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Abstract. In this paper, we treat some eigenvalue problems in periodically perfo- 
rated domains and study the asymptotic behaviour of the eigenvalues and the eigen- 
vectors when the number of holes in the domain increases to infinity. Using the 
method of asymptotic expansion, we give explicit formula for the homogenized 
coefficients and expansion for eigenvalues and eigenvectors. If we denote by E 
the size of each hole in the domain, then we obtain the following aysmptotic expansion 
for the eigenvalues : 

Dirichlet : 2~ = E -2  2 + 2 o + O (e), 

Stekloff : 2~ = e21 + O (e~), 

Neumann : 2 e = 20 + e21 + O (ez). 

Using the method of energy, we prove a theorem of convergence in each case 
considered here. We briefly study correctors in the case of Neumann eigenvalue 
problem. 

Keywords. Homogenization ; correctors ; eigenvalues ; eigenvectors. 

1. Introduction 

The theory of homogenization has been developed by many authors in recertt 
years. For a historic introduction and for a complete bibliography of the subject, 
the reader is referred to the book of Bensoussan et al [3]. The method of a~ymp- 
totic development introduced in this book can also be applied to problems in a 
periodieaUy perforated domain. For the treatment of homogenization problems 
in such domains, the reader is referred to the works of Lions [13], Duvaut [9], 
Cioran~cu [7], Cioranescu and Saint Jean Paulin [8]. 

The study of such problems is important from theoretical as well as numerical 
point of view. Because of the complicated structure of the perforated domains, 
any kind of calculation is difficult to perform. For example, if  we treat the 
Diriehlet problem, we have to impose the boundary condition on the boundary 
of the holes which are many in number. So, we would like to "approximate " 
the given problem by a "homogenized" problem on the domain without holes, 
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240 M Vanninathan 

By the m~thod of asymptotic development, a problem on a periodically perforated 
domain is reduced to solving problems ia the "basic cel l"  and in the domain 
without holes. 

This paper is divided into three parts : 

Part A : Dirichlet eigenvalue problem 

Part B : Stekloff eigenvaluo problem 

Part C : Neumann eigenvalae problem. 

Our aim is to describe, the asymptotic behaviour of the various eigenvalues when 
the number of hole~ in the domain increases to infinity. In each ease we explicitly 
write down the "homogenized operator" with the help of the method of asymp- 
totic d~velopment and provr a homogenization theorem using the energy 
method introduced by Tartar [14] and prolongation operators of Gioranescu and 
Saint Jean Pautin [8]. 

We treat hero the case of Laplacian operator. But one can extend the results 
to the case of elliptic, self-adjoint operators with periodic coefficients of the form 

c0 a 

E 
The eig~nvalae problem corresponding to A~ in a fixed domain has been studied 

by Ke~avan [12]. The results of this paper wore announced in Vanninathan [15], 
[16]. 

2. Notations mtd hypothesis 

First, we consider a reference ce l l :  

N 

(2.1) Y =  II (0, y ~  re,y2 > 0 .  

Let ~, (i = l, 2 . . . .  , M) be connected bounded open subsets of R ~ with sufficiently 
smooth boundaries and which lie locally on one side of the boundary. Then 
the holes in Y are zr, f3 Y (i = l, 2 . . . .  M) and their union is denoted by T : 

M 

(2.2) T =  U ( ~ n  Y). 

Let 

(2.3) Y * =  Y -  T. 

Let S denote the boundary of T in Y*. For d~tails see figure 1. 

-i 
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We assume that 
(H1) Y* is connected. 

For a function f given on Y, we define the average of f on Y:  

1 
(2.4) mr ( f )  = ~(-YI ~ f (y) dy, 

where ] Y I denotes the Lebesgne measure of Y. Let c be a small positive para- 
meter which goes to zero. We denote b y f f ( x )  or f (x /e) ,  the function defined 
in R ~ in a periodic fashion with period c yO in the direction x~. 

Let us define now, " the  holes " in R N corresponding to e, starting from those 
in Y. For that we introduce the function g as follows : 

{10 if YeY*, 
(2.5) Z (Y) = if y e T. 

We consider also the characteristic function of T :  

1 if y~T,  
Xr(Y) = 0 if y eY*.  (2.6) 

Put 

(2.7) 
IY*l  

0 = m z ~ )  = ~ - ,  

The "holes " in R u are the connected components of the set 

{x e (x) = 0}. 

Finally, let us be given a bounded connected open subset m of R N whose bonn- 
dary is sufficiently smooth and m lies locally on one side of its boundary. The 
"holes " in m are then defined by 
(2.8) To =connected components in m of {xem/z~(x) = 0}. The perforated 
domain me with which we work is 

(2 .9)  Oe = O - Te. 

Let Se denote the boundary of Te in m~. 
We m~ke the following rcstrictiom on the geometry of f2o. 

(I-I2) m~ is connected. 

(H3) Each hole in T~ has regular boundary. 
In the problems we con~ider here, thexc is one more restriction on the geometry 

of O and the holes (cf. Cioranescu and Saint Jean Paulin [8]). 
(H4) The holes T, do not meet 3m, the boundary of m. 

w e  need, in fact, in Part A a stronger hypothesis. Given any hole T' in Y, 
we can as before construct the holes ~ in m periodically. Sot 

(2.10) mr = m - T ; .  
@ 

With this notation, it is evident that 

(2 .11)  m , = O r , .  

