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Abstract The main objective is to investigate an effect of anisotropic distribution of the reinforcing particles
in a cubic representative volume element (RVE) of the carbon–polymer composite including stochastic inter-
phases on its homogenized elastic characteristics. This is done using a probabilistic homogenization technique
implemented using a triple approach based on the stochastic perturbation method, Monte Carlo simulation
as well as on the semi-analytical approach. On the other hand, the finite element method solution to the uni-
form deformations of this RVE is carried out in the system ABAQUS. This composite model consists of two
neighboring scales–the micro-contact scale relevant to the imperfect interface and the micro-scale—having 27
particles inside a cubic volume of the polymeric matrix. Stochastic interface defects in the form of semi-spheres
with Gaussian radius are replaced with the interphase having probabilistically averaged elastic properties, and
then such a three-component composite is subjected to computational homogenization on the microscale. The
computational experiments described here include FEM error analysis, sensitivity assessment, deterministic
results as well as the basic probabilistic moments and coefficients (expectations, deviations, skewness and
kurtosis) of all the components of the effective elasticity tensor. They also include quantification of anisotropy
of this stiffness tensor using the Zener, Chung–Buessem and the universal anisotropy indexes. A new tensor
anisotropy index is proposed that quantifies anisotropy on the basis of all not null tensor coefficients and remains
effective also for tensors other than cubic (orthotropic, triclinic and also monoclinic). Some comparison with
previous analyses concerning the isotropic case is also included to demonstrate the anisotropy effect as well
as the numerical effort to study randomness in composites with anisotropic distribution of reinforcements and
inclusions.

1 Introduction

It is widely known that the interface defects appearing between different phases of composites (like a matrix
and its reinforcement) play a crucial role in reliability, durability and failure of these materials [1–3]. Gener-
ally, structural defects in composites may reflect some manufacturing imperfections [4], following remarkable
residual thermal stresses for instance, and may exhibit spherical or ellipsoidal shapes, at least for polymeric
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materials [5], resulting from the well-documented matrix cavitation processes [6]. Therefore, it seems reason-
able that interface inaccuracies or imperfections can be approximated by semicircular or semi-elliptical shapes
in 2D models of the composites (or by semi-spherical or semi-ellipsoidal shapes in 3D analysis) [7,8]. Par-
ticulate or fibrous reinforcements usually do not contain such imperfections unlike the matrices, whereas the
largest thermal stresses appear at the reinforcement-matrix boundary, so that the largest concentration of these
imperfections is expected at the interface and they are geometrically located in the matrix region. Different
numerical models are available in the literature to include this effect in numerical simulation of the composite—
(i) from contact finite elements [9], (ii) through the interface elements [10] or the set of disconnecting spring
elements up to (iii) the interphase [8,11–13] being a thin film in-between traditional composite constituents
modeled with 2 or 3D solid elements having material characteristics remarkably weaker than these defined for
the matrix. One needs to notice a variety of analytical estimates of the effective elasticity tensor components for
the composites including some interface imperfections [14–16]. Computational cost of numerical simulation
of such a composite remarkably increases when compared to ideal two-component structure, especially when
more than a single reinforcement is inserted into the RVE and when uncertainty analysis is to be carried out.
Therefore, a homogenization method [13,14] is recommended to reduce this complexity by scale reduction
in complex composite structures from a three-scale approach to traditional micro–macroanalysis where two
separate scales are really necessary. Such a reduction gains specific importance when anisotropic packaging
of the particles or fibers is assumed into the RVE [17–20], because inserting additional imperfect interfaces
or interphases dramatically complicates meshing of the entire structure; it is also really necessary when sta-
tistical simulation techniques [21,22] are employed together with the complex finite element method (FEM)
composite model.

A complete lack of information concerning effective behavior of the particle-reinforced composite with
anisotropic distribution of the particles having randomly imperfect contact with the surrounding matrix was
the main motivation to complete the study presented below. Three concurrent probabilistic methods have been
used—Monte Carlo simulation [21], iterative stochastic perturbation technique (called here ISFEM after cor-
responding FEM implementation) [23] as well as the semi-analytical method [24,25], all based on the finite
element method experiments to verify an influence of the interphase with random volume fractions of the
defects on the effective characteristics of such a composite. We apply for this purpose Gaussian parameter w

with the given expectation E[w] and standard deviation σ (w) to compute the first four probabilistic moments
and coefficients of the effective tensor and to verify whether it also can have Gaussian distribution or not. A
choice of this parameter originates with experimentally driven uncertainty in the micro-cavities appearing in
the matrix and localized at the particle–matrix interface. They are modeled here as semi-spheres with Gaussian
radius, whereas the fiber-reinforced structure models use semicircular or semi-elliptical approximations [7,8].
A homogenization method is applied here either to a composite with isotropic distribution of the particles
and also for accidental anisotropic location of carbon black particles to verify an influence of this variation.
A decisive part of this study is the weighted least squares method (WLSM) approximation of the homoge-
nized tensor components as polynomial functions of this w of numerically optimized order. Three criteria are
employed here—maximization of correlation of the FEM experiments series to the designed polynomial as
well as minimization of the variance and error in this fitting procedure. Let us note that mesh generation for
the composite with anisotropically distributed particles was the very challenging problem itself having even
some literature sources [26]. Determination of the optimal polynomial representations of the effective tensor
components versus parameter w enables for an analytical derivation of these tensor probabilistic moments as
the functions of E[w] and σ (w), which is also contained in this work. Sensitivity analysis of the homoge-
nized tensor and the FEM error analysis have been carried out and discussed in detail in parallel to the main
probabilistic analysis, which can further lead to optimal design of the new composites [27,28]. The largest
potential of this work is in application of nonlinear constitutive models [29] of the polymer especially, as well
as statistical experimental information on the interfaces [30], which can give the input to further probabilistic
studies. The entire study is a next milestone to carry out reliability assessment of various particle-reinforced
materials and structures with the use of a homogenization method, without a need of very precise multi-scale
meshing of the composite structural elements.



Homogenization of carbon/polymer composites 3729

Fig. 1 Representative Volume Element of the anisotropic rubber–carbon black composite [13]

2 Mathematical model

Let us consider a particle-reinforced composite in 3D Euclidean space indexed with Cartesian coordinates and
denote it by Y . Its representative volume element (RVE) is denoted by � and consists of three disjoint subsets
corresponding to spherical particles (�p), to the matrix (�m) as well as to the interface defects (�d) such that

�p ∪ �m ∪ �d = �. (1)

A perfect and load-independent contact is assumed in between all these subsets during further deformation
process. Let ∂� denote the outer surface of the RVE and let �p ∩ ∂� = ∅. Without any loss of generality, the
RVE under consideration contains r separate reinforcing particles non-uniformly distributed in the volume of
� having all the same distribution of the defects. It is assumed that the particles and the matrix work in linear
elastic reversible regime, where Young’s moduli and Poisson ratios are defined as

[E (x) , ν (x)] =

⎧

⎨

⎩

[E p, νp], x ∈ �p,

[Em, νm], x ∈ �m,

[0, 0] , x ∈ �d .
(2)

The interface defects subset can be further decomposed into a series of disjoint single semi-bubbles in the
following way:

�d =
r
⋃

j=1

n
⋃

i=1

�d(i, j). (3)

We assume further that a single interface defect �d(i, j) has semi-spherical shape, is localized on the given
particle surface and is directed outwards from the particle center (Fig. 1). A subscript i stands for the defects
number on the given particle–matrix interface (1 ≤ i ≤ n), while j = 1, ..., r indices the particle number.
Further, we assume that interface defects throughout the given particle–matrix interface (their radii R(i, j)) are

statistically scattered according to the Gaussian distribution defined by its first two moments E
[

R(i, j)

]

and

Var
(

R(i, j)

)

.
Multi-scale homogenization method presented in the next section is based on two separate steps: (i)

reconstruction of the interphase (third component) as the new artificial material fully separating particles from
the surrounding matrix, (ii) probabilistic averaging of the defects inside the interphase where they belong to
(micro-contact scale), (iii) probabilistic homogenization of the entire three-component composite (microscale).
This interphase is a thin layer around any particle, whose constant thickness equals to an upper bound on
statistical population of the defects radii according to the well-known three-sigma rule:

� j = E
[

R( j)

]

+ 3

√

Var
(

R( j)

)

, j = 1, . . ., r (4)
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Finally, we propose a probabilistic averaging method to recover effective elastic properties of the interphase
reduced in addition to the original properties of the matrix. It starts from deterministic formula describing
Young’s modulus of the given interphase as volumetric average of the defects and of the matrix belonging to
its volume �i . There holds

Ei =
�i − �d

�i

Em +
�d

�i

Ed . (5)

Recalling that Ed = 0 and substituting volume ratio of the defects inside the interphase as the parameter w

one can notice that the first two moments of the variable Ei are equal to

E [Ei ] = (1 − E[w]) Em; Var(Ei ) = Var(w) E2
m, (6)

where E[w] and Var(w) are calculated analytically using statistical parameters of the interface defects radius
moments E[R] and Var(R) (see the Appendix). Expected value and variance of the Poisson ratio can be
calculated from Eq. (6) above by replacing Ei and Em with νi and νm correspondingly. It is remarkable that
the parameters Ei and Em as well as νi and νm are probabilistically correlated but no correlation with E p as
well as ν p is noticed. Moreover, it is possible to calculate random elasticity tensor components relevant to the
homogeneous medium as

C
(z)
αβγ δ =

Ez (1 − νz)

(1 + νz) (1 − 2νz)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
νz

1−νz

νz

1−νz
0 0 0

1
νz

1−νz
0 0 0

1 0 0 0
1−2νz

2(1−νz)
0 0

sym.
1−2νz

2(1−νz)
0

1−2νz

2(1−νz)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (7)

where z indices three constituents (interphase i, particle p and matrix m).

