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Abstract

We consider graphs parameterized on a portion X C Z% x {1,..., M}k of a cylindrical
subset of the lattice Z? x Z*, and perform a discrete-to-continuum dimension-reduction
process for energies defined on X of quadratic type. Our only assumptions are that X be
connected as a graph and periodic in the first d-directions. We show that, upon scaling
of the domain and of the energies by a small parameter ¢, the scaled energies converge to
a d-dimensional limit energy. The main technical points are a dimension-reducing coarse-
graining process and a discrete version of the p-connectedness approach by Zhikov.

1 Introduction

The object of the investigation in this paper is the analysis of discrete thin objects through,
at the same time, a discrete-to-continuum and dimension-reduction process. The main
focus of our work is the great generality of the geometry of our discrete systems, which we
essentially require to be a connected graph periodic in the dimensions that are maintained
after a discrete-to-continuum passage.

Figure 1: A discrete thin object in three dimensions with a one-dimensional behaviour

An example of the structure that we have in mind is pictured in Fig. 1; in this case the
‘macroscopic dimension’ is one. The thicker black lines (both the solid ones and the ones



dashed for graphic purpose) represent connections between nodes of a cubic lattice in R3.
Equivalently, we may think of the same structure as a network of conducting rods. Note
that this object cannot trivially be parameterized as a ‘subgraph’ of a function depending
of the vertical variable, as it consists of a double helix connected through horizontal bonds.
Nevertheless, it can be included in a ‘regular’ thin object; in this case, the cylindrical part
of Z3 whose projection on the two-dimensional horizontal plane are the four vertices of a
square. Even if no connection is purely vertical, the overall behaviour of such a structure is
expected to be that of a vertical one-dimensional object. Similar examples can be thought
of when the macroscopic dimension is two, for example stacking copies of this structure in
a planar configurations.

With these examples in mind, we are going to look at graphs whose nodes are a periodic
subset X of Z*** of period T in the first d directions (in the example pictured d = 1,
corresponding to the vertical direction, with period T' = 2), bounded in the last k directions
(in the example, k = 2, corresponding to the horizontal directions), so that we may always
think that it is contained in Z% x {0, ..., M —1}* for some M € N. This graph is equipped
with a set of edges &€ C X x X which makes it connected. This set of edges is supposed to
be invariant by the same translations as X.

We are going to show that we may define a continuous d-dimensional approximation
of this set. In order to maintain technicalities to a minimum, we consider only quadratic
interactions. The Dirichlet energy of such a set is defined as

Fu)= Y (u(i) —u(j))®
(4,4)€E

on functions u : X — R. A discrete-to-continuum and dimensionally reduced limit is then
obtained by considering a scaled version of the energies

F(u)= Y &P —uy)
(i,5)€E

defined on functions u : eX — R, where we use the notation u; = u(ei), and taking their
limit in a suitable sense as € — 0. Note that we may interpret

— . gf Wi — Uy
e (s — ) = i — g1 (52 )

eli —Jl

as an inhomogeneous difference quotient, so that F. represent discrete versions of an (in-
homogeneous) Dirichlet integral, whose general continuous counterpart is of the form

ai’“ /E F(Vu)dz, (1)

with E a subset of R? x R* uniformly bounded in the last k variables. Energies of the form
(1) are the prototype of thin-structure energies on the continuum (see e.g. [8, 9]), which
have been treated extensively in the last thirty years. Among the many contribution to
the subject we recall the seminal paper by Le Dret and Raoult [25] which gives a general
dimension-reduction formula when E = R? x [0, 1] through a lower-dimensional quasicon-
vexification process. Moreover, a general compactness and integral-representation theorem
has been proved by Braides, Fonseca and Francfort [15], who interpret lower-dimensional
quasiconvexification through a homogenization formula, and extend the analysis to general
thin films with varying profiles. In their approach they deal with E that can be seen as
a subgraph of a function defined on RY. In our case, even if a continuum set E corre-
sponding to X can be constructed, it may not be a subgraph, as it might have holes or
even possess a more complex topology. Note that the assumption that the integration be
performed on the scaled ¢ E cannot be extended to arbitrary E. since in that case the limit
might not be simply d-dimensional if the complexity of the topology increased as ¢ — 0
(see the example by Braides and Bhattacharya [5]). We note that asymptotic analysis of
thin objects can be interpreted as an intermediate step in the study of structures with
very fast oscillating profile [11] (see also [4] for an example of application in a continuum
geometry). For other aspects of dimension reduction in variational problems we refer e.g.
to [6, 7, 23, 24, 26, 27, 29].



Discrete-to-continuum analyses for lattice energies are usually performed after identifi-
cation of functions defined on (portions of) lattices with their piecewise-constant interpola-
tions. This identification allows to embed families of energies in a common Lebesgue-space
environment (see the seminal paper by Alicandro and Cicalese [3]). Using this approach,
a discrete-to-continuum analog for thin films of the Braides, Fonseca and Francfort theory,
has been studied by Alicandro, Braides and Cicalese [2] (see also [28], and the work [18] for
a connection with aperiodic lattices). Due to the great generality of our discrete set X, we
will not extend functions defined on €X but follow a dimension-lowering coarse-graining
approach: to each function u. : eX — R we associate the function @, : eTZ? — R where
. (eT1) is obtained by averaging u. on sXﬂ((sTlJrs{O, oo, T=13%e{0,. .., Mfl}k). We
find coarse graining convenient in that it directly gives a function defined in a d-dimensional
set, without further scaling arguments. Moreover, this approach helps to separate the defi-
nition of a dimensionally reduced parameter, which is easily obtained from %. from analysis
of the finer behaviour of the functions u. at the ‘microscopic’ level, which is needed to use
technical arguments for the modification of boundary data. More precisely, we prove that
energy bounds on u. imply that the piecewise-constant interpolations of the corresponding
Te are precompact in L . (R?) and their limit is in H.(R?). In this way the dimensionally
reduced continuum parameter can be defined. In order to relate the original u. to this
limit, a Poincaré inequality must be used at scale €, which shows that the original u. con-
verge to u in a ‘perforated domain’ fashion (see e.g. [13]). Both the coarse-graining and the
Poincaré-type inequality are very reminiscent of the p-connectedness approach by Zhikov
[30], and of its use in the homogenization of singular structures by Braides and Chiado Piat
[10], even though in those papers p-connectedness is stated for local functionals depending
on the gradient. Here we deal with non-local interactions (that is, the energy densities
depend on finite differences of the parameter, and not on its gradient), even though the
non-locality weakens as € — 0, and some additional care has to be taken, similarly to the
case of the homogenization of convolution-type energies (see [1, 12, 17]).

The paper is organized as follows. In Section 2 we introduce the notation for the envi-
ronment X C R? x R¥ and for the energies that we consider, which are a little more general
than those described above in that a more general inhomogeneity is allowed by introduc-
ing interactions coefficients a;;, and the energies are localized by considering interactions
parameterized on a set Q C R?. Section 3 is devoted to the definition of coarse-grained
functions, and to the statement and proof of the two-connectedness property and of a
Poincaré-Wirtinger’s inequality. Section 4 contains a compactness result for coarse-grained
functions whose proof relies on the two-connectedness property and the corresponding con-
vergence of the original functions. The limit defines a function on a subset of R?. Section 5
contains a result that allows to consider boundary-values on ‘lateral boundaries’ of thin
films. A homogenization theorem for quadratic energies defined on X is stated in Sec-
tion 6. Its proof is subdivided into a lower bound by blow-up and an upper bound by
a direct construction. Moreover, an application to the description of the asymptotic be-
haviour of boundary-value problems is also described. Finally, Section 7 contains some
simple examples illustrating some possible non-trivial shapes of the thin structures we
consider.

