[Ψs(pε)(Γt(pε)−Γs(pε)) ]−E[Ψs(pε)(Γ N
t (pε)−Γ N

s (pε)) ]
∣∣2

≤CP({ sup
0≤t≤T

|pε
t |E > N})× (

1+E
[

sup
0≤t≤T

|pε
t |4H

])≤ C
N2 .

Therefore, by using (4.2) and the martingale property of(Λ ε
t ), we obtain

lim
ε↓0

∣∣E[Ψs(pε)(Γ N
t (pε)−Γ N

s (pε))]
∣∣≤ C

N
.
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Furthermore, ifΨs is continuous onS, then the left-hand side of the above inequality is equal
to |EΠ [Ψs(Γ N

t −Γ N
s )] | since Γ N

t is bounded and continuous onS and Π ε converges toΠ .
Thus, in consideration of the factsup0≤t≤T EΠ [ |Γt | ] < ∞ , we obtainEΠ [Ψs(Γt −Γs)] = 0 by
letting N → ∞ . This equality is also valid for all bounded(Xs)-measurable functionalΨs by
approximation.

Hence it remains to prove Proposition 4.1.

PROOF OFPROPOSITION4.1. We setΓt(pε)−Γs(pε)−Λ ε
t +Λ ε

s := Φε
1 +Φε

2 +Φε
3 +Φε

4 ,
where

Φε
1 = φ((pε

t ,ψ)H)−φ((pε
t ,ψε( · ,Zε

t ))H)−{φ((pε
s,ψ)H)−φ((pε

s,ψε( · ,Zε
s))H)} ,

Φε
2 =

∫ t

s
{φ ′((pε

r ,ψε( · ,Zε
r ))H)−φ ′((pε

r ,ψ)H)}(pε
r ,(L

ε ψε)( · ,Zε
r ))H dr ,

+
1
2

n

∑
k=1

∫ t

s
{φ ′′((pε

r ,ψε( · ,Zε
r ))H)−φ ′′((pε

r ,ψ)H)}(pε
r ,(M

ε
k ψε)( · ,Zε

r ))2
H dr ,

Φε
3 =

∫ t

s
φ ′((pε

r ,ψ)H)(pε
r ,(L

ε ψε − (L0)∗ψ)( · ,Zε
r ))H dr ,

Φε
4 =

1
2

n

∑
k=1

∫ t

s
φ ′′((pε

r ,ψ)H){(pε
r ,(M

ε
k ψε)( · ,Zε

r ))2
H − (pε

r , h̄kψ)2
H }dr .

We provelimε↓0E[Ψs(pε)Φε
i ] = 0 one by one for eachi = 1, . . . ,4.

Note first thatψε satisfies|ψε( · ,z)−ψ|H ≤ ε |χm|L∞ |ψxm|H for all z∈ RRRn by definition,
where | · |L∞ stands for theL∞-norm. Thus, we get|E[Ψs(pε)Φε

1 ] | ≤ ε CE[sup0≤t≤T |pε
t |H ] ,

which implieslimε↓0E[Ψs(pε)Φε
1 ] = 0. Similarly, we can easily show that

∣∣E[Ψs(pε)Φε
2 ]

∣∣≤ ε C
(

E[ sup
0≤t≤T

|pε
t |2H ]+E[ sup

0≤t≤T
|pε

t |3H ]
)
−→
ε↓0

0

since|L ε ψε( · ,z)|H and |M ε
k ψε( · ,z)|H are bounded, uniformly inε > 0 andz∈ RRRn .

In order to provelimε↓0E[Ψs(pε)Φε
3 ] = 0, we prepare the following lemma.

LEMMA 4.1. Let α ∈C1(RRRd+n) be a periodic function with period1 in all components
such that〈〈α〉〉= 0. Then, for everyϕ ∈C∞

c (RRRd), we have

lim
ε↓0

E

[
Ψs(pε)

∫ t

s
φ ′((pε

r ,ψ)H)(pε
r ,α( ·/ε,Zε

r /ε)ϕ)H dr

]
= 0. (4.3)

PROOF. For eachz∈ RRRn , we setα̃(z) :=
∫

TTTd α(x,z)dx, and consider the PDE onRRRd

∆xη( · ,z) = α( · ,z)− α̃(z) , (4.4)

where ∆x stands for the Laplace operator with respect tox = (x1, . . . ,xd). Recall that (4.4)
admits a unique periodic solutionη( · ,z) ∈ C2(RRRd) with period1 in all components such that
η̃(z) :=

∫
TTTd η(x,z)dx= 0. Then, by the integration by parts formula,
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(pε
r ,α( ·/ε,Zε

r /ε)ϕ)H = (pε
r ,ϕ)H α̃(Zε

r /ε)− ε
d

∑
i=1

(

∆

xi p
ε
r ,(

∆

xi η)( ·/ε,Zε
r /ε)ϕ)H

− ε
d

∑
i=1

(pε
r ,(

∆

xi η)( ·/ε,Zε
r /ε)

∆

xi ϕ)H .