Calculation of the effective elasticity tensor components proceeds by using of the following formula:
∫

�

C
(eff)
αβχδε

′
αβε′

χδd� =
∫

�

Cαβχδεαβεχδd�, α, β, χ, δ = 1, 2, 3, (8)

which represents deformation energies of the real (at the left-hand side) and also of the homogenized (on the
right-hand side) composite RVE. The R.H.S. in this equation can be replaced with more detailed deformation
energy distribution into the particle, the interphase and the matrix as

∫

�

C
(eff)
αβχδε

′
αβε′

χδd� =
∫

�p

C
(p)

αβχδεαβεχδd� +
∫

�i

C
(i)
αβχδεαβεχδd� +

∫

�m

C
(m)
αβχδεαβεχδd�. (9)

Determination of the first four probabilistic moments of the effective elasticity tensor proceeds directly from
the their definitions and returns consecutively

E
(

C
(eff)
αβχδ

)

∫

�

ε′
αβε′

χδd� = E

⎛

⎝

∫

�

Cαβχδεαβεχδd�

⎞

⎠ , (10)

Var
(

C
(eff)
αβχδ

)

⎧

⎨

⎩

∫

�

ε′
αβε′

χδd�

⎫

⎬

⎭

2

= Var

⎛

⎝

∫

�

Cαβχδεαβεχδd�

⎞

⎠ , (11)

μ3

(

C
(eff)
αβχδ

)

⎧

⎨

⎩

∫

�

ε′
αβε′

χδd�

⎫

⎬

⎭

3

= μ3

⎛

⎝

∫

�

Cαβχδεαβεχδd�

⎞

⎠ , (12)

μ4

(

C
(eff)
αβχδ

)

⎧

⎨

⎩

∫

�

ε′
αβε′

χδd�

⎫

⎬

⎭

4

= μ4

⎛

⎝

∫

�

Cαβχδεαβεχδd�

⎞

⎠ . (13)
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It is possible to scale the deformations ε′
αβ to make the L.H.S. integral equal to 1 and then, the moments in

Eqs. (11–13) just equal to the moments of deformation energy of the real composite.
On the other hand, it is well known that elasticity tensor for the anisotropic continuum has definitely more

complex form than in Eq. (7) and one writes it in a form of the fourth- or second-rank tensors as

Ci jkl =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

C1111 C1122 C1133 C1123 C1131 C1112

C2222 C2233 C2223 C2231 C2212

C3333 C3323 C3331 C3312

C2323 C2331 C2312

sym. C3131 C3112

C1212

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (14)

Cαβ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym. C55 C56

C66

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (15)

The effective elasticity tensor for the homogenized composite, which is fully anisotropic (after non-uniform
distribution of the isotropic particles into the isotropic matrix plus interphases) is calculated here by a substitu-
tion of the results of the strain energy U obtained from the FEM simulations of 21 independent unit displace-
ments of the RVE. Three of these are extensional (u1, u2, u3 = 1), also 3—transverse (u12, u13, u23 = 1) and
15 remaining constitute coupling displacements

(

ui j ukl = 1
)

for i, j, k, l ∈ 〈1, 2, 3〉 , i 
= j 
= k 
= l and
further inserted into Eq. (8), e.g., taking boundary as u1 = 1 and ui j = 0 for i, j 
= 1 one can obtain ε11 = 1
where all the remaining strains simply vanish.

Finally, we find numerically polynomial representations of the effective elasticity tensor components (and
also of the deformation energy stored in the RVE), e.g.,

C
(eff)
αβχδ = aαβχδ(i)w

i , i = 0, ..., n, (16)

and their Least Squares Method fittings of the minimum order are equivalent to n=4 (5 and 6 also), so that
analytical derivation of the first two probabilistic moments of this tensor in case of Gaussian uncertainty in w

(with mean the value E[w] and standard deviation σ(w)) yields

E
[

C
(eff)
αβχδ

]

=
(

E4 [w] + 6E2 [w] σ 2 (w) + 3σ 4 (w)
)

aαβχδ(4) +
(

E3 [w] + 3E [w] σ 2 (w)
)

aαβχδ(3)

+
(

E2 [w] + σ 2 (w)
)

aαβχδ(2) + E [w] aαβχδ(1) + aαβχδ(0), (17)

and also (with no summation on α, β, χ, δ = 1, 2, 3 at the R.H.S.)

Var
(

C
(eff)
αβχδ

)

=
{

16E6 [w] σ 2 (w) + 168E4 [w] σ 4 (w) + 384E2 [w] σ 6 (w) + 96σ 8 (w)
}

a2
αβχδ(4)

+
{

24E5 [w] σ 2 (w) + 168E3 [w] σ 4 (w) + 192E [w] σ 6 (w)

}

aαβχδ(4)aαβχδ(3)

+
{

16E4 [w] σ 2 (w) + 72E2 [w] σ 4 (w) + 24σ 6 (w)
}

aαβχδ(4)aαβχδ(2)

+
{

9E4 [w] σ 2 (w) + 36E2 [w] σ 4 (w) + 15σ 6 (w)
}

a2
αβχδ(3)

+
{

24E [w] σ 4 (w) + 8E3 [w] σ 2 (w)
}

aαβχδ(4)aαβχδ(1)

+
{

12E3 [w] σ 2 (w) + 24E [w] σ 4 (w)
}

aαβχδ(3)aαβχδ(2)

+
{

6E2 [w] σ 2 (w) + 6σ 4 (w)
}

aαβχδ(3)aαβχδ(1)

+
{

4E2 [w] σ 2 (w) + 2σ 4 (w)
}

a2
αβχδ(2) +

{

4E [w] σ 2 (w)
}

aαβχδ(2)aαβχδ(1) + σ 4 (w) a2
αβχδ(1).

(18)

These equations have been derived assuming that each particle is surrounded by the interphase of the same
thickness and the same elastic properties reduction parameter w. This thickness does not appear as an explicit
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additional parameter here but affects computational FEM experiments leading to the specific LSM approxima-
tion of the effective elasticity tensor. It is possible to insert different Gaussian random variables wi here, whose
basic probabilistic moments may be different for various particles interphases but then a multi-parametric LSM
fitting is necessary and additionally, the cross-correlations of the effective tensors are to be calculated also.
Numerical experiments provided here show that both isotropic and anisotropic distributions of the particles
result in the same order polynomial representations of expected values and variances; some differences are
obtained for the coefficients aαβγ δ(i) only. On the other hand, when the interphase thickness approaches 0, then
the expected values of effective tensor components become constant and equal to aαβγδ(0); the expectation starts
to be independent of the parameter w in the limiting case. The variances of the homogenized tensor components
remarkably all tend to 0, so that these components themselves become simply deterministic. A degree of the
LSM fitting polynomial may fluctuate when the interphase thickness tends to 0; however, this cannot change the
observations collected above. Let us also note that higher-order central probabilistic moments and 5th- or 6th-
order polynomial expressions and their moments have been omitted for a brevity of the presentation. Therefore,
one can demonstrate analytically following considerations attached in the Appendix, that effective elasticity
tensor components cannot have Gaussian distribution while randomizing interface defects ratio according to
this distribution. Therefore, the first two moments characterization of this tensor does not identify it uniquely
and one needs higher-order stochastic computational technique to reliably determine its constituents.

3 Deterministic computational analysis

Computational experiments with homogenization of the particle-reinforced composite with anisotropic distri-
bution of the particles inside its RVE and imperfect interfaces consist of the following tasks:

1. computational deformations of the RVE under uniaxial and biaxial extension corresponding to the ran-
domized mechanical properties of the interphase Ei , νi ,

2. relative computational error relevant to the uniaxial and biaxial extension of the RVE corresponding to the
boundary conditions imposed on the boundary problem,

3. sensitivity coefficients S
(

C
(eff)
αβχδ

)

with respect to the consecutive volume fractions of the interface defects
w,

4. optimal order determination for the polynomial response functions of the effective tensor components

C
(eff)
αβχδ = C

(eff)
αβχδ(w),

5. final calculation of the expected values, coefficients of variation, skewness and kurtosis of C
(eff)
αβχδ .

Computer model of the composite represents a homogenization method of three different representative
volume elements (RVEs) with three phases and 27 isotropic (3rd model) or anisotropic (1st and 2nd model) dis-
tributions of the spherical particles surrounded by the same spherical interphases (Fig. 2). Such a distribution of
the reinforcing particles results in an isotropic (1st model) or anisotropic (2nd and 3rd models) effective elastic-
ity tensor. RVEs have dimensions of [3δ, 3δ, 3δ], where δ is unit interval and they are composed of a polymeric
matrix, a spherical carbon black C60 particle and an interphase of constant thickness in between these two mate-
rials. Particle location is chosen in an accidental way and numerical algorithms presented in [31] or [32] are omit-
ted here principally because this study focuses on an anisotropic representation of the homogenized composite
and its impact on the effective tensor. A number of the particles representing an internal structure of the compos-
ite has been chosen as 27 because (1) it ensures the best balance between quality of its internal composition and
mesh quality limited by the computational resources, (2) it allows adequate representation of internal structure
in cubic composite and (3) it is very close to the number of monodisperse particle chosen in other studies [32].
These particles are not restricted inside the RVE with an exception to the 3rd model, whose internal composition
ensures a perfect regular cubic distribution. Initial mechanical properties of all phases are adopted as follows, for
the matrix asEm = 4.0 MPa, νm = 0.34, for the CB particle as E p = 10.0 GPa, νp = 0.3, and vanishing both
for the interface defects. All computational experiments with the RVE have been carried out in the FEM system
ABAQUS and consist of a series of the cell problems solved for deformation of 21 different uni- and bidirec-
tional stretches as well as shear deformations. A set of all the required boundary conditions are shown in Fig. 3,
where they are grouped into six different cases, namely three uniaxial tensions (1) and shear deformations (2),
three biaxial tensions (3) and shear deformations (4), tri-axial tension and corresponding shear deformations (5)
a complete set of all six shear deformations and extensions (6). Colors used in this graph represent a magnitude
of displacement, whose maximal value reaches 6.0 and is obtained from an 100% uniaxial stretch coupled with
100% shear in the same direction. A limitation or averaging of the amount of unit displacements is not applied



