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This paper proposes a novel homogenization method based on the unit cell approach which provides the continued fraction and, 

equivalently, Cauer circuit representation of the complex permeability of fine structure materials. The proposed method makes it 

possible to perform the homogenization analysis in time domain. It is shown that the proposed method provides more accurate resistance 

factor in comparison with the Dowell method and other classical methods.  

 
Index Terms—Complex permeability, Homogenization method, Proximity effect Resistance factor, Unit cell, Dowell method.  

 

I. INTRODUCTION 

HE FINITE ELEMENT METHOD (FEM) has been widely used 

as the numerical method to analyze the electric machines 

and devices. In the FE analysis of electric apparatus, we 

sometimes encounter the situation that the fine structured 

components such as the litz wire and soft magnetic composite 

have to be modeled. In this case, the number of the finite 

elements could be enormous when we subdivide them to finite 

elements smaller than the skin depth. This problem is referred 

to as the multi-scale problem, which cannot be effectively 

treated by the conventional FEM.  

The homogenization method has been proposed to deal with 

the multi-scale problem [1]–[4]. In this method, a fine structure 

component is modeled as a uniform material with the complex 

permeability, which is a complex function of frequency whose 

real and imaginary parts represent the permeability decreased 

by the diamagnetization due to the eddy currents and eddy 

current losses, respectively. Using the complex permeability, 

we can evaluate the eddy current losses through the coarse FE 

model of the homogenized material without fine discretization. 

In this paper, we propose a new method to formulate the 

complex permeability in the form of the continued fraction 

which is equivalent to the Cauer circuit representation. The 

advantages of the present method are: (a) the complex 

permeability expressed by continued fraction can be obtained 

from 2D/3D unit cells including arbitrary-shaped material, (b) 

since the Cauer circuit is directly synthesized from the 

continued fraction [5], time-domain analysis is readily 

performed, (c) the equivalent circuit of the winding considering 

the eddy current losses can be obtained by using the complex 

permeability, which is more accurate than the method of 

Dowell [6] and other analytical methods [7] in high frequency 

domain. 

II. FORMULATION 

A. Homogenization based on unit cell 

The proposed method is based on the unit cell approach in 

which the fine structure of interest is assumed to be composed 

of spatially-periodic unit cells. Let us consider domain Ωℎ 

which is composed of the unit cells Ω𝑢 containing conductive 

materials and air region, as shown in Fig. 1, where Γ𝐷 , Γ𝑁 denote 

the Dirichlet and Neumann boundaries. It is assumed that the 

unit cells are immersed in a uniform time-harmonic magnetic 

field 𝑩0. The boundary conditions 𝑩 × 𝒏 = 𝟎 on Γ𝑁 , 𝑨 = 𝑨+, 𝑨− on Γ𝐷 (1) 

are imposed on the boundary of Ωu where n is the outer normal 

unit vector on boundary Γ𝑁. The quasi-static Maxwell equations  rot𝑯 = 𝜎𝑬 , rot𝑬 = −j𝜔𝑩 (2) 

are solved in Ω𝑢  where 𝜎, j, 𝜔  represent the conductivity, 

imaginary unit, and angular frequency, respectively. Solving 

(2), the complex permeability 〈�̇�〉 is obtained from  

〈�̇�〉 = ∫ |𝑩0|2dΩΩ𝑢∫ |𝑩|2𝜇 dΩΩ𝑢 − 1j𝜔 ∫ 𝜎|𝑬|2dΩΩ𝑢  (3) 

where 𝜇  is the permeability. Eq. (3) is derived from the 

requirement that the energy in the original cell is equal to that 

in the homogenized unit cell [2].  

B. Discretization of complex permeability 

To represent the complex permeability in an explicit form, 

we make FE discretization of (3). To do so, (2) is discretized by 

FEM to obtain  

T 
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Fig. 1 Unit cell 

Ωℎ
Unit cell ΩuFine structure material

Magnetic field 𝑩0
Γ𝐷 𝑨 = 𝑨+

Γ𝑁 𝑩 × 𝒏 = 𝟎External magnetic field 𝑩   

Γ𝑁 𝑩 × 𝒏 = 𝟎
Γ𝐷 𝑨 = 𝑨−

Boundary condition
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(𝐾 + 𝑠𝑁)𝒙 = 𝒃|𝑩𝟎| (4) 

