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Abstract. In this paper, we ireat some eigenvalue problems in periodically perfo-
rated domains and study the asymptotic behaviour of the eigenvalues and the eigen-
vectors when the number of holes in the domain increases to infinity. Using the
method of asymptotic expansion, we give explicit formula for the homogenized
coefficients and expansion for eigenvalues and eigenvectors. If we denote by €
the size of each hole in the domain, then we obtain the following aysmptotic expansion
for the eigenvalues :

Dirichlet : e =€24+ 4y + O (e),
Stekloff : Ae = €hy + O (e,
Neumann : Ae = Ao + €Ay + O (e?).

Using the method of emergy, we prove a theorem of convergence in each case
considered here. We briefly study correctors in the case of Neumann eigenvalue
problem.

Keywords. Homogenization ; correctors ; eigenvalues ; eigenvectors.

1. Introduction

The theory of homogenization has been developed by many authors in recent
years. For a historic introduction and for a complete bibliography of the subject,
the reader is referred to the book of Bensoussan er al [3]. The method of asymp-
totic development introduced in this book can also be applied to problems in a
periodically perforated domain. For the treatment of homogenization problems
in such domains, the reader is referred to the works of Lions [13], Duvaut [9]
Cioranescu [7], Cioranescu and Saint Jean Paulin [8]. ’
The study of such problems is important from theoretical as well as numerical
point of view. Because of the complicated structure of the perforated domains
any kind of calculation is difficult to perform. For example, if we treat the’
Dirichlet problem, we have to impose the boundary condition on the boundary
of the holes which are many in number. So, we weuld like to *approximate »
the given problem by a ““homogenized ”* problem on the domain without holes,
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240 M Vanninathan

By the msthod of asymptotic development, a problem on a periodically perforated
domain is reduced to solving problems in the *‘ basic cell”” and in the domain
without holes,

This paper is divided into three parts :

Part A : Dirichlet eigenvalue problem

Part B : Stekloff eigenvalue problem

Part C: Neumann eigenvalue problem.
Our aim is to describe the asymptotic behaviour of the various eigenvalues when
the number of holes in the domain increases to infinity. In each case we explicitly
write down the ‘ homogenized operator ** with the help of the method of asymp-
totic dsvelopment and prove a homogenization theorem using the energy
method introduced by Tartar [14] and prolongation operators of Cioranescu and
Saint Jean Paulin [8].

We treat here the case of Laplacian operator. But one can extend the results
to the case of elliptic, self-adjoint operators with periodic coefficients of the form

df = — Z %(aa (x/e) 5%) .

The eigenvalue problem corresponding to 4% in a fixed domain has been studied
by Kesavan [12]. The results of this paper were announced in Vanninathan [15],
[16].

2. Notations and hypothesis

First, we consider a reference cell :
N

2.1) Y= 1II 0 y)CRYy >0
ial

Let 7,(i = 1,2, ..., M) be connected bounded open subsets of R¥ with sufficiently
smooth boundaries and which lie locally on one side of the boundary. Then
the holes in Yare % N Y (i=1,2,... M) and their union is denoted by 7' :

(2.2 T= 6‘ G, n 1)

Let
(2.3) Y¥=Y—-T.
Let S denote the boundary of T in ¥*. For details see figure 1,
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We assume that
(HD Y* is connected.
For a function f given on Y, we define the average of fon Y :

@.4)  my(f) = ,—;—, [r o,

where | Y | denotes the Lebesgue measure of Y. Let ¢ be a small positive para-
meter which goes to zero. We denote by f€(x) or f (x/e), the function defined
in R¥ in a periodic fashion with period ¢ »? in the direction x;.

Let us define now, “ the holes >’ in R¥ corresponding to e, starting from those
in Y. For that we introduce the function y as follows :

1 if yeY*
2.5 "(y)z{o if yeT.

We consider also the characteristic function of 7 :

1 if yeT,
Put
[ ¥*|

(2.7 0 =me () =Ty7 -

The “ holes ” in RV are the connected components of the set
{x e R¥/X4(x) = O}

Finally, let us be given a bounded connected open subset 2 of R¥ whose boun-
dary is sufficiently smooth and £ lies locally on one side of its boundary. The
““holes ” in Q are then defined by
(2.8) T, =connected components in Q of {xeQ/y*(x) =0}. The perforated
domain 2, with which we work is
29 Q.=2-T.

Let S. denote the boundary of T, in £,.

We make the following restrictions on the geometry of £,.

(H2) Q. is connected.
(H3)  Each hole in T, has regular boundary.

In the problems we consider here, there is one more restriction on the geometry
of @ and the holes (cf. Cioranescu and Saint Jean Paulin [8]).

(H4) The holes 7. do not meet 982, the boundary of Q.

We need, in fact, in Part A a stronger hypothesis. Given any hole 7" in Y,
we can as before construct the holes 77 in @ periodically. Set ’

210 oy =2-T.
With this notfation, it is evident that
Q.11) Q.=

The stronger hypothesis is the following :

H {there exists a hole 77in Y such that TC 'C T’ and the holes 77 do
3) not intersect 6£2.



242 M Vanninathan

Remark (2.1). The hypothesis (H4) is severe on the geometry of the domain 2
and the hole 7. One such example of Q is a finite union of cells homothetic to
Y and with the hole T placed in the middle of Y.

Summation Convention. We adopt the usual summation convention with respect
to the repeated indices,

Part A: Dirichlet eigenvalue problem
3. Problem to be treated
With the above notations, we consider the following eigenvalue problem:
Find (u,, 1) € H: (Q.) x R such that
(31) = Al = }'e uein 2.,
(ue’ ue)e =1,
where (.,.) denotes the inner product in L2 (2,) and H}(2) = {ve L?*(Q);
dvjox,e L*(Q) for i =1,2,... N and » = 0 on dQ}.
The variational formulation of this problem is the following :
Find (u,, 1) e H:(Q.) x R such that
3 .2) a® (u€7 v) = Ae (uea 'U)e for ve H} (QE):
(tes ue = 1,
with the bilinear form a¢(.,.) defined by
ou ov

3 & = [ & 72
(G.3) & wv) ) 5. O, dx.