Homogenization of carbon/polymer composites 3733

Fig. 2 Various models of the polymeric-carbon black composite

here because a result of homogenization is a fully anisotropic stiffness tensor; it is compared for three RVEs sig-
nifying structuring, anisotropy or clustering of the particles. Each of the RVEs has been discretized separately
with hexahedral 8-noded C3D8 1st-order finite elements, hexahedral 20-noded C3D20, and also using tetrahe-
dral 10-noded C3D10 2nd-order finite elements. The 1st model is composed of hexahedral 1st-order elements
with amount of 239.488 (1st model), and the 3rd model—36.504 2nd-order hexahedral elements, while the 2nd
model is combined with 9.504 hexahedral and 174.044 tetrahedral 2nd-order elements (2nd model). The type
and amount of finite elements in each model is selected to obtain the best possible numerical accuracy with
acceptable computational effort, which is verified using FEM error analysis presented and discussed in Figs. 4
and 5. The amount of finite elements (TF E ) is not constant for these models, because non-uniform distribution
of the particles in the 2nd model needs tetrahedral mesh of the matrix. Although anisotropic, the first model pre-
vents some structuring of particles and, therefore, hexahedral mesh for matrix is possible. Regardless of the finite
element type and model number, a tie contact must be placed between the interphase and the matrix to ensure
deformation continuity. Uniform extensions and shear deformations in all models are applied to use energy-
based homogenization method (see Fig. 2) to calculate effective elasticity tensor components and, finally, to
contrast its probabilistic characteristics resulting from three independent numerical techniques to verify the
influence of (1) particles anisotropy and (2) uncertainty in interface defects. The first two models are composed
of non-homogeneously distributed particles, and their elasticity tensor has 21 independent coefficients. These
coefficients can be further reduced to 6 representative groups indicated on the bottom left part of the Fig. 2 as
they have been computed for very similar boundary conditions (see Fig. 3). The first model, additionally to this
geometrical anisotropy, has also two sets of clustering particles with an amount of four and two. Situation is
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Fig. 3 Deformation of the RVE under six representative deformations/boundary conditions with the corresponding total displace-
ment U

totally different for the third model with a uniform distribution of the reinforcing particles, whose deformation
can be entirely represented by only three independent elasticity tensor components (C11, C44 and C12).

Further computations have been carried out entirely using symbolic algebra system MAPLE and are focused

on determination of the probabilistic parameters of the RVE effective tensor components C(eff) with respect to
the volume fraction of interface defects in the interphase using polynomial bases. These contain determination
and optimization of the polynomial response function of the effective tensor components using the WLSM with
Dirac-type distribution of weights [1,1,1,1,1,10,1,1,1,1,1]. Further, they concern computation of the basic prob-
abilistic characteristics of this tensor with input Gaussian uncertainty in the volume fraction of interface defects
in the interphase w. FEM simulations for each mean value of w are performed for its ±10% neighborhood,
whereas the Weighted Least Squares Method (WLSM) is implemented in its nonlinear version, where additional
parameters are the WLSM increments number and polynomial order, while statistical optimization is done via
correlation maximization as well as variance and RMS error minimization of the WLSM—a chosen number of
the increments equals 15 and polynomial order equals 4, 5 or 6 depending on the effective tensor component.
Interestingly, the WLSM for polynomials above the 6th order returns much higher RMS error and variance
with only slightly decreased correlation when comparing them with the given optimal order. Stochastic simu-
lations are performed separately for three RVEs and for an increasing expected value of the volume fraction of
interface defects w by using the following three independent methods: semi-analytical, stochastic perturbation
of second and fourth order as well as Monte Carlo simulation with 250.000 random trials. This enables a triple
comparison of (a) statistical scattering in anisotropic and cubic effective tensor, (b) the efficiency of the applied
probabilistic methods and their coincidence, as well as (c) a verification how an increase in volume fraction of
the interface defects affects uncertainty in the resulting effective tensor. These computations include studies of
the expected values (Figs. 23, 24, 25, 26, 27), coefficients of variations (Figs. 28, 29, 30, 31, 32, 33), skewness
(Figs. 34, 35, 36, 37, 38, 39) and kurtosis (Figs. 40, 41, 42, 43, 44, 45) of all 6 representative tensor components
C(eff) fully illustrating its uncertain response to the random volume fraction of interface defects w. It should be
additionally noted that isotropic effective tensor of the third model has only three components C22, C55 and C12.

Since the major focus of this paper is comparison of two anisotropic and isotropic random effective tensor,
all figures (Figs. 4–45) are composed in the same way, where the given symbols represent the model type, i.e.,
asterisk—first model (anisotropic), circle—second model (anisotropic), rectangle—third model (cubic) and
diamond—analytical result (cubic). The colors have a meaning specific to each set of figures, e.g., for effective
tensor coefficients (Figs. 6, 7, 8, 9, 10, 11) they distinguish between the coefficients or for all the probabilistic
results on the graph left side (Figs. 22a–45a); they also allow to distinguish the expected values of the volume
fraction of interface defects E (w).



Homogenization of carbon/polymer composites 3735

Fig. 4 Computational error for uniaxial tension of the RVE w.r.t. the total amount of the finite elements TF E and for various types
of the finite elements FE

Fig. 5 Computational error for the representative unitary stretches of the RVE w.r.t. the total amount of variables in the FEM
solver Tvar

Numerical analysis of the FEM error of the total strain energy for all the RVE models, which enters computer
analysis, is here twofold. First of all, computational FEM error obtained for different types of finite elements is
compared for uniaxial tension with respect to the total amount of the FEs in the RVE denoted by TF E .This allows
to determine the most suitable element type for each model (Fig. 4). Secondly, an error for the chosen element
types is further checked for all the representative groups of components (distinguished by colors on the graph)
in relation to the total number of variables in the FEM solver Tvar (Fig. 5). This is done (a) to investigate an effi-
ciency of the particular finite element type for all the necessary sets of boundary conditions in the FEM homog-
enization tests and (b) to enable a proper choice of a number of these elements (variables) ensuring satisfactory
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convergence of the results, separately for each model. Thanks to these two analyses, it is possible to contrast
results of all the three models eliminating an impact of discretization intensity and element type on the results of
the strain energies U , which are then converted into the effective tensor components C(eff). A relative FEM error
for both figures has been calculated in addition to the computation of the highest element amount for each ele-
ment type according to the following formulas: Error(i)

[

�
]

= 1000 ·
∣

∣UTF E(i)
− UTF E max

∣

∣ /UTF E max
for Fig. 4

and also Error(i)
[

�
]

= 1000·
∣

∣UTvar(i)
− UTvar max

∣

∣ /UTvar max for Fig. 5. UTF E(i)
is the total strain energy for the ith

FEM simulation, UTF E max
stands for the total strain energy for the FEM simulation with a highest amount of FEs

of the specific type, and these are replaced by the UTvar(i)
and UTvar max in Fig. 5, where TF E is substituted by Tvar.

Computations contained in Fig. 4 include finite elements of (a) hexahedral first order with full integration
C3D8 (hex 1st), (b) hexahedral second order with full integration C3D20 (hex 2nd), (c) tetrahedral first-order
C3D4 (tet 1st), (d) tetrahedral second-order C3D10 (tet 2nd) or (e) and (f) a combination of these two types
of elements of the same order (hex&tet 1st and hex&tet 2nd). This graph shows firstly a very small error
of the FEM simulations for all the considered element types and amount almost never exceeding 2% except
tetrahedral elements of the first order and generally less than 12� for the TF E adopted in further computations
(Fig. 5). The second-order formulation of the FEs ensures a slightly better performance, which is especially
remarkable in the third model, where the error even does not reach 2�. This performance is not so high for
the anisotropic models, but still at least 30% better than for the first-order elements. An additional observation
is that the choice of tetrahedral elements results in a higher relative error (as they have slower convergence)
and that they are not recommended for the domains exhibiting axisymmetric geometry (such as the spherical
carbon black particle or an interphase), since they result in the error close to 18%. A major reason for this is
that they are, in contrast to the hexahedral elements, implemented by unstructured mesh generators. This is
why for both the first and the third model, the hexahedral elements are chosen with of almost 240.000 1st-order
elements (for the first model) and 35.000 2nd-order elements (for the second model).

On the other hand, it should be noticed that in order to enable a hexahedral mesh, a part (e.g., the matrix)
has to be in many cases partitioned to gain a structured regions, where automatic generators serve efficiently.
This is the case of both the first and the third models (both partitioned by a couple of dozen planes) and implies
that for highly complex geometries, especially in a 3D stress state, the model must be cut into the few smaller
parts. This, in turn, (1) restricts FE usage to the very small elements, (2) considerably increases the modeling
and computation time and (3) is difficult or unavailable for an automatic generation. This may prevent usage
of the 2nd-order hex formulation having higher restrictions on geometry, as in case of the 1st model and
where manual partitioning may be even not possible (for totally unstructured parts). Such a situation takes
place for the second model, whose particles have absolutely no structuring and, therefore, the hexahedral mesh
cannot be applied for its matrix. It is, however, still better to preserve the hexahedral mesh for the parts with
axisymmetric geometry (particle and the interphase), while assigning a tetrahedral mesh to the matrix. This
is well justified by Fig. 3, where such an approach gives almost the results about two times more precise than
the tetrahedral mesh for the 1st and the 2nd-order elements, particularly for the small TF E . On the basis of
the above, a 2nd-order hexahedral mesh of amount of almost 10.000 is assigned in this model for the particle
and the interphase, which is supplemented by the 2nd-order tetrahedral mesh of more than 170.000 elements
for the matrix; similarly to the remaining two models, such a choice ensures a relative error much below 1�.
From Fig. 4, it can be also concluded that FEM numerical error sharply decreases together with an increase in
TF E and that the 3rd and the least complex model has the smallest error for all the element types. This asset,
however, vanishes together with an increasing TF E , where the error asymptotically goes to 0 (consistently
with the FEM theory). Therefore, all the models are convergent, but the anisotropic ones require more than 10
times higher TF E to preserve the same error level like isotropic composite.