where 𝐾,𝑁 ∈ ℝ𝑛×𝑛, 𝒙 ∈ ℂ𝑛, 𝒃 ∈ ℝ𝑛, 𝑠 ∈ ℂ are the FE matrices, 

unknown and right-handed vectors, and complex frequency j𝜔, 

respectively. From the energy conservation law which is 

derived from (2), we have 𝑠 ∫ |𝑩|2𝜇 dΩΩ𝑢 +∫ 𝜎|𝑬|2dΩΩ𝑢 = −∫ 𝑬 × 𝑯∗ ⋅ 𝒏d𝑆∂Ω𝑢  (5) 

where ∗ denotes the conjugate operator. The right-handed side 

of (5), which represents the surface integral of the Poynting 

vector, is discretized by FEM to obtain −∫ 𝑬 × 𝑯∗dΩ∂Ω𝑢 = 𝑠𝒄T𝒙∗|𝑩0|= 𝑠𝒄T(𝐾 + 𝑠∗𝑁)−1𝒃|𝑩0|2. (6) 

Inserting (5) into (3), 〈�̇�〉 is expressed in the discretized form 

〈�̇�〉 = ∫ |𝑩0|2dΩΩ𝑢−1𝑠 ∫ 𝑬∗ × 𝑯 ⋅ 𝒏d𝑆∂Ω𝑢 = 𝑉𝒄T(𝐾 + 𝑠𝑁)−1𝒃. (7) 

where 𝑉 = ∫ 𝑑ΩΩ𝑢  denotes the volume of the unit cell. 

C. Cauer representation of complex permeability 

The Cauer representation of the complex permeability is 

effective especially when performing the time-domain analysis 

and considering nonlinearity of the homogenized material. For 

this reason, we derive the Cauer representation of (7). By 

expanding the denominator of (7), we obtain 𝒄T(𝐾 + 𝑠𝑁)−1𝒃 = 𝒍T(𝐼 − 𝑠𝐴)−1𝒓 = 𝒍T𝒓 + 𝑠𝒍T𝐴𝒓 + 𝑠2𝒍T𝐴2𝒓 +⋯ = 𝒍T𝒓 + 𝑠𝒍T(𝐼 − 𝑠𝐴)−1𝐴𝒓 

(8) 

where 𝒍 = 𝒄, 𝒓 = 𝐾−1𝒃, 𝐴 = −𝐾−1𝑁 . The first and second 

terms in (8) represent the DC inductance and frequency 

dependent term. By applying the Cauer via the Lanczos (CVL) 

algorithm [8] summarized in Appendix A, developed by the 

authors, to the second term of (8), we obtain the finite continued 

fraction expression as follows: 〈�̇�〉 = 11𝜅0 + 11𝑠𝜅1 + 11𝜅2 + 1⋱
 

≜ [0; 1𝜅0 , 1𝑠𝜅1 , 1𝜅2 , ⋯ , 1𝜅2𝑞−2 , 1𝑠𝜅2𝑞−1] 
(9) 

The constants 𝜅𝑛 can be obtained by the CVL algorithm. Since 

the continued fraction corresponds to the input impedance of 

the Cauer ladder circuit which is composed of a finite number 

of lumped elements, the complex permeability is now 

represented by the Cauer circuit. Therefore, it can be used in 

homogenized FE analysis in frequency as well as time domains. 

It is remarked that the response computed by the proposed 

method might have numerical errors for sharp transitions due to 

the truncation error in the Cauer circuit as well as FEM. The 

theoretical analysis of these errors remains as a future task. 

III. NUMERICAL RESULTS 

A. 2-D unit cell model 

The proposed method is applied to the analysis of a multi-

turn coil composed of the unit cells, 𝑤 × 𝑤 , each of which 

includes a cylindrical conductor of radius 𝑎, as shown in Fig.2. 

The relative permeability and conductivity of the conductor are 

assumed to be 1  and 5.76 × 107S/m.  The complex 

permeability is computed by the proposed method and semi-

analytical method based on the extended Ollendorff formula [3]. 

The results are plotted in Fig.2. The horizontal axis denotes the 

radius of the wire 𝑎  normalized by the skin depth 𝛿 . We 

consider five different values of the ratio 2𝑎/𝑤. The continued 

fraction is truncated at 𝑞 = 5. We can see the results obtained 

by the proposed method is in good agreement with those 

obtained by the semi-analytical method. 