Th~ stronger hypothesis is the following : 

{ th~o exists a hole T' in Y such that T C  C T' and the holes I~ do 

not intersect ~2 .  
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Remark (2.1). The hypothesis (H4) is severe on the geometry of  the domain t2 
and the hole T. One such example of  I2 is a finite union of  cells homothetic to 
Y and with the hole T placed in the middle of  Y. 

Summation Convention. We adopt the usual summation convention with respect 
to the repeated indices. 

Part A: Diriehlet eigenvalue problem 

3. Problem to be treated 

With the above notations, we con~ider th~ following eigenvalue problem: 

Find (ue, re )c  He ~ (g2~) x R such that 
(3.1) - Au~ = 2~ u~ in Q~, 

(u~, u,)e = 1, 

where ( . ,  .)e denotes the inner product in L 2 (Qe) and Ho~(fAe) = {v c L 2 (lAe); 
Ov/Ox~ s L ~ (gAe) for i = 1, 2 . . . .  N and v = 0 on 0.(2}. 

The variational formulation of  this problem is the following : 

Find (u s, 4e) c He ~ (tAe) x R such that 
(3.2) a '  (u,, v) = 2e (ue, v)e for v ~ He 1 (tA~), 

(u,, u,)e = 1, 

with the bilinear form a e ( . , . )  defined by 

f gu Ov (3.3) a~(u,~,)= ~,~dx.  
fie 

According to spectral theory, there exist a sequence of eigenvalues ~ ~o {4,}z=a and 

a sequence of corresponding eigenvectors ~u '~~176 such that 

0 <  2 ~ < 4 ] < 4 ~ . . . - * o o ,  
(3.4) 4~ is of  finite multiplicity for each l, 

and {u~}~x form an orthonormal basis in L ~ ([Ae). 

We can characterise the eigenwlues 4~ with the help of Rayleigh quotient (of. 

Weinstein and Steinger [17]). 

(3 .5 )  Re (v)  - a~ (v,  v )  (v, v) ,  for v e H~ (fAe), v ~ 0. 

The mimimax principle for th.e eigenvalues states that 

t 4~ = rain {max Re (v) ; S~ C H0 x (f~,), dim Sz = l}, 
~eS?, 

(3.6) l = max Re(v )  
~eEe (1) 

{ = max {Re (v) ; (v, u~e)e = O, i = 1, 2, . . . ,  t -- 1}, 

whore Ee (1) is the sub,  pace of He ~ (gAe) spanned by {uX,, . . . ,  u~}. 
This part is devoted to the study of  the behaviour of  4~ and u ~- when , ~ 0. 

We prove, in particutar, that 4~ is of  order e -2 and that {4 t, - e -~ 2.} ~ lth eigen- 
value of  the "homogenized  p r o b l e m "  where 4 is the first eigenvalue in the cell 
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Y*. As we will see, some weighted Sobolev spaces and their propertits are used 
in this study. 

4. Eigenvalee problem in the cell Y* 

Let us define the space 

(4.1) W0 = {v ~HI(Y*) ;  v = 0 on S and v is Y-periodic, i.e., v assumes 
same values on the opposite faces of Y} 

and the bilinear form 

f OuOv (4.2) a (u, v) = ~ ~ dy for u, v e Ha (Y*). 
Y .  

The bilinear form being elliptic on We, the following problem is well posed : 

f Find (~, ;t) e We • R such that 

(4.3) ~ a (~, v) = 2 (4, v)v, for v e/4Io, 
1 

= 1 ,  

where ( . , . ) r ,  denotes the scalar product in L~(Y*). 
In what follows, we consider only the first eigenvalue ~. of the above problem. 

It is well known that 2 is simple and the corresponding eigenvector ~ has constar, t 
sign in Y*. We choose the vector ~b which is uniquely defined by (4.3) and 

(4.4) ~ > 0 i n  Y*. 

Remark (4.1). We extend ~ by zero in the interior of the holes T and we 
denote again by ~ the extended function. 

Remark (4.2). It follows from (4.3) that the function r defined periodically 
satisfies 

(4.5) ( ;  ~ A~E = e'-2 ~ '  in "Qe' = O o n  Se.  

However, ~" is not zero on 0Q. 

5, Some weighted Sobolev spaces 

We will see later that consideration of some weighted Sobolev spaces is very impor- 
tant in the study of the present problem. There is a vast literature on this subject : 
see for example Baouendi [1], Baouendi and Goulaouic [2], Geymont and 
Grisvard [10], Goudjo [11]. In this section, we define some weighted Sobolev spaces 
and state some of their properties which will be needed later. 

We consider the following spaces with weights ~* and # (r being defined in w 4) : 

(5.1) V, = v e D ' ( Q e ) ;  CveL~(~2, ) ,  ~ ~-~eL (~2,) for 

i = l , 2 , . . . , N a n d v  = 0  on 0~2) 
) 
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(5.2) V=(veD'(Y*); ~v~L2(Y*), ~ ~L2(Y*) for 

j = 1, 2 . . . .  , N and v is Y-p~riodic}. 

where, as usual, 
D' (12) = sp~ce of distributions on 12, and these spaces are provided 

following norms : 

N 
ecqv 1Is 7112 

"~ "r176176 + I 
/r [ ' Xo o, l,,,. 

li v il, = It ~ z, Ik'<,.*) + ~ , ,  ' , . ' ( ~ ) a  " 

t~:1. 

Some of their prop~rtieis are given in the following: 

with the 

Proposition (5.1) 

(1) Th~ sp~ce D (s of iv, finitely differontiable functions on ~ with compact 
support in ~e is dense in V~. 