Notation

e The letter C denotes a generic strictly positive constant not depending on the param-
eters of the problem considered, whose value may be different at every its appearance.

e If 2,y € R? then z - y denotes their scalar product. If t € R then [t] is its integer
part.
e The characteristic function of a set A is denoted by xa.

e For T' € N, we denote by Qr 4 the d-dimensional semi-open cube of side length T’; i.e.,
Qr,a:=[0,T)% If T = 1, we simply write Qu = Q1,4. Forl € Z%, Q% 4 := IT+[0,T)"
and for T = 1, we write Q% = Qll’d.

e Qr, denotes the k-dimensional semi-open cube of side length T’; i.e., Qr. := [0, T)*.
For T =1, we set Qx = Q1% and QF = n + Qy, if n € ZF.



e For any measurable set Q and u € L*(Q), f, u(z)dz denotes the average of u on €;
i.e.,

1
u(x)dzx = — [ u(z)dz,
]{z 12 Jo
where | - | stands for the Lebesgue measure.

e For any open set Q € R? and for any & > 0, we let Q(6) := {z% € Q : dist(z¢,9Q) >

5}.

2 Setting of problem
In the following X will be a fixed subset of Z¢ x {0,...,T —1}*, with d,k > 1 and T € N.
We assume that

(i) X is T-periodic in ey, ..., eq;

(ii) X is connected in the following sense: there exists £ C X x X such that for all 4,5 € X
there exists a sequence {in}gzo of points of X, with i9p = ¢ and iy = j, such that the
segment (in,int1) € E. Moreover, the set £ is T-periodic; i.e., if the segment (3, 7)
belongs to &, then, for any m = 1,...,d, the segment (i + T'e,, j + Ten) belongs to
&;

(iii) the set & is equi-bounded; i.e., there exists R > 0 such that

max{|i — j| : (i,5) € €} < R.

Assumption (iii) can be also seen as an hypothesis on the energy, telling which bonds
are active (the other bonds having zero energy).
Note that it is not restrictive to assume that R < T, upon taking a larger period.

Remark 2.1. In the notation above, we can include also the case of

k
XCdeH{O,...,Mn—l},
n=1

with 70, > 1, m = 1,...,d, and M,, > 1, n = 1,...,k, and X T,,-periodic in e,
for any m = 1,...,d. In this case, we take T equal to the lowest common multiple of
Ti,...,Ta,Mi,..., M.

Let a;; be T-periodic coeflicients in ey, ..., eq; i.e€.,
Qi+ Tep j+Tem — Aij for all Z,] c X, m € {1, . ,d},

such that a;; > 0 if (4,5) € € and a;; = 0 if (¢,7) ¢ £. It is not restrictive to suppose
that a;; = aj;. For € > 0, we introduce the family of functionals F. defined on functions
u:eX — R by

o\ 2
FE(U) — Z €daij (U'L . UJ) ,

i,j€X

where u; := u(ei). Note that also the case a;; = 1if (¢,7) € £ is non trivial. Note moreover
that, by the periodicity of a;j, there exists a positive constant C' such that C < a;; < 1/C
if (i,7) € &, so that F; is estimated from above and below by the energy corresponding to
ai; =11if (i,5) € €.

More in general, we will consider ‘localized’ versions of energies F;, limiting interactions
to i,j € X such that ei,ej € Q x eQr,, for some Lipschitz open subset €2 of R%: e,

F.(u) := Z e 2ai; (us — u )’ (2)
i,5e(1QxQr 1)NX

In order to study the asymptotic behaviour of F; as € — 0, we need to identify real-valued
functions u defined on X with piecewise-constant interpolations. To that end, let 2 be



an open subset of R? with Lipschitz boundary. For € > 0, let u. be a family of functions
ue : (2 x eQrx) NeX — R. Setting I. = I.(Q) :== {l € Z% : eQ% 4 C Q}, we define a
piecewise-constant function . in L*(Q) by

ﬂs(xd) = ZﬁlgerzT,d(xd), (3)

lel,

where @l is given by

1 1 y
e #(Qr.a x Qr ) N X] Z i (4)

i€(QY ;X QT 1)NX

with u; = u§ := u(g7). The set of functions C. () is defined by
C-(Q) := {u ‘RY x Qr,x — R : u is constant on EQfl X eQp
for (l,n)e(Zdﬁéﬂ)x{(),...,Tfl}k}, 5)

so that a function u : (eZ¢ N Q) x €{0,...,T —1}* NeX — R can be identified with its
extension belonging to C.(2). Note that any interpolation is well-defined since we consider
half-open cubes QY x eQ%.

We say that the family of function u. in C:(Q) converges to u € H'(Q) if

Te —u in Lpo(9). (6)

Now, we state the main result of this paper regarding the limit analysis as ¢ — 0 of
the family of functionals F. given by (2). This is done through the computation of the
corresponding I'-limit with respect to convergence (6).

Theorem 2.2. The family of functionals F. : Cc(2) — [0,00) given by (2) I'-converges
with respect to convergence (6) to the functional Fhom : H(Q) — R defined by

Fhom(u) = / AhomVu . Vuday
Q

where
1 .
AhomZ - Z = ﬁ mln{ Z Z aij(ui — 'LLj)2 .
1€(QT,aXQr,k)NX jERIXQrp 1)NX
ui — 2 4% is T-periodic in 617...,€d}. (7)
In this formula we interpret u; = z-i? as the discrete interpolation of the affine function
z - x4, with z¢ € R%.

The proof of Theorem 2.2 will be given Section 6 after proving some technical results.

3 Two-connectedness and Poincaré-Wirtinger’s in-
equality

In this section we prove two technical lemmas, which will allow to use some compactness
results for systems of nearest-neighbour interactions. To that end, for any real-valued
function u defined on X, we introduce a coarse-grained lower-dimensional variable @', with
I € 24, given by (4) with u; = u(4). In other words,

Sl 1 ,
YT H(Qra x Qo) N X] Z e

iE(QlT,dXQT,k)mX

The first result of this section states that a nearest-neighbour interaction energy on the
coarse-grained variable is (locally) dominated by the energy on X.



Proposition 3.1. There exist C = C(X) > 0 and M > 0 such that

’
@' —a"|*<c > s — 5] (8)
i,J€(QL, UQY, 4+(=M,M))xQp ,INX

for any 1,1 € Z* such that |l —I'| = 1.

Proof. Using definition (4) of @' and the change of indices j = i 4 Tey, for some m =
1,...,d, combined with the Holder inequality, we deduce that

S owe Y

i€(QY. X QT K)NX je(Qé:deQT,k)mX

Z (Ui — UitTen)

i€(Qh 4 X QT K)NX

|’ELZ _ ~l/|2 _ 1

“ #(Qr.a X Qo) N X)2

1 2

[#(Qr,a x Qr,x) N X)]?

1 2
< Ui — Uit Te,, | - 9
FQroxGronx] 2. fumuwere] )
1€(Qy ;X QT k)NX
The connectedness of X ensures that for all i € (QlT’d X Qr,k) N X, there exists a sequence
{jn}gio of points in X with jo = and jn, = ¢ + Tem, such that (jn,jnt+1) € €. Let v be
path joining ¢ and ¢ + Te,, through the points ji,...,jn,—1. Such a path 7 is contained
in [(Qf.q4U qu,«,d + (=M, M)*) x Qrx] N X, for some M > 0 large enough independent of
the point i. For any ¢ € (QlT’d X Qr,1) N X, we write that
N;
Ui = Uit Ten = D (U1 — ),
n=1

so that, due to (9) combined with the Holder inequality, we have that

N;

> (W — i)

n=1

2

1 U2 1
@ - < #(Qr.a x Qri) N X] Z

i€(QY X QT k)NX

N;
! . 2
= #[(Qr.a x Qrx) N X] Z NZZ W1 — s |
i€(Qh ,xQrpnX  n=1
max{N; : i € (QlT,d X Qrr)NX}
: #[(Qr,a X Qre) N X] Z

i, €(QY, JUQY, 4+ (=M M)} xQr ;INX

i —u;)?,

where in the last inequality we have used the fact that [(QlTﬂdUQlTlﬂd—i—(—M, M)M)xQr.x]NX
contains the path v joining ¢ and i 4+ Te,, for all i € (QlT’d X Qr.x) N X. This proves the
desired inequality. |

Remark 3.2. In order to reduce the number of parameters, we can choose M = T, up to
substituting 7" with a multiple and taking a slightly larger M.