According to spectral theory, there exist a sequence of eigenvalues {11}2, and
a sequence of corresponding eigenvectors {ui};2, such that
O< A< 2R ... > o0,
3.4 { AL is of finite multiplicity for each /,
and {1#l};2, form an orthonormal basis in L2(R,).
We can characterise the eigenvalues A} with the help of Rayleigh quotient (cf.
Weinstein and Steinger [17)).
_a* (v, v) .
(3.5 R.(w)= . v). for ve H} (R.), v # 0.
The mimimax principle for the eigenvalues states that
(A: = min{max R, (v); S C Hi(@,), dim S; =1},
€S
= ma R
(3.6) vEE::l) ()
= max {R.(v); (v, up)e =0,i=1,2,...,1 =1},
where E, (I) is the subspace of Hi(f.) spanned by {i, ..., ui}.
This part is devoted to the study of the behaviour of A, and #; when ¢ — 0.

We prove, in particular, that A} is of order ¢* and that {4} — €% )} — Ith eigen-
valye of the “ homogenized problem *’ where ] is the first eigenvalue in the cell
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Y*., As we will see, some weighted Sobolev spaces and their propertics are used
in this study.

4. FEigenvalue problem in the cell Y*

Let us define the space

4.1) W,={peH'(Y*);v=00n Sand v is Y-periodic, i.e., v assumes
same values on the opposite faces of Y}
and the bilinear form

ou ov

4.2) a(uv) = ~dy for u, v e H'(Y*).
3.1’4

The bilinear form being elliptic on W,, the following problem is well posed :
Find (¢, A) € W, x R such that
(4‘3) a(¢a U) = A’(¢’ U)Y* fol' veE Wn’
(¢$ ¢)Y* = l,
where (.,.)ys denotes the scalar product in L2(Y*).

In what follows, we consider only the first eigenvalue A of the above problem.
It is well known that A is simple and the corresponding eigenvector ¢ has constart
sign in ¥*. We choose the vector ¢ which is uniquely defined by (4.3) and
4.9 ¢>0in ¥*

Remark (4.1). We extend ¢ by zero in the interior of the holes 7 and we
denote again by ¢ the extended function.

Remark (4.2). Tt follows from (4.3) that the function ¢° defined periodically
satisfies

— A$¢ = it in @,
4.5
“-5) {¢€ =0 on S..

However, ¢° is not zero on 0Q.

5. Some weighted Sobalev spaces

We will see later that consideration of some weighted Sobolev spaces is very impor-
tant in the study of the present problem. Thereis a vast literature on this subject :
sec for example Baouendi [I], Baouendi and Goulaouic [2], Geymont and
Grisvard [10], Goudjo [11]. In this section, we define some weighted Sobolev spzaces
and state some of their properties which will be needed later.

We consider the following spaces with weights ¢¢ and ¢ (¢ being defined in §4:

¢ Ve= {”eD’me) $ve L}y, §° 2 % € L* (@) for

i=12..,Nandv =0 on 69},
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5.2 V={veD’(Y*); dve L2 (Y%), ¢z—;’ e L2(Y*) for
4

ji=12,...,Nand v is Y-periodic}.

where, as usual,
D' (2) =space of distributions on £, and these spaces are provided with the
following norms :

2 :Il/ 2

L2 (0,) ’

HMFUWM%mﬂ.i
L2 (V‘)]l,2 ’

=1
Some of their propertieis are given in the following :

¢€

ax,

o o= [u 6ol +

Proposition (5.1)

1)) The space D (2,) of infinitely differentiable functions on 2, with compact
support in 2, is dense in V.

) We have a continuous inclusion

Ve - L2 (Qe)

and the continuity constant of this inclusion does not depend on e: there exists
a constant ¢ > 0 independent of ¢ such that

5.9 vl <cllvlevvere

Q) The map v - ¢€v defines an isomorphism of V, onto H: (Q).
e The inclusion ¥V, - L2(4) is compact where

(5.6) L*(g%) ={veD (Q); ¢°ve L*(Q)}.

o o[>l

§ml
defines a norm on ¥, equivalent to the norm | (.

ax‘

Proof. All these properties are proved in the works cited above. The only
thing which is new is the inequality (5.5) with c independent of ¢. But one can
prove this, without much difficulty, from the continuity of the inclusion

(5.7 W) - LY,
where the space W (¢) is defined by

(5.8) W(¢)=={veD’(Y*); ¢veL2(Y*),¢‘g—’;eL2(y*)for i=1,2, N}
[
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Proposition (5.2)

(1) The space of functions v € ¢ (¥*) n ¥ which vanish in a neighbourhood cf
S are dense in V.
(2) One has the continuous inclusion

V- L3(Y%).
(3) The map v — ¢v defines an isomorphism of ¥ onto W,
(4) The inclusion
(5.9 V-L*9
is compact where we define
(5.10) L2(g) ={veD' (Y ;¢veli(¥*).

N 172
®  vo| 2 2

defines a norm equivalent to the quotient norm on V/R,
Now, we formulate the eigenvalue problems in the spaces V,. We define

108 OV
€ —_ €
a(gc su,v) = f é —3x¢—6x‘dxf°r woveV,,

(511) Qe
¢ s wo)= [ ¢CuvdcVuvel® @,

By virtue of the properties (4) and (5) of the proposition (5.1), the following
problem is well posed:

Find (ve, pte) € V¢ x R such that
(5.12) a(d%; ves v) = pe (§° ;v v) for vevV,
(¢€; Ve ve) = 1.

Let {ug}fgl be the sequence of eigenvalues and {Ule}ffl the sequence of corres-
ponding vectors satisfying
(5.13) OD0<ppe<puE< ... > oo,

. (i) {v'}> form an orthonormal basis in L2(4°).

=1

We have once again the characterization of 4, analogous to (3.6), in terms of
Rayleigh quotient

R(4¢ ;v)=‘%£—;ﬂ)for veV, v #0,

6. Estimations on the eigenvalues

The following Lemma establishes one important relation between the eigen-
values A, A and g, )
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Lemma (6.1). Let A be the first cigenvalue of the preblem (4.3) with the eigen-
vector ¢. Then for all ve V,, we have

6.1) f%_(?‘eﬂ)a‘%(;ﬁev)dx 6—21f¢“ 2dx + fq‘eza’u av .
Qe *

0%, 0%

Proof. Since D(£2.) is dense in V,, it suffices to verify (6.1) for all v € D(L,).
On the one hand, we have

f ERUDIACE V= %‘fax @oyds+ [ oo g de

and on the other hand, by multiplying (4.5) by ¢ v2? we obtain
W2 g0 dx= 2 f #° 02 ds,

ox; ox,
Qe

and so we deduce (6.1) without difficulty.

