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Abstract

We describe the asymptotic behaviour of the minimal heterogeneous d-capacity
of a small set, which we assume to be a ball for simplicity, in a fixed bounded open
set Ω ⊆ R

d, with d ≥ 2. Two parameters are involved: ε, the radius of the ball, and
δ, the length scale of the heterogeneity of the medium. We prove that this capacity
behaves as C| log ε|d−1, where C = C(λ) is an explicit constant depending on the
parameter λ := limε→0 | log δ|/| log ε|.

Applying this result, we determine the Γ-limit of oscillating integral functionals
subjected to Dirichlet boundary conditions on periodically perforated domains. In
this instance, our first result is used to study the behaviour of the functionals near
the perforations which are exactly balls of radius ε. We prove that, as in the
homogeneous case, these lead to an additional term that involves C(λ).

Keywords: capacity, homogenization, Γ-convergence, perforated domains.
AMS Class: 49J45, 35B27, 31A15.

1 Introduction

A prototypical variational problem in Sobolev spaces involving scaling-invariant func-
tionals concerns the d-capacity of a set E contained in a fixed bounded open set Ω ⊆ R

d

with d ≥ 2. If we assume E to have diameter of size ε ≪ 1, an explicit computa-
tion proves that the asymptotic behaviour of such capacity equals | log ε|1−d, up to a
dimensional factor.

In this paper, we introduce a dependence on x, which in the model describes the
heterogeneity of a medium, and we analyse the asymptotic behaviour of minima

mε,δ := min
{

∫

Ω
f
(x

δ
,∇u(x)

)

dx : u ∈W 1,d
0 (Ω), u = 1 on B(z, ε), z ∈ Ω

}

, (1)

where δ = δ(ε) is positive and vanishing as ε→ 0, and f(x, ξ) is a function with suitable
assumptions of periodicity and homogeneity.
We assume f : Rd×R

d → [0,+∞) to be a Borel function with the following properties:
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(P1) (periodicity) f(·, ξ) is 1-periodic for every ξ ∈ R
d, i.e., denoting by ek an el-

ement of the canonical basis, f(x + ek, ξ) = f(x, ξ) for every x and ξ in R
d, and

k = 1, ..., d ;

(P2) (positive d-homogeneity) f(x, t ξ) = tdf(x, ξ) for every t > 0, for every x and
ξ in R

d;

(P3) (standard growth conditions of order d) there exist α, β such that 0 < α < β
and α|ξ|d ≤ f(x, ξ) ≤ β|ξ|d for every x and ξ in R

d.

In light of (P1) and (P2), the minima defined in (1) stand for the minimal hetero-
geneous capacity of a small set (which is not restrictive to assume to be a ball) of size
ε, while δ is the period of the heterogeneity modelled by oscillating terms.
Assumption (P3) is technical as it is needed to apply the Homogenization Theorem.

We remark that, by a relaxation argument, we may assumw f(x, ξ) being convex
on the second variable so that the associated energy functional is W 1,d(Ω)-weakly lower
semicontinuous and the terms defined by (1) are actual minima.

The first result we achieve is the asymptotic estimate for the minima in (1). To this
end, we work along subsequences (not relabeled) for which it exists

λ := lim
ε→0

| log δ|
| log ε| ∧ 1 ∈ [0, 1].

We introduce a function describing the asymptotic concentration of the heterogeneous
capacity at a point z ∈ R

d; it is given by

Φ(z) := lim
R→+∞

(logR)d−1 min
{

∫

B(0,R)\B(0,1)
f(z,∇u(x)) dx : u ∈W 1,d

0 (B(0, R)),

u = 1 on B(0, 1)
}

,

(2)

then we define a constant portraying the effect of homogenization, which is

Chom := lim
R→+∞

(logR)d−1 min
{

∫

B(0,R)\B(0,1)
fhom(∇u(x)) dx :u ∈W 1,d

0 (B(0, R)),

u = 1 on B(0, 1)
}

,

(3)

where fhom is the positively d-homogeneous function

fhom(ξ) = min
{

∫

(0,1)d
f(y, ξ +∇ϕ(y)) dy : ϕ ∈W 1,d

loc (R
d), ϕ 1-periodic

}

(4)

determined by the Homogenization Theorem.
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We prove that if there exists a point x0 ∈ R
d for which Φ is consistently concentrated

in an optimal way, then it holds

lim
ε→0

| log ε|d−1mε,δ = Φ(x0)Chom

[

λΦ(x0)
1

d−1 + (1− λ)C
1

d−1

hom

]1−d
. (5)

As an example, we refer to the quadratic case, already treated in [5]. If d = 2 and
f(x, ξ) = a(x)|ξ|2, where a(x) is a 1-periodic continuous function bounded form below
by a constant α, then we can pick x0 so that Φ(x0) = 2πα, and denoting the homogenized
matrix by Ahom, we obtain Chom = 2π

√
detAhom. We eventually find

lim
ε→0

| log ε|mε,δ = 2π
α
√

detAh̊om

λα+ (1− λ)
√

detAh̊om

.

A fundamental tool in the proof of this result is a method elaborated by De Giorgi,
which allows to impose boundary conditions on converging sequences. In this work, it
is presented and proved in a version (Lemma 2.2) which is suitable to our purposes,
similar to that in [2].

The second result concerns homogenization on perforated domains. The argument
follows the work of Laura Sigalotti in [15]; that is, a nonlinear version at the critical
exponent of the homogenization on perforated domains with Dirichlet boundary condi-
tions originally studied, e.g., by Marchenko and Khruslov in [14] and by Cioranescu and
Murat in [8]. Works about the asymptotic behaviour of Dirichlet problems in varying
domains are, e.g., [3, 7, 10], or also [13] for the numerical perspective.

Denoting by B the open unit ball, and by d(ε) the period of the perforations, we
define a periodically perforated domain as

Ωε := Ω \
⋃

i∈Zd

id(ε) + εB

and we consider functionals Fε : L
d(Ω) → [0,+∞] given by

Fε(u) :=







∫

Ω
f
(x

δ
,∇u(x)

)

dx if u ∈W 1,d(Ω) and u = 0 on Ω \ Ωε

+∞ otherwise.

In the above mentioned works [8] and [14], it is analysed the homogeneous case
f(x, ξ) = |ξ|p for p > 1, and it is provided a critical choice for the period, which is

exactly d(ε) = | log ε| 1−d
d , if p = d. Moreover, the Γ-limit with respect to the strong

convergence in Ld(Ω) is proved to be
∫

Ω
|∇u(x)|d dx+ κd

∫

Ω
|u(x)|d dx

for every u ∈W 1,d(Ω), with κd a dimensional constant, showing that internal boundary
conditions disappear with the arising of a so-called strange term.
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We prove an analogous statement: for simplicity, we assume that d(ε) is an integer
multiple of δ(ε) so that the periodicity of the perforation is ’compatible’ with that of
the energy. As an oscillating term is introduced in our study, we expect our result to be
affected by the different rate of vanishing of ε, δ and since this information is encoded
by the parameter λ, we show that for every u ∈W 1,d(Ω) it holds

Γ- lim
ε
Fε(u) =

∫

Ω
fhom(∇u(x)) dx + C(λ)

∫

Ω
|u(x)|d dx,

where C(λ) is the constant

C(λ) := Φ(0)Chom

[

λΦ(0)
1

d−1 + (1− λ)C
1

d−1

hom

]1−d
,

and the term Φ(0) is due to the asymptotic analysis of the problems

min
{

∫

B
f
(x

δ
,∇u(x)

)

dx : u ∈W 1,d
0 (B), u = 1 on B(0, ε)

}

,

where the centres of the perforations have been fixed at 0 for every ε.

1.1 Preliminaries

In this section and the following ones, let d ≥ 2, Ω ⊆ R
d be a bounded open set and

λ := limε→0 | log δ|/| log ε|.
We start by justifying the definitions given in (2) and (3) thorugh the following

lemma which takes advantage of a scaling invariance argument.

Lemma 1.1. Let g : Rd → R be a Borel function which is positively homogeneous of

degree d and assume there exist positive constants C1 < C2 such that C1|ξ|d ≤ g(ξ) ≤
C2|ξ|d for every ξ ∈ R

d. Define

mR := min
{

∫

B(0,R)\B(0,1)
g(∇u(x)) dx : u ∈W 1,d

0 (B(0, R)), u = 1 on B(0, 1)
}

,

then it exists lim
R→+∞

(logR)d−1mR and this limit is finite.

Proof. Fix S > R and put T := ⌊log S/ logR⌋ so that the annuli B(0, Rk) \B(0, Rk−1)
are contained in B(0, S) \B(0, 1) for every k = 1, ..., T .

Let u be a solution of the problem

min
{

∫

B(0,R)\B(0,1)
g(∇u(x)) dx : u ∈W 1,d

0 (B(0, R)), u = 1 on B(0, 1)
}

,
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and for k = 1, ..., T , define functions uk ∈W 1,d(B(0, Rk) \B(0, Rk−1)) as

uk(x) :=
1

T
u
( x

Rk−1

)

+
T − k

T
;

then put uS ∈W 1,d
0 (B(0, S)) as

uS(x) :=











1 if x ∈ B(0, 1)

uk(x) if x ∈ B(0, Rk) \B(0, Rk−1), k = 1, ..., T

0 if x ∈ B(0, S) \B(0, RT ).

We have

(log S)d−1mS ≤ (log S)d−1

∫

B(0,S)\B(0,1)
g(∇uS(x)) dx

= (log S)d−1
T
∑

k=1

∫

B(0,Rk)\B(0,Rk−1)
g(∇uk(x)) dx

= (log S)d−1
T
∑

k=1

1

T d

∫

B(0,R)\B(0,1)
g(∇u(x)) dx

= (log S)d−1 1

T d−1
mR

≤ (log S)d−1
( logR

logS − logR

)d−1
mR.

If we pass to the lim sup as S → +∞, and then we pass to the lim inf as R→ +∞,
we obtain

lim sup
S→+∞

(logS)d−1mS ≤ lim inf
R→+∞

(logR)d−1mR.

In order to check the limit is finite, consider the function

u(x) := 1− log |x|
logR

, x ∈ B(0, R) \B(0, 1),

and note that the estimate

(logR)d−1mR ≤
∫

B(0,R)\B(0,1)
g(∇u(x)) = (logR)d−1

∫

B(0,R)\B(0,1)
g

(

x

−|x|2 logR

)

dx

= (logR)−1

∫

B(0,R)\B(0,1)
g

(

− x

|x|2
)

dx ≤ (logR)−1C2

∫

B(0,R)\B(0,1)

1

|x|d dx = C2σd−1

holds, completing the proof.
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We state the Homogenization Theorem (see [4, 6, 9, 12]) in a slightly modified version
which allows to take into account also translations in the following sense.