(2) We have a continuous inclusion 

v ,  --, L* ( a , )  

and the continuity constant of this inclusion does not depend on E : there exists 
a constant c > 0 independent of e such that 

(5.5) 

(3) 

(4) 

(5.6) 

(5) 

II v IIL= (a,) ~ c 11 v I!, V v ~ V,. 

The map v ~ ~ev defines an isomorphism of V, onto Ho ~ (fie). 

The inclusion V,-* L2(~ e) is compact whore 

L 2 (~') -- {v e D' (/2,) ; fie v ~ L s (/2,)}. 

N 

I l C a ~ / 1 ,  "11,3 

defines a norm on V, equivalent to the norm I1 It,. 

Proof. All thc~e properties are proved in the works cited above. The only 
thing which is now is the inequality (5.5) with c indel~ndent of ~. But one can 
prove this, without much difficulty, from the continuity of the inclusion 

(5.7) Ht(~) -~ L~(Y*), 
whore the space W(~) is defined by 

(5.8) I~(~)=.{vcD'(Y*); q~vcLz(Y*),~J~y cL'(Y*)for i = 1 , 2  . . . . .  N.) 
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Proposition (5.2) 

(1) The space of functions v ~ e *~ (~'*) N V which vanish in a neighbourhood cf 
8 ar~ dense in V. 
(2) One has the continuous inclusion 

r'-* L~ (Y*). 

(3) The map v -~ ~v definas an isomorphism of V onto We. 

(4) The inclusion 

(5.9) v - ,  L~(~) 

is compact where we define 

(5.10) L~(~)={veD'(Y*) ;~veLZ(Y*)}. 
lq 

g~:l. 

defiaes a norm equivalent to the quotient norm on V/R. 
Now, we formulam tM eigenvalue problems in the spaces V,. We define 

[ , ( r  ; . . , )  = f (5.11) t~, ~" ~x~Ox~ dx for u, v e  V e, 

~.(~ ; u ,v )= f ~ * u v d x V u ,  veL~(~) .  
f i e  

By virtue of the properties (4) and (5) of the proposition (5.1), the following 
problem is well posed: 

(5.12) 

Find (re,/t,) e Vex  R such that 

a ($" ; v,, v) =/z ,  (~b ~ ; re, v) for v e V,, 

(~ ' ;  v,, v,) = 1. 

Let {u~}~ be the sequence of eigenvalues and (re}z= 1 the sequence of corres- 

ponding vectors satisfying 

(5.13) f (i) 0 < :~ _ .~ < . . .  - ,  o o ,  
| eo  I~(ii) (ve}~-_l form an orthonormal basis in L 2 (~'). 

We have once again the characterization of /~ ,  analogous to (3.6), in terms of 
Rayleigh quotient 

R(~" ;v)  a (~ '  ; ~  v ~ Vt, v ~ 0. 
- (~' ;v ,v )  

6. F_~timati~ts on the r 

The following Lemma establishes 
values 2r ~ and #~, 

one important relation between the eigen- 
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Lemma (6.1). Let 2 be the first eigenvalue of the problem (4.3) with the eigen- 
vzctor ~b. Then for all v ~ Ve, we have 

Ov Ov dx. 

~e fie fie 

Proof. Since D (/2 e) is dense in Ve, it suffices to verify (6.1) for all v e D (t2e). 
On the one hand, we have 

f 0 O, (~v)  f 0~" Ox, ~., " 20v av (,k 2) dx + ,ix = 

fie ~e  fie 

and on the other hand, by multiplying (4.5) by # v ~ we obtain 

dx, Ox, 
f~e Qe 

and so we deduce (6.1) without difficulty. 

Corollary (6.1) 

Let , ~o ~ oo {2,}~=~, {/te}~=l be the sequences of  eigenvalues of the problems (3.2) and 
(5.12) respectively. Let 2 be the first eigenvalue of the problem (4.3). Then we 

have 

(6.2) 2~ = c -2 2 +/t~ for 1 >__ 1. 

Proof. In fact, we obtain, f rom (6.1) 

R e ( $ ~ v ) = e  - ~ 2 + R ( ~  ;v )  for v e V e .  

Now we u~e the minimax principles for eigenvalues and the isomorphism of the 
proposition (5.1) (iii) to get the relation ( 6 . 2 ) . .  

Since p~ > 0 for all l >__ 1 and E > 0, wesee that the sequence {2~ - c -~ ;t},>0 is 
bounded below by zero. The following Proposition shows that it is bounded 

above. 

l o o  Proposition (6.1). Let {/re}z= 1 be the sequence of eigenvalues of the problem 

(5.12). Then for l ~ 1, {/~}e>0 is bounded indopendently of  E. 

Proof. We use the following characterizations of minimax principle : 

(6.4) p~ = min {max R ( f f '  ; v ) ;  S, C Ve, d imS,  = 1}. 

We take Sz to be the vector space spanned by w,, w2, �9 �9 w,, the first l-eigen- 
re : to t s  of the following Dirichlet problem : 

J 'Find (w, v) e H~ (f2) • R such that 
(6. 5) 

~.- A w = vw in t2. 

It is not difficult to see that we have 

(6.6) dim(S,  ft2e) = I for ~ > O. 
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[SdQ~ denotes the restriction to 12~ of functions belonging to Sd. So, one can 
take S,/g2~ in (6.4). (This is alright, since no boundary condition is required on 
S~ for V~.) We obtain 

(6.7) /?e --< max g (ff~ ; v). 
~eS 

We claim that the right hand side of the inequality (6.7) is bounded above by a 
constant independent of E. In fact, on the contrary w~ would have, for a sequei~ce 
E. ~ 0, a sequence {v.} C S~ such that 

(6.8) S ~XT v.  V v .  > n S q~v~for n > 1 ,  
f~n fJn 

(6.9) I v~ = 1 fct' n > l .  
a 

Here we have set f2,, = t2, and ~.. = 4,. Since S~ is of finite dimemion, we have 
(for a subsequence) 

v, ~ v in HI (t2) strong. 

