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Homogenization Method Based on Cauer Circuit
via Unit Cell Approach

Shingo Hiruma'?, Hajime Igarashi', IEEE Member
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Research Fellow of Japan Society for the Promotion of Science (JSPS), Tokyo 102-0083, Japan

This paper proposes a novel homogenization method based on the unit cell approach which provides the continued fraction and,
equivalently, Cauer circuit representation of the complex permeability of fine structure materials. The proposed method makes it
possible to perform the homogenization analysis in time domain. It is shown that the proposed method provides more accurate resistance
factor in comparison with the Dowell method and other classical methods.

Index Terms—Complex permeability, Homogenization method, Proximity effect Resistance factor, Unit cell, Dowell method.

I. INTRODUCTION

THE FINITE ELEMENT METHOD (FEM) has been widely used
as the numerical method to analyze the electric machines
and devices. In the FE analysis of electric apparatus, we
sometimes encounter the situation that the fine structured
components such as the litz wire and soft magnetic composite
have to be modeled. In this case, the number of the finite
elements could be enormous when we subdivide them to finite
elements smaller than the skin depth. This problem is referred
to as the multi-scale problem, which cannot be effectively
treated by the conventional FEM.

The homogenization method has been proposed to deal with
the multi-scale problem [1]—-[4]. In this method, a fine structure
component is modeled as a uniform material with the complex
permeability, which is a complex function of frequency whose
real and imaginary parts represent the permeability decreased
by the diamagnetization due to the eddy currents and eddy
current losses, respectively. Using the complex permeability,
we can evaluate the eddy current losses through the coarse FE
model of the homogenized material without fine discretization.

In this paper, we propose a new method to formulate the
complex permeability in the form of the continued fraction
which is equivalent to the Cauer circuit representation. The
advantages of the present method are: (a) the complex
permeability expressed by continued fraction can be obtained
from 2D/3D unit cells including arbitrary-shaped material, (b)
since the Cauer circuit is directly synthesized from the
continued fraction [5], time-domain analysis is readily
performed, (c) the equivalent circuit of the winding considering
the eddy current losses can be obtained by using the complex
permeability, which is more accurate than the method of
Dowell [6] and other analytical methods [7] in high frequency
domain.
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II. FORMULATION

A. Homogenization based on unit cell

The proposed method is based on the unit cell approach in
which the fine structure of interest is assumed to be composed
of spatially-periodic unit cells. Let us consider domain
which is composed of the unit cells (1, containing conductive
materials and air region, as shown in Fig. 1, where I}, I}y denote

External magnelic field Bey

Fine structure material

Fig. 1 Unit cell

Magnenc field By viBxn=0

SRl
Iy:

Bxn=0
Boundary condition

Ty:A=A,

Unit cell Q,

the Dirichlet and Neumann boundaries. It is assumed that the
unit cells are immersed in a uniform time-harmonic magnetic
field B,,. The boundary conditions

B xXxn=0onTly, A=A,A_onl) (D)

are imposed on the boundary of (), where n is the outer normal
unit vector on boundary TI'y. The quasi-static Maxwell equations

rotH = oFE, rotE = —jwB )

are solved in , where o,j, w represent the conductivity,
imaginary unit, and angular frequency, respectively. Solving
(2), the complex permeability (i) is obtained from

Jo,|Bol?dQ

(1) = 3
B da - 5 1, olelan v

where u is the permeability. Eq. (3) is derived from the
requirement that the energy in the original cell is equal to that
in the homogenized unit cell [2].

B. Discretization of complex permeability

To represent the complex permeability in an explicit form,
we make FE discretization of (3). To do so, (2) is discretized by
FEM to obtain

0018-9464 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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(K + sN)x = b|By| “4)

where K,N € R™", x € C",b € R", s € C are the FE matrices,
unknown and right-handed vectors, and complex frequency jw,
respectively. From the energy conservation law which is
derived from (2), we have

|B|?
o a0 [ oepaa=- [
a, H Q

u 0Qy
where * denotes the conjugate operator. The right-handed side
of (5), which represents the surface integral of the Poynting
vector, is discretized by FEM to obtain

ExH -ndS (5

u

—f E x H'dQ = scTx*|B,|
a0y,

(6)
=scT(K + s*N)™1b|B,|>.

Inserting (5) into (3), (1) is expressed in the discretized form

fﬂulBolde vV
" ¢T(K +sN)™ b )

) = —
— 5 Jyo, B X H-ndS

where V = [ . A€ denotes the volume of the unit cell.