Theorem 1.2. Let A be a bounded open subset of R
d with Lipschitz boundary and

(τη)η>0 ⊆ R
d. Then

Γ- lim
η→0

∫

A
f

(

x

η
+ τη,∇u(x)

)

dx =

∫

A
fhom(∇u(x)) dx ,

for every u ∈W 1,d(A), where the Γ-limit is meant with respect to the strong convergence

in Ld(A) and fhom is the function given by (4).
In particular, for every φ ∈W 1,d(A) we have

lim
η→0

inf
{

∫

A
f

(

x

η
+ τη,∇u(x)

)

dx : u ∈ φ+W 1,d
0 (A)

}

= min
{

∫

A
fhom(∇u(x)) dx : u ∈ φ+W 1,d

0 (A)
}

.

At this point, Lemma 1.1 and assumptions (P2), (P3), make well defined the function

Φ(z) := lim
R→+∞

(logR)d−1 min
{

∫

B(0,R)\B(0,1)
f(z,∇u(y)) dy : u ∈W 1,d

0 (B(0, R)),

u = 1 on B(0, 1)
}

,

while, to introduce properly the constant

Chom := lim
R→+∞

(logR)d−1 min
{

∫

B(0,R)\B(0,1)
fhom(∇u(x)) dx :u ∈W 1,d

0 (B(0, R)),

u = 1 on B(0, 1)
}

,

we also need to rely on Theorem 1.2: this, combined with the fact that the growth
conditions on f(x, ξ) posed in (P3) are inherited by the function fhom(ξ), ensures that
the above lemma applies.

2 Asymptotic analysis of minima

We first aim at estimating the asymptotic behaviour of the minima with fixed centres
modulo a translation. More precisely, let z be a point in Ω, for every ε positive suf-
ficiently small, let (zε)ε be a family of points in Ω of the form zε = δz + δiε, where
(iε)ε ⊆ Z

d. Also assume that such family of points is well contained in Ω, i.e., that
infε dist(zε, ∂Ω) > 0; we put

µε,δ = min
{

∫

Ω
f
(x

δ
,∇u(x)

)

dx : u ∈W 1,d
0 (Ω), u = 1 on B(zε, ε)

}

. (6)
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The asymptotic behaviour of these minima is the main subject of this section; we
prove the following.

Proposition 2.1. Let z ∈ Ω be a fixed point, and let (zε)ε be a family of points equal

to z modulo δ as above. Assume that for every ν > 0, there exists rν > 0 such that for

every x ∈ B(z, rν) it holds

|f(z, ξ) − f(x, ξ)| ≤ ν|ξ|d for every ξ ∈ R
d. (7)

Then

lim
ε→0

| log ε|d−1µε,δ = Φ(z)Chom

[

λΦ(z)
1

d−1 + (1− λ)C
1

d−1

hom

]1−d
.

The proof is divided in two parts: the bound from below and the construction of
an optimal sequence. In the first, the main tool we use is the following lemma which
allows to modify a function in order to attain constant values (in the sense of the trace)
on the boundary of a thin annulus, still controlling the value of the associated energy.

Lemma 2.2. Let f : Rd × R
d → R be a Borel function satisfying the standard growth

conditions property (P3). Let z ∈ R
d, R > 0 and define

F (u,A) :=

∫

A
f(x,∇u(x)) dx

for every u ∈W 1,d(B(z,R)) and A ⊆ B(z,R) Borel subset.
Let η > 0, put S := max {s ∈ N : η2s ≤ R} and assume S ≥ 3. Take N natural

number such that 2 ≤ N < S and r positive real number such that r ≤ η2S−N .

Then there exists a function v with the following properties:

(i) v ∈W 1,d(B(z,R) \B(z, r)),
(ii) there exists j ∈ {1, ..., N − 1} such that

v = u on B(z, η2S−j−1) \B(z, r)) ∪B(z,R) \B(z, η2S−j+1),

(iii) for the same j, the function v is constant on ∂B(z, η2S−j),
(iv) There exists a positive constant C depending on α, β and the dimension d such

that

F (v,B(z,R) \B(z, r)) ≤
(

1 +
C

N − 1

)

F (u,B(z,R) \B(z, r)).

Proof. Assume z = 0, if not, center the construction around z and repeat the argument.
For k = 1, ..., N − 1, we define annuli Ak := B(0, η2S−N+k+1) \ B(0, η2S−N+k−1)

and radial cutoff functions

φk(ρ) :=































0 if ρ ∈ [0, η2S−N+k−1]

ρ−η2S−N+k−1

η2S−N+k−1 if ρ ∈ (η2S−N+k−1, η2S−N+k]

η2S−N+k+1−ρ
η2S−N+k if ρ ∈ (η2S−N+k, η2S−N+k+1]

0 if ρ ∈ (η2S−N+k+1, R],
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then we put ψk := 1− φk and define vk := ψku+ (1− ψk)uAk
, where we denote by uAk

the integral average of u on Ak.
At each fixed k, taking into account that |ψk| ≤ 1 and

|∇ψk|d = |∇φk|d ≤
( 1

η2S−N+k−1

)d
,

we exploit (P2) to have

∫

Ak

f(x,∇vk(x)) dx ≤ β

∫

Ak

|∇vk(x)|d dx

= β

∫

Ak

|ψk∇u(x) + (u− uAk
)∇ψk(x)|d dx

≤ β2d−1
[

∫

Ak

|∇u|d dx+
( 1

η2S−N+k−1

)d
∫

Ak

|u(x)− uAk
|d dx

]

.

(8)

Consider now the following well known scaling property of the Poincaré-Wirtinger in-
equality: given A open, bounded, connected, with Lipschitz boundary and λ > 0, it
holds

1

λd

∫

λA
|u− uλA|d dx ≤ P (A)

∫

λA
|∇u|d dx,

where uλA is the integral average of u on λA and P (A) is the Poincaré-Wirtinger
constant related to A.
We apply this result with A = B(0, 4) \B(0, 1) and λ = η2S−N+k−1, obtaining

( 1

η2S−N+k−1

)d
∫

Ak

|u(x)− uAk
|d dx ≤ P d

∫

Ak

|∇u|d dx,

being P := P (A) a constant which does not depend on k.
As a consequence (8) turns into

∫

Ak

f(x,∇vk(x)) dx ≤ β2d−1
(

1 + P d
)

∫

Ak

|∇u|d dx

≤ β

α
2d−1

(

1 + P d
)

∫

Ak

f(x,∇u(x)) dx,

and summing over k, we deduce

N−1
∑

k=1

∫

Ak

f(x,∇vk(x)) dx ≤ C

∫

B(0,R)\B(0,r)
f(x,∇u(x)) dx,
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where we put C := β2d−1
(

1+P d
)

/α. It follows there exists j ∈ {1, ..., N − 1} such that

∫

Aj

f(x,∇vj(x)) dx ≤ C

N − 1

∫

B(0,R)\B(0,r)
f(x,∇u(x)) dx,

and then it holds
∫

B(0,R)\B(0,r)
f(x,∇vj(x)) dx =

∫

(B(0,R)\B(0,r))\Aj

f(x,∇u(x)) dx +

∫

Aj

f(x,∇vj(x)) dx

≤
(

1 +
C

N − 1

)
∫

B(0,R)\B(0,r)
f(x,∇u(x)) dx,

which concludes the proof.

The estimate in (iv) is more precise as N → ∞, i.e., as η → 0. Our strategy will
consist in parting the open set Ω through many annuli having small inner and outer
radii, say of order ελ ∼ δ, and there modifying a function u ∈W 1,d

0 (Ω) to achieve some
constant Dirichlet boundary conditions as a consequence of (iii). The error introduced
by the modification will be negligible in light of (iv).

2.1 Lower bound

In what follows, we systematically identify a function u ∈W 1,d
0 (Ω) with the the exten-

sion obtained by setting u = 0 on R
d \ Ω, which belongs to W 1,d(Rd).

For simplicity of notation, given A a Borel subset of Rd and u ∈W 1,d(Rd), we put

Fε(u,A) :=

∫

A
f
(x

δ
,∇u(x)

)

dx

and denote by RΩ the maximum among the diameter of Ω and 1.

We consider separately the cases λ = 0, λ ∈ (0, 1) and λ = 1; we obtain for each
instance the same kind of estimate and then we conclude by the same argument.

If λ = 0, fix a parameter λ2 ∈ (λ, 1) so that

ελ2

δ
→ 0 as ε→ 0.

For every u ∈ W 1,d
0 (Ω) such that u = 1 on B(zε, ε), the inclusion Ω ⊆ B(zε, RΩ) leads

to the equality
Fε(u,Ω) = Fε(u,B(zε, RΩ)),

then we apply Lemma 2.2 to the function u ∈W 1,d
0 (B(zε, RΩ)), with

f(x, ξ) = f
(x

δ
, ξ
)

, η = ε, R = ελ2 , N ∈ N ∩
(

1,

⌊

(1− λ2)| log ε|
log 2

⌋

= S

)

and r = ε.
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We get a function v ∈ W 1,d
0 (B(zε, RΩ)) such that v = 1 on B(zε, ε), v = c on

∂B(zε, ε2
S−j) for some constant c and some index j ∈ {1, ..., N − 1}, and v = u on

B(zε, RΩ) \B(zε, ε
λ2); hence, it holds

(

1 +
C

N − 1

)

Fε(u,Ω) =

(

1 +
C

N − 1

)

Fε(u,B(zε, RΩ)) ≥ Fε(v,B(zε, RΩ))

= Fε(v,B(zε, ε2
S−j)) + Fε(v,B(zε, RΩ) \B(zε, ε2

S−j)).

(9)

Now we set

w1 :=

{

v on B(zε, ε2
S−j)

c on B(zε, ε
λ2) \B(zε, ε2

S−j)
w2 :=

{

c on B(zε, ε2
S−j) \B(zε, ε2

S−N )

v on B(zε, RΩ) \B(zε, ε2
S−j),

and we note that
Fε(w

1, B(zε, ε
λ2)) = Fε(v,B(zε, ε2

S−j))

and
Fε(w

2, B(zε, RΩ) \B(zε, ε2
S−N )) = Fε(v,B(zε, RΩ) \B(zε, ε2

S−j)),

thus

Fε(v,B(zε, RΩ)) = Fε(w
1, B(zε, ε

λ2)) + Fε(w
2, B(zε, RΩ) \B(zε, ε2

S−N )).