Now, one can pass to the limit in (6 .8 )and  obtain 

m,(~ ~) $ v ~ = 0 .  

But (6.9) implies that 

I v 2 = l .  
fl 

This contradiction proves the Proposition. 

7. Asymptotic devolopmont 

The aim of this section is to find " the  homogenized operator" for the problem 
(3.2) by the method of asymptotic development introduced in Bensoussan et al 

[3] and Lions [13]. 
We introduce one " f a s t "  variable: 

(7.1) y = x/, .  

Ttten, the differential operator ~/~xj applied to a function ~ (x, y) becomes 

(7.2) ~ .~ •--1 . t3y, 

So, the laplacian operator is transformed into 

(7.3) 

where 

E -2/Xy + 2~ -1 Z~Rv + /% 

03 03 03 
(7.4) ~'~ - Oy,Oy,' A,y = Ox~ay~' A ,  = O~Ox," 
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Taking into account Proposition (6.1) and Corollary (6. I), we propose the 
following Ansatz for the problem (3.1) : 

(7 .5 )  u, (x) = uo (x, y )  q- r (x, y)  + . . .  y = x/E, 

(7 .6 )  3,c = ~-2L-~ + c -1 2-1 + 20 + . . . .  

We impose the following restrictions on the functions u~ which are defined for 
x ~ 2  and ye  Y* : 

~ u j ( x , y ) = O i f  y e S ,  

(7.7) t uj(x ,  .) is Y-periodic in y. 

We substitute the expressions (7.5) and (7.6) in equation (3.1) and we 
identify the powers of c. We obtain 

f u0 (x, y) = ~ (y) ~o (x), 

(7.8) / t ul (x, y) (~(') (Y) O~ (x) + ~ (y) ul (x), 

(7.9) a_. .  = 2,  

(7.10) L-x =0,  

(7.11) a~o = ~o~o, 

where 

(1) 2 is the first eigenvalue and ~ the corresponding eigenvactor of the problem 
(4.3). 
(2) The functions ~u) (j  = 1, 2, .., N) are defined by 

(7. 12) a (@>, D) - ~ (~('), v )~ .  = 2 v j , .  for v e W0, W0. 

(3) The operator A (called homogenized operator) is defined by 

(7.13) A -  - q ~ x , O x j  

the "' homogenized coefficients" being defined by 

f 0,Atj) (7.14) q , = 6 , ~ + 2  ~ y ~ d y f o r i ,  j = l ,  2 . . . . .  N. 
u  

Remark  (7.1) 

The relations (7.9) and (7.10) are in accordance with the results of Proposition 
(6.1) and Corollary (6.1). 

Remark  (7.2) Since 

(0~,, 4)v. = O for i = l ,  2, . . ., N, 

equations (7.12)can be solved for ~(i) by Fred~olm alternative. 
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The "homogenized problem" is an eigenvalue problem for the operator A : 

[ Find (u,/~) e H~ (12) x R such that 
(7.15) { A u = p u i n  12, 

t u ~ O .  

The preceding formal calculation~ show that the sequence { , l , -  e-~2}t>o 
converges to an eigenvalue of the problem (7.15). We prove this result later by 
the method of energy. 

8. Ellipticity of the homogonized operator 

The idea of proving the ellipticity of the operater consists of identifying the coeffi- 
cients q,~ with the homogenized coefficients associated with the problem (5.12). 
So, we apply the asymptotic development method to the problem (5.12). First, 
we write the problem (5.12)in operator form : The solution (rE, p,) is charac- 

terized by 

| (v,,/~,) e V, x R, 

We develop v.  and/~, in the following form : 

(8.2) v~ (x) = v0 (x, y) + eel (x, y) + . . .  y = xl~, 

(8.3) g, = go + e/ll + . . . .  

where vj is defined on g2 x Y* and it is Y-periodic in y. 
We pat these expressions in (8.1) and identify the powers of e. 

following results : 

We get the 

(8.4) vo (x, y) = vo (x), 

(8 .5)  (x, y) = v, cj) (y) (x) + ;,1 (x),  

and the necessary and sufficient condition so that we solve for v2 is 

(8.6) A;o = ~o;o in Q, 

where the operator B is defined by 

~2 

(8.7)  B -- - p , j  0 x ~ '  

with 

(8 8) Po 8,, + ; .e -O-f~ dy for i , j  
y* 

= 1, 2 . . . .  , N. 
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The functions ~ o ) ( j  = 1, 2, . . . ,  N) are defined (upto an additive constant) to 
be solutions of the following variational problem : 

f a ( ~ ;  v/tJ),v) = - a ( ~ ;  yj, v)Vve V, 
(8.9) (~,o~ e V, 

the bilinear form a ( ~ ;  . , . )  being defined by 

(8.10) a(~" u ,v)= /~ ~ 20u Ov 
' - -  o y ,  dyVu'v V" 

y *  

It is not  diffictdt to see that the operator B is elliptic in the sense that there 
exists a constant ~ > 0 such that 

(8.11) p,j ,+j _> for = (6) e R N. 

In fact, the coefficients p~ can be expressed by the following formula : 

(8.12) p ,  = a (if; ~,u) + y.~, ~,c,) + y+) for i, j = 1, 2, . . .  N, 

taking into account the following relation 

a (~; gtu) + yj, gtco) = 0 for i, j = 1; 2 . . . .  N. 