Further, computational time and physical memory usage of the FEM solution are also of paramount
importance and they are usually several or even more than ten times higher for the second-order formulation
for the same TF E . This difference is much smaller when contrasting these formulations by the total amount
of variables in the FEM Tvar, and this relation is shown in Fig. 5. Nonetheless, it should be still considered
that even when plotting the error in relation to the Tvar, tetrahedral elements have from 3 up to 4 times longer
preprocessing than the hexahedral mesh, while the 2nd-order elements consume 20–50% more processor
time and the 2nd-order formulation use up to 80% more physical memory for the same Tvar (not 10 times or
more as for the TF E ). Figure 5 firstly shows that even for 10.000 finite elements of the given type an overall
computational error is very small and smaller or equal than 4�. This error is very similar for each model for
all the given deformations except the first model, where the shear deformations have up to three times smaller
error for a low Tvar. Secondly, the chosen element types are also highly convergent to a 0 error for all but the
second model and vanish almost completely for the optimum Tvar representing the mesh density used in further
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Fig. 6 Effective tensor components corresponding to a pure axial tension for three spatial distributions of particles in the RVE

computations. This second model is here fluctuating a little bit together with an increase in Tvar, which may be
caused by the use of an unstructured tetrahedral mesh for the matrix. Such a mesh is possibly to be generated
in a different way or from a different point even for small changes in mesh seeds. Still, these variations are in
the range of several � and would not affect the computation efficiency of the FEM homogenization problem
solution. The last remark is that 2nd-order hexahedral elements in the third model give a higher amount of
variables than for the anisotropic ones. This firstly results from the rich formulation of such an element and
partitioning of the RVE cell as well as rendering solver problems for small amount of elements. It additionally
has a connection with a method of defining RVE geometry for the FEM solver, a little different for this model
than for the anisotropic ones due to its internal symmetries—in this case the RVE is composed of 27 equal cells.

The RVEs deformation energies for different models necessary in homogenization method are converted
first to the 21 effective tensor components, then grouped into the 6 representative sets and finally plotted in
relation with w. This is done separately for five mean values of the volume fraction of interface defects in
the interphase having a magnitude equal to (a) 0.10, (b) 0.20, (c) 0.30, (d) 0.40, and (d) 0.50 in their 10%
neighborhood giving 55 separate FEM computations of each deformation into a single FEM model, 1.155
for each model and 3.465 in total. These effective tensor components are depicted for all the effective tensor
groups in Figs. 6, 7, 8, 9, 10, 11 and 12 as separate discrete points per each FEM test—they are plotted as the
functions of the parameter w for three different RVE models. Additionally, a result of an analytical approach
calculated according to Christensen [33] is plotted for C11, C44 and C12 with w = 0 and marked using a
brown diamond to validate further a correctness of the computationally derived effective tensor components.
Null w represents a special case when properties of the interphase are equal to the ones of the matrix—the
interphase is not existent. Results of the third model are available only for Figs. 5, 6 and 7, where the three
independent coefficients C11, C44 and C12 are repeated for other axes (e.g., C11 ≡ C22 ≡ C33), which is
done for better transparency of the legend. Such a relation is an analytical derivative of the isotropic effective
tensor (its polynomial response representation), appropriate for the third model. The effective tensor com-
ponents Ceff

αβ are generally smooth, continuous and decreasing with an increase in w. The ones where the

third-model tensor is available (Figs. 5, 6, 7) show quite satisfactory convergence of the analytical results with
the computational models for w = 0. This is especially true for the isotropic (third) model, which directly
represents the analytical model and gives the closest results for C44 and C12; it is a little bit more distant then
the second model for C11, but the difference is smaller than 1% and thus negligible. The anisotropic models,
being close to the analytical approach for the diagonal effective components (group of C11 and C12), exhibit
much higher shearing effective coefficients for w = 0. It must be underlined here that these two models may,
and even should, result in a slightly different effective components than then analytical ones. This difference
from the third (analytical) model represents an influence of anisotropy and clustering. These models are treated
here as more accurate in the sense that they better reflect micro-geometry of this composite. A second remark
is that the simple regular isotropic (third) model overestimates the tensional effective components especially
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Fig. 7 Effective tensor components corresponding to a pure shear for three spatial distributions of particles in the RVE

for larger w, while generally underestimating the shearing effective components (the higher w, the smaller
underestimation). Importantly, the anisotropic models are much more affected by the interphase defects than
the cubic one, so that their effective tensor components in each group are reduced in the same way by these
defects and keep close to each other. This means that anisotropy has rather global influence on the effective
tensor, affects especially the shearing components and makes the composite much more compliant to this
interphase.

Clustering of particles included in the first model does not have a predicted influence on the effective tensor
since it increases the magnitude of this tensor components up to 2% while compared to the second model with
anisotropy and no clustering. This difference, being negligible for the composite without the interface defects,
increases together with w and is the highest for the component corresponding to the uniaxial tension. This
effective tensor is still lower than computed for the isotropic particles location, but such results are not consis-
tent with practical observations, where clustering is one of the main reasons for softening of particle-reinforced
composites. Stress distributions and magnitudes resulting in different models (Fig. 8) show almost four times
higher intensity for the model with clustering localized of course within the interphase. There is no doubt that
the interphase very early enters the nonlinear regime and accumulates damage with such high reduced stress
intensity. Therefore, this result is limited to the elastic region and clustering certainly softens such a composite
(reduce the magnitudes of effective tensor components) when more accurate constitutive model is chosen
like some hyper-elastic stress–strain experimental curve available for the polymer matrix possibly including
damage or softening of the interphase. A comprehensive comparison of the stress intensity appearing in the
models is postponed here for the presentation brevity.

It looks that this composite is the stiffest in uniaxial tension, where a magnitude of the effective tensor
components reaches up to 6.9 · 106 Pa for w = 0.0 and is reduced by the defects with w = 0.5 to 5.6 · 106 Pa
(Fig. 6). Its resistance to a single-axial shear is almost 3.5 times lower than to the tension, biaxial component
groups have from two up to four times smaller magnitude than the highest components and the lowest effective
stiffness is reported for an interaction of shear and tension in different directions (Fig. 12). In spite of the
coefficients corresponding to shear in the third model, all the effective tensor components linearly or nonlin-
early decrease while increasing w with a relative reduction of 16% to almost 24% for w = 0.5. The interface
defects are located in the interphase only, whose volume fraction in the composite is 6.5% and, therefore,
such a reduction of the effective tensor is noticeable especially because it sharply increases with an increase
in volume fraction of the interphase [13]. A difference in between the RVE computer models is the highest
for the diagonal effective tensor components, especially for uniaxial tension, but the slope differs the most for
shear deformations between the isotropic and anisotropic effective tensors.

The effective tensor components related to uniaxial tension and shear (Figs. 6, 7) generally decrease together
with w in almost linear way and have the highest magnitude either for the third model (tension) or the first model
(shear). These corresponding to the tension stay within 10% of each other, while the ones corresponding to the
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Fig. 8 A comparison of the stress intensity in the 3rd (a) and the 1st model (b) for an uniaxial tension

Fig. 9 Effective tensor components corresponding to biaxial tension for three spatial distributions of particles in the RVE

shear are 3% more spread and much less convergent for the collected models. This is especially remarkable
for the components of the third model, which behave in a totally different manner than the other ones quite
contrary to the general trend. They start at 0.2 · 105 Pa, increase until a local maximum for w = 0.2 and then
descend in a concave manner up to w = 0.5. Interestingly, these effective components cross the corresponding
ones from the other models at w = 0.4 to become the highest above this volume fraction of interface defects.

The effective tensor components related to a biaxial tension (Fig. 9) and biaxial shear (Fig. 10) are decreas-
ing with an increase of w in a manner close to the linear one and with total reduction from 20% to 26% for
w = 0.5. These corresponding to biaxial tension are more than three times larger and start from a single mag-
nitude of 3.42 · 106 Pa for w = 0 with a different slope for each model and almost perfectly coincide for each
model. Interestingly, the results of the third model undergo a small fluctuation in the interval w ∈ 〈0.1..0.2〉
with an inflection point at approximately w=0.14. A situation is slightly different for the effective tensor
components corresponding to biaxial shear—they start from two distinct values at w = 0, where C45 is 22%
higher than the other components and this difference decreases together with an increase in w; in this case,
the various models give almost the same results for the entire range of interface defects parameter w.

The effective tensor components corresponding to two different stretches—tension and shear—in single
direction (Fig. 11) and two different directions (Fig. 12) are also all decreasing with an increase in w and all
have a very close result for all the coefficients coming from each model with a difference much smaller than
a single percent. The results computed for extension in a single direction are twice as high as these from the
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Fig. 10 Effective tensor components corresponding to biaxial shear for three spatial distributions of particles in the RVE

Fig. 11 Effective tensor components corresponding to an axial tension combined with shear in the same direction for three spatial
distributions of particles in the RVE

different directions and are 30% less affected by an increase in the parameter w; they also exhibit larger dif-
ferences in between three given computational models. The effective tensor components obtained for uniform
stretches in different direction converge at w = 0 to almost the same value of 1.71 · 106 Pa and comprise a
componentC26, which for the second model diverges from the others for larger values of the parameter w.

Next, we compute the two engineering constants, i.e., Young’s modulus Ei and Poisson ratio νi for all
three models and plot them in Figs. 13 and 14, respectively. They are computed here mainly for the purpose
of comparison and are not intended for representation of anisotropic response of the composite in full. These
constants are both computed accordingly to an orthotropic solid in the first and the second model and the cubic
solid for the third one. A set of relations for an orthotropic solid is the following one:
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Fig. 12 Effective tensor components corresponding to an axial tension combined with shear in different directions for three spatial
distributions of particles in the RVE

Fig. 13 Young moduli for various models in different directions

Ei,orth =

(

Ci i C j j Ckk + 2C jkCi j Cik − Ci i C
2
jk − C j j C

2
ik − CkkC2

i j

)

(

C j j Ckk − C2
jk

) ,

νi j,orth =
(

C j i Ckk − CikC jk

)

(

C j j Ckk − C2
jk

) . (19)

It is composed of three various Young’s moduli and six Poisson ratios. Please note that the tensional-shearing
biaxial terms of the effective stiffness tensor (group 5 and 6 from Fig. 3) are disregarded in this computation,
because for an orthotropic solid they are null.
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Fig. 14 Poisson ratios for various models in different directions

These are reduced for cubic solid to single Young modulus and Poisson ratio

Ecub =
(

C2
11 + C12C111 − 2C2

12

)

(C11 + C12)
,

νcub =
C12

(C11 + C12)
. (20)

Plots in Figs. 13 and 14 additionally propose an average value for all the respective components Ei and νi to
simplify the response into two elastic, well-known coefficients; they are all plotted in black color. Figure 13
firstly shows that Young moduli of the third model are considerably higher than for the anisotropic models,
and it is less affected by an increase in w. It is also clearly visible that anisotropy in particle placement and
clustering does not cause a high spread of this modulus in different directions. This is not true for Poisson ratios,
visualized on Fig. 14, which show a considerable difference in magnitude for different directions, especially
in the second model (with particle clustering). These ratios are generally higher for the anisotropic models,
especially the 1st model, and decrease with w with a little higher rate to the third model. By this, the difference
between the models lessens together with an increase in w.