At this point we take advantage of the fact that both the functions w1 and w2 attain
constant values on the components of the boundary of their domain.
We rewrite inequality (9) as

(

1 +
C

N − 1

)

Fε(u,Ω) ≥

≥ min{Fε(v,B(zε, ε
λ2)) : v ∈W 1,d(B(zε, ε

λ2)), v = 1 on B(zε, ε), v = c on ∂B(zε, ε
λ2)}

+min{Fε(v,B(zε, RΩ) \B(zε, ε2
S−N )) : v ∈W 1,d(B(zε, RΩ) \B(zε, ε

λ22S−N )),

v = c on ∂B(zε, ε2
S−N ), v = 0 on ∂B(zε, RΩ)},

and taking into account the transformations

v(x) 7→ v(x)− c

1− c
, v(x) 7→ v(x)

c
,

and the property of homogeneity (P2), we have that the last expression equals

min{Fε(v,B(zε, ε
λ2)) : v ∈W 1,d

0 (B(zε, ε
λ2)), v = 1 on B(zε, ε)}|1 − c|d (10)

+min{Fε(v,B(zε, RΩ) \B(zε, ε2
S−N )) : v ∈W 1,d(B(zε, RΩ) \B(zε, ε

λ22S−N )),

v = 1 on B(zε, ε2
S−N ), v = 0 on ∂B(zε, RΩ)}|c|d. (11)
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To treat the minimum in (10), we apply the transformation v(x) 7→ v(zε + xε),
getting

min
{

∫

B(0,ελ2−1)
f
(x

δ
ε+

zε
δ
,∇v(x)

)

: v ∈W 1,d
0 (B(0, ελ2−1)), v = 1 on B(0, 1)

}

|1− c|d .

As zε = δz + δiε, we exploit the periodicity assumption (P1) to get

f
(x

δ
ε+

zε
δ
, ξ
)

= f
(x

δ
ε+ z, ξ

)

for every ξ ∈ R
d;

also note that if x ∈ B(0, ελ2−1), then ε
δ |x| < ελ2

δ → 0 as ε→ 0. Hence, for every ν > 0,
given rν as in (7), it holds that B(0, ελ2−1) ⊆ B(0, rν), so that for every ε sufficiently
small we have

f
(x

δ
ε+

zε
δ
, ξ
)

≥ f(z, ξ)− ν|ξ|d for every ξ ∈ R
d.

Combining these observations with the growth condition (from below) in (P3), we get
∫

B(0,ελ2−1)
f
(x

δ
ε+

zε
δ
,∇v(x)

)

dx ≥
(

1− ν

α

)

∫

B(0,ελ2−1)
f(z,∇v(x)) dx

for every v ∈ W 1,d
0 (B(0, ελ2−1)) such that v = 1 on B(0, 1). By the application of

Lemma 1.1, which is possible due to the fact that λ2 < 1, we obtain

min{Fε(v,B(zε, ε
λ2)) : v ∈W 1,d

0 (B(zε, ε
λ2)), v = 1 on B(zε, ε)}|1 − c|d

≥ Φ(z) + oε(1)

(1− λ2)d−1| log ε|d−1
|1− c|d, (12)

where we get rid of the term in ν since 1 − ν/α may be taken arbitrarily close to 1 as
ε→ 0.

In order to deal with the minimum in (11), we apply once more property (P3), and
in particular the inequality f(x, ξ) ≥ α|ξ|d. We get a lower bound in terms of the d-
capacity of the inclusion B(zε, ε2

S−N ) ⊆ B(zε, RΩ) which is explicitly computed; more
precisely, we have

min{Fε(v,B(zε, RΩ) \B(zε, ε2
S−N )) : v ∈W 1,d(B(zε, RΩ) \B(zε, ε

λ22S−N )),

v = 1 on B(zε, ε2
S−N ), v = 0 on ∂B(zε, RΩ)}|c|d

≥ αCapd(B(zε, ε2
S−N ), B(zε, RΩ))|c|d

=
ασd−1

[logRΩ + | log ε| − (S −N) log 2]d−1
|c|d

≥ ασd−1

[logRΩ + λ2| log ε|+ (N + 2) log 2]d−1
|c|d, (13)

where the last inequality follows recalling that S = ⌊ (1−λ2)| log ε|
log 2 ⌋.
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Gathering (12) and (13), and multiplying by | log ε|d−1, we get

(

1 +
C

N − 1

)

| log ε|d−1Fε(u,Ω) ≥
Φ(z) + oε(1)

(1− λ2)d−1
|1− c|d

+
ασd−1| log ε|d−1

[logRΩ + λ2| log ε|+ (N + 2) log 2]d−1
|c|d .

(14)

We recall that, by construction, the constant boundary value c actually depends on
ε, being the mean value of the function u in an annulus whose radii are ε-dependent. In
order to pass to the lower limit as ε→ 0, we make precise the fact that we can assume
c(ε) → c ∈ R.
An easy way to see this is observing that we may assume that u takes values in [0, 1] as
trivially follows by the estimate

Fε(u,Ω) ≥ Fε((u ∨ 0) ∧ 1,Ω) for every u ∈W 1,d
0 (Ω),

so that c(ε) ∈ [0, 1] as well. Then we find a sequence εk → 0, and correspondingly
ck := c(εk), such that

lim inf
k→+∞

Φ(z) + ok(1)

(1− λ2)d−1
(1− ck)

d +
ασd−1| log εk|d−1

[logRΩ + λ2| log εk|+ (N + 2) log 2]d−1
(ck)

d

is achieved as a limit; as (ck)k ⊆ [0, 1], we extract a further subsequence ckh → c ∈ [0, 1],
to get

(

1 +
C

N − 1

)

lim inf
ε→0

| log ε|d−1Fε(u,Ω) ≥
Φ(z)

(1− λ2)d−1
|1− c|d + ασd−1

λd−1
2

|c|d .

Finally, we pass to the limit as N → +∞ and recall that u was arbitrary among the
admissible functions for the minimization; we conclude that

lim inf
ε→0

| log ε|d−1µε,δ ≥
Φ(z)

(1− λ2)d−1
|1− c|d + ασd−1

λd−1
2

|c|d , (15)

for every λ2 ∈ (0, 1).

If λ ∈ (0, 1), we introduce a further parameter λ1 ∈ (0, λ) so that

δ

ελ1
→ 0 as ε→ 0.

Our construction relies on the definition of several concentric annuli. To this end, let

T := max {t ∈ N : ελ12t ≤ RΩ} = ⌊λ1| log ε|+ logRΩ

log 2
⌋

12



and assume in particular that T is larger than 4 as ε is small enough. Then pick a
natural number M ∈ (2, T ) and define annuli centered in zε having radii ελ12kM , with
k = 0, 1, ..., ⌊ T

M ⌋+ 1.

We have Ω ⊆ B(zε, ε
λ12(⌊T/M⌋+1)M ); hence, for every u ∈ W 1,d

0 (Ω) such that u = 1
on B(zε, ε), it holds that

Fε(u,Ω) = Fε(u,B(zε, ε
λ12(⌊T/M⌋+1)M ))

= Fε(u,B(zε, ε
λ2)) + Fε(u,B(zε, ε

λ1) \B(zε, ε
λ2))

+

⌊T/M⌋+1
∑

k=1

Fε(u,B(zε, ε
λ12kM) \B(zε, ε

λ12(k−1)M)).

In the last equality, we carefully separated three summands in order to treat each of
them in accordance with the different exponential scales described by the parameters
λ1, λ2.
Apply Lemma 2.2 to the first summand with

f(x, ξ) = f
(x

δ
, ξ
)

, η = ε, R = ελ2 , N ∈ N ∩
(

1,

⌊

(1− λ2)| log ε|
log 2

⌋)

and r = ε.

Apply Lemma 2.2 to the second summand with

f(x, ξ) = f
(x

δ
, ξ
)

, η = ελ2 , R = ελ1 , N ∈ N ∩
(

1,

⌊

(λ2 − λ1)| log ε|
log 2

⌋)

and r = ελ2 .

Apply Lemma 2.2 to the terms of the third summand for k = 1, ..., ⌊T/M⌋ with

f(x, ξ) = f
(x

δ
, ξ
)

, η = ελ1 , R = ελ12kM , N ∈ N ∩ (1, kM) and r = ελ12(k−1)M .

Set for simplicity of notation

S′ :=

⌊

(1− λ2)| log ε|
log 2

⌋

and S′′ :=

⌊

(λ2 − λ1)| log ε|
log 2

⌋

.

Since S′, S′′ and M will get arbitrarily large, we may assume we fix the same N in each
of the above applications of the lemma.

We obtain functions v−1 ∈ W 1,d(B(zε, ε
λ2)), v0 ∈ W 1,d(B(zε, ε

λ1) \ B(zε, ε
λ2)) and

vk ∈W 1,d(B(z, ελ12kM )\B(z, ελ12(k−1)M )), k = 1, ..., ⌊T/M⌋ with the properties stated
in Lemma 2.2. We put

v :=























v−1 on B(zε, ε
λ2)

v0 on B(zε, ε
λ1) \B(zε, ε

λ2)

vk on B(zε, ε
λ12kM ) \B(zε, ε

λ12(k−1)M ), k = 1, ..., ⌊T/M⌋
u otherwise,
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and note that v ∈W 1,d
0 (B(zε, ε

λ12(⌊T/M⌋+1)M )) since the modifications provided by the
lemma occur far from the boundary of each annulus; moreover it holds

(

1 +
C

N − 1

)

Fε(u,B(zε, ε
λ12(⌊T/M⌋+1)M )) ≥ Fε(v,B(zε, ε

λ12(⌊T/M⌋+1)M )).

In order to highlight that v is constant of value ck on spheres centered in zε of
radii of the form ε2S

′−j−1 , ελ22S
′′−j0 and ελ12kM−jk , where jk ∈ {1, ..., N − 1} for

k = −1, 0, 1, ..., ⌊T/M⌋, we write

Fε(v,B(zε, ε
λ12(⌊T/M⌋+1)M )) = Fε(v,B(zε, ε2

S′−j−1))

+ Fε(v,B(zε, ε
λ22S

′′−j0) \B(zε, ε2
S′−j−1))

+ Fε(v,B(zε, ε
λ12M−j1) \B(zε, ε

λ22S
′′−j0))

+

⌊T/M⌋
∑

k=2

Fε(v,B(zε, ε
λ12kM−jk) \B(zε, ε

λ12(k−1)M−jk−1))

+ Fε(v,B(zε, ε
λ12(⌊T/M⌋+1)M ) \B(zε, ε

λ12⌊T/M⌋M−j⌊T/M⌋)).