Now, the inequality (8.11) is a simple con~,equence of (8.12). 

Theorem (8.1) 

Let (q~t) and (p~j) be defined by (7.14) and (8.8) respectively. Then we have 

q~ =p+j for i,j = 1,2 . . . .  N. 

In pzrticular, the operator A is symmetric and elliptic. 

Proof. We provo that ff~u cj) is a solution to the problem (7.12). For that we 
use the isomorphism between the spaces V artd Wo given by the Propositiort (5.2) 
(iii). Firstly, we have q~<J)+ Wo. 

By virtue of  the Proposition (5.2) (i), it suffices to verify that 

(8.15) f 8__ ~a,,,cJ)~ a ( v 8y,~.  ,. ,ff-yy~ (~ )dy=2 / ~'~~ 2 / ~0~ (~vdy, 
y *  y *  y *  

for all v ~ c ~~ (Y*) N V which vanish in a r, eighbourhood of S. The relation 
(8.15) is easily proved by using the defiaitions of  ~ arid ~,o~ and the followir~g 
identity : 

(8.16) 2 f , vdy=- f ~ 
y,t,, y ,  

Now we take ~s~ = ~vt~) ~n the formula (7.14) defining q~. We obtain 

q,~ = ~ + 2 f ---~ r ,~ dy, 
y *  



Homogenization of eigenvalue problems in perforated domains 

dy 
y *  

= P~l ,  

and so the Theorem is proved. 

251 

9. Homogeaization theorems 

In this section u~ing energy method we show how one passes to the limit as E ~ 0 
in the problem (5.12) which determines the correctors /2,. Before that, we need 
some more notations. Let us denote by T' any hole satisfying the hypothesis 
(I-I5). We denote by p r,, the prolongation operator constructed from the hole 
T' satisfying the following condition: 

For all v in H a (t2r~) with v = 0 ort dQ, we have 

P[" v e H0 ~ (~2) and there exists a constant c > 0 

(9.1) independent of E (but depending on the hole T') such that 

I P~r'v h, ta < c I v I1, a t ,  ~ , 

where [ v t1, ~ = $ V v . V v dx. 

The existence of the operator pr,  is proved in Cioranescu and Saint Jean Paulin 

[8] and Cioranescu [7]. 

Lemma (9.1). Suppose for each e > 0, we are given w, in V~ such that 

(9.2) fl w, IJ, ~< c, independent of , .  

Then there exists a subsequence of E (again denoted by E) and a function wo in 

HoX(f2) such that 

(9.3) pr,  w, ~ w 0 in H i (t2) w~ak, 

for all holes T' verifying (H5). 

Proof. It follows from the hypothesis (9.2) and from the fact that ~ > 0 in Y* 
that there exists a constant CT, such that 

(9.4) [ w,[1, ar~ ~ cr,. 

Thanks to the ineqttality (9.1), we see that the sequence {pr, w,} remains bounded 
in H~(f2). So, we can extract a subsequence of ~ and a function w0 r' in H~(g2) 
both depending on T' such that 

(9.5) P$'w,  ~ wo r" in H~(g2) weak, 

for the extracted subsequence. 
Now let u~ consider another h.ole satisfying (H5). By similar arguments as 

before, we obtain a subsequence of the subscquence already picked up and a 
function wo TM in H~(12) such that 
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(9.6) pr, ,  _ ,  w , ~ w ~ "  in H~(I2) weak. 

But we have the relation 

(9.7) XY - <r'ur") (x/E) Per" w, = Z Y -  (r'or") (x/c) pr,,  w~ in /2 

where XY- cr'ur"~ (y)is the characteristic function of Y - (T' U T"). One can pass 
to the limit in (9.7) and we obtain 

lAST ~'t mr (ZY-tr'ur")) we r' = my (XY-tr'ur")) ,,o , 

and so wro ' = wro " in/2. By the uniqueness of the limit, we see that the proof is 
complete. 

Lemma (9.2). Let {we}~ > 0 be given as in the preceding Lemma. Then for the 
subseqaeace of ~ and for the faaction we in H~(O) given by the Lemma (9.1) 

we have 

(9.8) pr, w, ~ Wo in He ~ (12) weak for all holes T', 

(9.9) f ~ ( x / , ) f ( x / , ) w ,  d x ~  f m r ( ~ f ) w o d x ,  
Die fl 

where f is given in L~(Y) .  

Proof. Let T' be a hole satisfying (H5). We write 

(9.10) I ( :  f e  w,  dx - I my ( ~ f )  we dx 
Die fl 

= [ f ~ f" wcdx - [ mz-r,(~f) wo] + [ f :p" fe w~ 
n_ f f - a , 

--r'e T e T e 

- -  J" m r ' - r  ( r  We dx], 
f l  

where we have set 

1 ~ g dy for subsets U of Y. (9.11) mu (g) = ~ l  u 

We have the following estimate: 

I I  
f l - f l  

~r e r ,  ~ 
e 

r fe w, dx I ~ II ~ II:~ I t f  ~ Iletn,~ II w, II~:tf,~. 

Using now Proposition (5.1) (2), we deduce 

(9.12) I~  ~b" f e w ,  d x l ~ c l l ~ l l L ~ t r ' - r ~  , 
f - f l ,  

ro % 

where c is a constant independent of 2" and ~. 