Corollary (6.1)

Let {42, {#i}2, be the sequences of eigenvalues of the problems (3.2) and
(5.12) respectively. Let A be the first eigenvalue of the problem (4.3). Then we
have

(6.2) AL=ec?i+pforl>1
Proof. 1In fact, we obtain, from (6.1)
R (9°v) =21+ R(4° ;v) for veV,.

Now we uwse the minimax principles for eigenvalues and the isomorphism of the
proposition (5.1) (iii) to get the relation (6.2). .

Since gt > 0 for all 7 > 1 and ¢« > 0, wesee thatthesequence {iL — e A}y 1S
bounded below by zero. The following Proposition shows that it is bounded
above,

Proposition (6.1). Let {4}® be the sequence of eigenvalues of the problem
(5.12). Then for I=>1, {i}.5, is bounded independently of e.

Proof. We use the following characterizations of minimax principle :
(6.4) e =min{mXR(¢; v); 5 C V,, dim§; =1}.
vEST
We take S; to be the vector space spanned by wy, wa, ..., W, fhe first /-eigen-

veztors of the following Dirichlet problem :

Find (w, v} € H () X R such that
6.5 .

— Aw = ywin 2.
It is not difficult to see that we have

(6.6) dim(S,/Q,) =1 for ¢ > 0.



Homogenization of eigenvalue problems in perforated domains 247

[S,/Q. denotes the restriction to Q. of functions belonging to S;]. So, onecan
take S,/Q, in (6.4). (This is alright, since no boundary condition is required on
Se for V,.) We obtain

(6.7) pi < max R(4°;v).
veSy
We claim that the right hand side of the inequality (6.7) is bounded above by a

constant independent of e. In fact, on the contrary we would have, for a sequence
€, —» 0, 2 sequeace {v,} C S; such that

(6.8) [ @iV v,V va>n| gtvifor n>1,

Q, Qn
(€.99 [o2=1Ffcn>1.

2
Here we have set Q. = Q, and ¢* = ¢,. Since S; is of finite dimension, we have
(for a subsequence)

v, = v in H} (Q) strong.
Now, one can pass to the limit in (6.8) and obtain

m,(¢?) | v2=0.

Q

But (6.9) implies that

J v2=1,
!

This contradiction proves the Proposition.

7. Asymptotic development

The aim of this section is to find ““ the homogenized operator ” for the problem
(3.2) by the method of asymptotic development introduced in Bensoussan et al
[3] and Lions [13].

We introduce one ‘‘fast’’ variable :

(7.1)  y = xfe.
Then, the differential operator ¢/dx; applied to a function ¢ (x, ) becomes

d P
7. PLARNINS S
(7.2 0x; ¢ ay; -’

So, the laplacian operator is transformed into
(7.3) e A + 271N, + A,
where

74 _ 02 _ 32 o2
08 &=ga: om0 Gow
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Taking into account Proposition (6.1) and Corollary (6.1), we propose the
following Ansatz for the problem (3.1) :

(7.5 u(D)=t(,y)+e(x,»)+ ...y =xe,
(7.6) Adg=ec2dy+eldyi+ido+....

We impose the following restrictions on the functions u; which are defined for
xeQ and yeY*:

7.7 {u,(x,y):OifyeS,
(7D \ux, .)is Y-periodic in .

We substitute the expressions (7.5) and (7.6) in equation (3.1) and we
identify the powers of . We obtain

Uy (%, ) = ¢ (1) %o ({),
(71.8) {"1 (x, y) = ¢ (y)g%)(x) + () in (%),

(7'9) Li’. = 2”
(7.10) A, =0,
(7.11)  diiy = Aoy,
where

(1) A is the first eigenvalue and ¢ the corresponding eigenvector of the problem
(4.3).
(2) The functions ¢ (j=1,2, .., N) are defined by

(7.12) a@g®, v)—z(¢w,v)y~=2(% , v) for v e W, ¢ eW..
1 v*
(3) The operator 4 (called homogenized operator) is defined by
_ 0®
(7.13) A= — q"aTc‘sz,

the * homogenized coefficients” being defined by

)
(7.14) gqy=20y +2 f Qg—y:qidy fori,j=12,...,N.
ye

Remark (7.1)

The relations (7.9) and (7.10) are in accordance with the results of Proposition
(6.1) and Corollary (6.1).

Remark (7.2) Since

09 ) :
o] =Of1‘l=1,2,-~-:N’
0y, ¢Y' °

equations (7.12) can be solved for ¢ by Fredholm alternative,
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The “ homogenized problem® is an eigenvalue problem for the operator 4 :

Find (u, p)e H () x R such that
(7.15) {Au = pu in Q,
u#£0,

The preceding formal calculations show that the sequence {A, — € 2A}eno
converges to an eigenvalue of the problem (7.15). We prove this result later by
the method of energy.

8. EMipticity of the homogenized operator

The idea of proving the ellipticity of the operater consists of identifying the coeffi-
cients g,, with the homogenized coefficients associated with the problem (5.12).
So, we apply the asymptotic development method to the problem (5.12). First,
we write the problem (5.12) in operator form : The solution (v, #¢) is charac-
terized by

(Ula ”Q) € V‘ X R9

0 (e 0V, @
8.1 —5};(45 avT‘ = pe¢® V¢ in L4,
f ¢ v =1,
n€

We develop v, and pe in the following form :
8.2) v (®) =vo(xp) +evi(x,) + ...7=2X]e,
B.3) pe=fot e+ ...,

where v, is defined on 2 x Y* and it is Y-periodic in y.
We put these expressions in (8.1) and identify the powers of e. We get the
following results :

(8.4) vy (x, y) = o (),

o -
.5 26y =¥V 0)72(0) + v (x),
and the necessary and sufficient condition so that we solve for v, is
(8-6) B;?o = llo';o in @,

where the operator B is defined by

8.7 B= —Puma

with

(6)) .
(88) p“=5u + f ¢2Qg‘,}7"dy for i,]=1,2, o N
3
ye
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The functions ) (j = 1,2, ..., N) are defined (upto an additive constant) to
be solutions of the following variational problem :

a(é; ‘/’U)av) = - a(¢; vpv)Vovelbl,

the bilinear form a(¢; .,.) being defined by

' ou dv

. = g 08 0V
8.10) a(g; u,v) = f ¢ . . dyVu,veV.
Y*

It is not difficult to see that the operator B is elliptic in the sense that there
exists a constant o > 0 such that

(8~11) p‘lf{‘f; = akif; for ¢ = (fi)ERN-

In fact, the coefficients p,; can be expressed by the following formula :

(8.12) py = a(g; ¥y + y,p® + y) for i, j=1,2,.
taking into account the following relation
a($; ¥y + y,y®) =0feri,j=1,2,...N
Now, the inequality (8.11) is a simple consequence of (8.12).