(16)

Then we define functions wk, k = −1, 0, 1, ...⌊T/M⌋+1 as follows: w−1 ∈W 1,d(B(zε, ε
λ2))

is defined as

w−1 :=

{

v on B(zε, ε2
S′−j−1)

c−1 otherwise,

so that
Fε(w

−1, B(zε, ε
λ2)) = Fε(v,B(zε, ε2

S′−j−1)).

Similarly, set

w0 :=











c−1 on B(zε, ε2
S′−j−1)) \B(zε, ε2

S′−N ))

v on B(zε, ε
λ22S

′′−j0) \B(zε, ε2
S′−j−1))

c0 on B(zε, ε
λ1) \B(zε, ε

λ22S
′′−j0),

so that

Fε(w
0, B(zε, ε

λ1) \B(zε, ε2
S′−N ))) = Fε(v,B(zε, ε

λ22S
′′−j0) \B(zε, ε2

S′−j−1))

and

w1 :=











c0 on B(zε, ε2
S′′−j0) \B(zε, ε2

S′′−N ))

v on B(zε, ε
λ12M−j1) \B(zε, ε2

S′′−j0))

c1 on B(zε, ε
λ12M )) \B(zε, ε

λ12M−j1),
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so that

Fε(w
1, B(zε, ε

λ12M ) \B(zε, ε2
S′′−N ))) = Fε(v,B(zε, ε

λ12M−j1) \B(zε, ε2
S′′−j0)).

For k = 2, ..., ⌊T/M⌋ + 1, we define annuli

AN
M,k := B(zε, ε

λ12kM) \B(zε, ε
λ12(k−1)M−N ).

For k = 2, ..., ⌊T/M⌋, we define functions wk ∈W 1,d(AN
M,k) as

wk :=











ck−1 on B(zε, ε
λ12(k−1)M−jk−1) \B(zε, ε

λ12(k−1)M−N )

v on B(zε, ε
λ12kM−jk) \B(z, ελ12(k−1)M−jk−1)

ck on B(z, ελ12kM ) \B(z, ελ12kM−jk),

and for k = ⌊T/M⌋ + 1,

w⌊T/M⌋+1 :=

{

c⌊T/M⌋ on B(zε, ε
λ12(k−1)M−jk−1) \B(zε, ε

λ12(k−1)M−N )

v otherwise,

so that
Fε(w

k, AN
M,k) = Fε(v,B(z, ελ12kM−jk) \B(z, ελ12(k−1)M−jk−1))

for all k = 2, ..., ⌊T/M⌋ + 1.

If we set AN
M,−1 := B(zε, ε

λ2), AN
M,0 := B(zε, ε

λ1) \ B(zε, ε2
S′−N ) and AN

M,1 :=

B(zε, ε
λ12M ) \B(zε, ε2

S′′−N ), then we can rewrite (16) simply as

Fε(v,B(zε, ε
λ12(⌊T/M⌋+1)M )) =

⌊T/M⌋+1
∑

k=−1

Fε(w
k, AN

M,k).

Once more, we take advantage of the fact that the functions w−1, ..., w⌊T/M⌋+1 attain
constant value on the components of their annuli of definition. Also, exploiting (P2)
and suitable affine transformation (as in the case λ = 0), we get

(

1 +
C

N − 1

)

Fε(u,Ω) ≥

15



≥ min{Fε(v,B(zε, ε
λ2)) : v ∈W 1,d

0 (B(zε, ε
λ2)), v = 1 on B(zε, ε)}|1 − c−1|d (17)

+ min{Fε(v,B(zε, ε
λ1) \B(zε, ε2

S′−N )) : v ∈W 1,d(B(zε, ε
λ1) \B(zε, ε2

S′−N )),

v = 1 on ∂B(zε, ε2
S′−N ), v = 0 on ∂B(zε, ε

λ1)}|c−1 − c0|d (18)

+ min{Fε(v,B(zε, ε
λ12M ) \B(zε, ε2

S′′−N )) : v ∈W 1,d(B(zε, ε
λ12M ) \B(zε, ε2

S′′−N )),

v = 1 on ∂B(zε, ε2
S′′−N ), v = 0 on ∂B(zε, ε

λ12M )}|c0 − c1|d (19)

+

⌊T/M⌋+1
∑

k=2

min{Fε(v,A
N
M,k) : v ∈W 1,d(AN

M,k), v = 1 on ∂B(zε, ε
λ12(k−1)M−N ),

v = 0 on ∂B(zε, ε
λ12kM )}|ck−1 − ck|d , (20)

where we put c⌊ T
M

⌋+1 := 0.

Since λ2 < λ, the minimum in (17) is estimated as for (12) in the case λ = 0, thus
it is greater than or equal to

Φ(z) + oε(1)

(1− λ2)d−1| log ε|d−1
|1− c−1|d. (21)

The bounds for the (18) and (19) follow again by the growth condition from below
in (P3), in particular, recalling how we defined S′ and S′′, we have

αCapd(B(zε, ε2
S′−N ), B(zε, ε

λ1)) ≥ ασd−1

[(1 − λ1)| log ε| − (S′ −N) log 2]d−1

≥ ασd−1

[(λ2 − λ1)| log ε|+ (N + 1) log 2]d−1

(22)

while

αCapd(B(zε, ε2
S′′−N ), B(zε, ε

λ12M )) ≥ ασd−1

[M log 2 + (1− λ1)| log ε| − (S′′ −N) log 2]d−1

≥ ασd−1

[M log 2 + (1− λ2)| log ε|+ (N + 1) log 2]d−1
.

(23)

Concerning the summands in (20), we proceed fixing k = 2, ..., ⌊T/M⌋ + 1 and
applying v(x) 7→ v(zε + xελ12(k−1)M−N ), so that each term equals

min
{

∫

B(0,2M+N )\B(0,1)
f
(x

δ
ελ12(k−1)M−N +

zε
δ
,∇v(x)

)

dx :

v ∈W 1,d
0 (B(0, 2M+N )), v = 1 on B(0, 1)

}

|ck−1 − ck|d .

By λ1 < λ it follows that

δ

ελ12(k−1)M−N
→ 0 as ε→ 0;
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hence, we can apply Theorem 1.2 with

A = B(0, 2M+N ) \B(0, 1) , η =
δ

ελ12(k−1)M−N
, τη =

zε
δ

and φ any function in W 1,d(B(0, 2M+N ) \ B(0, 1)) such that φ = 1 on ∂B(0, 1) and
φ = 0 on ∂B(0, 2M+N ). We get that each of the above minima equals
[

min
{

∫

B(0,2M+N )\B(0,1)
fhom(∇v(x)) dx : v ∈W 1,d(B(0, 2M+N )),

v = 1 on B(0, 1), v = 0 on ∂B(0, 2M+N )
}

+ oε(1)

]

|ck−1 − ck|d,
(24)

where fhom is the d-homogeneous function given by (4), which does not depend on k.
Recalling the definition of the constant Chom given in (3), (24) turns into

[

Chom + oM (1)

((M +N) log 2)d−1
+ oε(1)

]

|ck−1 − ck|d.

We sum over k and use the convexity of x 7→ |x|d, the fact that∑⌊T/M⌋+1
k=2 (ck−1−ck) = c1

and that T ≤ λ1| log ε|+logRΩ

log 2 ; we obtain

⌊T/M⌋+1
∑

k=2

|ck−1 − ck|d ≥ (M log 2)d−1

(λ1| log ε|+ logRΩ +M log 2)d−1
|c1|d,

and in turn

⌊T/M⌋+1
∑

k=2

[

Chom + oM (1)

((M +N) log 2)d−1
+ oε(1)

]

|ck−1 − ck|d

≥
[

Chom + oM (1)

((M +N) log 2)d−1
+ oε(1)

]

(M log 2)d−1

(λ1| log ε|+ logRΩ +M log 2)d−1
|c1|d . (25)

Gathering (21), (22), (23) and (25), and multiplying by | log ε|d−1, we get

(

1 +
C

N − 1

)

| log ε|d−1Fε(u,Ω) ≥
Φ(z) + oε(1)

(1− λ2)d−1
|1− c−1|d

+
ασd−1| log ε|d−1

[(λ2 − λ1)| log ε|+ (N + 1) log 2]d−1
|c−1 − c0|d

+
ασd−1| log ε|d−1

[M log 2 + (1− λ2)| log ε|+ (N + 1) log 2]d−1
|c0 − c1|d

+

[

Chom + oM (1)

((M +N) log 2)d−1
+ oε(1)

] | log ε|d−1(M log 2)d−1

(λ1| log ε|+ logRΩ +M log 2)d−1
|c1|d .
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Arguing as before, we stress that c−1, c0 and c1 depend on ε and can be picked inside
the interval [0, 1]. This lead us to assume that they all converge to some finite limits,
say c−1, c0, c1, respectively. Moreover, such limits have to coincide; if not we would get
a contradiction letting λ1, λ2 → λ or λ2 → 1.
Eventually, the following estimate holds true:

(

1 +
C

N − 1

)

lim inf
ε→0

| log ε|d−1Fε(u,Ω) ≥
Φ(z)

(1− λ2)d−1
|1− c|d

+

[

Chom + oM (1)

((M +N) log 2)d−1

]

(M log 2)d−1

λd−1
1

|c|d

and letting M → +∞, N → +∞, by the arbitrariness of u we achieve

lim inf
ε→0

| log ε|d−1µε,δ ≥
Φ(z)

(1− λ2)d−1
|1− c|d + Chom

λd−1
1

|c|d . (26)

If λ = 1, keeping the notation introduced throughout the proof, define annuli cen-
tered in zε having radii ελ12kM , with k = 1, ..., ⌊ T

M ⌋+ 1.

For every function u ∈W 1,d
0 (Ω), u = 1 on B(zε, ε), we have

Fε(u,Ω) = Fε(u,B(zε, ε
λ12(⌊T/M⌋+1)M ))

= Fε(u,B(zε, ε
λ1))

+

⌊T/M⌋+1
∑

k=1

Fε(u,B(zε, ε
λ12kM ) \B(zε, ε

λ12(k−1)M )).

(27)

Apply Lemma 2.2 to the terms of the second summand for k = 1, ..., ⌊T/M⌋ with

f(x, ξ) = f
(x

δ
, ξ
)

, η = ελ1 , R = ελ12kM , N ∈ N ∩ (1, kM) and r = ελ12(k−1)M .

Arguing as in the previous instances, with λ ∈ [0, 1), we get

(

1 +
C

N − 1

)

Fε(u,Ω) ≥

≥ min{Fε(v,B(zε, ε
λ1)) : v ∈W 1,d(B(zε, ε

λ1)), v = 1 on B(zε, ε),

v = 0 on ∂B(zε, ε
λ1)}|1 − c0|d (28)

+

⌊T/M⌋+1
∑

k=1

min{Fε(v,A
N
M,k) : v ∈W 1,d(AN

M,k), v = 1 on ∂B(zε, ε
λ12(k−1)M−N ),

v = 0 on ∂B(zε, ε
λ12kM )}|ck−1 − ck|d , (29)
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where c⌊ T
M

⌋+1 := 0.