We point out that in the following (4) and (8) will be applied to functions u : eX — R,
where u; stands for u(ei) as in the notation introduced above.

Now, we show a Poincaré-Wirtinger inequality. This will be used to recover information
on the original functions u from their coarse-grained versions.

Proposition 3.3. (i) There exists C = C(X) > 0 such that, for any | € Z¢,

Z i —a'> < C Z i — u;|*;

i€(Qh ;X QT ))NX 43€(Qk, ;X Q7 k)NX



(ii) there exist positive constants C' and M such that, for anyl € VA

Yo m-dfsc > aijlui —ugl*. (10)

i€(QY, X QT K)NX 4IE[(QY (=M M) xQp x]INX

Proof. (i) Using definition (4) of @' and thanks to the Holder inequality, we deduce that

12 1
Z fui =" = [#(Qr,a x Qr,x) N X)]? Z

i€(QY X Qr,k)NX i€(QY X Q1 K)NX GEQY., ;X Qr,k)NX

! 2
: #[(Qr,a x Qrx) N X] Z ui — uy ", (11)

LIE(QY 4 X QT k)NX

which concludes the proof.

(ii) Since X is connected and due to the boundedness and periodicity properties of the
coefficient a;j, there exists M > 0 large enough such that if ¢, j € (QlTyd X Qr,x) N X, then
there exists a path y joining ¢ and j which is contained in [(Q% 4+ (—M, M)%) x Qrx]NX.
From (11), we deduce (10) as desired. O

4 A compactness result

In this section, we show that sequences with equi-bounded energy are compact in L? with
limit in Hi (R%). More specifically, we show that from convergence (6) we obtain that

/~ lue — u)®x 4d g — 0, (12)
Qe (ViexeQq x Q)

where we have set i = (i%,i%) € Z¢ x {0,...,T — 1}* and Q. is given by

Q. = U €Q'r.a X QToks (13)

lelLe

and L. := {l € 2% : dist(el, dQ) > 2ev/dT}. The next proposition provides a compactness
result for u. given by (3) using the analysis of nearest-neighbour interactions in [3].

Proposition 4.1 (Compactness). Let Q be an open set of R? with Lipschitz boundary.
Let ue be a family of functions defined on (2 X eQr,x) NeX such that

> > > < C (14)

1€z ie(QY, ;X Qr x)NX

for all e >0, where uf =0 if i ¢ [(2QN Qle) X Qr.e) N X and

> > e i — P < C (15)

WIELI=UI=14 je[(Qh. ,uQY. 1+ (=M M) xQr k]INX

for all e > 0. Then, up to a subsequence, the family u., given by (3), strongly converges
in L .(Q) to some u € H'(Q).

Proof. First, we show that . weakly converges in L} to some u. Indeed, from (14), we
deduce that the norm ||[%el|/2(q) is bounded which implies the weak convergence of .
Moreover, thanks to assumption (15), an application of [3, Proposition 3.4] ensures that
u€ HY(Q).

Now, we prove the strong convergence in L7 _(Q) of @.. To this end, the key tool is
the Compactness Criterion by Fréchet and Kolmogorov (see, e.g. [19, Theorem 4.26]). In

R




other words, we have to prove that, for any Q” cC Q' and for any n > 0, there exists
6 > 0, with dist(Q2”, R4\ Q') > §, such that for every h € R?, with |h| < §, then

|7 _EE”LQ(Q”) <, (16)
where Thuc(z) := U (x + h). Assume that h = Aen, for some m = 1,...,d. The inequality
(16) for every h € R? is obtained by triangle inequality. Fix Q” CC Q' and set

I.:={l€ L. : Q CUeQlry C QY.

Take x € SQlT’d. Hence, we have that z € QY. , and (z + h) € EQ%d, for some 1,1' € T..
By definition of u. given by (3), we deduce that

PhTie (2) — e (2)[2 = e (z + h) — Te(2)|? = |k — ab 2 (17)

Since [ and I’ are not mnecessarily such that |l — 1’| = 1, we need to re-write the two-
connectedness inequality in terms of non-neighbouring cubes. In order to show this, let
S;;» be union of neighbouring cubes joining anT,d and EQ!nd such that each two consecutive

cubes have one face in common; i.e., Sy = Ugio sQlﬁd7 with |l, —ln—1] =1, lo =1 and
In. =1'. Note that the number N. of the cubes EQZT,d contained in stripes of cubes joining

EQlTyd and EQ%d is of order |h|T~'e™!. Hence, thanks to inequality (8), we deduce that

Ne 2
’
jal —aL P =y (ar —ar)
n=1
< |nl7"" *1Z|~l" — s

N

< ClhT et Z Z lus — u5|?

"=lijelQly ey P (M M) D) x QI X

< ClhT e} > uf — us)?.

4J €[Sy +H(=M,M)) xQp ,]INX
Plugging the above inequality in (17), we obtain that

|ThTe (z) — e (z)|* < ClAT et Z Jus — u§|?
1, E€[(Sy H(=M, M) xQr x]NX

=C|hT et Z u§ —us|?,

Lj€(S(@,h) X Qr,x)NX

where we have set S(z,h) := Sy + (=M, M)* which depends on = and h. Now, an
integration with respect to x € teT’d yields

[ i) —w@)Pde < cprte [ ( > g —uilQ)dw
€Qr 4 Q4 )X

1,J€(S(@,h) X Q)N
< ClR|T et > lui — 5[,

$IE(S(eQY, ;Hh) X QT K )NX
where we have used the fact that
S(z,h) C S(EQlT,mh) = U{S(:E, h):z¢€ EQZTA}.
Summing over Z., we have that

Z/ o) - 7. (a)Pde < ClAT* e S 3 g — s,

leZe L€Zc i,je(S(eQ. 4 h) X Qr,k)NX



which implies that

/ |Thtie () — e (z)|*da < Z/ |Tntie (z) — e (z)|*dx < C|h|,
Qr QgT,d

lez.” ¢

where we have used assumption (15) and the fact that the number of indices ! and I’
such that S(sQlT’d,h) n S(eQ%d, h) # 0 is of the order of the ratio between the size of
S(eQ'r 4, h) and the size of QY 4; that is, of [R|T~'e™'. This concludes the proof of (16).

Finally, applying the compactness criterion, it follows that, up to a subsequence, w. —
v. Since we already know that uw. — wu, we conclude that v = w, which is the desired
claim. O

The next proposition provides a convergence result in the sense of (12).

Proposition 4.2. Let Q be an open set of R with Lipschitz boundary. Let u. be a sequence
of functions defined on €X such that

sup(Z Z elus? + Fg(us)) <C. (18)

>0
l€Le ie(QL, ,xQr 1)NX

Then, up to a subsequence, we have that

2
//55 |u5 - u| XUieXEQZdXQéﬁk — 0,
where u € H'(Q) is the strong limit in L (Q) of the sequence T and Q. is given by (13).

Proof. Set z = (z%,2%) € EQZTJ X Qr,r and recall that u. is defined on EQlT,d X QT k-
Hence,

2 — 2
Lty o s @Ple < [ —m@x e el

+ /v [(@e — u)(z)x ik (m)\de.

Uiexé’ind xQ
(19)

With a slight abuse of notation here we let T, (x) = T (z%). From Proposition 4.1, we know
that T, strongly converges to u in LY (), so that the second integral in (19) vanishes as
e — 0.

In order to estimate the first integral of (19), the key tool is the Poincaré-Wirtinger
inequality given by (10). Indeed, due to the fact that u. is constant on eQ% x Q). and 7.
is constant on anT’d X Qr, we deduce that

/~ (e _aa)(I)XUiEXEQZId " Q;-:, (z)*dx = e? Z Z lu; — ﬁé|2

QS
1€Ls ie(QY, X Qr k)NX
<y > ol w3
l€Le i, je[(Qr,a+(—T,T))xQr x]NX
< 2F, (ue).