Theorem (8.1)
Let (¢:;) and (py;) be defined by (7.14) and (8.8) respectively. Then we have
gy=pyfori,j=12,... N,

In particular, the operator 4 is symmetric and elliptic.

Proof. We prove that gy is a sclution to the problem (7.12), For that we
use the isomorphism between the spaces ¥ and W, given by the Proposition (5.2)
(iii), Firstly, we have gy e W,.

By viittue of the Proposition (5.2) (i), it suffices to verify that

_a__u)_a_ d==lf2(“d 2]%01
(8.15) Y[ o (v ) 5, (#v) &y ) $yDody + J ay, 0 >

for all vec®(Y*) N ¥ which vanish in a reighbourhood of S. The relation
(8.15) is easily proved by using the definitions of ¢ and y and the followirng
identity :

(8.16) Z_J ¢—vdy f¢2—dvaeV

Now we take ¢“) = ¢y in the formula (7.14) defining q,,. We obtain

d
aw=0,+2 [ Z@wsa,
Vi
b4
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oy
-5 2 O¥
=sg+ [ #U
ye

= P>
and so the Theorem is proved.

9. Homogenization theorems

In this section using energy method we show how one passes to the limitas ¢ — 0
in the problem (5.12) which determines the correctors u,. Before that, we need
some more notations. Let us denote by 7' any hole satisfying the hypothesis
(HS). We denote by PI, the prolongation operator constructed from the hole
T’ satisfying the following condition :

For all v in H' () with v = 0 on dQ, we have

PP v e H(Q) and there exists a constant ¢ > 0

©.1) { independent of ¢ (but depending on the hole T”) such that
' |PFoh,a<elvh,ay,

where |v |1, 0 = éVv.Vvdx.

The existence of the operator PT is proved in Cioranescu and Saint Jean Paulin
[8] and Cioranescu [7].

Lemma (9.1). Suppose for each ¢ > 0, we are given w, in ¥, such that

(9.2) ||welle < ¢, independent of .

Then there exists a subsequence of ¢ (again denoted by ¢) and a function w, in
H}(Q) such that

(9.3) PIw.— w, in H} (Q) weak,

for all holes T” verifying (HS5).

Proof. 1t follows from the hypothesis (9.2) and from the fact that ¢ > 0 in Y*
that there exists a constant c¢p such that

9.9  |wel, 9, < Cr.

Thanks to the inequality (9.1), we see that the sequence {PT w.} remains bounded
in H}(Q). So, we can extract a subsequence of ¢ and a function wl’ in HZ(RQ)
both depending on 7' such that

9.5 PI'we— wlin H}(Q) weak,

for the extracted subsequence.

Now Izt us consider another hole satisfying (H5). By similar arguments as
before, we oblain a subsequence of the subsequence already picked up and a
function wi” in Hi(£2) such that
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(9.6) PI"w, > wl” in H}(Q) weak.
But we have the relation
0.7 xy-rur (xle) PY we = xy - (rury (x/€) PT" we in Q

where xy - (rury ()is the characteristic function of ¥ — (7V U T”). One can pass
to the limit in (9.7) and we obtain
My (Xy~(rury) W3 = My (Xy-rur) W3 s

and so wI’ = wi” in Q. By the uniqueness of the limit, we see that the proof is
complete.

Lemma (9.2). Let {wee > o b€ given as in the preceding Lemma. Then for the
subsequence of ¢ and for the function w, in Hg () given by the Lemma (9.1)
we have

(9.8) PI'w.— w, in H}(2) weak for all holes T”,
9.9) ‘{ ¢ (x]e) f (x/e) wg dx — {; my (31 wo dx,

where f is given in L2(Y).
Proof. Let T’ be a hole satisfying (H5). We write

9.10) ‘j;eqie fEwe dx — il;my(¢f) w, dx

= g"# [ Wedx — ‘{ my—r (65) wol + [gr'“ '¢€ f€ Wedx

Te e Te
- ‘{ -z ($f) W, dxl,
where we have set

©0.11) my (g) = I—;’_I § g dy for subsets U of Y.
u

We have the following estimate :

l ‘I:_ g P dx | <11 ¢ Ieoe-n 1f* lexae | We e -
Te T

Using now Proposition (5.1) (2), we deduce
©.12) 1 4 fowedn) < ollglePen,

rd
re T,

where ¢ is a constant independent of T’ and e.
We also have

0-13) IQI My-p ($f) Wodx | < cllp |l 2w-n-



Homogenization of eigenvalue problems in perforated domains 253

Since ¢ = 0 on S, we can choose T"satisfying (HS5) and || ¢ [IL°(p-yy sufficiently
small. For this hole 7’, we have the convergence

9.14) nj ¢° f° PT wedx —> ‘J; My—y (§ ) Wo dx.

e
Combining all these results, we obtain (9.9).
Using similar arguments, we can prove the following :
Lemma (9.3). Let {we} and {v.} be two sequences such that

” We ”eg c

I ool < c} independent of «.

(9.15)
Then there exist a subsequence of ¢ (again denoted by ¢) and functions wy, ve
in HZ(Q) such that we have the following convergence for this subsequence of € :

(9.16) {PZ’ w, = Wg in H} (Q) weak,
’ PT pe = vy in HE (R2) weak,

for all holes T satisfying (HS5) and
8.17) A’ 8 [EWevedx > ‘{ my (@ f) wovodx,
€

for all fin L® (Y).
Now we have all the tools to prove the following homogenization theorem:

Theorem (9.1). We suppose that (HS5) is satisfied. Let (v, #) be a solution
of the problem (5.12). We assume

9.18) p,—»puas e—0.

Then y is an eigenvalue of the ‘‘ homogenized problem* (7.15). Furthermore
there is an eigenvector v, in HE (2) corresponding to u# and a subsequence of ¢
(again denoted by ¢) such that

(9.19) PTov.— vy in H; (Q) weak for all holes T”

satisfying (HS), PP being the prolongation operator verifying (9.1).
Proof.

Step 1. Taking v = v in (5.12), we obtain

(9.20) |lvgll¢ < ¢, independent of e.