Making use of (P3), (28) is bounded from below by

αCapd(B(zε, ε), B(zε, ε
λ1))|1 − c0|d =

ασd−1

[(1 − λ1)| log ε|]d−1
|1− c0|d ,

while (29) can be estimated as in (25) since δ/ελ1 → 0.
At the end, we get the inequality

(

1 +
C

N − 1

)

| log ε|d−1Fε(u,Ω) ≥
ασd−1

(1− λ1)d−1
|1− c0|d

+

[

Chom + oM (1)

((M +N) log 2)d−1
+ oε(1)

] | log ε|d−1(M log 2)d−1

(λ1| log ε|+ logRΩ +M log 2)d−1
|c0|d .

Recall that we may assume that c0 = c0(ε) converges to a finite value c, hence we
let ε → 0,M → +∞ and N → +∞, then we take advantage of the arbitrariness of u,
to obtain

lim inf
ε→0

| log ε|d−1µε,δ ≥
ασd−1

(1− λ1)d−1
|1− c|d + Chom

λd−1
1

|c|d . (30)

Once we gather (15), (26), (30), we have

lim inf
ε→0

| log ε|d−1µε,δ ≥



















Φ(z)
(1−λ2)d−1 |1− c|d + ασd−1

λd−1
2

|c|d if λ = 0,

Φ(z)
(1−λ2)d−1 |1− c|d + Chom

λd−1
1

|c|d if λ ∈ (0, 1),

ασd−1

(1−λ1)d−1 |1− c|d + Chom

λd−1
1

|c|d if λ = 1

for every λ1 ∈ (0, λ) and λ2 ∈ (λ, 1).
These expressions can be estimated by the same argument concerning the minimization
of the function a|1− x|d + b|x|d with a, b > 0. Indeed, the minimum is attained at

x =

[

( b

a

)
1

d−1
+ 1

]−1

with minimum value

b

[

( b

a

)
1

d−1
+ 1

]1−d

.

In (15), we set

a =
Φ(z)

(1− λ2)d−1
and b =

ασd−1

λd−1
2

,
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to achieve

lim inf
ε→0

| log ε|d−1µε,δ ≥
ασd−1

λd−1
2





(

ασd−1/λ
d−1
2

Φ(z)/(1 − λ2)d−1

)
1

d−1

+ 1





1−d

= Φ(z)ασd−1

[

(1− λ2)(ασd−1)
1

d−1 + λ2Φ(z)
1

d−1

]1−d
.

We conclude passing to the limit as λ2 → 0.
In (26), put

a =
Φ(z)

(1− λ2)d−1
and b =

Chom

λd−1
1

, (31)

and let λ1, λ2 → λ getting

lim inf
ε→0

| log ε|d−1µε,δ ≥
Chom

λd−1

[

(

Chom/λ
d−1

Φ(z)/(1 − λ)d−1

)

1
d−1

+ 1

]1−d

= Φ(z)Chom

[

(1− λ)C
1

d−1

hom + λΦ(z)
1

d−1

]1−d
.

Finally, in (30) let

a =
ασd−1

(1− λ1)d−1
and b =

Chom

λd−1
1

,

to have

lim inf
ε→0

| log ε|d−1µε,δ ≥
Chom

λd−1
1

[

(

Chom/λ1
ασd−1/(1 − λ1)

)
1

d−1

+ 1

]1−d

= ασd−1Chom

[

(1− λ1)C
1

d−1

hom + λ1(ασd−1)
1

d−1

]1−d
.

Then, conclude letting λ1 → 1.

2.2 Construction of optimal sequences

To finish the proof we define minimizing sequences providing the bound from above
using suitable capacitary profiles.

If λ = 0, take λ2 ∈ (λ, 1) and let v0ε be a solution of the minimum problem

min
{

∫

B(0,ελ2−1)
f(z,∇u(x)) dx : u ∈W 1,d

0 (B(0, ελ2−1)), u = 1 on B(0, 1)
}

.
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For ε ≪ 1, the function u0ε(x) := v0ε
(

x−zε
ε

)

belongs to W 1,d
0 (Ω) and it is admissible

for the minimum problem defining (6), thus µε,δ ≤ Fε(u
0
ε,Ω) and by change of variables

and homogeneity of f(x, ·), it holds

Fε(u
0
ε,Ω) = Fε(u

0
ε, B(zε, ε

λ2)) =

∫

B(zε,ελ2)
f
(x

δ
,∇u0ε(x)

)

dx

=

∫

B(0,ελ2−1)
f
(x

δ
ε+

zε
δ
,∇v0ε(x)

)

dx =

∫

B(0,ελ2−1)
f
(x

δ
ε+ z,∇v0ε(x)

)

dx.

Note that ελ2/δ → 0, hence, for every x ∈ B(0, ελ2−1), it holds |x| εδ → 0 as ε → 0. In
light of this, given any ν > 0, by (7) we deduce that

f(x, ξ) ≤ f(z, ξ) + ν|ξ|d for every ξ ∈ R
d and for every x ∈ B(0, ελ2−1),

as ε is sufficiently small. As a consequence

∫

B(0,ελ2−1)
f
(x

δ
ε+z,∇v0ε(x)

)

dx ≤
∫

B(0,ελ2−1)
f(z,∇v0ε(x)) dx+ν

∫

B(0,ελ2−1)
|∇v0ε(x)|d dx

which, by the growth condition, is bounded above by

(

1 +
ν

α

)

∫

B(0,ελ2−1)
f(z,∇v0ε(x)) dx .

In light of the fact that ελ2−1 → ∞ as ε→ 0, we apply Lemma 1.1 to deduce

Fε(u
0
ε,Ω) = Fε(u

0
ε, B(zε, ε

λ2)) ≤
(

1 +
ν

α

) Φ(z) + oε(1)

(1− λ2)d−1| log ε|d−1
. (32)

Thus, we conclude by the arbitrariness of ν > 0 and λ2 ∈ (0, 1), that

lim sup
ε→0

| log ε|d−1µε,δ ≤ inf
λ2∈(0,1)

Φ(z)

(1− λ2)d−1
= Φ(z).

If λ ∈ (0, 1), introduce a further parameter λ1 ∈ (0, λ), put

T := max{t ∈ N : ελ12t ≤ dist(zε, ∂Ω)} =

⌊

λ1| log ε|+ log dist(zε, ∂Ω)

log 2

⌋

and take M ∈ N ∩ (0, T ). Since the family of points {zε, ε > 0} is contained in a ball,
say B, whose closure lays inside Ω, we have that dist(zε, ∂Ω) ≥ dist(∂B, ∂Ω) > 0 so
that T is well defined and can be assumed to be greater than 2 for every ε.
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Let vη be a solution of the minimum problem

mη := min
{

∫

B(0,2M )
f
(x

η
+ τη,∇u(x)

)

dx : u ∈W 1,d
0 (B(0, 2M )), u = 1 on B(0, 1)

}

and set

m0 := min
{

∫

B(0,2M )
fhom(∇u(x)) dx : u ∈W 1,d

0 (B(0, 2M )), u = 1 on B(0, 1)
}

.

By Theorem 1.2, there exists an increasing non negative function ω such that

|mη −m0| ≤ ω(η) and ω(η) → 0 as η → 0;

thus, for k = 1, ..., ⌊T/M⌋, define ukε ∈W 1,d(B(zε, ε
λ12kM ) \B(zε, ε

λ12(k−1)M )) as

ukε(x) :=
c

⌊T/M⌋vη
(

x− zε

ελ12(k−1)M

)

+
⌊T/M⌋ − k

⌊T/M⌋ c

for some constant c to be properly selected.
If we set η = δ

ελ12(k−1)M , τη = zε
δ and we apply a change of variables and the homo-

geneity of f(x, ·), it holds

Fε(u
k
ε , B(zε, ε

λ12kM ) \B(zε, ε
λ12(k−1)M ))

=

∫

B(zε,ελ12kM )\B(zε,ελ12(k−1)M )
f
(x

δ
,∇ukε(x)

)

dx

=

∣

∣

∣

∣

c

⌊T/M⌋

∣

∣

∣

∣

d ∫

B(0,2M )
f
(x

δ
ελ12k−1 +

zε
δ
,∇vη(x)

)

dx

=

∣

∣

∣

∣

c

⌊T/M⌋

∣

∣

∣

∣

d

mη

≤
∣

∣

∣

∣

c

⌊T/M⌋

∣

∣

∣

∣

d

(m0 + ω(η))

≤
∣

∣

∣

∣

c

⌊T/M⌋

∣

∣

∣

∣

d(

m0 + ω

(

δ

ελ1

))

.

(33)

Then, considering the same u0ε introduced in the case λ = 0, set

uε(x) :=























(1− c)u0ε(x) + c if x ∈ B(zε, ε
λ2)

c if x ∈ B(zε, ε
λ1) \B(zε, ε

λ2)

ukε(x) if x ∈ B(zε, ε
λ12kM ) \B(zε, ε

λ12(k−1)M ) , k = 1, ..., ⌊T/M⌋
0 if x ∈ Ω \B(zε, ε

λ12⌊T/M⌋M ).
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Since the boundary conditions match, uε ∈ W 1,d
0 (Ω) and uε = 1 on B(zε, ε); therefore,

it is an admissible function for the minimum problem.
We estimate Fε(uε, B(zε, ε

λ1)) and Fε(uε,Ω\B(zε, ε
λ1)) separately, neglecting those

regions on which uε is constant.

By the same computation which led to (32),

Fε(uε, B(zε, ε
λ1)) = Fε(u

0
ε, B(zε, ε

λ2))|1 − c|d ≤ Φ(z) + oε(1)

(1− λ2)d−1| log ε|d−1
|1− c|d , (34)

where ν has been neglected as it gets arbitrarily small as ε→ 0.

We focus on Fε(uε,Ω \B(zε, ε
λ1)). By (33), it holds

Fε(uε,Ω \B(zε, ε
λ1)) =

⌊T/M⌋
∑

k=1

Fε(u
k
ε , B(zε, ε

λ12kM ) \B(zε, ε
λ12(k−1)M ))

≤
∣

∣

∣

∣

c

⌊T/M⌋

∣

∣

∣

∣

d ⌊T/M⌋
∑

k=1

(

m0 + ω

(

δ

ελ1

))

=
|c|d

⌊T/M⌋d−1

(

m0 + ω

(

δ

ελ1

))

, (35)

but fhom(0) = 0, while by the definition of the constant Chom, we have

m0 =
Chom + oM (1)

(M log 2)d−1
.