From this, combined with assumption (18), we have that also the first integral of (19) goes
to 0 as € — 0, which concludes the proof. O



5 Treatment of boundary data

In this section we prove a technical result which allows to match boundary conditions. The
proof is close in spirit to the method introduced by De Giorgi (see [21], [14, Chapter 11],
[20, Chapter 18], and [15] in the context of dimension reduction). For future reference we
prove it in a general form.

For any u € H*(Q), we define the sequence v. on ¢X by

v = ve(ei) = ][Vd+ 0 u(z)d. (20)

We have that v. converges to u with respect to convergence (6). For any bounded open
set A and for § > 0, we define A(J) := {z € A : dist(z,04) > ¢}.

Lemma 5.1. Let A be a bounded and open set of ) with Lipschitz boundary. Let us be a
sequence converging to w € H*(Q) with respect to convergence (6). For any § > 0, there
exists a sequence we converging to u with respect convergence (6) such that

We = Ue, ifi € (A(26) XQqu)ﬁX,

We = Ve, ifie(A\A(é)xQT,k)ﬂX,

and
lim sup(F:(we) — Fo(ue)) < o(1) (21)

e—0

as § — 0.
Proof. Fixed N € Nand 6 € (0,1/4). For h € {0,..., N}, we set

Ani={w e A dist(e, 409) < h%}

For h € {0,---,N — 1}, let ¢" be a cut-off function between A, and Ay 41 with |[V¢l| <
2N/§ and let w. be a function defined by

wi = we(ei,ei") = ¢l (ei")uf + (1 — Pl (ei?))vy. (22)

Since both u. and v. converge to u with respect to convergence given by (6), we also
deduce that w. converges to u with respect to (6). By adding and subtracting the term
ol (ei)u5 + (1 — ¢l (i?))v5, we get that

wi —wj = ¢y(ei) (uf — u5) + (1 — ¢g(ei) (vf —v7) + (di(ei?) — pi(es”)) (u5 — v5).
(23)
For h € {1,..., N — 2}, we set
Sit = Ans1 \ An,
so that A = A, UA\ Zh+1 @] SZ. In order to estimate the energy
S e aywi - w)?,
1,5E€(2AXQp k)NX

we separately evaluate the following cases
i) 1,5 € (2An x Qrr) N X;

€ (2(AnU(A\ Ant1)) X Qre) N X and j € (257 x Qre) N X;
v ZE(%A}L XQTyk)ﬂX andje(é(A\ZhH) XQT,k)ﬂX;
vi) 1 € (i(A\Zh_‘_l) X QT,k) NXandje (%Ah X QT,k) ap.e
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as follows
i) In view of definition (22), we deduce that

Z e a (wf —wi)? = Z ey (uf — uf)?

1L,IE(L AR xQr )NX 1,5E(L A xQr k)NX

< Z e a; (uf —u5)?. (24)

1,5E(LAXQT K )NX

ii) We have that
> £ 2ay (uf — wf)? = > e ay(0f — v5)?

i,5€(2(A\Ap41)XQp,)NX i,5€(2(A\Ap41)XQrp,)NX

Z elai;(v§ — vf-)z. (25)

,5€(L(ANA(8) x Q)N X

IN

In view of definition of v given by (20) and since €i? + eQq = (3% — j%) + €5 + €Qu, we
deduce that
2

jof — o5 [?

][ u(x)dr — ][ u(z)dz
eid+st ejd+st

Foo et = ) - u(w)is
ejd+eQq

2

(26)

Since u € H*(€2), we have that

u(o+2(* =) —uta) = [ Gha et - Nar

= /O Vu(z + et (i — j%)) - (i — j%)dt.

This, combined with (26) and the Fubini theorem, implies that

2

2
A

1
][ / Vau(z + et(i® — j%)) - e(i® — j4)dtdx
cj?+eQq JO

2

1 1
= / / Vau(z + et(i® — §%) - e(i® — j4)dzdt
€ Jo Jejdteq

1
<@ il [T e ) P
0 ejd4+eQq

1
S / / |Vu(x))|*dzdt, (27)
0 Jeid4e[0,T41)d

where in the last inequality we have used the fact that the nodes i and j interact at most
at distance T'. In view of the assumption of finite range along with estimate above, from
(25), it follows that

Z e a(wf —wS)? < C Z / |Vu(z)|>d
eid+e[0,T—1)4

1,§€(2(A\Ap 1) XQr k)NX i€(L(A\VA(8) X QT k)NX

<C |Vu(z)|*dz, (28)
A\A(26)

where the constant C' is due to the fact that a fixed node i € 1(A\ A(6)) x Qrx) N X

interacts with a finite number of nodes j € 1(A4\ A(d)) x Qrx) N X.

€

11



iii) First note that due to the assumption of finite range, if €i? € S¢, then €5 € §z =
Sd  ustu Sgﬂ. This combined with (23) and the Jensen inequality implies that

S aywi =Y e ey — )

ie(LSxQr p)nX ie(LSExQp p)NX
je(%AXQT,k)ﬁX jE(%é\zXQTYk)ﬂX
<C Z e %ai(uf —u5)? + C Z e a;(vf —v5)?
ie(15¢xQr,K)NX ie(158xQr )NX
JE(L8ExQr )NX JE(L8ExQr )NX
d—2 h/_.d h -d\\2 2
+C Y e ay(dh(e?) — di(ei ") s — ) (20)

ie(1sdxQr )nx
je(15dxQr p)NX

Due to the fact that |V¢}| < 2N/4, the last integral in (29) can be estimated as follows

d—2 h .d h -d\\2 2
S e ay0le®) - gi(edh) (u5 — of)
ie(1stxQr p)nx
je(%gﬁXQT,k)ﬁX
N2 d—2 € £\2 N2 d € £\2
<57 Z e aij(u; —v;)" < 3 Z e%as;(uj — v5)".
ie(%:s‘\szTyk)mX i,5€(L AXQp )NX

py
JE(LSIxQrr)NX

In order to estimate the first two integrals in (29), we may choose h € {1,..., N — 2} such
that

d—2 € £\2 5 £\2

E € Tay [(Ui —u3)” + (vi —vj) }
ie(1s8xQr p)nx
JE(LSEXxQr )NX

1 d—2 2 1 d—2 2
< N3 Z e %aij (ui — uj) +N72 Z e“ “ai; (vi — v5)
4,JE(LAXQT x)NX 4,J€(2AXQr k)NX
1 d—2 e £\2 C 2
< e Tai(u; —uj)’ + ——= [Vu(z)|"dx
N -2 Z 7 7 N —2 Ja\ aces) ’

1,JE(LAXQT K)NX

where we have used (27) and the assumption of finite range. This, combined with (29),
leads us to

_ 1 _
Z e a (wf —w)? < C’m Z e a; (uf —u5)?
ie(158xQr )NX i,j€(LAXQr k)NX
JE(2AXQr K)NX
C 2 N2 d € £\2
+ m A |Vu(m)| dx + C? Z € Qij (Uj — ’Uj) . (30)

i€(1SExQr K)NX
JE(EAXQr K)NX

iv) Note that

d—2 5 £\2 d—2 = £\2
> Sl —w)? S Y ey - e’
i€(L(ARUA\A 1) XQr k)NX i€(2AXQr p)NX

JELSExQr p)NX JELSExQr K )NX

so that, the same argument as for iii) can be performed, obtaining estimate (30).