Next, we measure the anisotropy existent in the three composite models. This is done with use of three
commonly used indexes, i.e., Zener anisotropy index AZ , Chung–Buessem anisotropy index AC and the uni-
versal elastic anisotropy index AU together with the new anisotropy measure, the tensor anisotropy index AT .
Chung–Buessem and universal elastic anisotropy indexes are computed on the base of Reuss and Voigt bounds,
calculated here in the following way:

K V = Ki fi + Km fm + K p f p; K R = K −1
i fi + K −1

m fm + K −1
p f p, (21)

GV = Gi fi + Gm fm + G p f p; G R = G−1
i fi + G−1

m fm + G−1
p f p, (22)

where K x and Gx are the bulk and shear moduli for the composite according to Voigt and Reuss, Kx¸Gx denote
the moduli of the three phases of the composite and fx means their volume fraction. The Chung–Buessem
index is computed as [34]

AC =
GV − G R

GV ∗ G R
(23)

and the Universal elastic anisotropy index—with use of the below formula [35]

AU = 5
GV

G R
+

K V

K R
− 6. (24)
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The two next indexes are based solely on the basis of stiffness tensor (components) of the homogenized
material. The first of these, Zener anisotropy index is defined in the following way [36]:

AZ =
2C44

C11 − C12
. (25)

The second one, called tensor anisotropy index AT , is derived directly from tensor coefficients and composed
of following positively definite parts:

AT = AI + AA. (26)

It is introduced to leverage the limitations of AZ to the cubic tensors and defined as a sum of anisotropy
coming from coefficients of group 1–3 AI (see Fig. 2) that are always present in a stiffness tensor and these
coming from coefficients of group 4–6 AA—null for the isotropic, cubic, transversely isotropic and orthotropic
tensors and positive otherwise. In this way, AI is enough detailed for measure of most tensors with symmetries
and an additional term AA is meaningful solely for single symmetry (triclinic) and monoclinic tensors. AI is
composed of the modified Zener index and a variance index AI = AI,z + AI,cov , where

AI,z =
2
∑

Ceff
G2

∑

Ceff
G1 −

∑

Ceff
G3

=
2
(

Ceff
44 + Ceff

55 + Ceff
66

)

(

Ceff
11 + Ceff

22 + Ceff
33

)

−
(

Ceff
12 + Ceff

13 + Ceff
23

) , (27)

AI,cov =
i=3
∑

i=1

(

α
(

Ceff
Gi

))

, (28)

and where Ceff
Gi represents the ith group of tensor coefficients (see Fig. 2). AI,z defines a mean Zener index for

all the three directions of the material, which simplifies to the regular Zener index AZ for isotropic and cubic
tensor. AI,cov accounts for differences within the groups of coefficients 1–3, defining a sum of its coefficients
of variation α. It is null for isotropic and cubic stiffness tensor and positive otherwise. The AA is defined as

AA = AA,m + AA,cov =
n
12

E
(

Ceff
G4, Ceff

G5, Ceff
G6

)

E
(

Ceff
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) +

∑i=6
i=4

(

Var
(
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g

))

E
(

Ceff
G1, Ceff

G2, Ceff
G3

) (29)

and it is intended for quantification of anisotropy coming from existence of coefficients that are null in the
isotropic case together with their variation within these groups of coefficients (groups 4–6). The first part AA,m

takes into consideration the expected value from these coefficients E
(

Ceff
G4, Ceff

G5, Ceff
G6

)

that is multiplied by

quotient n/12 relating number of nonzero coefficients n to its maximum number − 12. The second part AA,cov

accounts for directional non-uniformity that causes different response for the same action in three axes and
it is defined as a sum of variances for groups 4–6. Both parts of AA are divided by the expected value of
coefficients from the first three groups E

(

Ceff
G1, Ceff

G2, Ceff
G3

)

so that the additional anisotropy caused by these
terms is referenced to the principal coefficients (principal response of the continuum). This is done to reflect
the case where the additional effects from groups 4–6 are relatively small in comparison to the main response,
while quotient n

12
accounts for the case when only several coefficients are not null (for example in the case of

triclinic tensors) not to overestimate their effect. A full formula describing this index has been introduced as
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) . (30)

Such a coefficient could be computed for all types of elastic stiffness tensors and, unlike all remaining indexes,
it takes into consideration all the stiffness tensor coefficients that are not null in the specific tensor. The main
advantages of this measure can be listed as follows:

� single valued,
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� modular—complexity of calculations increases together with an increase of complexity of the analyzed
stiffness tensor,

� derived directly from tensor properties,
� universal—applicable for all kinds of tensors (not limited to cubic, orthotropic or other types of tensor),
� doesn’t require additional calculations of the Reuss–Voigt bounds,
� versatile—applicable not only for anisotropy in the stiffness tensor but also to other tensors,
� can be applied for homogenized or not homogenized materials alike and, unlike any other measure, it takes

into consideration all components of this tensor that are not null,
� allows quantification of anisotropy of arbitrary genesis, for example those coming from spatial composition

of the reinforcement or non-uniform voids, for which the other measures are not perfect (see AU and AC

on Fig. 15, whose measure is exactly the same regardless the spatial composition of reinforcement).

Modularity also allows quantification of the locus of main anisotropy in tensor when only one opts for keeping
the index in the vector AT − 1 =

[

AI,z − 1, AI,cov, AA,m, AA,cov
]

. Composition of this index may seem
complex but majority of the components simply vanish, i.e.,

� isotropic, cubic tensors AI,z 
= 0, AI,cov = 0 and AA = 0,
� transversely isotropic, orthotropic tensors AI,z 
= 0, A,I,cov 
= 0 and AA = 0,

� triclinic, monoclinic tensors AI,z 
= 0, AI,cov 
= 0 and AA 
= 0.

The minimum value of this measure is 1.0 and it is equivalent to a full isotropy of the tensor.
The above measures of anisotropy are used for the three models of the composite and presented in Fig. 15

in relation to the volume fraction of voids w. These include the Zener anisotropy index AZ , Chung–Buessem
anisotropy index AC , Universal anisotropy index AU and the new tensorial anisotropy index AT that are
differentiated by symbols on the graph. The AZ and AT are computed for all three models marked by colors,
while the AC and AU presented only once as they return the same results for all models. This equality of results
comes directly from the formulas of AC and AU that are based on the Reuss–Voigt bounds, independent of the
spatial composition of reinforcement in the RVE. We also note the high magnitude of AU that comes from a
considerable difference of bulk and shear moduli of the Reuss–Voigt bounds, whose quotients are calculated in
this measure. For better readability of the results on Fig. 15 we present a quotient AU /1000, not AU . Looking
on this figure, we first report that the AC and AU are practically independent of w, while the remaining two
methods, based directly on the effective tensor, report a decrease in anisotropy together with an increase of w

(they become closer to isotropic). This finding is quite important not only for the linear regime of the composite,
it is also interesting from the view of fracture mechanics. This is because micro-damage in such composites
initiates from the interphase and, quite similarly to the voids, it weakens connection between the particle and the
matrix effectively making such anisotropic composite closer to isotropic. Magnitudes of these four measures
are wide spread; AU ∼= 1490 is the highest one, AC ∼= 0.99—the lowest and AZ , AT ∈ 〈1.0, 1.8〉. These two
last measures (AZ and AT ) also report major differences in anisotropy for the three models—the 1st and the
2nd both have a considerable anisotropy, while the 3rd one is perfectly isotropic—AZ = AT = 1.0 with only a
small oscillation for several data points (presumably numerical errors). This result follows the spatial placement
of the reinforcement, isotropic for the 3rd model and anisotropic for the two remaining ones (see Figs. 2, 8).The
tensorial anisotropy index reports a higher anisotropy for the first two models than the AZ , because it takes into
consideration also the additional terms for complex tensors. This difference is quite high because the considered
tensor is monoclinic, has axial variation of properties and all 21 tensor coefficients present. The difference of
anisotropy in the first two models is moderate, marginally dependent on w and recognized in similar manner
in both, AZ and AT ; Last but not least, Fig. 15 shows that clustering decreases a little the degree of anisotropy
(magnitude smaller for the 1st model than for the 2nd one) but it is also less affected by an increase of w—it
decreases a little slower than for the model without clustering, which is evident for, AZ and AT .

Further, sensitivity coefficients S
(

Ceff
αβ

)

of all effective tensor components (Figs. 16, 17, 18, 19, 20, 21)

are calculated from the polynomial-based response functions with use of a direct algebraic differentiation in
MAPLE. They are defined in the neighborhood of one of the expected values of the volume fraction of interface
defects E (w) ∈ [0.1, 0.2, ..., 0.5] and are non-dimensional. Therefore, they represent a set of local sensitiv-
ities of the respective effective tensor components. This is the reason why, in some specific cases, they do not
catch perfectly the general tendency of this components. This takes place for sensitivities corresponding to the
pure shear of the 3rd model and indicates some local fluctuation of majority of the others around the expected
value of the parameter w. Sensitivity coefficients comprise 55 independent derivations of discrete data points
and are composed from 5 response functions for each legend item. These, in turn, serve for conversion of the
discrete results of the effective tensor components Ceff

αβ into their continuous representation in relation with the
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Fig. 15 Various anisotropy measures for three models of the composite

Fig. 16 Sensitivity of effective tensor components corresponding to a pure axial tension of the RVE w.r.t. the interface defects
ratio w

volume fraction of the interface defects w. Similarly to the effective tensor components, the results of the third
model of each component in the group are equal, which is the direct result of the isotropic effective tensor.