Thus, we substitute in (35) obtaining

Fε(uε,Ω \B(zε, ε
λ1)) ≤ |c|d

⌊T/M⌋d−1

(

Chom + oM (1)

(M log 2)d−1
+ ω

(

δ

ελ1

))

,

and, as T ≥ λ1| log ε|+log d−log 2
log 2 with d :=dist(∂B, ∂Ω), it holds

Fε(uε,Ω \B(zε, ε
λ1)) ≤ Chom + oM (1) + (M log 2)d−1ω(δ/ελ1)

(λ1| log ε|+ log d− log 2)d−1
|c|d. (36)

We gather estimates (34), (36) to conclude

| log ε|d−1µε,δ ≤
Φ(z) + oε(1)

(1− λ2)d−1
|1− c|d

+
| log ε|d−1[Chom + oM (1) + (M log 2)d−1ω(δ/ελ1)]

(λ1| log ε|+ log d− log 2)d−1
|c|d .

Since δ
ελ1

→ 0, let ε→ 0 and then M → +∞ to deduce

lim sup
ε→0

| log ε|d−1µε,δ ≤
Φ(z)

(1− λ2)d−1
|1− c|d + Chom

λd−1
1

|c|d ;
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then, let λ1, λ2 → λ so that

lim sup
ε→0

| log ε|d−1µε,δ ≤
Φ(z)

(1− λ)d−1
|1− c|d + Chom + oM (1)

λd−1
|c|d.

Finally, put c :=
[(

b
a

)
1

d−1
+ 1
]−1

, with a = Φ(z)/(1 − λ)d−1, b = Chom/λ
d−1. As

we are exactly in the case discussed in (31) with λ = λ1 = λ2, the same computation
holds, leading to

lim sup
ε→0

| log ε|d−1µε,δ ≤ Φ(z)Chom

[

(1− λ)C
1

d−1

hom + λΦ(z)
1

d−1

]1−d
.

If λ = 1 we just set c = 1 and

uε(x) :=











1 if x ∈ B(zε, ε
λ1)

ukε(x) if x ∈ B(zε, ε
λ12kM ) \B(zε, ε

λ12(k−1)M ), k = 1, ..., ⌊T/M⌋
0 if x ∈ Ω \B(zε, ε

λ12⌊T/M⌋M ).

Now uε is an admissible function for the original problem, so the conclusion follows
by (36); in particular

Fε(uε,Ω) = Fε(uε,Ω \B(zε, ε
λ1)) ≤ Chom + oM (1) + (M log 2)d−1ω(δ/ελ1)

(λ1| log ε|+ log d− log 2)d−1
;

hence
lim sup

ε→0
| log ε|d−1µε,δ ≤ inf

λ1∈(0,1)
Chom/λ

d−1
1 = Chom.

2.3 Proof of the main result about convergence of minima

As a consequence of the previous section, we prove the main result on the asymptotic
behaviour of minima defined in (1) by

mε,δ := min
{

∫

Ω
f
(x

δ
,∇u(x)

)

dx : u ∈W 1,d
0 (Ω), u = 1 on B(z, ε), z ∈ Ω

}

,

where also the centre of the small inclusion (a ball) is an argument of the minimization.

Theorem 2.3. Assume there exists a point x0 ∈ Ω such that the following hold:

(i) f(x, ξ) ≥ f(x0, ξ) for every x ∈ R
d and for every ξ ∈ R

d;

(ii) for every ν > 0, there exists rν > 0 such that for every x ∈ B(x0, rν) and for

every ξ ∈ R
d we have f(x, ξ) ≤ f(x0, ξ) + ν|ξ|d.

Then

lim
ε→0

| log ε|d−1mε,δ = Φ(x0)Chom

[

λΦ(x0)
1

d−1 + (1− λ)C
1

d−1

hom

]1−d
.
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Proof. Since we use the same argument presented in the proof of Proposition 2.1, we
focus on highlighting the main differences, keeping the same notations.

Bound from below. In the case λ = 0, we introduce λ2 > 0, then we apply Lemma
2.2 to get the inequality

(

1 +
C

N − 1

)

Fε(u,Ω) ≥

≥min{Fε(v,B(z, ελ2)) : v ∈W 1,d
0 (B(z, ελ2)), v = 1 on B(z, ε)}|1 − c|d

+min{Fε(v,B(z,RΩ) \B(z, ε2S−N )) : v ∈W 1,d(B(z,RΩ) \B(z, ελ22S−N )),

v = 1 on B(z, ε2S−N ), v = 0 on ∂B(z,RΩ)}|c|d.

Note that the second summand is estimated exactly as (11); while, for the first sum-
mand, we cannot exploit the property of periodicity (P1) of the energy since minimiza-
tion involves also the centre of the inclusion. To deal with this term, we consider a
minimizer u and we simply apply (i) to get

min{Fε(v,B(z, ελ2)) : v ∈W 1,d
0 (B(z, ελ2)), v = 1 on B(z, ε)}|1 − c|d

≥
∫

B(z,ελ2)
f(x0,∇u(x)) dx |1 − c|d =

Φ(x0) + oε(1)

(1− λ2)d−1| log ε|d−1
|1− c|d.

(37)

This is the same estimate we obtained in (12), with the point x0 in place of the fixed
centre z. Analogously to Proposition 2.1, we conclude that | log ε|d−1mε,δ → Φ(x0).

If λ ∈ (0, 1), we further introduce λ1 ∈ (0, λ) and we achieve the inequality

(

1 +
C

N − 1

)

Fε(u,Ω) ≥

≥ min{Fε(v,B(zε, ε
λ2)) : v ∈W 1,d

0 (B(zε, ε
λ2)), v = 1 on B(zε, ε)}|1 − c−1|d (38)

+ min{Fε(v,B(zε, ε
λ1) \B(zε, ε2

S′−N )) : v ∈W 1,d(B(zε, ε
λ1) \B(zε, ε2

S′−N )),

v = 1 on ∂B(zε, ε2
S′−N ), v = 0 on ∂B(zε, ε

λ1)}|c−1 − c0|d (39)

+ min{Fε(v,B(zε, ε
λ12M ) \B(zε, ε2

S′′−N )) : v ∈W 1,d(B(zε, ε
λ12M ) \B(zε, ε2

S′′−N )),

v = 1 on ∂B(zε, ε2
S′′−N ), v = 0 on ∂B(zε, ε

λ12M )}|c0 − c1|d (40)

+

⌊T/M⌋+1
∑

k=2

min{Fε(v,A
N
M,k) : v ∈W 1,d(AN

M,k), v = 1 on ∂B(zε, ε
λ12(k−1)M−N ),

v = 0 on ∂B(zε, ε
λ12kM )}|ck−1 − ck|d , (41)
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where we put c⌊ T
M

⌋+1 := 0.

The estimates for the terms (39), (40), (41) are achieved precisely as in (18), (19),
(20) respectively, while (38) is estimated exploiting (i) as in (37). Once more, the
outcome is the same of Proposition 2.1, with x0 in place of z.

The case λ = 1 is analogous and can be proved starting by the estimate in (27); this
might be expected since, at this scale, the only effect in the minimization is due to the
homogenization (and not to the point in which we concentrate our inclusion).

Bound frome above. Take zε = δx0 modulo the δ-cube in such a way that this family
of points is contained in a ball B ⊂⊂ Ω. Condition (ii) allows to apply the bound from
above given by Proposition 2.1, then we conclude observing that mε,δ ≤ µε,δ.

We remark that assumption (i) may be weakened. Note indeed that the key estimate
we need to carry out our proof, and more specifically the bound from below, is

min{Fε(v,B(z, ελ2)) : v ∈W 1,d
0 (B(z, ελ2)), v = 1 on B(z, ε)}

≥
∫

B(z,ελ2 )
f(x0,∇u(x)) dx,

where u is a minimizer for fixed λ2 ∈ (λ, 1).

A plausible sufficient condition might seem to be that Φ attains its minimum at
the point x0. Yet, note that this requirement is inadequate if Φ is not continuous at a
minimum point. For instance, consider the function defined on (0, 1)d as

f(x, ξ) :=







1
2 |ξ|d if x = x0 :=

(

1
2 , ...,

1
2

)

|ξ|d otherwise

and then extended by periodicity; we see that (1) reduces to the homogeneous problem
and then, that | log ε|d−1mε,δ → σd−1 as ε → 0. But this is a contradiction, indeed, we
have fhom(ξ) = |ξ|d so that Chom = σd−1, while Φ(x0) is equal to σd−1/2; plugging these
in (5) and assuming λ = 0, we get | log ε|d−1mε,δ = Φ(x0) = σd−1/2.

3 Application to perforated domains

In this final section we maintain the setting and notation introduced in the previous ones.
We will make use of Proposition 2.1 to compute the Γ-limit of a family of functionals
defined with boundary conditions related to varying domains.

We fix (εk)k∈N a positive sequence converging to 0, we consider the sequence of

critical periods dk := | log εk|
1−d
d , and for every i ∈ Z

d, we put xik := idk.
Then, we introduce a further scale which rules the periodic structure of the energy, say
δ = δ(ε), and we define δk := δ(εk) for every k ∈ N, obtaining a positive sequence
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vanishing as k → +∞. In accordance with the previous sections, we will always assume
that it exists

λ := lim
k→+∞

| log δk|
| log εk|

∧ 1. (42)

Assuming that Ω is a bounded open subset of R
d such that |∂Ω| = 0, we define a

periodically perforated domain as

Ωk := Ω \
⋃

i∈Zd

B(xik, εk),

and we consider functionals Fk : Ld(Ω) → [0,+∞] given by

Fk(u) :=







∫

Ω
f

(

x

δk
,∇u(x)

)

dx if u ∈W 1,d(Ω) and u = 0 on Ω \ Ωk

+∞ otherwise.

To prove our result, we assume that the perforations are related to the periodic
structure of the heterogeneous medium, in particular we suppose that

for every k there exists a positive natural number mk such that dk = mkδk (43)

and that
δk
dk

→ 0 as k → +∞. (44)

Condition (43) leads to the identity

f

(

xik
δk

+ y, ξ

)

= f

(

idk
δk

+ y, ξ

)

= f(y, ξ) for every i ∈ Z
d, y ∈ R

d, ξ ∈ R
d. (45)

If (43) is not fulfilled, then f
(

xi
k

δk
+ y, ξ

)

= f(yk + y, ξ) for some yk ∈ [0, 1]d, and the

result depends on the properties of (yk)k modulo δ, see [1] for the occurrence of a similar
phenomenon.