In view of the finite-range assumption, the points belonging to sets of items (v) and
(vi) do not have any interaction since 6/N >> T

12



Gathering estimates (24), (28) and (30), we obtain that, for h € {1,..., N — 2},

Z Ed_gaij (w; — wgg')2 < Z 5d_2aij (ui — u;)Q

1,j€(LAXQr k)NX i,jE(LAXQr k)NX
1 _
+C [Vu(z)|*dz + C———= Z e a; (uf —u5)?
A\A(26) N -2 '
§JE(TAXQT )NX
C 2 N2 d € £\2
+ ~_3 G |Vu(z)|“dz + 05—2 Z e%ai;(uj —v5)".

ie(158xQr )NX
JE(2AXQr p)NX
(31)

Note that the last sum vanishes as ¢ — 0 since both u. and v. converge to u with
respect to convergence (6). Hence, taking the limit as € — 0 of (31), we obtain that

limsup Fe(we) — Fe(ue) < C |Vu(z)|*dz + ¢ lim inf F; (uc)
c—0 A\A(26) N—-2 e0
+ ¢ |Vu(z)|>dz
N =2 Ja\ae) '
Letting first N — oo and then 6 — 0, we get inequality (41) as desired. O

6 Homogenization

This section is devoted to the proof of Theorem 2.2. We adopt a direct approach proving
separately the lower and the upper bound inequalities for the family F. given by (2).

6.1 Proof of the lower bound

We prove the lower-bound inequality for the family F: using the blow-up method introduced
by Fonseca and Miiller [22] (see also [16]).

Let u. be a sequence with equi-bounded energy F.(uc) and such that u. converge to
u € H'(Q). Let the sequence of positive measures \. be defined as

Ae 1= e %ai;(uf — u5)? ) dei,
> (% )

i€(2QX Q7 K )NX SJE(LQXQr Kp)NX

where J, is the Dirac measure concentrated at . The d-dimensional measure . is defined
by

pe(B) = Ae(BxeQri) = S ey - )’

i€(1BxQr,)NX je(1axQr 1)NX

for Borel sets B of R%. Note that e (B) takes into account interactions between the nodes
with projection in B and the ones in all X, but, in view of the equi-boundedness of &,
which is a finite-range assumption, we can limit the interactions between the nodes with
projection in B and those with projection in an € R-neighbourhood of B.

Since e () = F:(u.) and thanks to the equi-boundedness of F:(uc), the measures jic
are also equi-bounded, so that, up to subsequences, we deduce that

*

N‘E_\p’a

where p is a d-dimensional positive measure on 2. The Radon-Nikodym decomposition of
the limit measure p with respect to the d-dimensional Lebesgue measure £ enables us to
write that

d s
p=Erd e
dx

with ® L £% Note that the positiveness of p ensures that its singular part u° is positive
as well.
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Now, we perform a local analysis. Let zo € € be a Lebesgue point for p with respect
to £ i.e.,

d

i(mo) — lim :u‘d(QP»d(IO)) — lim M(QP’Z(xO))v (32)
dx p—0 LUQp,a(z0))  p—0 P

with Q, (o) := xo + [0, p)*. Thanks to the Besicovitch Derivation Theorem, £%-almost

every zo € Q is a Lebesgue point for u with respect to £%. Moreover, in view of [31,

Theorem 3.4.2], we have that, up to a set of zero Lebesgue measure, xq is a point such that

1/2
lim 1 (1/ |u(z) — u(zo) — Vu(zo) - (z — x0)|2dx> =0. (33)
Qp,a(zo0)

p—0 p \ p?
In other words, performing the change of variables x = py + xo in the above integral, we
have that
u(py + o) — u(wo)
P

For all p — 0 but a countable set, we have that p(9Q,.a(zo)) = 0 and hence for such p we
have that

— Vu(zo) -y in L*(Qq).

#(@p.a(0)) = i e (Qpuao)). (34)
Therefore, from (32), it follows that

du o e (@p,a(0))

— = lim 1 : .

dr (70) = Jm lim =

Now, we perform the blow-up argument. Since xo € € is a Lebesgue point and due to a
diagonalization argument on (32) and (34), there exists a sequence p. — 0 as ¢ — 0 such
that p. >> ¢ and the following equalities

dp pe(Qp.,d(x0))
hatand — 1 £
U (a) =ty L Boetz0), (35)
and )
lim - / e — ul(2)x i a(@)dz =0, (36)
=0 Pe JQ,_ a(z0)xQr ViexeQq xQj

hold. Thanks to the link between the measure p. and the energy F, equality (35) can be
re-written as

dp .1 d—2 2
%(Io) = il—% P Z Z e “ai;(ui —uj)”.

iG(Q&)d(%)XQT,k)ﬁX JE(2OXQr )NX

Now, the aim is to estimate the limit above. First, note that since the coefficients a;;
are positive, we can consider only interactions taking place between nodes inside the cube
Qe 4(wo/e) X Q1,k, SO that

'U‘E(pri(’id(xo)) > id Z Ed72aij(uf — u;:)2 (37)

15€(Qpe 4(L)X QT )NX

We need to modify u. in order to define a function ve converging to the affine function
Vu(zo) - 2% in L?(Qq). To that end, let . = o, and let X,_. be the set X rescaled to

NeZ% x {0,..., T — 1}*. We define v£ on (Q4 X Qr.x) N X,. e by
ue (e + xo, 1) — u(xo)

v? (nsid7 Eik) = , (38)
pe

where u. is defined on (Q..a(z0) X Q7,x) NeX. Note that since u. is a function in C. (1),

d -k
v can be identified with a piecewise-constant function on 7.QY x Q% if (i%,i*) € X. For

= (2% 2%) € R x Qr 1, we set wo(z) := Vu(zo) - % and we show that

lim [ve(x) — wo(a:)|2)(U (z)dz = 0. (39)

4k
iexNe QY XQ7
=0 QaxQr i rextea k
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To this end, we introduce the function ug given by uo(z?) := u(xo) + wo(z). Hence,
w(z0) = uo(pz®) — pVu(z0) - 3 = uo(pa) — puo ().

This, combined with (38), implies that

/deQTk [v8(z) — wo(x)] Xuexne@it x @it (z)dx

2
_ / Ue (psxd + xo, sxk) — u(zo)
QaXQr K

X

py — wo(x) Uiexne@id x Qi (z)dx

2
oy e (pe + 0, £2%) — uo(pea) )is
QaXQr k

i d ik
PR ‘ XU xne Q¥ x Qi

d ky d 2
< ue(pea” + 20,627) — ulpea” 1 20) i o (@)de
QaxQr k Pe UiexmeQy XQ}
d _ dy |2
+/ u(pex® + o) — uo(pez?) - (@) (40)
QaxQr,k Pe iexneQYy xXQp,

The first integral in (40) goes to 0 as ¢ — 0. Indeed, due to the change of variables

yd = pg:cd + 20, we deduce that

d dy |2
u(pex To) — U T
/ (pe + 0) 0(p5 ) ’ Xuv Q«id XQik‘ (ZI))dl’ddIk
QdXQT,k Pe ieXMNely k
1 / d _k dy(2 d, k
= 19 ‘u€(y , ET )—U(y )| X . id ik (Z‘)dy dl‘ 9
Pg+2 Qpe,d(0) X Q1 ViexeQq xQy

which vanishes as ¢ — 0 thanks to (36). We evaluate the second integral in (40). Using
again the change of variables y? = p.xz¢ + x¢ and the definition of ug, we have that

d _k dy|2 adz
/ng.d(IO)XQT.k |u(y et )_U(y )| XUieXEQZdXQLk (x)dy da
11
< TP lu(y®) = uo(y — o)|*dy*
P Pe JQ,._ a(zo)
11
- il [u(y™) — u(x0) — Vu(wo) - (y — wo)*dy*.