Thus, it is sufficient for (4.3) to prove

lim
ε↓0

E

[
Ψs(pε)

∫ t

s
φ ′((pε

r ,ψ)H)(pε
r ,ϕ)H α̃(Zε

r /ε)dr

]
= 0. (4.5)

Let us take theN-partition (s, t] :=
⋃N

i=1(si ,si+1] , wheresi = s+N−1(t−s)(i−1) . Then,

∣∣∣∣E

[
Ψs(pε)

∫ t

s
φ ′((pε

r ,ψ)H)(pε
r ,ϕ)H α̃(Zε

r /ε)dr

]∣∣∣∣

≤C
N

∑
i=1

∫ si+1

si

E[ |(pε
r − pε

si
,ψ)H | |pε

r |H + |(pε
r − pε

si
,ϕ)H | ]dr

+
N

∑
i=1

∣∣∣∣E

[
Ψs(pε)φ ′((pε

si
,ψ)H)(pε

si
,ϕ)H

∫ si+1

si

α̃(Zε
r /ε)dr

]∣∣∣∣ =: I ε
1 + I ε

2 .

By (3.3) and Ḧolder’s inequality,

I ε
1 ≤C

{
1+

(
E

[
sup

0≤t≤T
|pε

t |4/3
H

])3/4
} N

∑
i=1

(∫ si+1

si

(r−si)2dr

)1/4

(si+1−si)3/4 ≤ C√
N

. (4.6)

On the other hand, by usinglimε↓0E[(
∫ si+1

si
α̃(Zε

r /ε)dr)2 |Fsi ] = 0 (see p. 400 of [3]), we can
verify that for each fixedN > 0,

I ε
2 ≤C

√
E

[
sup

0≤t≤T
|pε

t |2H
] N

∑
i=1

√
E

[(∫ si+1

si

α̃(Zε
r /ε)dr

)2]
−→
ε↓0

0.

Thus, in combination with (4.6), we obtain (4.5). ¤

Now we return to the proof oflimε↓0E[Ψs(pε)Φε
3 ] = 0. First, we check〈〈ci j 〉〉= c̄i j , 〈〈di j 〉〉= 0

and 〈〈1i〉〉= 1̄i . By the integration by parts formula, we can see〈〈di j 〉〉= 0 and

c̄i j −〈〈ci j 〉〉=−〈〈χ i{ ∆

xi′ (a
i′ j ′ ∆

x j′ χ
j)+Akl ∆

zk

∆

zl χ
j +

∆

xi′a
i′ j}〉〉= 0.

The equality 〈〈1i〉〉 = 1̄i can be seen as follows. Forz ∈ RRRn and m = 1, . . . ,d, we define
χ̃m(z) :=

∫
TTTd χm(x,z)dx. Then, in view of (1.5),χ̃m satisfy Akl ∆

zk

∆

zl χ̃
m(z) = 0. Since

(Akl) is positive definite and̃χm are periodic, the strong maximum principle implies thatχ̃m

are constant functions; in particular,

∆

zl χ̃
m(z) = 0 for all z∈ RRRn. Therefore〈〈 f l ∆

zl χ
m〉〉 =
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∫
TTTn f (z)

∆

zl χ̃
m(z)dz= 0, and we obtain〈〈1i〉〉= 1̄i . Hence, applying Lemma 4.1 toα = ci j − c̄i j ,

α = di j and α = 1i − 1̄i , we getlimε↓0E[Ψs(pε)Φε
3 ] = 0.

Finally, we shall showlimε↓0E[Ψs(pε)Φε
4 ] = 0. Recall thatQkl ∆

zl χ̃
m(z) = 0 for all z∈

RRRn. Then, by takingα(x,z) = Qkl ∆

zl χ(x,z) and α(x,z) = hk(x,z)− h̃k(z) , where h̃k(z) :=∫
TTTd hk(x,z)dx, we can show similarly to the proof of Lemma 4.1 that

∣∣E[Ψs(pε)Φε
4 ]

∣∣≤
n

∑
k=1

∣∣∣∣E

[
Ψs(pε)

∫ t

s
φ ′′((pε

r ,ψ)H)(pε
r ,ψ)2

H {(h̃k(Zε
r /ε))2−|h̄k|2}dr

]∣∣∣∣

+(ε + ε2 )C

{
E

[
sup

0≤t≤T
|pε

t |4H
]
+E

[(∫ T

0
|pε

t |2V dt

)2]}
.

Since the first term of the right-hand side converges to zero by the same argument as in the
proof of (4.5), we obtainlimε↓0E[Ψs(pε)Φε

4 ] = 0, and the proof of Proposition 4.1 has been
completed.
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