Set

©2) =420, i=12...N
(]

It follows that

022 &lpea<s6i=12...N,
and we have

(9.23)  — div (4 £9) = pep™ ve in e
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So, ¢ & . ve admits a trace on 9, where v, is the exterior normal to 9Q2,. It is
not difficult to see that

(9.24) 4°¢°.ve =0 on S,
So, equation (9.23) is valid in Q if we extend ¢¢ by zero in the holes.
(9.25) - div (4% &%) = ped® ve in Q.

In (9.25), we take some arbitrary extensions for &° and v,. Using Lemma
(9.1), we can extract a subsequence of ¢ (again denoted by ¢) such that

(9.26) ¢°é— & in L? () weak, i=1,2,... N.
(9.27) PTve— v, in H () weak, for all holes
7’ satisfying (H5).

Step 2. Using the technique of Lemma (9.2), we can pass to the limit in (9.25)
to get

(9.28) —dive = pmy(¢?) v, in Q.
Step 3. We introduce w as solution to the following variational problem :

a(¢; w,v)=0forveV,
(9.29) {w P ey,

where TI(y) is a homogeneous polynomial of degree I. Set
(9.30) n=¢Vwin Y*
Then # satisfies
(9.31) —div(gy) =0in Y*
Also we have gn . v = 0 on S where v is the outer normal to S. So, we obtain
(9.32) —div(¢g*n9)=0in 2.
We set
w () = w(y — I(y) for ye Y*.

Then w € V and we take some extension of ¢ in the hole and we extend y periodi-
cally throughout R¥. We define

(9.33) w(x) = e w(x/e)
=TI(x) + ew(x/e) in Q.
Since y e L3 (Y), ¥ (x/e) remains bounded in L%(R2) and so
(9.34) w*—Tlin L?(£2) strong.
Step 4. Let ge D (Q).
We take v = gwe in (5.12) and multiply (9.32) by gv, and subtract, we get

€ g€ Ea_g._ € pe a_g_ € €
(9.35) ‘{etﬁ &Ew %, ‘{e(ﬁ mw ”‘ax‘_”“{,d’ Ve & WEdx.
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Using the technique of Lemma (9.2), we pass to the limit in (9.35) to get

a

9.36) [ &I 2 — [my($n)vo 5 = pmy (4% [ v g T dx.
Q ox¢ @ 0%, Q

It follows from (9.36) and (9.28) that

Al _ 2 OW 00, .
©.37 & o, my, <¢ ) o, in Q.

Step 5. NowwetakeIl = y; (j =1,2,... N). The corresponding test function
w=y% + y, where y¥) js given by (8.9). So, we get

9.38) & =my (¢2)q,,g%° for j=1,2, ... N.

This when combined with (9.28) shows that

(9.39)  Avy = uv, in 2.

Step 6. To complete the proof, we have to show that
(9.40) v, # 0.

We have

(9.41) A ¢ vz =1

and at the lim't we obtain
my (¢2) .f Ug = 1’
o}
and so (9.40) follows.

Theorem (9.2). We assume (H5). Let A be the first eigenvalue of the problem
(4.3) with eigenvector ¢. Let {v(, yi}=, be the spectrum of the problem (5.12)
Let {415, be the sequence of eigenvalue of the problem (3.1). Then

(i) A —~e2i=g forI>1.
(i) Ut -+ Ith eigenvalue g8 of the problem (7.15).

(iii) There exist a subsequence of ¢ (again denoted by ¢) and eigenvectors
{v'} of the problem (7.15) corresponding to {4’} such that

(9.42) Pro. - ot in HL (L) weak for all holes T
satisfying (HS).

(9.43) {v'} form an orthogonal base in L2(Q).

(iv) If 4 is a simple eigenvalue of (7.15), then given any eigenvector v} corres-
ponding to- 4’ satisfying (9.42), we can choose an eigenvector v}, o of the
problem (5.12) corresponding to g such that

(9.44) PFv.,, - vy in H}(2) weak for the whole sequence of e.

P. (A)—7
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Proof. By Proposition (6.1), we can extract a subsequence of e such that
(9.45) popas e—0.

According to Theorem (9.1), ¢ is an eigenvalue of the problem (7.15) with eigen-
vector o* satisfying (9.42). To prove g is the /th eigenvalue, it suffices to verify
that

(1) {#'} is an orthogonal base in L2(Q).

(2) There iz no other eigenvalue except {u'} for the problem (7.15): (4, p)€
H(Q) x R such that du = puu.
We remark, first, that the eigenvectors {v'} are orthogonal in L*(Q). In fact,
the passage to the limit in the relation

046 [ 9 0L v = O,

will give

(947) mY (¢2)s{ Ul vm = 511»'

We shall prove (2). Let u be an eigenvalue of the problem (7.15) which is diffe-
rent from z* with eigenvector w satisfying

AW = ;LW in Q’
u # i for any /,
(9.48) ;{ w? = 1/(my ($?),

f wot =0 for each [ > 1.
Q

We can choose [ such that

(9.49) < @

Now, we define we a3 follows :

€ Ve
(9.50) {a(qS‘ ; We v) = u(g%; w,v)VoeV,.
The proof of Theorem (9.1) shows that
(9.51) PT we - win Hj () weak.
Set
(9.52) W = We '45‘11(966; We, Vg) Ve-
We see easily that
(9.53) (¢°; we o) =0for i=1,2,...1
and as a comsequence

(9.54)  a(g ; We, We) = Mo (85 5 Wer We).
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We can prove

.59 { a5 e W) =

(B 5 e We) > my (89 [ w2 = 1.
Hence (9.54) implies that

(9.56)  p=p,

which is in contradiction with (9.49). This completes the proof of (2). In the
same way, one can prove ve L*(R), [ v o' =0 for all / implies » = 0, This
a

proves that o! is the /th eigenvalue of the problem (7.15).

To prove (iv). We note, first, that 4! is simple for e sufficiently small, In fact,
since we have g — g for all /, the multiplicity of . is less than or equal to that
of 4. So, there are only two vectors »%, o and — v, o which satisfy (5.12).
We choose one which satisfies

(9.57) (¢° ;ve, 0 v8) >0,
and this sequence must satisfy (9.44).