It is quite expected after previous considerations that almost all the sensitivities are negative for an entire
considered spectrum of the volume fraction of voids w, decrease together with an increase of w and start

close to but below 0 (typically at S
(

Ceff
αβ

)

= −0.05). They decrease until 0.2 ÷ 0.35 for w = 0.5, are very

close for the anisotropic models and always smaller for the isotropic composite model. This means that all the
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Fig. 17 Sensitivity of effective tensor components corresponding to a pure shear of the RVE w.r.t. the interface defects ratio w

effective tensor components increase together with an increasing w and preserve a very close slope (magnitude
of sensitivity is very low). This is not entirely true for the third model, which returns some local effects for
several effective components. All the results are smooth and continuous with an exception to the ones of the
3rd (isotropic) model that are either minimally (as for Fig. 16) or heavily (Fig. 17) fluctuating together with
increasing parameter w. Interestingly, this high fluctuation seems to concentrate around a certain magnitude of

S
(

Ceff
αβ

)

= 0.05 and is well reflected by the dispersion of results of the effective tensor component in Fig. 7.

This all means that for the anisotropy the effective tensor components are more affected by the interface defects
and this relation with w has less local effects than for simple isotropic model. Sensitivities corresponding to
uniaxial tension and shear (Figs. 16, 17) firstly show almost a perfect agreement of the results coming from the
first and the second model and dispersion of these coming from the third model for each C(eff). This fluctuation
indicates a local character of the sensitivities coming from the third model and since that they require a special
computational treatment. The remaining two models also have some small fluctuation for each E (w) coming
from the same source, but in all cases it does not diminish clarity of the results. A magnitude of sensitivity
for these models is up to 25% smaller for the effective tensor components corresponding to shear. A situation
is entirely different for the 3rd model not only due to the positive values, but also because of the fact that
the sensitivity magnitude corresponding to uniaxial tension is up to several times smaller. This positive value
is reflected by an initial increase of the effective tensor component Ceff

44 —the sole positive response of the
effective tensor to an increase in the volume of interface defects.

Sensitivities corresponding to biaxial tension and shear (Figs. 18, 19) are a little less convergent for the
anisotropic models, and the third model returns very similar sensitivity to the remaining ones; these coefficients
have a very similar magnitude, the same sign and a close slope. They reach 0.34 for w = 0.54 and are almost
linear with respect to the parameter w. These response functions have minimally more local character than for
their uniaxial counterparts, especially for the first two models, while the third model has almost no fluctuations
except for E (w) = 0.1, which returns a considerable higher value than the others. Sensitivity coefficient
S
(

Ceff
46

)

is several percent smaller than the remaining coefficients corresponding to shear for both available
models—this difference is a little larger for the second model and increases together with an increase in w.
This is in a perfect accordance with Figs. 10 and 11, where the slopes of all the effective tensor components are
very close. Even these small differences in sensitivity do not have a high impact on their behavior in relation to
the interface defects ratio w; such a difference is not remarkable for the sensitivities corresponding to a biaxial
tension, which differ with about 1% of each other.

Sensitivities coming from a simultaneous action of tension and shear in the same or different direction
(Figs. 20, 21) are all similarly affected by the volume fraction of the interface defects. They all decrease, have
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Fig. 18 Sensitivity of effective tensor components corresponding to a biaxial tension of the RVE w.r.t. the interface defects ratio
w

Fig. 19 Sensitivity of effective tensor components corresponding to biaxial (double) shear of the RVE w.r.t. the interface defects
ratio w

almost uniform magnitude and a negative sign for the respective models and effective tensor coefficients. The

former ones (Fig. 20) start approximately at S
(

Ceff
αβ

)

= − 0.03 and decrease up to S
(

Ceff
αβ

)

= − 0.25, while

the latter ones (Fig. 21)—at S
(

Ceff
αβ

)

= −0.05 and S
(

Ceff
αβ

)

= − 0.31. The only divergence occurs for the

1st model and E (w) = 0.2, where some coefficients locally exhibit a sharp increase or decrease together
with w. The 1st model returns a little bit larger results, but this difference is much below a single percent
and thus negligible. All the sensitivity coefficients computed here feature a small curvature coming from their
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Fig. 20 Sensitivity of effective tensor components corresponding to an axial tension combined with shear in the same direction
for the RVE w.r.t. the interface defects ratio w

Fig. 21 Sensitivity of effective tensor components corresponding to an axial tension combined with shear in different directions
for the RVE w.r.t. the interface defects ratio w

local character, but this does not prevent us to discern a clear downward and almost linear relation of these
coefficients with respect to the parameter w.

4 Probabilistic computations using the ISFEM

The most important part of this analysis is determination of statistical disorder of the anisotropic and isotropic
effective tensor to random variability in the volume fraction of interface defects w, which is done w.r.t. the
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Fig. 22 Expected value of the effective tensor coefficient C
(eff)
22 w.r.t. the coefficient of variation of the interface defects ratio

α (w)

Fig. 23 Expected value of the effective tensor coefficient C
(eff)
55 w.r.t. the coefficient of variation of the interface defects ratio

α (w)

coefficient of variation of this random parameter α (w) and for its increasing expected value E (w) in the range
of w ∈ [0.10, 0.20, . . . , 0.50]. The series of FEM experiments have been carried out for this purpose using
the WLSM technique to determine the polynomial response function and statistically optimize its order. The
resulting polynomials are integrated together with the Gaussian PDF in a semi-analytical method, inserted into
the 2nd- and 4th-order Taylor expansions in stochastic perturbation-based approach and finally subjected to
a discrete Monte Carlo sampling with 250.000 trials for an increasing α (w) . The response function serves
here as a conversion of the discrete results of the FEM computations for a continuous representation of the
effective tensor components as the functions of the interface defects volume fraction (in the interphase). An
optimization process of this polynomial function consists of a simultaneous maximization of the correlation and
minimization of both the variance and RMS error of the WLSM. This ensures the best fitting of the polynomial to
the discrete computation results and such an optimization has been made separately for each tensor component
in all models and each E (w) for full polynomials of orders from the first until the tenth. Optimization and
WLSM computations have been programmed in algebra system MAPLE for the Dirac-type weight distribution
we ∈ [1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1], which gives the major weight for the expected value being equal to a sum
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Fig. 24 Expected value of the effective tensor coefficient C
(eff)
12 w.r.t. the coefficient of variation of the interface defects ratio

α (w)

Fig. 25 Expected value of the effective tensor coefficient related to biaxial shear C
(eff)
56 w.r.t. the coefficient of variation of the

interface defects ratio α (w)

of the weights associated to the rest of discrete values in its 10% neighborhood. It is necessary to underline
that the computational effort in semi-analytical considerations and perturbation-based approaches (2nd and
4th order) are negligible when compared with this corresponding to the Monte Carlo simulation (MCS).

Probabilistic considerations are here twofold. First of all, we compare the influence of the input coefficient
of variation of interface defects fraction α (w) on the resulting probabilistic characteristics of the effective
tensor components. These are plotted consecutively on the left side of Figs. 22–45, where the colors define
the expected value of volume fraction of interface defects E (w), which the computations are made for and
are marked in the legend as w = 0.x . Secondly, we examine coincidence of the probabilistic characteristics
made by the three most common probabilistic methods – the semi-analytical method (AM), the Stochastic
Perturbation method of the 2nd order (SPT 2nd), as well as 4th order (SPT 4th) and the Monte Carlo simulation
(MCS). These are placed on the right side of all these graphs and presented for one expected value of interface
defects fraction E(w) = 0.3 only, which is done for brevity of the presentation. Final computations include the
first four probabilistic characteristics of a chosen effective component C(eff) from each group and these are the
expected values (Figs. 22, 23, 24, 25, 26, 27), coefficients of variations (Figs. 28, 29, 30, 31, 32, 33), skewness
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Fig. 26 Expected value of the effective tensor coefficient C
(eff)
25 w.r.t. the coefficient of variation of the interface defects ratio

α (w)

Fig. 27 Expected value of the effective tensor coefficient related to mutual action of tension and shear applied in different axes

C
(eff)
35 w.r.t. the coefficient of variation of the interface defects ratio α (w)

(Figs. 34, 35, 36, 37, 38, 39) and kurtoses (Figs. 40, 41, 42, 43, 44, 45). All these coefficients and moments are
non-dimensional, with an exception to the expected value which, similarly to the effective stiffness tensor, has
a unit of Pascal. All the trends obtained with use of the ISFEM demonstrate smooth sufficiently variations with
some small or a complete lack of local fluctuation at all with an exception to the skewness and kurtoses, which
in some cases have a local vertical asymptotes. However a coincidence of the expectations is almost perfect and
it concerns the 4th -order method after 4th-order response polynomial—the SPT of the 2nd order diverges for
most probabilistic characteristics where α (w) > 0.05. The coefficients of variations are not so perfect, but still
the AM and MCS are in almost perfect agreement, the SPT being a little less precise for the input coefficients
of variation when α (w) > 0.08. The SPT of the 4th order gives definitely a better result than the one of the
2nd order and a higher order would be necessary for a better match with the other probabilistic methods. The
results are a little dispersed for the higher probabilistic characteristics of effective tensor, where not only the
SPT but also the remaining two methods lose their perfect correlation. The expected value of some effective
tensor components has a little bit smaller (about 3%) dependence on the random volume fraction of interface

defects than their deterministic counterparts. Further, we observe that the coefficients of variation α

(

C
(eff)
αβ

)
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Fig. 28 Coefficient of variation of the effective tensor coefficient C
(eff)
22 w.r.t. the coefficient of variation of the interface defects

ratio α (w)

Fig. 29 Coefficient of variation of the effective tensor coefficient related to shear C
(eff)
55 w.r.t. the coefficient of variation of the

interface defects ratio α (w)

in almost all the cases are 2–3 times smaller than the input coefficient of variation α (w) . This, however, does

not mean that the increase in Gaussian dispersion of w is irrelevant for the magnitude of E
(

Ceff
αβ

)

, because

it not only changes this expected value up to 15% for α = 0.15, but also result in a considerable dispersion
of the random effective tensor. This dispersion cannot be bounded by the 3σ rule, because the output is not
Gaussian after initial theoretical considerations at least.