We also have 

(9.13) [ S mr' - r ( t~ f )wo  dx I ~ cll~ IIL~*C~-T~ ' 
fl  
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Since ~ = 0 on S, we can choose T' satisfying (H5) and II ~ [[~~176 sufficiently 
small. For this hole T', we have the convergence 

(9.14) I # f "  P$" w, dr, ~ f mr-r, (qJf) wo dx. 

Combining all these results, we obtain (9.9). 
Using similar arguments, we can prove the following : 

Lemma (9.3). Let (w,} and (v,} b~ two sequences such that 

tl If, -< 
(9.15) il v,  ll, <_ independent o f  E. 

Then there exist a subsequence of ~ (again denoted by E) and functions We, vo 
in H~(t2) such that we have the following convergence for this subsequence of E : 

pr, w, ~ we in /-/ol (g2) weak, 
(9.16) I. pr, v~ ~ vo in H~ (f2) weak, 

for all holes T' satisfying (H5) and 

(9.17) I ~r f ' w ~ v ,  dx-~ S mr (~ f )wovodx ,  
fie t l  

for all f in L | (Y). 
Now we have all the tools to prove the following homogenization theorem: 

Theorem (9.1). We suppose that (It5) is satisfied. Let (v,,/z,) be a solution 
of the problem (5.12). We assume 

(9.18) / t t - ~ / t a s  E ~ 0 .  

Then/z is an eigenvalue of the "homogenized problem" (7.15). Furthermore 
there is an eigenve, ctor Vo in He ~ (f2) corresponding to p and a subsequence of 
(again denoted by , )  such that 

(9.19) pr,  v~ ~ vo in H~ (~) weak for all holes T' 

satisfying (1-I5), pr, being the prolongation operator verifying (9.1). 

Proof. 

Step 1. 

(9.2O) 

Set 

~, ~ v ,  in Q, ,  i -- 1, 2, . . .  N. (9 .21)  ~ -- r ax~ 

It follows that 

(9.22) It s IlL' ~a.~ < e, i = 1, 2, . . .  N, 

and we have 

(9.23) - die (~' ~') =/z,~ "~ v.  in Q,. 

Taking v = vt in (5.12), we obtain 

[l vt  H, ~ c, independent of r 
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So, ~" ~" .  v~ admits a trace on c~t2~ where vt is the exterior normal to d~2 c. It is 

not difficult to see that  

(9.24) ~ ' r  = 0  on So. 

So, equation (9.23) is valid in g2 if  wo r ~" by z~ro in the holes. 

(9.25) - div (~' ~') = I t , ~ '  9 ,  in f2. 

In (9.25), we take some arbitrary extensions for ~' and v~. Using Lemma 
(9.1), we can extract a subsequence of ~ (again donoted by ~) such that 

(9.26) 

(9.27) 

Step 2. 

to get 

(9.28) 

Step 3. 

~" r ~ r in L 2 (t2) weak, i = 1, 2, . . .  N. 

PZ~'v~--* Vo in H~(~2) weak, for all holes 

T' satisfying (H5). 

Using the tectmique of Lenmm (9.2), we can pass to the limit in (9.25) 

- dJv ~ = It mr ( ~ )  go in s 

We introduce w as solution to the following variational problem : 

f ; w, 9) = o for V, 
(9.29) 

w - I I ~  V, 

where II  (y) is a homogeneous polynomial of degree 1. Set 

(9.30) ~ / = ~ v w i n  Y*. 

Then r/satisfies 

(9.31) - d i v ( C ~ ) = 0 i n  Y*. 

Also we have ~ / .  v = 0 on S where v is the outer norn~l  to S. So, we obtain 

(9.32) - div ( ~  ~/') -~ 0 in 12. 

We set 

(y) = w (y) - II  (y) for y E Y*. 

Then ~ ~ V and we take some extension of ~r in the hole and we extend V periodi- 

cally throughout R re. We define 

(9.33) w ' (x)  = ,  w(x / , )  

= 1-1 (x) + , ~  (x / , )  in g2. 

Since ~ ~ L z (11), ~ (x/E) remains bounded in L 2 (O) and so 

(9.34) w' --, FI in L ~ (~2) strong. 

Step 4. Let g ~ D (12). 

We take v = gw" in (5.12) and multiply (9.32) by gv~ and subtract, we get 

(9.35) a~ ffx~ ~ = It" a ,  j" •" v,  g w' dx. 
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Using the technique of Lemma (9.2), we pass to the limit in (9.35) to get 

(9.36) OS ~, I'[ "~Og _ d mr (4 7,) Vo ~Og = It my (42) aS Vo g IX dx. 

It follows f rom (9.36) and (9.28) that 

,31I ( ~ w ) ~ v o  
(9.37) ~,ff~ = m y  4 -~ ~x, in O. 

Step 5. Now we take YI = yj ( j  = 1, 2, . . .  N). The corresponding test function 
w : ~ v  c~ + y j  where ~vtJ~ is given by (8.9). So, we get 

(9.38) ~l = mr  (42) q~ ~ ~  for j = 1, 2 . . . .  N. 

Tkis when combined with (9.28) shows that 

(9.39) Ave =/zv o ia ~2. 

Step 6. To complete the proof, we have to show that 

(9.40) v0 # 0. 

We have 

(9.41) j '~ ~ r e = l ,  
lie 

and at the lim;t we obtain 

my ( ~ )  ~ v~, = l ,  

and so (9.40) follows. 

Theorem (9.2). We assume (H5). Let 2 be the first eigenvalue of the problem 

(4.3) with eigenvector ~. Let , ~ oo {vv P~)~-~ be the spectrum of the problem (5.12) 
Let ~ oo {2~}i-x be the seqttertce of eigenvalue of the problem (3.1). Then 

(i) 2~ -- ~-22 =/t~ for l >  1. 