Part B: Stekloff eigenvalue problem
10. Problem to be treated

With the notations introduced in § 2, we consider the following eigenvalue problem ;

Find (u,, i) € W, X R such that

— AU =0 in Q,,
(10.1) P

al:’: = le Ue O S,

ue # 0,

where ddv, is the exterior normal derivative to S, and
(10.2) W,={wveH(2); v =0 on 02}

Problems of the type (10.1) have been studied by Bergmann and Schiffer [4]
and Bramble and Osborn [6]. This problem can be put in the variational form
as follows : Consider the following problem for ge L2(S,) :

{a‘(weﬂv)= [ gv for ve W,
Se

we € We.
Set G¢ & = We;s,- Then Ge is self-adjoint, compact operator in L2(S,). We can
write the eigenvalue problem

1
Gelle = e Ugs e = ’}:;
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as follows :
a (ug,v) = Ay [ g for v in W,
S

€
(10.2) {u.e W,
u, # 0.

We danote by {A}2, the sequence of eigenvalues and by {u} corresponding
ciganvestors of this problem. We remark that {#} form an orthogonal basis
in L2(S,). Our aim, in this part, is to study the asymptotic behaviour of A} and
{}} as ¢ - 0. We prove that {¢* 1} — /th eigenvalue of the ‘‘homogenized
problem ., A very useful tool in this study will be a test function which will

be defined in §11.

11. Test function
We define y as the solution of the following variational problem :

ay,v)=—c, fv+ JodyforveW,
(11.1) o8
yeW,

where
(11.2) W ={ve H'(Y*); v is Y periodic}, and

_ 1S
(1.3) ¢ = Baak
We define

(1.9 y(x) =y (x|e) for xe Q,,
and this will satisfy

o

0Ve

- A'//e = (g e*in Q.
(11.5) { < on S.,

and so, by Green’s formula we obtain

2 3
1.6 Jgdr = ‘{aiy" (x/<) a”f, () + 6o et [ g for ge W..

12. KEstimates on the ejgenvalues

Proposition (12.1). Let {)} be the sequence of eigenvalues of the

probiem

(10.1). Then there exists a constant ¢; > 0 independent of e, such that

(12.1) 0< A <cefore>0.
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Proof. We make use of the mini-max principle for the eigenvalues :
] Vv .Vo
N A 1141
s, .

As in Proposition (6.1), we take S;to be the space spanned by the first -eigen-
vectors of the problem — Aw = w in £, wlpg = 0. We get

| v?
(12.3) A<y Max 8

k]
ves; SI v?
e

where ¥* is the /th eigenvalue of the problem (6.5).
We prove now that there exists ¢; such that

| v?
Q

(124 Max o < e
€

Suppose (12.4) is not true. Then we can extract @ subsequence of e (again
denoted by ¢) and ». e Sy such that

(12.5) [ »i=1,
a
(12.6) ¢ | vi-0.
S

€
Since S;is of finite dimension, the sequence {v} remains bounded in H (Q) also
and it follows from (11.6) that

(12.7) | vi-0.
Q

If v - v, in L2(£2) strong, then on the one hand (12.5) implies that
[ v =1,
Q
and on the other (12.7) implies
[ vE=0.
a

This contradiction proves (12.4) and hence the Proposition.

13. Asymptotic expansion

Taking into account the estimates we obtained in § 12, we normalize the eigen-
vector of the problem (10.1) as follows :

(13.1) § 2= ¢
8¢

Then we will have the following estimate :
(13.2) | WVu.Vu. <c, independent of e.
Qe
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Considering all these estimates, we propose the following Ansatz to the problem
(10.1),

(13.3) () =u(, )+ e (%) + ...y =3¢, -

(13.4 Ae=€hy +€2is+ ...,

Each u, is defined on 2 x Y* and it is ¥ peticdic in y. We put the expressions
(13.3) (13.4) in equation (10.1). We gst

(13.5)  — (2D, + 261N+ D)Wy + ety + ...) =0,

L0 2
(13.6) (e Yo+ U0 ax,) (o + ctty + ...)

=(eh+ e+ ..)(u + tue, + ...)

where v = (v,) is the outer normal to S. For the notations used in this section
see § 7. Now, we equate like powers of « in the above relations and we solve the
resulting equations. We obtain the following results :

(13.7) 4, is independent of y : u, (x, ») =y, (x).
P .
(13.8) w(®)=-20) 5" +u (),
¢
where y' ara as defined below and # is to be determined :

a(,v)= [ yodyforveW,
(13.9) s

e W.
We get the following equation satisfied by u, :
Puy .
(13'10) — 1ty 6.76;6.7&', = )Vl Uy In Q;
with

13.1)  ry =|—;,—' 4Gt = yo ¥ —y) for ,j=1,2 ..., N.

It follows from (13.11) that (r,) is 2 symmetric, positive definite matrix and so
the following eigenvalue problem (called homogenized probler in this case) is

well posed :
Find (u, 4) € H: () x R such that
3.12) | —ry 0k
(13.12) 4 0x,;0x;
u#0.

The formal analysis so far shows that ¢! A, — to an eigenvalue of the problem
(13.12). We prove this result in the later sections.

= juin Q,
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14. Results of homogenization

We denote by P, the prolongation operator constructed from the hole T, and P,
satisfies (9.1). The following Theorem is analogous to Theorem (9.1).

Theorem (14.1). let />1 be an integer. Let A2 be the /th eigenvalue of the
problem (10.1) with 2! be the corresponding eigenvector. Then {¢! AL} converges
to an cigenvalue A of the problem (13.12) and there exists a subsequence of ¢
(denoted by ¢) such that

(14.1) Pl — uin H}(Q) weak,

where u is an eigenvector of the problem (13.12) corresponding to A.
Proof.

Step 1. We set A, = A, u. = u} and

(14.2) & =in 0 fori=1,2,...N.
ax;

We put &€ = 0 in the holes. Because of the estimates (12.1) and (13.2), we can
extract a subsequence of e (denoted by e again) such that

(14.3) & — & in L2(Q) weak for i =1,2,... N.
(14.4) P.u, — uin H}(Q) weak,
(14.5) €li, > A
Step 2, 1t follows from (10.1) that
(14.6) &°.v.=Acug on S,
(14.7) div &€ =0 in £,.
We mualtiply equation (10.1) with n € D(£2) :
S{e Vue Vn = A ge Uen

0 J
= A¢ d—yy':(xlﬁ) 5;‘(”{'7) + g et )“e f UM,
ﬂe ﬂe

and the passage to the limit will give us
s{ éVn=COA(j; 6 un,
which is equivalent to
(14.8) —divé=c, A0 uin Q.
Step 3. We introduce w as solution to the following problem :

a(w,v) =0for veW

(14.9) {w Tew,

where TI(y) is 2 homogeneous polynomial of degree 1, We put
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(14.10) n =Vwin Y*
Then 7 satisfies

divyg =0in Y¥
n.v=0onS.