Expected values of the effective tensor components (Figs. 22, 23, 24, 25, 26, 27) are decreasing all together
with an increase in E (w), are moderately affected by the α (w) and show a considerable differences in between

the three RVE models. It is seen not only in the magnitude of the expected values of E
(

Ceff
αβ

)

, but also in the

slope and curvature of relation with respect to α (w) , which can be either decreasing and concave as well as
increasing and convex. The largest expected values result either from the third model or from the first model;
the first model return also extreme values of effective tensor. The differences, however, never exceed 11%

and for all but one representative component they are in range of 1–4%. Maximum reduction of E
(

Ceff
αβ

)

for

E (w) = 0.5 goes up to 20% for E
(

Ceff
56

)

and anisotropic models, while the minimum one is 4% and occurs
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Fig. 30 Coefficient of variation of the effective tensor coefficient related to biaxial tension C
(eff)
12 w.r.t. the coefficient of variation

of the interface defects ratio α (w)

Fig. 31 Coefficient of variation of the effective tensor coefficient related to biaxial shear C
(eff)
56 w.r.t. the coefficient of variation

of the interface defects ratio α (w)

for E
(

Ceff
55

)

only for the third model. This is a little smaller than the highest decrease of the Ceff
αβ and implies

a small reduction of the dependence of the effective tensor on the volume fraction of interface defects when

considering its Gaussian dispersion. A typical reduction of E
(

Ceff
αβ

)

for E (w) = 0.1 is approximately 3%

and is more than two times smaller for the isotropic model than for the anisotropic cases. On the other hand,
isotropic model is typically several times more affected by α (w) and is the only one, where the expected values
calculated for different (and especially adjacent) E (w) cross each other for α (w) > 0.1. One more interesting
observation is that expectation E

(

Ceff
55

)

in the 3rd model not necessarily decreases together with an increase in
E (w) and this phenomenon has been reported before in Fig. 7. Similarly to the effective tensor components,
the most transparent differences in between probabilistic methods are noticed for the uniaxial counterparts of

the expected value E
(

Ceff
αβ

)

. A comparison of different probabilistic methods show their perfect agreement

for all α (w) with an exception to the SPT of the 2nd order, which starts to diverge at α (w) > 0.06 for all
the components. This clearly indicates that the 2nd order is rather ineffective and the 4th-order expansion is
needed. Expected values of the isotropic composite are much closer to each other—they are much less suscep-
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Fig. 32 Coefficient of variation of the effective tensor coefficient C
(eff)
25 w.r.t. the coefficient of variation of the interface defects

ratio α (w)

Fig. 33 Coefficient of variation of the effective tensor coefficient related to mutual action of tension and shear applied in different

axes C
(eff)
35 w.r.t. the coefficient of variation of the interface defects ratio α (w)

tible to w than for the anisotropic models. Moreover, their values are either higher than (E
(

Ceff
22

)

, Fig. 22 and

E
(

Ceff
12

)

, Fig. 24) or a little beneath the middle of mean (E
(

Ceff
55

)

, Fig. 23) of the anisotropic expectations.
For other groups of coefficients isotropic counterparts are unavailable.

The coefficients of variation of the effective tensor components (Figs. 28, 29, 30, 31, 32, 33) are all positive
and increasing in a convex manner together with an increasing α (w) . They are always lower than the input
coefficient of variation and increase their magnitude together with an increase of E (w) . The only exception is

noticed for Ceff
55 corresponding to the 3rd model, which reaches α

(

Ceff
αβ

)

= 0.26 for E (w) = 0.5. The results

obtained for this model are either much higher than
(

α
(

Ceff
55

))

, comparable to
(

α
(

Ceff
22

))

or a little smaller

than
(

α
(

Ceff
12

))

these coming from the anisotropic models. The anisotropic models generally return the results
very close to each other, but their coincidence decreases together with both, an increasing α (w) and E (w).
There neither exists a single model with the highest output coefficient of variation, nor with the lowest, but the
third model has the biggest scattering of the results for the given E (w) reaching both the highest and the lowest
values. All the coefficients of variation should and begin from 0 and increase up to 0.005 for E (w) = 0.1
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Fig. 34 Skewness of the effective tensor coefficient related to tension C
(eff)
22 w.r.t. the coefficient of variation of the interface

defects ratio α (w)

Fig. 35 Skewness of the effective tensor coefficient C
(eff)
55 w.r.t. the coefficient of variation of the interface defects ratio α (w)

and 0.05 for E (w) = 0.5 at α (w) = 0.15. This difference is with about ten times, but the largest output
coefficients of variation are almost five times smaller than the input ones. This means that the output effective
tensor coefficients are generally less distant from each other than the input volume fraction of interface defects.
This difference, however, increases together with an increasing volume fraction of the interface defects. The
results of three probabilistic methods are close to each other, but the SPT no longer keeps a perfect match for
α (w) > 0.08 (Figs. 28b, 29b, 30b, 31b, 32b, 33b)—especially the SPT of 2nd order. Even the results of the 4th-
order SPT are a little bit lower than these obtained from the MCS and AM, which still are highly coincident. This
enables to recommend further usage of the SPT of 4th order in analysis of the coefficient of variation relative
to E (w) with a very small error and, consecutively, such a method is chosen to prepare the results shown in the
left parts of Figs. 28, 29, 30, 31, 32 and 33. The isotropic model has generally higher coefficient of variation
of the stiffness tensor than the anisotropic ones, with an exception to α

(

Ceff
22

)

, which stays a little lower.
Skewness of the effective tensor components (Figs. 34, 35, 36, 37, 38, 39) is remarkably influenced by the

input coefficient of variation α (w). Its relation with this coefficient has, nonetheless, complex character as for
the lower probabilistic moments—it either has a local maximum at α (w) = 0.25, as for β

(

Ceff
55

)

, or increases
in a convex or concave manner. It is neither predominantly positive nor negative for each effective tensor
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Fig. 36 Skewness of the effective tensor coefficient C
(eff)
12 w.r.t. the coefficient of variation of the interface defects ratio α (w)

Fig. 37 Skewness of the effective tensor coefficient C
(eff)
56 w.r.t. the coefficient of variation of the interface defects ratio α (w)

coefficient but, in most cases, it has the same sign for each model. The skewness computed for the third model is
usually the largest, while the one corresponding to the first and second models has always very similar magnitude
(although not the same sign). There exists no strict relation of the skewness with E (w) but it is close to 0 for
the anisotropic models and α (w) < 0.7; only then it starts to sharply increase or decrease and reaches values

of β

(

Ceff
αβ

)

between − 6 and 9. It needs to be underlined that a coincidence of the three chosen probabilistic

methods for skewness has rather conditional—they all return the same result for the input coefficient of
variation up to α (w) = 0.04, but diverge for higher α (w) . This is especially true for the SPT, which always
underestimates the skewness, but, with an exception to β

(

Ceff
12

)

, it returns the same sign as the other methods. It
is quite important, however, that also the two remaining probabilistic methods do not coincide well—the MCS
returns larger skewness for almost all the effective tensor coefficients. This is true for all the RVE models, but
the first one is here the one with the best agreement of all computational methods and the third one—with the
worst. Therefore, unlike for the other moments, the semi-analytical method (AM) is chosen for representation
of the influence of E (w) on all the effective tensor components C(eff). Skewness of the isotropic model has
a higher magnitude than the ones computed for the anisotropic ones. It is also a little more convex in relation
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Fig. 38 Skewness of the effective tensor coefficient related to mutual action of tension and shear applied in the same axis C
(eff)
25

w.r.t. the coefficient of variation of the interface defects ratio α (w)

Fig. 39 Skewness of the effective tensor coefficient C
(eff)
35 w.r.t. the coefficient of variation of the interface defects ratio α (w)

to α (w) and, in contrast to the skewness coming from anisotropic models, it has an apparent local maximum
for β

(

Ceff
55

)

obtained for α (w) = 0.02 and exists for all mean values of volume fractions of the defects.
Kurtosis of the effective tensor components (Figs. 40, 41, 42, 43, 44, 45) are all positive, start from zero

and usually reach a considerable magnitude for high α (w)—even higher than the skewness. They are either
convex and always increasing or concave and with an apparent limit of 3; this feature is neither model nor
component specific. The kurtosis typically increases together with an increase of E (w) , but this is not always
true—sometimes it increases for small E (w) and then decreases from E (w) = 0.3 or E (w) = 0.4. It is not
clear, which of the models return the highest or the lowest results, but the isotropic model usually has a higher
magnitude then the anisotropic ones for low α (w) and lower for α (w) > 0.11. Similarly to the skewness,
results of the three probabilistic methods are not in a perfect agreement for the kurtosis. Despite the use of
250.000 trials, the MCS is not more precise than the SPT for the kurtosis and they both are sometimes distant
from the AM. On the other hand, this last method shows some discontinuities especially for α (w) close to 0,
where stochastic problem becomes deterministic and which is quite typical and expected for the AM with a
response function having polynomial relation with an input argument. The SPT is preferable for use in analysis

of κ

(

Ceff
αβ

)

respective to the mean value of volume fraction of interface defects E (w) principally, because it
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Fig. 40 Kurtosis of the effective tensor coefficient C
(eff)
22 w.r.t. the coefficient of variation of the interface defects ratio α (w)

Fig. 41 Kurtosis of the effective tensor coefficient C
(eff)
55 w.r.t. the coefficient of variation of the interface defects ratio α (w)

is the quickest one and additionally because it gives a continuous representation of the kurtosis without any
discontinuities. The isotropic model has either a similar (κ

(

Ceff
22

)

) or higher kurtosis (κ
(

Ceff
55

)

and κ
(

Ceff
12

)

)

than the anisotropic models. It also tend to have some apparent maxima of kurtosis especially for κ
(

Ceff
55

)

,
which are not reported for anisotropic models at all.