(ii) /z~ ~ lth eigenvalae /z ~ of  the problem (7.15). 

(iii) There exist a subsequence of E (again denoted by e) and eigenvectors 
{v ~} of the problem (7.15) corresponding to {if} such that 

(9.42) r, P~ v ,  ~ v ~ in He  x (f2) weak for all holes T'  
satisfying (tt5). 

(9.43) {v ~} form an orthogonal base in L2(I2). 

(iv) If /z  t is a simple eigeavalue of  (7.15), then given any eigenvector v~o corres- 
ponding t o / z  ~ satisfying (9.42), we can choose an eigenvector v~, 0 of the 
problem (5.12) corresponding to /~ such that 

(9.44) P,r' v,,~ o ~ v~ in He ~ (t2) weak for the whole sequence of c. 

~. (A)--7 
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Proof. By Proposition (6.1), we can extract a subsequence of c such that 

(9.45) #~ -~/2 as ~ . 0. 

According to Theorem (9.1),/z ~ is an eigenvalue of the problem (7.15) with eigen- 
vector v z satisfying (9.42). To prove/z z is the lth ehgenvalue, it suffices to verify 

that 

(1) {v'} is an orthogonal base in L 2 (/2). 

(2) There i; no other eigenvalue except {#7} for the problem (7.15):  (u, lOe 
H~ (~) x R such that Au = #u. 

We remark, first, that the eigenvectors {v ~} are orthogonal in L~(~2). In fact, 
the passage to the limit in the relation 

Z m ~ I~ZM ~ (9.46) I $ " v , v .  
f i e  

wiU give 

(9.47) mY($ z) I Cvm=8~, , .  
f l  

We shall prove (2). Let/z be an eigertvalue of the problem (7.15) which is diffe- 
rent f rom/2  with. eigenvector w satisfying 

l 
aw = #w irt ~2, 

) Iz r  z for any l, 

( 9 . 4 8 ) ) ~  w2= l/(mv(r 

~ wv' = 0 for each l ~  1. 

We caa choo3e l auch that 

(9.49) 

Now, 

(9.50) 

]./ < ] / 1 + 1 .  

we define w~ a; follows : 

{ w,e V~ 
a(~' ; w,, v) = ~ ( C ;  w,v)VveV,.  

The proof of Theorem (9.1) shows that 

(9.51) pr, w~ --* w in H~ (Q) weak. 

Set 

^ 
(9.52) w , = w , - X ( C ;  w,,v~)v~. 

4=1 

We see easily that 

(9.53) (if' ; wE, v ~ ) = 0  for i =  1 , 2 , . . . / ,  

and as a consequence 

(9.54) a (r ; w,, ~,) :> #~+1 (~* ; ~,, ,~,). 
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We can prove 

/ ^ " 
( 9 . 5 5 )  a (~";  we, w , )  -~ ~ ,  

( ( ~ "  ; w , ,  w , )  - .  m ~ ( ~  ~-) I w ~ = i .  

I-Ience (9.54) implies that 

( 9 . 5 6 )  ~ > ~+1 ,  

which is in contradiction with (9.49). This completes the proof of (2). In the 
same way, one can prove v e L ~ (t2), j" v v z = 0 for all I implies v = 0. This 

f~ 

proves that v ~ is the lth ~igenvalue of the problem (7.15). 

To prove (iv). We note, first, tha t / t [  is simple for ~ sutficiently small. In fact, 
since we have/z'. ~ / z  ~ for a l l / ,  the multiplicity o f / ~  is less than or equal to that 

and - ~ which satisfy (5.12). of/~z. So, there are only two vectors v o o %, o 

We choose one which satisfies 

�9 ' v'o) > O, (9.57) (~b" , %, 0, 

and thin sequence mu~t satisfy (9.44). 

Part B: Stekloff eigenvalue problem 

10. Problem to be treated 

With the notations introduced in w 2, we consider the following eigenvalue problem: 

I ind (u,, 2~) ~ grE x R such that  

- Au~ = 0 in s 

c~u t (10.1) t ~ v -  = 2, u, oft ~,, 

/ 
uc r O, 

where ~[Bva is the exterior normal derivative to S~ and 

(10.2) W c = { v ~ H  1(~2,); v = 0  on Off}. 

Problems of the type (10.1) have been studied by Bergmann and Schiffer [4] 
and Bramble and Osborn [6]. This problem can be put in the variational form 
as follows : Consider the following problem for g E L ~ (S,) : 

a '  (wE, v) = .f g v  for v ~ W,, 

t w ,  E W~. 

Set Gag = w~s,.  Then G, is self-adjoint, compact operator in L 2 (S~). We can 

write the eigenvalue problem 

1 
G, ue = IZe u,, IZ, = ,~ 
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as follows : 

( lO.2) { a '  (u,, v) = 2, j" u, v for v in W,, 
~e 

u~ 4-0. 

We denote by z ~o {2,}~=~ the sequence of eigenvalue, s and by {u~} corresponding 
eig~ave~tors of thi.s problem. We remark that {u~} form an orthogonal basis 
in L ~ (S~). Our aim, in this part, is to study th~ asymptotic behaviour of 2[ and 
{u~} as ~-~ 0. We prove that {~-~2.} ~ lth eigonvalue of the "homogenized 
problem ". A very u~eful tool in this study will be a test function which will 
be defined in w II .  