P2 p¢ Jq,_ y(o)

Thanks to (33), it follows that also the integral above vanishes as ¢ — 0 so that we can
conclude that (39) holds. Set

ve(nei, €i®) 1= vPe (nid, ei®).
Now, using Lemma 5.1, we may modify the sequence v. to get a new sequence ¥ which
is equal to Vu(zo) - n-i? near the boundary (9Qa x Qr.x) N X, where X,,_ is the set X
rescaled to n.Z% x {0,...,T — 1}*, and

lim sup > 12 (0 (n-1%, €i*) — (0 (04, 5%))
e—0
(neid,i*),(nejé,5%)€(QaxQr, k)N Xy,
< limsup > 12 ai; (ve(nei?, €i*) — (v-(n-3,e5%)) + o(1).
e—0

(nei?,i%),(nej4,5%)€(Qa X Qr k)N Xn,

(41)
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In order to simplify the notation, we may assume that zo € eTZ% so that we avoid the
translation of the coefficients a;;. In view of (37) and thanks estimate (41), we have that

2
dup . d—2 u; —uj
—(zp) > limsu Qij !
dCC( 0) - E*)()p Z i Ne J e
(neid,ik),(nejd,i%)€(Qa(52)X QT k)N Xy,
= lim sup Z 77?_2(11'3' (Us(ﬁaid7 Eik) - Us(nejdv Ejk))2
e—=0 . d s
(nei?,i%),(nej4,5%)€(Qa X Qr k)N Xn,
. d—2 - d .k ~ d_k\\2
> lim sup Z Ne @iz (0 (nei®, €i”) — Ve (nej®, €j"))
e—0
(neid,ik),(nejd,i*)€(QaxQr, k)N Xn,
. . d—2 d .k d_k\\2
> hmsuplnf{ Z Ne “aij(we(Mei®, et”) —we(mej® ej"))
e—0

(nei,ik),(nej %) €(QaxQr k)N Xy,
wg(mid7 Eik) = Vu(zo) -ngid, if dist(ngid,an) < 2175\/QT}.

Setting K. = |1/(n.T") |, we have that
dﬁ($0) > lim inf ; inf Z iGﬂij ('lUs (neid, 5’Lk) — We (nsjd7 Ejk))Q :
dx ~ emo0 (K.T)d 2

1,J€(QK.T,aXQT,k)NX

we (nei®, €i) = Vu(zo) - nei® if dist(nei®, 0Qk.1.4) < 2778\/ET}

. 1 . _ _
2 llI;l}l(I)‘lf ([(67,1_‘)‘1 lnf{ Z Q45 ('I.U'L - wi)2 :
1,J€E(QK . T,aXQT,k)NX

W; = Vu(zo) - i if dist(i, 0Qk.1,a) < 2\/&T}

= fo(vu(ﬁﬂo))7
where we have set @; := we(n.i¢, €i*) /n.. Therefore, for £%-almost every zo € Q, we have
d
ﬁ(mo) > AnomVu(zo) - Vu(zo).

Integrating on 2, we conclude that

dx

w(2) > /Q Mdm > /QAhomVu(x)-Vu(m)dx.

Since pe — p, we have that lim infe_,o pe(Q) > (). This implies that

e—0

lim inf F; (ue) = lim i(I)lf pe () > p(92) > / AnomVu(z) - Vu(z)dr = Fhom(u),
E—r O

which concludes the proof of the lower bound.
It remains to prove that fo satisfies formula (7). First, we prove the existence of the
limit.

Proposition 6.1. For all z € R there exists the limit

fo(z) = lim (KIT)d inf{ Z aij(ui = u;)? :

1,JE(QKT,axXQr, k)NX

wi = 2 i if dist(i%, 0Qx1.a) < N&T}. (42)

Proof. For fixed K € N and z € R?, we set

f&(z) = ﬁ inf{ Z aij(u; —uj)°

4,J€(QKT,axQr,k)NX

u; = z -3 if dist(i% 0Qx1.4) < 2\/&T}.
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Let u¥ be a function such that

FEE Y wf —u) <

,JE(QKT,axQr,k)NX

and uf = z -9, if dist(4%, 0QxT.4) < 2VdT. For H > K, we introduce the set of indices
T:={1€Z:0<(K+1)lm < Hm=1,...,d}. We define

U; = d

H uK(id - lvlk) +z- la (Zd77‘k) S QZKT,d X QT,ka l € Iv
zZ-1, otherwise.

We have that

BO< g Y el -y

1,JE(QHT,aXQT,k)NX

1 2
~ 1)’ 2 2, )

iE(UzezQ%T@XQT,k)ﬂX JEQHT,aXQT k)NX

+ HTy 2 S auli—uf @3)

€[(Qur,a\Viezl ) *xQr 1 ]NX IEQHT,aXQr,k)NX

Due to the finite-range assumption there is no interaction between nodes in (Ulez QIKT’d X

Qr,x)NX and those in [(Qur,a\ UZEI QlKTyd) X Qr,k] N X. This implies that the first sum
in (43) may be estimated as

1 K H\2
G P 2 e )

ie(U,eIQ%TYd XQr, )NX JEQHT,aXQr,Kk)NX

K4 1
- T ) s (uf =t < S @)+ kY
45€(U1ez QY 1 4 X Q1 k)NX lez
K| H |? 1 K¢ 1
< 7d [THJ (fi'(x)+ K1) < W(f(f(z) +K7). (44)

Using the finite-range assumption, the second sum in (43) may be estimated as

1 d H\2
Ty 2 > wlit-u)

ie[(QHT.d\UlEIQlKT)d)XQT,k]ﬂX JEQHT,axQr,Kk)NX

1 .d .d 2
HT)d Z ( Z aijlz i —z-j I)

€[(QuT,a\ViezQly )X Qr,k]INX JEQHT,aXQT 1)NX

C . Z ( Z aijlid—jd\Q)

i€[(QuT,d\ViezQYr ;)X QT k]NX JE(QHT,axQT,k)NX

IN

—~

IN

a 3

A

H d
—_— | . 4
= (HT)? {KJrlJ (45)
Combining (44) and (45), from (43) it follows that

d
) < g @+ K +

1
TI(K + 1)2°

Taking first the limsup as H — oo and then the lower limit as K — oo, we obtain

limsup fo' (z) < liminf f§* (2),
H—oc0 K—ro0

which concludes the proof. O
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Since we deal with convex energies, asymptotic homogenization formula (42) can be
reduced to a single periodic minimization problem.

Proposition 6.2. We have that fo(z) defined by (42) coincides with fuom(z) defined for
z € R as

1. Z Z
fhom(z) = ﬁ mf{ aij(ui - u]')z :
1€(QT,aXQr,k)NX jE(RIXQrp )NX

wi —z-i% s T-periodic in eq, ..., ed}. (46)

Proof. Fix z € R%. First, we prove that fo(2z) < fhom(z). To this end, for § > 0, let u” be
a function satisfying

1
KDY S el —uf) < fom() +0

1€(QT,a X QT k)NX jeRIXQp, )NX

and u¥ — 2 - % is T-periodic in ey, ...,eq. We define ui = u.(ei) := eu® (7). Note that
u$ converges to z - £¢ with respect to the convergence given by (6). Set I¢ := {l € Z¢ :
elT +eQr,aN # 0}. In view of Theorem 2.2 and the periodicity of a;;, we deduce that

|| fo(2) < liminf F (u.)
e—0

< limsup Fz(ue) < limsup elai; (u? — u)?
S 5( e) o Z Z ZJ( [ ])
lel i, je(QY, 4 xQr,k)NX
< lim sup e? ai;(u? —u?)?
OIS SRNND SR
lerd  i€(Qr,aXQr,k)NX jERIXQr )NX

< 1Q/(from(2) + 9).

From the arbitrariness of 4, the conclusion follows.
It remains to show that fuom(z) < fo(z). Let v be a function defined on (Qxr,a X

Qr.) N X such that v; = z - i if dist(4%, 0Qx7.a) < 2v/dT. We define a function u on
(Qr.a x Qrx) N X by

u(i) = 2o Z v(i + 1T, i%).
1c{o,...,K—1}d

With the help of Jensen’s inequality combined with the assumption of finite range and the
periodicity of a;;, we deduce that

foom(2) < % > > aylu—w)

1€(QT,a X Q1 k)NX jeRIXQp )NX

< (KlT)d > > > ay@® +1T,") — oG +IT,50)?

1€(QT,a X Q1 k)NX je(RIXQr )NX 1€{0,...,K—1}4

1 2
= (KT)d Z aij(vi — Uj) .