The random effective tensor for all the considered models cannot have Gaussian distribution and this
observation is consistent with the previous analytical derivations. This is because both skewness and kurtosis
remarkably differ from 0 and typically increases together with an input uncertainty. Its variation, however, is
much smaller than the input for almost all the effective tensor components. An uncertainty in w affects the
isotropic effective tensor a little more than the anisotropic one. This is remarkable especially for the expected
values, which are much more affected by the coefficient α (w) than these resulting from the anisotropic models
and in the coefficients of variation, also usually higher for the isotropic case. These differences are increasing
together with an additional increase in expected value of the interface defects fraction E (w) and its uncertainty
in the composite.
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Fig. 42 Kurtosis of the effective tensor coefficient C
(eff)
12 w.r.t. the coefficient of variation of the interface defects ratio α (w)

Fig. 43 Kurtosis of the effective tensor coefficient C
(eff)
56 w.r.t. the coefficient of variation of the interface defects ratio α (w)

5 Conclusions

Probabilistic homogenization of the particle-reinforced composite with stochastic interface defects and
anisotropic distribution of the particles has been demonstrated in this work by using of three independent
stochastic computer techniques. The original semi-spherical defects with randomly defined radius having
Gaussian PDF have been replaced by the isotropic interphase of constant thickness having randomized mate-
rial characteristics. One of the most important conclusion of homogenization of such a composite is that
effective elasticity tensor components cannot be Gaussian in this case and this is not for sure an effect of the
particles distribution anisotropy. It is important that this fact has been independently proven analytically and
also verified numerically. This paper also proposes a new measure of anisotropy called the tensorial anisotropy
index, which is able to capture the difference in anisotropy caused by spatial placement of its phases and
answers the need for anisotropy index effective beyond the cubic tensors (Fig. 15).

There is no doubt that overall computational cost of anisotropy effect modeling is much larger than for the
isotropic effective elasticity tensor because instead of two really independent components, one must calculate
21 components, which is especially challenging during stochastic simulations according to the unweighted
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Fig. 44 Kurtosis of the effective tensor coefficient C
(eff)
25 w.r.t. the coefficient of variation of the interface defects ratio α (w)

Fig. 45 Kurtosis of the effective tensor coefficient C
(eff)
35 w.r.t. the coefficient of variation of the interface defects ratio α (w)

statistical schemes. FEM mesh and its generation require at least the few particles to be interconnected by
non-uniform meshes parts for the matrix region and it requires more than 105 additional hexahedral or tetrahe-
dral elements into the entire RVE and separate meshing around any of 27 particles; it would be recommended
further to treat a single carbon particle as the super-element in ABAQUS model of the multi-particle systems
static or dynamic equilibrium as they are nearly non-deformable due to the large contrast of elastic modulus
in addition to the matrix. This effort is compensated by a more precise determination of the stiffness tensor
which, for anisotropic placement of particles, also proves anisotropic and ensures a much better prediction of
the internal stress intensity vital in fracture mechanics and durability prediction. Let us note that in our case
the Zener coefficient of anisotropic model reaches 1.12, while the tensorial anisotropy index goes up to 1.78
and they are dependent on the volume fraction of voids, whose increase decreases stiffness anisotropy. Let us
note that the measures of anisotropy based on the Voigt–Reuss bounds are ineffective in determination of an
influence of spatial placement of particles on the anisotropy in the effective (homogenized) stiffness tensor, as
they return exactly the same result for all the three models.

Differences between the stiffness tensor of the isotropic and anisotropic RVEs are determined not only
for the deterministic case, it is also evident for its probabilistic moments and coefficients. The expectations of
isotropic composite are much less dependent on the expected value of volume fraction and are generally higher
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for the isotropic RVE, coefficients of variation are also a little higher, skewness has apparent local maxima and
kurtosis—global ones, both not existent for the anisotropic models. When comparing the engineering constants
of these models, i.e., Young’s modulus and Poisson ratio anisotropy decreases the first one but increases the
second. A weakening of the Young’s modulus in anisotropic models increases together with an increase in
volume fraction of voids in the interphase and so does the strengthening effect of the Poisson ratio. It is also
worth to mention that an effect of anisotropy on the effective stiffness tensor is rather global, which means that
it affects entire groups of coefficients and does not provide a very significant difference between the stiffness
in different directions, at least in the linear regime. Please note that reduction of 21 coefficients to 6—each
coming from different group of coefficients—is still a lossy process.

Further one needs to notice that the optimal response polynomials of C
(eff)
αβ in addition to the interface

defects ratio w for both isotropic and anisotropic RVEs homogenization are the family of the same 4th-order
polynomials (according to the statistically optimized WLSM technique). It was the basis to derive fundamental
equations for probabilistic moments of the effective elasticity tensor in addition to the basic characteristics of
uncertain parameter w. The effective tensor in anisotropic case generally is more sensitive to this parameter

fluctuations than in the isotropic model. The expectations E
[

C
(eff)
11

]

and E
[

C
(eff)
12

]

appear to be always larger

for isotropic model than in the anisotropic one, while E
[

C
(eff)
44

]

shows an inverse tendency, at least up to the
limit value w=0.40. Homogenization of the given composite remarkably damps initial uncertainty in interface
defects and it follows a local character of this variable within the RVE (even after probabilistic averaging
throughout the interphase), so that probabilistic entropy as a universal measure of statistical disorder of the
RVE decreases with the few times during homogenization process. As it was expected after previous theoret-
ical [14,15] and numerical studies [7,8] a presence of the interface defects and their uncertainty significantly
reduces the mean values of the effective elasticity tensor also for the particle-reinforced composites.

Probabilistic homogenization method displayed in this work may also benefit with determination of the
cross-correlations of the effective elasticity tensor components thanks to the semi-analytically determined
polynomial responses of these components to Gaussian w. The 3D FEM model of the particle-reinforced
composite with anisotropic distribution of the particles prepared for this study may further serve with almost
no modifications to stochastic simulation of uni- and bidirectional stretches of the RVE, whose first trial has
already been performed [37].
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Appendix

The formulas describing the first two probabilistic moments of the variable w are derived below. The interface
defects volumetric ratio in the given interphase is defined as

w =
�d

�i

, (19)

where the defects and the interphase volumes simply equal to

�d =
2

3
nπ R3, (20)

�i =
4

3
π (r + �)3 −

4

3
πr3, (21)

where n stands for the defects number along the given interface, r is the particle radius, while R denotes the
defect radius accordingly. Substituting these representations into Eq. (19) leads to a deterministic expression
for w:

w =
n R3

2�
(

�2 + 3�r + 3r2
) . (22)

http://creativecommons.org/licenses/by/4.0/
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Fig. 46 Truncation error in expectations of the interface defects ratio w

Fig. 47 Truncation error in variances of the interface defects ratio w

Assuming that the variable R exhibits a Gaussian distribution with the first two moments equal to E[R] and
Var(R), one can derive by an integration from the definitions of these two moments or, alternatively, using the
complex characteristic function of this distribution, as

E [w] =
n E [R]

(

E2 [R] + 3Var(R)
)

2�
(

�2 + 3�r + 3r2
) , (23)

Var (w) =
3 n2 Var(R)

(

3E4 [R] + 12E2 [R] Var(R) + 5Var2(R)
)

4�2
(

�2 + 3�r + 3r2
)2

. (24)

It is easy to prove that the induced random variable w cannot have Gaussian distribution in this case, because

limw→0

(

w− 2
3

)

= +∞, so that the probability density of w itself is unbounded. Recalling further the Gaussian

upper bound on the interphase thickness calculated from the interface defects radius as

� = E [R] + 3
√

Var (R), (25)
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one can derive the first two probabilistic moments of the variable w as

E [w] =
n E [R]

(

E2 [R] + 3Var(R)
)

2
(

E [R] + 3
√

Var (R)
)

(

(

E [R] + 3
√

Var (R)
)2 + 3

(

E [R] + 3
√

Var (R)
)

r + 3r2
) ,

(26)

Var (w) =
3 n2 Var2(R)

(

3E4 [R] + 12E2 [R] Var(R) + 5Var2(R)
)

4
(

E [R] + 3
√

Var (R)
)2
(

(

E [R] + 3
√

Var (R)
)2 + 3

(

E [R] + 3
√

Var (R)
)

r + 3r2
)2

,

(27)

and substitute them into further computations devoted to homogenization at the microscale. One needs to recall
the fact that the interface defects radius is really distributed according to the truncated Gaussian distribution,
where at least negative values are prohibited as physically disabled. Upper and lower limits for probabilis-
tic integrals describing expectation and variance of the parameter w are derived analytically using the same
three-sigma rule as for the interphase thickness, i.e.,

ET [w] =
E[R]+3

√
Var(R)

∫

E[R]−3
√

Var(R)

w (R)
√

2πVar (R)
exp

(

−
(u − E [R])2

2Var (R)

)

du. (28)

This leads to the following algebraic formula:

ET [w] =
n E [R]

(

6.0091 Var (R) + 2.0887 E2 [R]
)

D
, (29)

where a denominator D equals to

D = 4.1888 E3 [R] +
(

12.5664r + 37.6991
√

Var (R)

)

E2 [R]

+
(

12.5664r2 + 75.3982 r
√

Var (R) + 113.0973 Var (R)

)

E [R]

+ 37.6991
√

Var (R) r2 + 113.0973 Var (R) r + 113.0973 (Var (R) )
3
2 (30)

It should be mentioned that rational parts of the coefficients included in the above equations (29–30) correspond
to the analogous coefficients in the expanded version of equation (26); these coefficients of course have no
physical meaning. Moreover, the additional formula for the variance including truncation error can be derived
in a similar way but has many times larger expression and so that it is postponed here. Therefore, we assess
truncation modeling errors of the expectation and the variance of w by calculating relative errors for both
functions. The following formulas do apply:

∂ (E [w]) =
E [w] − ET [w]

E [w]
, ∂ (Var (w)) =

Var (w) − VarT (w)

Var (w)
. (31)

Finally, we plot these errors in Figs. 46 and 47 for unit particle radius r=1 and ten interface defects n=10. As
one may expect, both errors are positive despite the input parameters choice and ranges from the few promiles
for the expectations up to the few percents − for the variances and obviously both equal 0 for deterministic
case when α(R) vanishes. Truncation error in expectations increases together with this parameter and is totally
insensitive to expectation of the interface defects mean radius. The variance error demonstrates the same
insensitivity as for E[R], whereas sensitivity to α(R) is very huge close to the deterministic origin (throughout
the interval α(R) ∈ [0.00, 0.01]) and then splashes and becomes almost linear. Positive values of both errors
mean that the models without truncation effects exhibit larger expectations and variances of the parameter w,
so that it is impossible to verify whether they under or overestimate the interphase effect on the RVE response
in its stochastic finite element method analysis; nevertheless, it should not be simply postponed, especially for
the non-Gaussian random variables.
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