C. Cauer representation of complex permeability

The Cauer representation of the complex permeability is
effective especially when performing the time-domain analysis
and considering nonlinearity of the homogenized material. For
this reason, we derive the Cauer representation of (7). By
expanding the denominator of (7), we obtain

c"(K +sN) b =1T(I — sA)~'r
=1Tr +slTAr + s?1I"A%r + .- (8)
=1Tr +slT(I — sA) *Ar

where l = ¢,7r = K 'b,A = —K~'N. The first and second
terms in (8) represent the DC inductance and frequency
dependent term. By applying the Cauer via the Lanczos (CVL)
algorithm [8] summarized in Appendix A, developed by the
authors, to the second term of (8), we obtain the finite continued
fraction expression as follows:

N 1
Ko 1 1
__l_—
SKl l+l (9)
Kz ..
0 1 1 1 1 1
"o Sk K ’KZq—Z'SKZq—l

The constants k,, can be obtained by the CVL algorithm. Since
the continued fraction corresponds to the input impedance of
the Cauer ladder circuit which is composed of a finite number
of lumped elements, the complex permeability is now
represented by the Cauer circuit. Therefore, it can be used in
homogenized FE analysis in frequency as well as time domains.
It is remarked that the response computed by the proposed
method might have numerical errors for sharp transitions due to
the truncation error in the Cauer circuit as well as FEM. The

theoretical analysis of these errors remains as a future task.

III. NUMERICAL RESULTS

A. 2-D unit cell model

The proposed method is applied to the analysis of a multi-
turn coil composed of the unit cells, w X w, each of which
includes a cylindrical conductor of radius a, as shown in Fig.2.
The relative permeability and conductivity of the conductor are
assumed to be 1 and 5.76 X 10’S/m. The complex
permeability is computed by the proposed method and semi-
analytical method based on the extended Ollendorff formula [3].
The results are plotted in Fig.2. The horizontal axis denotes the
radius of the wire a normalized by the skin depth §. We
consider five different values of the ratio 2a/w. The continued
fraction is truncated at ¢ = 5. We can see the results obtained
by the proposed method is in good agreement with those
obtained by the semi-analytical method.

The proposed method can treat the unit cell including
arbitrary-shaped conductors which cannot be accurately
modeled by the semi-analytical method. The complex
permeability of a multi-turn rectangular coil computed by the
proposed method is plotted against frequency in Fig.3, where
the complex permeability is anisotropic due to the shape of the
unit cell, which can be obtained by applying the uniform
magnetic fields parallel to x and y axes independently. The
values in the continued fraction are shown in Table I. The
complex permeability of the rectangular coil can also be
computed by the method proposed in [3] which has to introduce
the generalized demagnetization factor N. In contrast, the

. 1.05 Line : proposed method
£ o Marker : Ollendorff formula 5 7,
g 0.5
g —
w > 5 065 _-06
3 07
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[ 0.15 \ i 8 g
0.7
0.8
0.9

Im [<ﬂ)] Nomalized radius a/5

Fig.2 Frequency characteristics of complex permeability for a multi-turn

round coil with the unit cell shown left.
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Fig.3 Frequency characteristics of complex permeability in x and y
directions for a multi-turn rectangular coil with the unit cell shown left.

TABLEI
VALUES IN CONTINUED FRACTION OBTAINED BY PROPOSED METHOD.
() ()
i Kai— Kaig Ki— Koig
1 1.000 x 10° 4223 x107* 1.000 x 10° 2.530x 107*
2 4.441x 107" 5.364 x 1075 7.369 x 107* 3.213x10°°
3 8277 x 107! 1.030%x 1075 1.381 x 10° 5.780 x 107°
4 1.732 x 10° 2.826 x 107° —7.016 x 10° —1.891x107*
5 3.286 x 10° 8.729 x 1077 2.035 x 10° 1.668 x 10~°
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proposed method can directly provide the complex permeability
without introducing N.

B. Comparison with classical methods

To show the merit of the Cauer representation, the complex
permeability is applied to the evaluation of the eddy current
losses due to the proximity effect in a copper winding.
Evaluation of the proximity loss is important for design of high-
frequency (HF) transformers, resonant inductors, motor
windings, and so on to improve the efficiency [6], [7], [9].

Let us consider the copper winding, z, X z; turns, in a slot
whose permeability is assumed infinite as shown in Fig. 4. This
assumption is necessary not for the proposed method but for the
classical method mentioned below. The width and height of the
subconductors are by and h.,. Alternative current [ parallel to
z-axis flows in each conductor. The homogenized copper
winding is also shown in Fig. 4 where (), denotes the
homogenized winding. The width and height of the
homogenized winding are b. = z,b,,;; and h. = zZ hypi;
where by,;; and hy,;; are the width and height of the unit cell.
The current density and net current in the homogenized domain
are J and fﬂh] dS = z,zl.

The average resistance factor of the winding at frequency w
which is defined by k = Rp¢/Rpc can be evaluated from [10]
sinh 2€ + sin 2¢ z2 —1sinh& —sin¢&

= (10a)
cosh 2& — cos 2¢ 3 coshé& +cosé

(10b)

where g, u represents the conductivity and permeability of the
conductors. This classical approach is widely used in the design
of electric apparatuses [9]. Note that this approach, based on the
method of Dowell and other analytical methods, can be
inaccurate when its main assumptions that the magnetic field is
one-dimensional and the eddy currents in the subconductors
have no influence on the global field do not hold.