1,J€E(QKT,axQr,Kk)NX

Taking the infimum, we get

fhom(Z) S 1 inf{ Z Qi (’Uz‘ — Uj)2 V=2 id if dist(id,aQKT,d) < 2\/&T}

(KT)4
1,J€(QKT,axQr,Kk)NX

Then, passing to the limit as K — oo, we have the desired inequality which concludes the
proof. O
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6.2 Proof of the upper bound

We now prove the I'-lim sup inequality. The proof is independent of the blow-up result and
it relies on the validity of the homogenization formula and a standard density argument
by piecewise-affine functions (see [8, Remark 1.29]). We consider the case when the target
function u is piecewise-affine and we assume that the gradient of u takes A values, for some
)\ positive integer. For fixed z1,...,2x € R, we define

Q:={z? € Q: u(z?) =z, - 2 + ¢, },

for g =1,...,\ (with ¢4 some constant).
We fix one such q. We choose w? € C.(Qr,q) such that w] — z -
e1,...,eq and

i% is T-periodic in

> ai; (W = W) = from(2q)-

,J€(QT,a X QT 1k)NX

For any ¢ = 1,...,\, we define u? := ui(ei) = ew?(i) + ¢q. In view of Lemma 5.1, we
may modify the sequence ud to obtain a new sequence v®? converging to z, - £ + ¢, with
respect to convergence (6) such that

R Zq - ei + cg, ifi € ((Qg\ Q(6)) x Qrr) N X,

UZ
p50 = 59, if i € (Qq(20) x Qr.1) N X,
and
lim sup F2(v2°) < limsup FZ (uf) 4 o(1) (47)
e—0 e—0
as 6 — 0, where FZ is the functional defined as in (2) with €, in the place of €.
Now, we estimate FZ(u). To that end, for ¢ = 1,..., A, we introduce the set of indices
¢, ={l ez : eQ} 4N Qy # 0}, and we deduce that
Fi(ul) = Z 5d72aij(uf’q — uj’q)2

i,5€(2QgxQrp k)NX
< > eau; (w (i) — w(5))
HI€(Vezd . Qb 4 xQrr)NX

< Z et Z aij(w? (i) — w(§)* < | from(zq) + o(1),

€78 ,5€(Qh, ;X Qr p)NX
as € — 0. This combined with (47) implies that
lim sup Fg(vgﬁ) < Q4] from (24) + o(1) (48)

e—0
as 6 — 0.
Now, we define the recovery sequence v° by
vy = vf’q"s if i € Qg

for g =1,...,\. To conclude the proof, it remains to show that, given q1,¢2 € {1,..., A},

lim sup Z e a;(vf —v5)® = o(1) (49)
e—0
ie(%qu XQr,k)NX
FE(L2 Qg X QT )NX
as 0 — 0.
Since § >> €T, the interactions between nodes in (1€, (20) x Qrx) N X and (£(Qq, \
Q4,(6)) x Qr,x) N X or nodes in (£, (26) x Qr,x) N X and (£, (20) x Qr,x) N X do not
take place. This allows to reduce (49) to the following estimate

lim sup Z eaij(uf —u5)® = o(1) (50)
e—0
€[ L (g1 \Qq; (8))XQr, K INX
FE[Z (R \ Q05 (5)) XQr,x]INX
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as § — 0, where we have set u$ = u(ei?), and used the fact that vf’q”s =246+ cg =us

if 1 € (g \ Q4(6) X Q%) N X. By the Lipschitz continuity of u we deduce that

Z sd_2aij(uf - U;)Q <C Z 5daij|id - jd|2
i€[1 (241 \ Qg7 ()X Qr 1 ]INX i€[L (g, \Qq; (6)) X Qp k]NX
JEIL (245 \2g5 (6)) XQr INX FEIL (295 \ Qg5 (8)) X Qr 1 ]NX

A
S C max{ai]-}Tk Z’ U EQZ

=1 1€[1(24\24(5))]

< 0o

(the final C taking into account the bound for a;;, their range, 7" and the H9! measure
of the union of 99y), which proves (50).
Gathering estimates (48) and (49), we deduce that

A
lim sup Z 5d72aij(vf - UJE-)2 < Z || from (2q) + 0o(1).

e—=0 1
i,JE(LQXQr x)NX =1

as § — 0, which concludes the proof of the upper bound.

Remark 6.3. Recall that the I'-limit of a family of non-negative quadratic forms is still a
non-negative quadratic form (see e.g. [20, Theorem 11.10]). Applying this property in our
setting, we deduce that the I'-limit Fhom of F: is a non-negative quadratic form. In other
words, there exists a symmetric matrix Anom such that fhom(2) = Ahomz - z, which finally
gives (7).

6.3 Convergence of minimum problems

In this section, we deal with minimum problems with boundary data. To this end, we
derive compactness result in the case that the functionals F:. are subjected to Dirichlet
boundary conditions. In the discrete setting, such conditions are imposed by introducing
a parameter r € N and fixing the value of u in a neighbourhood of the ‘lateral boundary’
of Q X Qr,x, corresponding to i in a neighbourhood of the boundary of Q C R?, of size
er.

For any r > 0 and given ¢ € Hl(Rd)7 we introduce the set

CE(Q) = {u €C(Q) : u(er) = ][ o(zh)dz® if (e + (—er,er)’) NRY\ Q # (Z)} .

id4+eQq

We define the functional FZ'" by
F2"(u) := F.(u), uwell"(Q).
Theorem 6.4. For any ¢ € H'(R?), let F* be the functional defined by
AnomVu - Vudz, u— o€ Ho(Q
o / )
00, otherwise,

where Anom is given by (7). Then, for anyr > 0, the family of functionals F£'" T'-converges
to the functional F'¥ with respect to convergence (6).

Proof. We prove the I'-liminf inequality. To that end, we prove that if u. converges to u
with respect to convergence (6) and F£'"(u.) is equibounded, then u — ¢ € H(Q). First,
note that if sup,. o F¥"(us) < 0o, then, thanks to the coerciveness of the coefficients aj,

we deduce that
d—2/ € £\2
sup g e (u; —uj)” < oo.
e—0
1,5€(1 QX Q7 K)NX
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We denote by . the extension of u. on the whole X defined by 4 = o(gi?), for any
e > 0 and outside €. Analogously, @ is the extension of u on R? obtained by setting
i(z?) = p(x?). Let Q' be an open set such that @ CC Q'. Hence, we have that

> e ai; (a5 — a5)" < > e Py (uf — u5)?
§JE(3Q XQr,k)NX 15E(F QX QT 1)NX
+ > % (p(ei?) — p(ej?)? < C.
4I€(2(\Q) X Qr,k)NX
Repeating similar arguments as the proof of I'-lim inf inequality of Theorem 2.2 and since

il converges to i, we deduce that 4 € H*(€') and hence u — ¢ € Hj (). Then, invoking
again Theorem 2.2, we have that

liminf F¥" (u.) = liminf F.(u.) > F¥(u),

e—0 e—0

as desired.

Now, we show the T'-limsup inequality. First, consider the case where u € H*(Q) such
that supp(u — ¢) CC Q. The general case is obtained by a density argument.

Consider a target function u such that supp(u —¢) CC Q. In view of Theorem 2.2, we
know that there exists a recovery sequence u. converging to u such that

lim F(u:) = / ApomVu - Vudz.
e—=0 Q

In order to modify the sequence u. near the boundary of 2, we apply Lemma 5.1 with
ve = u. Hence, there exists a sequence w. such that w, still converges to u with respect
to convergence (6), we = u is a neighbourhood of Q and

lim sup F:(we) < limsup F:(ue) + o(1).

e—0 e—0

Since supp(u — ¢) CC £, it follows that w. is equal to ¢ is a neighbourhood of §2, so that
F# " (we) = F.(w:). We may conclude that

limsup F" (w.) < limsup Fz(us) + o(1) = F¥(u) + o(1),

e—0 e—0

which concludes the proof. O

Now, we state the following result which deals with convergence of minimum problems
with Dirichlet boundary data.