The proposed method can treat the unit cell including 

arbitrary-shaped conductors which cannot be accurately 

modeled by the semi-analytical method. The complex 

permeability of a multi-turn rectangular coil computed by the 

proposed method is plotted against frequency in Fig.3, where 

the complex permeability is anisotropic due to the shape of the 

unit cell, which can be obtained by applying the uniform 

magnetic fields parallel to x and y axes independently. The 

values in the continued fraction are shown in Table I. The 

complex permeability of the rectangular coil can also be 

computed by the method proposed in [3] which has to introduce 

the generalized demagnetization factor N. In contrast, the 

 
Fig.2 Frequency characteristics of complex permeability for a multi-turn 

round coil with the unit cell shown left. 

 
Fig.3 Frequency characteristics of complex permeability in x and y 

directions for a multi-turn rectangular coil with the unit cell shown left. 

TABLE I  

VALUES IN CONTINUED FRACTION OBTAINED BY PROPOSED METHOD. 
 〈�̇�𝑟 〉 〈�̇�𝑟𝑦〉 𝑖 𝜅2𝑖−2 𝜅2𝑖−1 𝜅2𝑖−2 𝜅2𝑖−1 

1 1.000 × 100 4.223 × 10−4 1.000 × 100 2.530 × 10−4 

2 4.441 × 10−1 5.364 × 10−5 7.369 × 10−1 3.213 × 10−5 

3 8.277 × 10−1 1.030 × 10−5 1.381 × 100 5.780 × 10−6 

4 1.732 × 100 2.826 × 10−6 −7.016 × 100 −1.891 × 10−4 

5 3.286 × 100 8.729 × 10−7 2.035 × 100 1.668 × 10−6 
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proposed method can directly provide the complex permeability 

without introducing N. 

B. Comparison with classical methods 

To show the merit of the Cauer representation, the complex 

permeability is applied to the evaluation of the eddy current 

losses due to the proximity effect in a copper winding. 

Evaluation of the proximity loss is important for design of high-

frequency (HF) transformers, resonant inductors, motor 

windings, and so on to improve the efficiency [6], [7], [9]. 

Let us consider the copper winding, 𝑧𝑎 × z   turns, in a slot 

whose permeability is assumed infinite as shown in Fig. 4. This 

assumption is necessary not for the proposed method but for the 

classical method mentioned below. The width and height of the 

subconductors are 𝑏c0 and ℎ𝑐0. Alternative current 𝐼 parallel to 

z-axis flows in each conductor. The homogenized copper 

winding is also shown in Fig. 4 where Ωℎ  denotes the 

homogenized winding. The width and height of the 

homogenized winding are 𝑏c = 𝑧𝑎𝑏𝑢𝑛𝑖  and ℎc = 𝑧 ℎ𝑢𝑛𝑖  
where 𝑏𝑢𝑛𝑖  and ℎ𝑢𝑛𝑖  are the width and height of the unit cell. 

The current density and net current in the homogenized domain 

are 𝐽 and ∫ 𝐽Ωℎ dS = 𝑧𝑎𝑧 𝐼. 
The average resistance factor of the winding at frequency 𝜔 

which is defined by 𝑘 = 𝑅AC/𝑅DC can be evaluated from [10] 𝑘 = 𝜉 sinh 2𝜉 + sin 2𝜉cosh 2𝜉 − cos 2𝜉 + 2ξ 𝑧 2 − 13 sinh 𝜉 − sin 𝜉cosh 𝜉 + cos 𝜉 (10a) 

𝜉 = ℎ𝑐0√12𝜔𝜎𝜇 𝑧𝑎𝑏𝑐0𝑏  (10b) 

where 𝜎, 𝜇 represents the conductivity and permeability of the 

conductors. This classical approach is widely used in the design 

of electric apparatuses [9]. Note that this approach, based on the 

method of Dowell and other analytical methods, can be 

inaccurate when its main assumptions that the magnetic field is 

one-dimensional and the eddy currents in the subconductors 

have no influence on the global field do not hold. 

Though the proposed method is available for 2D and 3D 

models, it is applied to the simple model shown in Fig.4 for 

comparison. Using the proposed method, the impedance and 

resistance factor of the homogenized winding are expressed as �̇� = 𝑧𝑎𝑧 𝑅DC + j𝜔〈�̇�〉 ℎ𝑐𝑏𝑐𝑙𝑧𝑎2𝑧 23𝑏2  (11a) 

𝑘 =   [�̇�]𝑧𝑎𝑧 𝑅DC = 1 −  m[〈�̇�〉] 𝜔ℎ𝑐𝑏𝑐𝑙𝑧𝑎𝑧 3𝑏2𝑅𝐷𝐶  (11b) 

where 𝑙  denotes the length of the subconductor and 𝑅𝐷𝐶 =𝑙 𝜎ℎ𝑐0𝑏𝑐0⁄  represents the DC resistance of a subconductor. Eq. 