Though the proposed method is available for 2D and 3D
models, it is applied to the simple model shown in Fig.4 for
comparison. Using the proposed method, the impedance and
resistance factor of the homogenized winding are expressed as

. h. b lz2z?
Z = zazeRpc + jo(i) —— 5 (11a)
Re[Z wh,b lz,z
L (116)
ZqZiRpc 3b2Rp,

where | denotes the length of the subconductor and Rpe =
l/aheob, represents the DC resistance of a subconductor. Eq.
(11a) is obtained by solving the 1D equation for magnetostatic

field while the 2D structure is reflected in (i) (see Appendix B).

Note that the neglected effects in (10) are considered in (11).
To validate the proposed method, we consider the winding as

shown in Fig.5 for h,g = 2 mm, b,y = 10 mm, b, = 14 mm,

z, =1, z, =12, hyp;y = 2.38mm, b,,;; =12mm, o =

5.76 x 107 S/m. The resistance factors are computed by (10),
(11b), and FEM as shown in Fig.5. In the FE analysis, the
relative permeability of the core is assumed to be 10000
instead of infinite permeability. When frequency is relatively
low, the three results are in good agreement. However, the
conventional resistance factor evaluated from (10) has
discrepancies from the other two results as frequency increases.

In addition, the equivalent circuit of the winding can be
developed by (1la) because the complex permeability is
represented by the continued fraction. The impedance of the
winding can be written as follows:

1 ¢ 1 c

Z = |24z Rpc;——,—,
aZtDC e e

—, (12)
SCK2q-2 K2q-1

where ¢ = h b lz2z%/3b%. The equivalent circuit is shown in
Fig. 6. Considering more general cases such as interleaved
transformer winding, the equivalent circuit can be obtained by
using magnetomotive force (m.m.f.) diagram which is utilized
in the method of Dowell. Analyzing the equivalent circuit by
the circuit simulator, we can evaluate the eddy current losses
even when the non-sinusoidal current flows in the conductors.
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Fig. 4 Copper winding in a slot whose permeability is infinite. All
conductors are connected in series. Left and right figures show the original
and homogenized windings.
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Fig. 5 Validation model and frequency characteristic of the resistance
factor.
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Fig. 6 Equivalent Cauer circuit of winding considering proximity effect.

Moreover, the magnetic saturation in the core can be considered
by connecting the nonlinear inductor in series with the circuit.

IV. CONCLUSION

A new homogenization method based on the unit cell
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approach has been proposed. This method allows us to obtain
the complex permeability represented by the Cauer circuit for
any unit cell. The obtained complex permeability is more
accurate than the widely-used classical method developed by
Dowell and other researchers because the assumptions in the
classical method can be relaxed in the proposed method. Since
the complex permeability is represented by the equivalent
circuit, we can readily perform time domain analysis.

APPENDIX A

Using the CVL algorithm [8] which is a variant of Padé
approximation via Lanczos (PVL) [11], the transfer function
can be approximated by the finite continued fraction.

Let us consider the linear system

(K + sN)x = bu, (Ala)

y=c"x (Alb)

where K, N € R™", b, c € R"™. The response of the system can
be expressed by the transfer function

H(s) = % = cT(K + sN)~'b. (A2)
It is often difficult to compute the transfer function directly
when n is large. In this case, it is effective to approximate the
transfer function by the rational function. The CVL algorithm
represented in the pseudo code below allows approximating the
transfer function by the finite continued fraction.

CVL algorithm
0) Set
u, =K, uj=c
Ko = (U}, ug), A=KN.
Compute
Vo = Ug/kKo, vg = ug/ Ko,

Ky = (176,14170).
Forn=1,2,---,q do:

1) Compute
Uy =Up_1 — AV, 1 /Ko 1,
uy = uy g — ATV Ko,
Kon = (Up, Up).

2) Compute

Vp = Vp_1 + Uy /Ko,
A
v;l =Vp_1 + u‘:L/KZn'
Kant1 = (U, AVy).

In this algorithm, the generated vectors u;, u;, v;, v; satisfy the
following bi-orthogonal conditions.

(uf, u) = K56y, (vi, A} ) = K2i116y5 (A3)

where §;; denotes Kronecker’s delta. Application of CVL to
(A2) results in the continued fraction as follows:

H(s) =c"(K+sN)'b
11 1
—lo——, o ———|+o@2y A
Ko Sk Kag—1 SKagq

APPENDIX B

Let us consider the infinite long homogenized winding
immersed in a slot, as shown in Fig. 4. If the permeability of the
iron is assumed infinite, the magnetic field H have only the x-
component across the conductor. Applying Ampere’s law, we
obtain

J0H, b,

~5 =) (B1)

Since the current density is uniform in the homogenized domain,
the partial differential equation can be integrated,

b
H, = —L]y + const. (B2)

b

The integration constant can be determined from the boundary
condition H, = 0 at y = 0. As a result, we find

const = 0. (B3)

The impedance in the homogenized domain can be obtained as

7 =2P)|i|" = zzeRoc +jo | (@) |H| d0/|i|’
Qn

() [P (e (1B
ZaZiRpe +jo— f

ot |I|2 o Jo Jo b?
hob lz2zE

3p2

y2dxdydz (B4)

ZaZ¢Rpc + jo (i)
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