Proposition 6.5. We have that

lim inf{F: (u) : u € C&"(Q)} = min{ Fiom(u) : u — ¢ € Hy(Q)}.

e—0

Moreover, if u. € C£"(Q) converges to @ with respect to convergence (6) and it is such that

lim F:(uc) = lim inf{F:(u) : u € CZ"(Q)},
e—0 e—0
Then, u is a minimizer for min{ Fhom (u) : u — @ € H3(Q)}.

Proof. We have to show the equi-coerciveness of F¥'" with respect the topology defined
by (6). To that end, consider {u.} C C£"(2) such that sup, o FZ" (ue) < 0o. In view of
inequality (51) applied to u — ¢, we deduce that

> > i —pilf <0 > laylf — i) — (45 — @)
leZdi,jE(QlTvdeTyk)ﬁX 1L,JE(2QXQr K)NX

< CF.(us) +C Z elaijloi — 5] < C.

i,j€(2QxQp )NX

Hence, we may apply Proposition 4.1 to deduce that there exists a subsequence u. such
that w. is converging. This concludes the proof. O
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The next proposition shows the Poincaré inequality for functions v € C"(2). We
prove it assuming that ¢ = 0.

Proposition 6.6. Let Q be a bounded open set of R and let u be a function in Co(Q) such
that u; = u(ei) = 0 if dist(ei?, 0Q) < 2eVdT. Then, there exists a constant C' > 0 such

that
z ed\ui\2 <C Z Edaij|ui - “j|27 (51)
1,7€(2QXQr k)NX 1,5€(2QXQp k)NX
where C is of order of [diam(Q)]>.

Proof. We identify u with its extension to (R? x Q) N X which is equal to 0 outside
(2xQr,x)NX. Due to the boundedness of 2, there exists M > 0 such that Q C [0, M)d and
(%[O, M) x Qr.1x) N X contains a path joining two arbitrary nodes i,j € (22 xQrr)NX.

Fix i € (1Q x Qrx) N X and let j be a node such that dist(ej?,09) < 2eVdT and
i¢ — j* = ATei1, where, without lost of generality, we may assume that X is a positive
integer. Note that A\ depends on the fixed node i and it is of order MT 'e™!. Let l; and
I; be two indices in Z? such that i € Ql{;’d and j € Q%d. Let S 4 be the union of (A + 1)
neighbouring cubes joining Qlji 4 and QZT’ 4 such that each two consecutive cubes having
one face in common. In other words,

A
A lq
ST,d = U QT,d7
q=0

where l; = lj4+qTe1, forg=1,..., XA and lp = [;. Since X is connected, there exists a path
of nodes {j,},—0 joining jo = j and jx = i such that it is contained in S%d +(=T,7)°,
Jjq € (Ql;{d X Q1) NX and (Jq, jo+1) € €. Such a path can be built repeating periodically
the path joining j € (Qlig,d X Qrr)NX and j+ Tey € (Qlled X Qr,x) N X. Since u; =0,

we have that
A

u; = Z(U«jq — Uj,_y)-
q=1
Hence, an application of the Jensen inequality leads us to

A
2 2
ual> <A g, = g,
q=1

Summing over i € (10 X Qrx) N X, we get

A
), |2 d 2
E eui|” < A E E e ujy — Uiy, |

i€(2Qx Q7 x)NX a=14,je(1QxQr x)NX

2 d 2
<COA E e“aizluj, —uj, 4%,
1,5€(2QXQr k)NX

where the constant C' takes into account the fact that the possible multiplicity of the
paths containing the connection joining j,—1 and j,, which is anyhow uniformly bounded.
Recalling that X is of order MT " 'e™ !, we get the inequality (51), as desired. O

7 Examples

In this section, we exhibit some examples of the possible geometries of the set X. We also
compute the homogenized matrix Apom given by formula (7). In the examples below, we
think of X as a subset of Z4"* where d = 1 is identified with the horizontal direction and
k =1 or 2. Since d = 1 the homogenized matrix actually reduces to a single coefficient
giving the homogenized energy density Apomz>.

In all the following examples the value of the non-zero coefficients a;; is always 1, and
the corresponding connections are represented by solid lines in the figures.
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(a) ® ° ®) 02 @12 @2

0,0  (1.0) (20

Figure 2: Figure (a) shows X and Figure (b) shows the periodicity cell (Q2,d X Q2,x) N X.

Example 7.1. Let X be the set pictured in Figure 2(a). Here, we have that d = k =1
and the period T is equal to 2. Figure 2(b) shows a periodicity cell. The geometry of
the set X can be thought as the discrete version of a perforated domain. Indeed, note
that nodes (0,1) and (2,1) in Figure 2(b) are missing. A minimizer @ for (7) is given by
4(0,0) = @(0,2) = 0, @(1,0) = a(1,1) = a(1,2) = z and @(2,0) = @(2,2) = 2z, so that
Anom = 4.

In the next three examples d = k = 1, the set X is always simply Z x {0,1} and
the period T is 1, but the set £ is such that the graph cannot be directly seen as a
discretization of a thin film in the continuum parameterized as a subgraph of a function
of one real variable.

(a) (b)
0,1) (1,1)

(0,0) (1.0
Figure 3: Figure (a) shows X and Figure (b) shows the periodicity cell (Q1,¢4 X Q1,x) N X.

Example 7.2. Let X be as drawn in Figure 3(a). In this case £ contains all ‘cross-
connections’ between points of X. The minimizer @ for Anomz? is 2(0,0) = @(1,1) =0
and 4(1,0) = @(0,1) = z, so that Apom = 4.

The following two examples can also be reformulated in a square or triangular lattice,
respectively, by a change of variables, so that they can be treated as in [2]. Our result
make these changed of variable not necessary.

(a) (b) o A1)

(0,0) (1,0)
Figure 4: Figure (a) shows X and Figure (b) shows the periodicity cell (Q1,¢ X Q1,x) N X.

Example 7.3. Consider X as drawn in Figure 4(a). Here, the graph is analog to a nearest-
neighbour thin film, but with a translation of a unit of one of the two copies of Z, which
again makes this geometry not immediately seen as a discretization of a continuum thin
film. The 1-periodic minimizer @ for Apemz® is given by @(0,0) = 4(1,1) = 0, @(1,0) = z
and 4(0,1) = —z and the homogenized coefficient is Anom = 4.

Example 7.4. Consider X as drawn in Figure 5(a). Here the set of connections has the
structure of a triangular lattice. The minimizer @ for Anomz> is given by @(0,0) = 0,
4(1,0) = z, @(0,1) = —1/2z and @(1,1) = 1/2z. The homogenized coefficient is Apom =
5/2.
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(a) (b)

(0.1) (1.1

©00) (1,0

Figure 5: Figure (a) shows X and Figure (b) shows the periodicity cell (Q1,¢ X Q1,x) N X.

b
(b) (32)

o1 (1 @1 “1)

(3.0)

Figure 6: Figure (a) shows X and Figure (b) shows the periodicity cell (Q4,a X Qa,x) N X.

Example 7.5. Let X be the set pictured in Figure 6(a), where d = k = 1 and the period
T is equal to 4. The set X is a subset of Z x {0,1,2}. Such a set X can be though as a
discrete layered media, whose conductivity is equal to 1 along the straight lines, while in
the part corresponding to the rhombus structure the effective conductivity is 2.

The minimizer @& for Anomz> is given by @(0,0) = z, 4(1,1) = 4z/3, 4(2,1) = 8z/3,
(3,0) = @(3,2) = 10z/3 and 4(4,1) = 4z and Anom = 8/3.

Figure 7: An alternate structure for Example 7.5

Note that the same example can be restated with X = Z x {0,1} using the set of
connections in Fig. 7.

Example 7.6. We consider the set X drawn in Figure 1. To uniform the notation intro-
duced in this section, we rotate X, obtaining the structure pictured in Figure 8(a). Here
d =1 and k = 2. The period T is equal to 2 and the periodicity cell is drawn in Figure
5(b). The structure is actually the same as that in Example 7.2 but transposed to a three-
dimensional setting, and Anom = 4. Note that in this case the solid lines representing the
connections do not intersect and they have all the same length, so that they can also be
interpreted as a system of homogeneous conducting rods.
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