(11a) is obtained by solving the 1D equation for magnetostatic 

field while the 2D structure is reflected in 〈𝜇〉̇  (see Appendix B). 

Note that the neglected effects in (10) are considered in (11).  

To validate the proposed method, we consider the winding as 

shown in Fig.5 for ℎ𝑐0 = 2 mm, 𝑏𝑐0 = 10 mm, 𝑏𝑐 = 14 mm, 𝑧𝑎 = 1 , 𝑧 = 12 , ℎ𝑢𝑛𝑖 = 2.38 mm , 𝑏𝑢𝑛𝑖 = 12 mm , 𝜎 =

5.76 × 107 S/m. The resistance factors are computed by (10), 

(11b), and FEM as shown in Fig.5. In the FE analysis, the 

relative permeability of the core is assumed to be 10000 

instead of infinite permeability. When frequency is relatively 

low, the three results are in good agreement. However, the 

conventional resistance factor evaluated from (10) has 

discrepancies from the other two results as frequency increases. 

In addition, the equivalent circuit of the winding can be 

developed by (11a) because the complex permeability is 

represented by the continued fraction. The impedance of the 

winding can be written as follows: �̇� = [𝑧𝑎𝑧 𝑅DC; 1𝑠𝑐𝜅0 , 𝑐𝜅1 , ⋯ , 1𝑠𝑐𝜅2𝑞−2 , 𝑐𝜅2𝑞−1] (12) 

where 𝑐 = ℎ𝑐𝑏𝑐𝑙𝑧𝑎2𝑧 2 3𝑏2⁄ .  The equivalent circuit is shown in 

Fig. 6. Considering more general cases such as interleaved 

transformer winding, the equivalent circuit can be obtained by 

using magnetomotive force (m.m.f.) diagram which is utilized 

in the method of Dowell. Analyzing the equivalent circuit by 

the circuit simulator, we can evaluate the eddy current losses 

even when the non-sinusoidal current flows in the conductors. 

Moreover, the magnetic saturation in the core can be considered 

by connecting the nonlinear inductor in series with the circuit.  

IV. CONCLUSION 

A new homogenization method based on the unit cell 

 
Fig. 4 Copper winding in a slot whose permeability is infinite. All 

conductors are connected in series. Left and right figures show the original 

and homogenized windings. 

 
Fig. 5 Validation model and frequency characteristic of the resistance 

factor. 

 
Fig. 6 Equivalent Cauer circuit of winding considering proximity effect. 

𝑙
𝑏
𝑏𝑐ℎ𝑐𝐽  

�̇�

 
 

𝑧

ℎ𝑐0

𝑏𝑐0 1⋯⋯⋯⋯𝑧𝑎

𝑧 

12

      

𝑏 
 

0

50

100

150

200

250

300

0 5000 10000

R
es

is
ta

nc
e 

fa
ct

o
r

Frequency [Hz]

analytical formula

FEM

proposed method

ℎ𝑐0

𝑏𝑐0

𝑧 

12

      

𝑏 𝑏𝑢𝑛𝑖 ℎ𝑢𝑛𝑖 
𝑏𝑐 = 𝑏𝑢𝑛𝑖 

ℎ𝑐
homogenized model

unit cell

validation model

𝑧𝑎𝑧 𝑅𝐷𝐶 𝑅1 𝑅2 𝑅 𝑅4
 1  2    4
 𝑖 = 𝑐𝜅2𝑖−2



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 

 

 

4 

approach has been proposed. This method allows us to obtain 

the complex permeability represented by the Cauer circuit for 

any unit cell. The obtained complex permeability is more 

accurate than the widely-used classical method developed by 

Dowell and other researchers because the assumptions in the 

classical method can be relaxed in the proposed method. Since 

the complex permeability is represented by the equivalent 

circuit, we can readily perform time domain analysis.  

APPENDIX A 

Using the CVL algorithm [8] which is a variant of Padé 

approximation via Lanczos (PVL) [11], the transfer function 

can be approximated by the finite continued fraction. 