(14.11) {
We extend # by zero in the hole and we put
(14.12) 7°(x) =n(x/¢) in Q.
Then we will have
(14.13) divy =0 in Q.
Next we define
(14.14) we (x) = ew(x/e).
As before (see Step 3, Theorem (9.1)), we get
(14.15) w* =11 in L2(Q) strons.
Step 4. Let g € D(Q). Multiply (14.7) by gw* and (14.13) by g P u, and
subtract :
(14.16) f é,hw +f ne =- P u, + f Acuggws =0.
8¢

We can pass to the limit directly in the first two terms. For the third we use the
formula (11.6). We get

(14.17) f:iagn+f (x % utcho [ ugm=o
3y¢ J
which gives

1419 &8 —me (257 ) 5%

Step 5. Now we take Il =y, (j=1,2 ... N}, The corresponding test func-
tion w = —x") +y, where x¥) is defined by (13.9). So we get

[£)]
(14.19) & = lYl f( g — gy é?x‘

_ 5]
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Step 6. To complete the proof, we have to show that # # 0. To see this, we take
g =u?in (11.6) :

oy 0

2 — “d L (2

ef ut = ¢, f u: + ef . (x/e)a ‘(ue).
Qe

S¢ Qe
Using (13.1), we pass to the limit in this relation and we obtain
(14.21) 1 =¢40 [ u?,
2

from which it follows that u # 0.
We now give our final result in the Stekloff case.

Theorem (14.2)

Let {i.}, {u¢} be the sequences of eigenvalues and eigenvectors of the problem
(10.1). We suppose that the eigenvectors are normalized according to
(13.1): | u2 = &' Then

Se

() A — &, the /th eigenvalue of the problem (13.12).

(ii) there exists a subsaquence of ¢ (again denoted by ¢) such that
(14.22) P.ul — o' in H}(Q) weak,

where ' satisfies (13.12) :

. d%u
4 Ox; Ox;
(iii) If A is a simple eigenvalue of the problem (13.12) then given any eigenvector
»* associated to A satisfying (14.2), we can choose an eigenvector »% of the
problem (10.1) corresponding to AL such that

(14.23) [ of =
s

= Au in Q, u|a‘l =0,

(14.24) Pl — o' in H(Q) weak for the whole sequence.

Proof. From the previous Theorem, we know that (ii) is true for a subsequence
of e. Wae obtain also the orthogonality condition for the eigenvectors by means
of the method of Step 6 of Theorem (14.1) :

[ |
(1429 | W =50, for I,m > 1,
Q
Finally, it remains to prove that the limiting point A* of {A}} is the /th eigen-
value of (13.12). For this, it suffices to verify that

(i) there is no eigenvalue other than {).'}oo for the problem (13.12).

lm=1

(14.26) o
(ii) {«!} 1is an orthogonal basis in L2(£2).
=1
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In the following, we verify (14.26) (i) The proof of (14.26) (ii) is analogous.
Let us suppose that there is an eigenvalue g different from A* with eigenvector u:

J%u .
T xR
uec Hi(Q),
(14.27) ( p # A for all /,

| uwt =0 for each /,
Q

fut=1,
Q

We can choose an integer / such that
(14.28) u < AW
We define w,_ as the Solution of

- Aw,=0in
e W,
(14.29) W& We

W€
—<=euu on S,
av, # €

From the proof of Theorem (14.1), it is seen that
(14.30) P.w,— u in H} (Q) weak.

Now consider the element
3
(14.31) v, =w,—e X [[waul]u.
k=1 S,

Since
foat=0for k=12,...,1]
s'

we have

(14.32) a*(w,v) = At g’ v2.

We now pass to the limit in (14.32) using (11.6). We have, first

P ° r
] f Wk = e f L (xfe) g val) + 0 |tk
8, ¢ Q,
and so
e [ wakt = cy [ Qui = 0.
Se Q

As a consequence,
(14.33) Po,— u in H}(Q) weak.
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Using this and taking g = A% o? in (11.6), we get

(14.34) 211 [ 02— ¢y A0,
s

€

By similar arguments, we prove that
(14.35) a*(v, v.) — c0u.

Now passing to the limit in (14.32) we get

(14.36) p > 1+

which contradicts (14.28).
To prove (iii), we remark that . is simple for sufficiently small ¢ if 4*is so.
Afterwards, it suffices to pick up an eigenvector »: associated to A; such that

(14.37) § o} o > 0.
sl

Part C: Neumann eigenvalue problem

15. Problem to be studied
We consider the following eigenvalue problem

Find (u., 1) € W, % R such that
- Au_ = j.u,in Q,
(15.1) du,

51 =0on S,

Juz=1,
ne

where we have used the notations of § 2 and § 10. Let us denote by {A} and {u!}
the sequences of cigenvalues and the corresponding eigenvectors of the problem
(15.1). We know that

(15.2) {l§< AB<A... - 00,
' {u!}form an orthonormal basis in L2(£2,).

Here, we study the asymptotic behaviour of A} and « as ¢ - 0. Wa prove that
{4} converges to the /th eigenvalue of the ‘‘ homogenized problem >,

Since the method folllowed here is similar to Stekloff case, we do not give
details of the proofs.

16. Estimates on the eigenvalues

Proposition (16.1). Let A be the /th eigenvalue of the problem (15.1). Then
there exists a constant ¢; independent of ¢ such that

A<
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Proof. As in the proof of Proposition (12.1), by the use of mini-max principle
we get

Jv?
(16.1) 2 <+ Max 8

oes, ér,vz .
€

But we saw in the course of the proof of Proposition (12.1) that the right side of
(16.1) is bounded above independently ¢f ¢ and this completes the proof.

17. Asymptotic analysis

With the help of the estimates in § 16 and the normalization condition for the
eigenvectors, we propose the following Ansatz for the problem (15.1) :

(7.1) u (X)) =1(x,1) +eu (x,)) + ...,y = xle,
(17.2) A =dg+eh + ...

where u,is defined on 2 x Y* and it is Y periodic in y.
We substitute these expressions in equation®* (15.1) :

(17.3) = (2 Ay + 267 Ngy + A (g + ey + ...)
=(Ao +€).] + ---)(uo +eu1 + -..),

d 7,
(17.49) (e"la—v: + v 5;) (g +eu; +..)=0.