In order to apply Proposition 2.1, we add suitable regularity assumptions on f at
the point 0. Our statement reads as follows.

Theorem 3.1. Assume that for every ν > 0, there exists rν > 0 such that for every

x ∈ B(0, rν) it holds

|f(0, ξ) − f(x, ξ)| ≤ ν|ξ|d for every ξ ∈ R
d. (46)

Then

Γ- lim
k
Fk(u) = F (u) :=

∫

Ω
fhom(∇u(x)) dx + C(λ)

∫

Ω
|u(x)|d dx,
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for every u ∈W 1,d(Ω), where the Γ-limit is meant with respect to the strong convergence

in Ld(Ω) and C(λ) is given by

C(λ) := Φ(0)Chom

[

λΦ(0)
1

d−1 + (1− λ)C
1

d−1

hom

]1−d
,

with Φ, Chom, fhom and λ defined as in (2), (3), (4) and (42) respectively.

We basically prove that, in the Γ-limit, internal boundary conditions imposed on
the perforations vanish, being replaced by the additional term C(λ)

∫

Ω |u|ddx.

3.1 The main construction and some auxiliary results

In our proof we will make wide use of Lemma 2.2, but its application is more delicate
in this instance. To fit our arguments, it needs some refinement: we perform the
modifications among annuli which are not only homothetic, but also such that their
corresponding inner and outer radii are proportional to the period dk.

We introduce Zk := {i ∈ Z
d : dist(xik, ∂Ω) > dk}, namely the set of the centres of

those perforations which are uniformly far from the boundary.
Let M ∈ N, α > 0 be such that α2M+1 < 1/2. Given a sequence (uk)k in W 1,d(Ω),

fix k, and around each point xik with i ∈ Zk apply Lemma 2.2 to the function uk with

f(x, ξ) = f
(x

δ
, ξ
)

, η = αdk , R = α2M+1dk , N =M and r = αdk. (47)

We obtain a function vk having constant values uik on the boundary of each ball
centered at xik with radius α2jidk for some ji ∈ {1, ...,M} and i ∈ Zk. Also recall that
this function comes with the estimate

∫

Ω
f

(

x

δk
,∇vk(x)

)

dx ≤
(

1 +
C

M − 1

)
∫

Ω
f

(

x

δk
,∇uk(x)

)

dx .

We take advantage of the following result which is a simplified version of the dis-
cretization argument proved by Sigalotti (see [15, Proposition 3.3]).

Proposition 3.2. Let (uk)k be a sequence in W 1,d(Ω) ∩ L∞(Ω) strongly converging to

u in Ld(Ω) and such that (∇uk)k ⊆ Ld(Ω) is bounded. For every i ∈ Zk, let u
i
k be the

mean values described above and put

Qi
k := xik +

(

−dk
2
,
dk
2

)d

.

Then

lim
k→∞

∫

Ω

∣

∣

∣

∣

∣

∑

i∈Zk

|uik|dχQi
k
(x)− |u(x)|d

∣

∣

∣

∣

∣

dx = 0.
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A useful tool to proceed will be also the following convergence result which is an
application of the Riemann-Lebesgue lemma.

Lemma 3.3. The sequence

χk(x) := χΩ\
⋃

i∈Zk
B(xi

k,dk/2)
(x) , k ∈ N

weakly* converges to a positive constant in L∞(Ω).

3.2 Liminf inequality

We prove that for every u ∈ W 1,d(Ω) and for every sequence (uk)k in Ld(Ω) such that
uk → u in Ld(Ω), it holds lim infk Fk(uk) ≥ F (u).

The first step of the proof consists in applying the modification lemma as in (47).
To simplify the notation in this section, we limit ourselves to denote the radii on which
the modified function vk attains the constant values uik by ρik in place of α2jidk.

Without loss of generality we may assume (uk)k ⊆W 1,d(Ω) and supk Fk(uk) < +∞.
Note that the last condition, combined with the equi-coerciveness of the functionals
(Fk)k, implies that supk ‖∇uk‖Ld(Ω) <∞, hence uk ⇀ u in W 1,d(Ω).

In a first instance, also assume that (uk)k is bounded in L∞(Ω). We aim to estimate

Fk(vk) =

∫

Ω\
⋃

i∈Zk
B(xi

k,ρ
i
k)
f

(

x

δk
,∇vk(x)

)

dx+
∑

i∈Zk

∫

B(xi
k ,ρ

i
k)
f

(

x

δk
,∇vk(x)

)

dx .

(48)
We perform another modification putting

wk :=

{

vk on Ω \⋃i∈Zk
B(xik, ρ

i
k),

uik on B(xik, ρ
i
k), i ∈ Zk.

It trivially holds

∫

Ω\
⋃

i∈Zk
B(xi

k ,ρ
i
k)
f

(

x

δk
,∇vk(x)

)

dx =

∫

Ω
f

(

x

δk
,∇wk(x)

)

dx .

Note that, according to the proof of Lemma 2.2, ‖vk‖L∞(Ω) ≤ ‖uk‖L∞(Ω), hence
‖wk‖L∞(Ω) ≤ ‖uk‖L∞(Ω) so that (wk)k is bounded in L∞(Ω) and then also bounded in

Ld(Ω). Moreover, as
(

1 + C
M−1

)

Fk(uk) ≥ Fk(vk) ≥ Fk(wk), we deduce that (wk)k is

bounded in W 1,d(Ω); thus, we may extract a subsequence (wkj )j weakly converging to

a certain w in W 1,d(Ω).

As wk − uk ∈ W 1,d
0 (Ω) for every k and since uk ⇀ u in W 1,d(Ω) and uk → u in Ld(Ω),

it holds by Rellich’s Theorem that (wkj )j actually converges strongly to w in Ld(Ω).
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We claim that such w does not depend on the subsequence and that it coincides with
u. To prove this, note that for every k

wkχΩ\
⋃

i∈Zk
B(xi

k ,dk/2)
= ukχΩ\

⋃

i∈Zk
B(xi

k ,dk/2)

and also that by Lemma 3.3 and the previous observations, the following hold















χΩ\
⋃

i∈Zk
B(xi

k ,dk/2)
∗
⇀ c in L∞(Ω),

uk → u in Ld(Ω),

wkj → w in Ld(Ω).

These facts imply







χΩ\
⋃

i∈Zk
B(xi

k ,dk/2)
uk ⇀ cu in Ld(Ω),

χΩ\
⋃

i∈Zkj
B(xi

kj
,dkj/2)

wkj ⇀ cw in Ld(Ω),

hence, it follows that u = w in Ld(Ω) for every subsequence, proving that wk → u in
Ld(Ω). By the Homogenization Theorem and the liminf inequality, we deduce

lim inf
k

∫

Ω
f

(

x

δk
,∇wk(x)

)

dx ≥
∫

Ω
fhom(∇u(x)) dx . (49)

To estimate the second contribution in (48), fix i ∈ Zk and let ϕi
k be a function

solving

min
{

∫

B(xi
k ,ρ

i
k)
f

(

x

δk
,∇u(x)

)

dx : u ∈ uik +W 1,d
0 (B(xik, ρ

i
k)), u = 0 on B(xik, εk)

}

.

Up to extending the function ϕi
k to the constant uik on B(xik, dk/2) \B(xik, ρ

i
k), we have

∫

B(xi
k ,ρ

i
k)
f

(

x

δk
,∇vk(x)

)

dx ≥
∫

B(xi
k ,ρ

i
k)
f

(

x

δk
,∇ϕi

k(x)

)

dx

≥ min
{

∫

(B
(

xi
k,

dk
2

)

f

(

x

δk
,∇u

)

dx : u ∈ uik +W 1,d
0 (B(xik, dk/2)), u = 0 on B(xik, εk)

}

= min
{

∫

B(0, 12)
f

(

dkx

δk
,∇u

)

dx : u ∈ 1 +W 1,d
0 (B(0, 1/2), u = 0 on B(0, εk/dk)

}

|uik|d,

where the last equality follows by the change of variables x 7→ xik + dkx, the identity
(45) and (P2).
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Now put

δ′k :=
δk
dk
, ε′k :=

εk
dk
, λ′ := lim

k

| log δ′k|
| log ε′k|

,

and rewrite the previous inequality as

∫

B(xi
k ,ρ

i
k)
f

(

x

δk
,∇vk(x)

)

dx

≥ min
{

∫

B(0, 12)
f

(

x

δ′k
,∇u

)

dx : u ∈ 1 +W 1,d
0 (B(0, 1/2), u = 0 on B(0, ε′k)

}

|uik|d.

(50)

Note that ε′k = εk| log εk|1−1/d → 0, while δ′k = δk| log εk|1−1/d → 0 as k → ∞ by
assumption (44); also observe that

λ′ = lim
k

| log δk + log | log εk|1−1/d|
| log εk + log | log εk|1−1/d| = lim

k

| log δk|
| log εk|

= λ.

In light of the assumption (46), we are in position to apply Proposition 2.1 (up to the
transformation u 7→ 1− u) to (50) with Ω = B(0, 1/2) and zε = 0 for every ε. We get

min
{

∫

B(0,1/2)
f

(

x

δ′k
,∇u(x)

)

dx : u ∈ 1 +W 1,d
0 (B(0, 1/2)), u = 0 on B(0, ε′k)

}

=

=
C(λ) + ok(1)

| log ε′k|d−1
=
C(λ) + ok(1)

| log εk|d−1
,

and by Proposition 3.2, it follows

lim inf
k

∑

i∈Zk

∫

B(xi
k ,dk/2)

f

(

x

δk
,∇vk(x)

)

dx ≥ lim inf
k

C(λ)

| log εk|d−1

∑

i∈Zk

|uik|d + ok(1)

= C(λ)

∫

Ω
|u(x)|d dx .

(51)

Finally, by (49) and (51), we deduce

(

1 +
C

M − 1

)

lim inf
k

Fk(uk) ≥ lim inf
k

Fk(vk) ≥
∫

Ω
fhom(∇u(x)) dx+C(λ)

∫

Ω
|u(x)|d dx.

Recall that α andM have been chosen so that α2M+1 < 1/2 and, since the reasoning
leading to the above estimate holds true for every α > 0, we may let M → +∞ getting
the liminf inequality.
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We conclude removing the boundedness assumption on (uk)k ⊆ L∞(Ω) by a trun-
cation argument: assume uk → u in Ld(Ω) and put uMk := ((−M) ∨ uk) ∧M for fixed
M ∈ N; by dominated convergence, uMk → u in Ld(Ω) as k,M → +∞, moreover, since
f(·, 0) = 0, it holds

∫

Ω
f

(

x

δk
,∇uk

)

dx ≥
∫

Ω
f

(

x

δk
,∇uMk

)

dx

for every k,M ∈ N, thus we immediately conclude by the previous instance.