Let us consider the linear system (𝐾 + 𝑠𝑁)𝒙 = 𝒃𝑢, (A1a)  = 𝒄T𝒙 (A1b) 

where 𝐾,𝑁 ∈ ℝ𝑛×𝑛, 𝒃, 𝒄 ∈ ℝ𝑛. The response of the system can 

be expressed by the transfer function ℋ(𝑠) =  𝑢 = 𝒄T(𝐾 + 𝑠𝑁)−1𝒃. (A2) 

It is often difficult to compute the transfer function directly 

when 𝑛 is large. In this case, it is effective to approximate the 

transfer function by the rational function. The CVL algorithm 

represented in the pseudo code below allows approximating the 

transfer function by the finite continued fraction. 

CVL algorithm 

0) Set 𝒖0 = 𝐾−1𝒃, 𝒖0⋆ = 𝒄, 𝜅0 = (𝒖0⋆ , 𝒖0), 𝐴 = 𝐾−1𝑁. Comput  𝒗0 = 𝒖0 𝜅0⁄ , 𝒗0⋆ = 𝒖0⋆ 𝜅0,⁄  𝜅1 = (𝒗0⋆ , 𝐴𝒗0). 
For 𝑛 = 1,2,⋯ , 𝑞 do: 
1) Compute 𝒖𝑛 = 𝒖𝑛−1 − 𝐴𝒗𝑛−1 𝜅2𝑛−1⁄ , 𝒖𝑛⋆ = 𝒖𝑛−1⋆ − 𝐴T𝒗𝑛−1⋆ 𝜅2𝑛−1⁄ , 𝜅2𝑛 = (𝒖𝑛⋆ , 𝒖𝑛). 
2) Compute 𝒗𝑛 = 𝒗𝑛−1 + 𝒖𝑛 𝜅2𝑛⁄ , 𝒗𝑛⋆ = 𝒗𝑛−1⋆ + 𝒖𝑛⋆ 𝜅2𝑛⁄ , 𝜅2𝑛+1 = (𝒗𝑛⋆ , 𝐴𝒗𝑛). 

 

In this algorithm, the generated vectors 𝒖𝑖 , 𝒖𝑖⋆, 𝒗𝑖 , 𝒗𝑖⋆ satisfy the 

following bi-orthogonal conditions. (𝒖𝑖⋆, 𝒖𝑗) = 𝜅2𝑖𝛿𝑖𝑗 , (𝒗𝑖⋆, 𝐴𝒗𝑗  ) = 𝜅2i+1𝛿𝑖𝑗 (A3) 

where 𝛿𝑖𝑗  denotes Kronecker’s delta. Application of CVL to 

(A2) results in the continued fraction as follows: ℋ(𝑠) = 𝒄T(𝐾 + 𝑠𝑁)−1𝒃 = [0; 1𝜅0 , 1𝑠𝜅1 , ⋯ , 1𝜅2𝑞−1 , 1𝑠𝜅2𝑞] + 𝑂(𝑠2𝑞) (A4) 

APPENDIX B 

Let us consider the infinite long homogenized winding 

immersed in a slot, as shown in Fig. 4. If the permeability of the 

iron is assumed infinite, the magnetic field 𝑯 have only the x-

component across the conductor. Applying Ampère’s law, we 
obtain −𝜕𝐻 𝜕 = 𝑏𝑐𝑏 𝐽. (B1) 

Since the current density is uniform in the homogenized domain, 

the partial differential equation can be integrated, 𝐻 = −𝑏𝑐𝐽𝑏  + 𝑐𝑜𝑛𝑠𝑡. (B2) 

The integration constant can be determined from the boundary 

condition 𝐻 = 0 at  = 0. As a result, we find 𝑐𝑜𝑛𝑠𝑡 = 0. (B3) 

The impedance in the homogenized domain can be obtained as �̇� = 2�̇� |𝐼|̇2⁄ = 𝑧𝑎𝑧 𝑅𝐷𝐶 + j𝜔∫ 〈�̇�〉Ωℎ |�̇�|2𝑑Ω |𝐼|̇2⁄  

= 𝑧𝑎𝑧 𝑅𝐷𝐶 + j𝜔 〈�̇�〉|𝐼|̇2∫ ∫ ∫ 𝑏𝑐2𝐽2𝑏2  2𝑑 𝑑 𝑑𝑧𝑙
0

ℎ𝑐0
𝑏𝑐0   

= 𝑧𝑎𝑧 𝑅𝐷𝐶 + j𝜔〈�̇�〉 ℎ𝑐𝑏𝑐𝑙𝑧𝑎2𝑧 23𝑏2 . 
(B4) 
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