As before, we equate the powers of e on either side and we obtain the following
results :

(17.5) u, is independent of y : uy (x, ¥) = u, (x).

(17.6) w(x ) =—2 (y)‘;—‘;;(x) - (),

where »' are defined in (13.9), We get the following equation satisfied by u,
and 4, :

(A7.7) = 54208 = 21y in @
’ ¥ 9x, 0x; 0~ ’
with

1

(17.8) ;= T7%] a(d —», ¥ —y)forallj,j.
So, the corresponding ‘ homogenized problem* in this case can be formulated
as follows :
Find (u, A) € H}(2) x R such that
P4 _ juin @

~ 54 9, ox,
uz# 0,

(17.9)
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In the following section, we justify the formal calculations done above.

18. Homogenization theorem

The proof of the following result proceeds along the lines of Theorems (14.1)
and (14.2) and therefore omitted.

Theorem (18.1). Let {AL}, {u!} be the sequences of eigenvalues and the corres-
ponding eigenvectors of the problem (15.1) satisfying (15.2). Then

() & > A, the [th eigenvalue of the problem (17.9).
(ii) there exists a subsequence of e (denoted again by e) such that
P.ul - uf in H!(Q) weak,
where «* is an eigenvector corresponding to A.
(iii) If A* is simple, then given any eigenvector »* corresponding to A*such that
(18.1) | oF =1/8,
o

we can choose an eigenvector v} of the problem (15.1) corresponding to A% such
that Pg 2l — o' in H} (2) weak for the whole sequence of e.

19. Correctors and error estimates

In this paragraph, we briefly mention a method of finding correctors of first
order for simple eigenvalue of the Neumann problem. We will also see that the
problem of error estimates is reduced to that of stationary problem for which we
refer to Lioms [13]. For the study of correctors in the homogenization theory,
we refer to Bensoussan et a/ [3], Bourgat and Dervieux [5], Kesavan [12].

We consider a simple eigenvalue 4, of the problem (17.9) with eigenvector wu,
satisfying

(19.1) [ w2 = 1/6.
Q

Let u., A¢ be eigenvector and eigenvalue of the problem (15.1) satisfying
(19.2) P ue - 4y in H(Q) weak for the whole sequence of e,
(19.3) Ag = 2.
Let us define w, as the solution of
— AW, = Aty in 2,
(19.4) | WeeWe
oW,

EE_:O on Se'

The proof of Theorem (18.1) shows that
(19.5) Pewe - 1y in H} (Q) weak.
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Multiplying (19.4) by u and (15.1) by w,, we obtain

(19.6) Aq (ugs weda, = Ao (ug, uoa,,

where (.,.)q, denotes the scalar product in L?(Q).

First let us prove the following:

Theorem (19.1)

With Ay, 4y, 4., #e, W, defined as above, we have

19.7) [de = Al <clwe — %l 2>

for sufficiently small ¢ and where ¢ > 0 is a constant independent of e.

Proof. We have
oy
TR awya, et e

But (4, W), — 1 a5 € - 0 and so we obtain (19.7).

Now, we give a result which estimates the error between the eigenvectors by
choosing an eigenvector corresponding to 4,. For that, we first define z¢ uniquely
as follows :

a° (24, 0) — Ae Zes ) @, = Ao (Hes V), — Ao (4o V) foOr v € We,
(19.8) { ze€ W,

(ze; ue)ae =0
Then
(19.9) @, = zq + W

15 an eigenvector of the problem (15.1) corresponding to Ae. 'We have the following
estimate for z.:

Lemma (19.1). There is a constant ¢ > 0 independent of ¢ such that

(19.10) 1 z¢ < clldewe — Ao thliz2ag-

Proof. Suppose (19.10) is not true. Then there will be a subsequence of ¢
(again denoted by &) such that

(19.11) |zelwag=1

(19.12) || A¢ we — Aotio [l 2c@ = O-

We can pass to the limit in (19.8) as we did in equation (15.1).  We obtain
(19.13) P,z - z, in HE (Q) weak,

where z, satisfies

s 0%z,
4 0x,0x;

Jzouy = 0.
a

= 2.0 ZO in. 9,
(19.14)
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Since A, is simple, this implies that
(19.15) z, = 0.
On the other hand, taking v = z, in (19.18), we get
1 = Je(Zes Ze) oy + (Aa We = 2o oy Ze ) @
which, at the limit, gives a contradiction.
Theorem (19.2)

Let Ay, Ae, We, Uy, il be defined as above. Then there is a constant ¢ > 0 inde-
pendent of ¢ such that

(19.16) &g — toll 2@ S cllwe — to ll 2(ng-
Proof. We write

e — Uy = Zg + Wg — Uy
The proof is completed by using (19.11) and Theorem (19.1) and the fact that

Il ze g < ¢ | Ze |15 (@)

Now we give a first order corrector for the eigenvalue 4,. Weuse (19.6). We
express

e =g Fed + ...
Ue = Uy + ety + ...
We =ty + eWwy + ...
We put these expressions in (19.6) and identify powers of ¢ : we get

(“os wl) Qe

19.17) 4= —dg 7—~— >
( ) ! 0(“0’u0)9¢

where w, is the first order corrector for w,. The estimate we give below is better
than that given by Theorem (19.1).
Theorem (19.3)

Let A, Ag, We, U be as in the previous Theorem. Let 4, be [defined by (19.17).
Then we have

[Ae — A —ed | < c{ellwe — up ”t.’(ﬂ.) + | we — 1 ”21'-’“2.)
+ i we — up — e wiliL2ca gk

where ¢ is a constant independent of .
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Proof. We have

A
Jg — Ag — €4 = mﬁ (g, 4y + € Wy — Ws)Q.E
(u{)’ € WI)Q€ 2«5 )
— (A = 4o) (4o, tg) 2, [(uo, Uo) (o, we)ag = %J )

We only have to estimate the last term. But using (19.6), one can express the
last term as follows:

Ae A -
(gt . (v wda, — Ay = ([tuu,ueo)g (uy —Tr,, we — ”o)ne
€ €

Ae — A .
'—‘——"‘(ue uo); (upr ttg — By < cllwe — 1y ”2L’(n€),
0> c

by Theorems (19.1) and (19.2). This completes the proof.
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