Denoting by F ′ := Γ-lim infk Fk, what we have proved so far is that F (u) ≤ F ′(u)
for every u ∈W 1,d(Ω).

3.3 Limsup inequality

The goal of this section is to define a recovery sequence converging in Ld(Ω) to a fixed
function u ∈W 1,d(Ω). First we assume that u ∈ L∞(Ω).

Start by a recovery sequence uk → u in Ld(Ω) related to the functionals

F 0
k (u) :=







∫

Ω
f

(

x

δk
,∇u(x)

)

dx if u ∈W 1,d(Ω),

+∞ if u ∈ Ld(Ω) \W 1,d(Ω)

which are known to Γ-converge to

F 0(u) :=

∫

Ω
fhom(∇u(x)) dx

for every u ∈W 1,d(Ω) as stated in the Homogenization Theorem. By the equi-coerciveness
of the functionals (F 0

k )k, we deduce uk ⇀ u in W 1,d(Ω).
It is a known fact that, up to extract a subsequence, we can also assume that (|∇uk|d)k
is an equi-integrable family (see [11] and [6, Remark C.6]).

We claim that we can also make our recovery sequence bounded in L∞(Ω). Let
T := ‖u‖L∞(Ω) and define u′k := (−(T +1)∨ uk)∧ (T +1). We get a bounded sequence

in L∞(Ω) which converges to u in Ld(Ω) with further property that (|∇u′k|d)k is still
equi-integrable being obtained by truncation.
Note that
∣

∣

∣

∣

∫

Ω
fhom(∇uk(x)) dx−

∫

Ω
fhom(∇u′k(x)) dx

∣

∣

∣

∣

≤
∫

{|uk|>T+1}
|fhom(∇uk(x))| dx

≤ β

∫

{|uk|>T+1}
|∇uk(x))|d dx ≤ β

∫

{|uk−u|>1}
|∇uk(x))|d dx ;

but since uk → u in measure and (|∇uk|d)k is equi-intergable, the last term tends to 0
and the claim is proved.
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For every k, define modifications vk by transformations around every point xik with
i ∈ Zk as we did in (47). We recall the construction for clarity: fixM ∈ N and let α > 0
be such that α2M+1 < 1/2, then apply Lemma 2.2 with

f(x, ξ) = f
(x

δ
, ξ
)

, η = αdk , R = α2M+1dk , N =M and r = αdk.

We have that
∫

Ω
f

(

x

δk
,∇vk(x)

)

dx ≤
(

1 +
C

M − 1

)
∫

Ω
f

(

x

δk
,∇uk(x)

)

dx ,

and the function vk attains the constant value uik on ∂B(xik, ρ
i
k), where ρ

i
k is of the form

α2jidk for some ji ∈ {1, ...,M}.
Since εk/dk → 0 as k → +∞, we can also assume εk < αdk for every k; hence, we define

wk :=











vk on Ω \⋃i∈Zk
B(xik, ρ

i
k)

uik on B(xik, ρ
i
k) \B(xik, αdk), i ∈ Zk

ϕi
k on B(xik, αdk), i ∈ Zk,

where ϕi
k solves the minimum problem

min
{

∫

B(xi
k,αdk)

f

(

x

δk
,∇u(x)

)

dx : u ∈ uik +W 1,d
0 (B(xik, αdk)), u = 0 on B(xik, εk)

}

= min
{

∫

B(0,α)
f

(

x

δ′k
,∇u(x)

)

dx : u ∈ 1 +W 1,d
0 (B(0, α)), u = 0 on B(0, ε′k)

}

|uik|d

=
C(λ) + ok(1)

| log εk|d−1
|uik|d .

Let Ak :=
⋃

i∈Zk
B(xik, ρ

i
k). We will treat with different arguments the contributions

due to Ω \ Ak and Ak.

We estimate the contribution on Ak using Proposition 3.2,

lim sup
k

∫

Ak

f

(

x

δk
,∇wk(x)

)

dx = lim sup
k

∑

i∈Zk

∫

B(xi
k ,αdk)

f

(

x

δk
,∇ϕi

k(x)

)

dx

= lim sup
k

∑

i∈Zk

|uik|d
C(λ) + ok(1)

| log εk|d−1
= C(λ)

∫

Ω
|u(x)|d dx . (52)

To estimate the contribution on Ω \Ak, we put

Z ′
k := {i ∈ Z

d : B(xik, εk) ∩ Ω 6= ∅, i /∈ Zk} , rk := α2M+1dk
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and define
A′

k :=
⋃

i∈Z′
k

B(xik, rk)

in order to study separately the behaviours on A′
k and Ω \ (Ak ∪A′

k).

Take into account the contribution of A′
k. We set

Qi
k := xik +

(

−dk
2
,
dk
2

)

,

and we see preliminarily that

|Ω ∩A′
k| ≤

∑

i∈Z′
k

(rk)
d ∼ #Z ′

k(dk)
d =

∣

∣

∣

∣

⋃

i∈Z′
k

Qi
k

∣

∣

∣

∣

→ |∂Ω| = 0 (53)

by assumption.
For every i ∈ Z ′

k, let ψ
i
k be the solution to the homogeneous capacitary problem

min
{

∫

B(xi
k,rk)

|∇u(x)|d dx : u ∈ 1 +W 1,d
0 (B(xik, rk)), u = 0 on B(xik, εk)

}

which is (known to be) equal to σd−1| log rk − log εk|1−d.
Up to extending ψi

k with value 1 on R
d \B(xik, rk), we set as recovery sequence

w′
k := wk

∏

i∈Z′
k

ψi
k on Ω.

Such w′
k is a modification of wk performed on A′

k, which is disjoint from Ak in virtue
of the choice of the radii rk and ρik, for every k and i ∈ Zk. This means that the estimate
in (52) is still valid replacing wk with w′

k.

We prove that

lim sup
k

∫

Ω∩A′
k

f

(

x

δk
,∇w′

k(x)

)

dx = 0. (54)

For every i ∈ Z ′
k, we have

∫

Ω∩B(xi
k ,rk)

f

(

x

δk
,∇w′

k(x)

)

≤ β

∫

Ω∩B(xi
k ,rk)

|∇w′
k(x)|d dx

≤ 2d−1β

[

(1 + ‖u‖L∞(Ω))
d

∫

B(xi
k ,rk)

|∇ψi
k(x)|d dx+

∫

Ω∩B(xi
k ,rk)

|∇wk(x)|d dx
]

≤ C

[

| log rk − log εk|1−d +

∫

Ω∩B(xi
k,rk)

|∇wk(x)|d dx
]

34



for a positive constant C which depends only on ‖u‖L∞(Ω), β and the dimension d.
Note that, since i ∈ Z ′

k, by definition of wk we have
∫

Ω∩B(xi
k ,rk)

|∇wk(x)|d dx =

∫

Ω∩B(xi
k ,rk)

|∇vk(x)|d dx ,

and by the property (ii) of Lemma 2.2, i.e., modifications on the starting function occur
very close to the prescribed radius, it also holds

∫

Ω∩B(xi
k,rk)

|∇vk(x)|d dx =

∫

Ω∩B(xi
k ,rk)

|∇uk(x)|d dx .

Exploiting the equi-integrability of (|∇uk|d)k, by (53) we infer that

lim sup
k

∑

i∈Z′
k

∫

Ω∩B(xi
k ,rk)

|∇wk(x)|d dx = 0.

At this point

lim sup
k

∫

Ω∩A′
k

f

(

x

δk
,∇w′

k(x)

)

dx ≤ C lim sup
k

∑

i∈Z′
k

| log rk − log εk|1−d,

but since εk ≪ dk, we conclude that

lim sup
k

∑

i∈Z′
k

| log εk|1−d = lim sup
k

#Z ′
k(dk)

d = 0

again by (53).

Finally, we deal with the contribution on Ω \ (Ak ∪A′
k). It holds

lim sup
k

∫

Ω\(Ak∪A
′
k)
f

(

x

δk
,∇w′

k(x)

)

dx = lim sup
k

∫

Ω\(Ak∪A
′
k)
f

(

x

δk
,∇vk(x)

)

dx

≤ lim sup
k

∫

Ω
f

(

x

δk
,∇vk(x)

)

dx ≤
(

1 +
C

M − 1

)

lim sup
k

∫

Ω
f

(

x

δk
,∇uk(x)

)

dx

≤
(

1 +
C

M − 1

)
∫

Ω
fhom(∇u(x)) dx , (55)

where the last inequality is due to the fact that (uk)k was originally picked as a recovery
sequence to u for the functionals (F 0

k )k.

Gathering (52), (54) and (55), we get

lim sup
k

∫

Ω
f

(

x

δk
,∇w′

k

)

dx ≤
(

1 +
C

M − 1

)
∫

Ω
fhom(∇u)dx+ C(λ)

∫

Ω
|u|ddx .

Since we can repeat the argument for every α > 0, we are free to set M arbitrarily
large, thus, the approximate limsup inequality is proved.
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We still have to check that w′
k → u in Ld(Ω), i.e., it is actually an (approximate)

recovery sequence.
Note that limk |{w′

k 6= wk}| = 0 and supk ‖w′
k −wk‖L∞(Ω) ≤ ‖uk‖L∞(Ω) ≤ 1 + ‖u‖L∞(Ω)

imply that w′
k − wk → 0 in Ld(Ω), hence, it suffices to prove that wk → u in Ld(Ω).

Since limk |{wk 6= vk}| = 0 and supk ‖wk − vk‖L∞(Ω) ≤ ‖uk‖L∞(Ω) ≤ 1 + ‖u‖L∞(Ω), it

holds that wk − vk → 0 in Ld(Ω), moreover vk → u in Ld(Ω) by the same argument we
used in the proof of the liminf inequality based on Lemma 3.3; hence, wk → u in Ld(Ω).

To conclude, we remove the assumption u ∈ L∞(Ω). Recall that the Γ-limsup of
(Fk)k is defined as

F ′′(u) := inf{lim supk Fk(uk) : uk → u ∈ Ld(Ω)}

for every u ∈ W 1,d(Ω). F ′′ is sequentially lower semicontinuous with respect to the
strong convergence in Ld(Ω) and by what we have already shown, it coincides with F
on W 1,d(Ω) ∩ L∞(Ω).
Hence, given a sequence (uk)k ⊆W 1,d(Ω)∩L∞(Ω) converging to u in W 1,d(Ω), it holds

F ′′(u) ≤ lim inf
k

F ′′(uk) = lim inf
k

F (uk) = F (u)

by the continuity of F with respect to the strong convergence in W 1,d(Ω), and this
concludes the proof of the Γ-convergence.
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