LL Test fraction 

We define ~/ as the solution of the following variational problem : 

I a(v/,v) = - C o  .f v + f v d 7  for v ~ W ,  

(11.1) [ /~ve W, v* 

where 

(11.2) 

(l 1.4) 
and this 

W =  { v e H l ( Y * ) ;  v is Y periodic}, and 

_ I S l  
(11.3) co ! Y* I" 

We define 

~ (x) = ~ (xle) for x e ~a,, 
will satisfy 

~ - ~ , '  = c0 e-~ in O,, 

01"5) /~v~ = r  

by Greeffs formula we obtain 

_ a ~  a g  _~ 
(11.6) .f g d7 - f,~"a .y,  (x/e) ox,(X) + co I g for g e  W,. 

8,  f~, 

and so, 

12. Estimates on the eigenvalues 

Proposition (12.1). Let {~.~} be the sequence of eigenvalues of the problem 
(10.1). Then there exists a constant c~ > 0 independent of 4, such that 

(12.1) 0 < A ~ c ; e f o r  r  
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Proof. We make use of the mini-max principle for the eigenvalues : 

I Vv �9 Vv } 
(12.2) 2 ~ = M i n  Maxa,  . . S~C Br, 

,aeIJ~ ~ V2 ) d im 8~--| " 

8 e 

As in Proposition (6.1), we take S~ to be th~ space span~ed by the first l-eigen- 
vectors of the problem - A w =  vw in 12, wlba = 0 .  We get 

I v 2 
(12.3) 2 ~ < v  ~ Max Q 

, , s ,  S v i '  
$r  

where v t is the lth eigenvalue of the problem (6.5). 
We prove mow that there exists c~ such that 

S v  2 
(12.4) Max n 

~es; J" v a- -< c ~ .  
B{ 

Suppose (12.4) is not true. Then we can extract a subsequence of E (again 
denoted by E) and v , ~  S l such that 

2 1,  (12.5) f v,  = 

(12.6) , S v~--,0. 
s e 

Since S~ is of finite dimension, the sequence {v~} remains bounded in H~ (12) also 
and it follows from (11.6) that 

(12.7) I v r  
f i t  

If v~ ~ v0 in L2 (f2) strong, then on tile one hand (12.5) implie~ that 

I v ~ = l ,  
f l  

and on the other (12.7) implies 

I vg=O. 

Thi~ contradiction proves (12.4) and heaco the Proposition. 

13. Asymptotic expansion 

Taking into account the estimates w~ obtained, in w 12, we normalize the eigon- 
vector of the problem (10.1) as follows : 

(13.1) I u~= c ~. 
8 e  

Thea we will have the following estimate: 

(13.2) S Vu,  Vu ,  _ c, independent of r 
Qe 
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Considering all those estimates, we propose the following Ansatz to the ploblem 
00.1).  

(13.3) u, fx) = u , ( x , y )  + , U x ( X , y )  + . . .  y = x / , ,  �9 

(13.4) 24 = 621 + ~ 2 2 ~ +  . . . .  

Each uj is defined on t2 x Y* and it is Y periodic in y. 

(13.3) (13.4) in equation (10.1). We get 

03.5) 

(13.6) 

We put the expressions 

- ( * - ~ A ,  + 2E-aA,w + A , )  (uo + ,u~ + . . . )  = 0, 

+ v~ ( y ) ~  (uo + ,u~ + . . . )  

=(e21+E 22~+ . . . ) (Uo+UE~+ . . . )  

uo is independent of y : u 0 (x, y) = u 0 (x). 

c3uo 
u~ (x,  y )  = - x ~ (y)  ~ (x)  + u~ (x),  

N 

where gl are as defined below and u~ is to be determined : 

I a ( x  j , v ) =  S v j v d T f o r  v~IV,  

(13.9) [. x/~ IV. s 

We get the following equation satisfied by u 0 : 

~Zu~ --- 2xu0 in 12, (13.1 O) - r~ dx,Oxi 

with 

1 a(x ~ - y ~ , x  ~ - y ~ ) f o r  i , j = 1 , 2 . .  N. (13.11) rg = ~-1  ., 

It follows from (13.11) that (r~j) is a symmetric, positive defir~ite matrix and so 
the following eigenvalae problem (called homogenized problera in this ease) is 

well posed : 

( Find (u, 2) ~ Hot (12) x R such that 

I ~ u  . . 
(13.12) / - r~j ~ j  - zu m t2, 

t u ~ O .  

The formal analysis so far shows that ~-x 2~ -~ to an o/genvalue of the problem 
(13.12). We prove this result in the latex sections. 

( 1 3 . 7 )  

( 1 3 . 8 )  

where v = (vj) is the outer normal to S. For the notations used in this section 
see w 7. Now, we equate like powers of E in the above relations and we solve the 
resttlting equations. We obtain the following results: 
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14. R~sults of homogenization 

We dertote by P~ the prolongation operator constructed from the hole T~ and P~ 
satisfies (9.1). The following Theorem is analogous to Theorem (9.1). 

Theorem (14.1). Let l ~ 1 be an integer. Let 2~ be the lth eigenvalue of the 
problem (10.1) with u~ be the corresponding eigenvector. Then { c -z 2~} converges 
to an eigenvalue ~ of the problem (13.12) and there exists a subsequence of r 
(denoted by E) such that 

(14.1) Ptu~ ~ u in He z (I2) weak, 

where u is an eigenvector of the problem (13.12) corresponding to ,t. 

Creel. 

Step 1. We set 24 = 2~, u, = u~ and 

0u, 
(14.2) ~ = ~ i n  t2, for i =  1 , 2 , . . . N .  

We put ~' = 0 in the hole~. Because of the ostirnatc~ (12. I) and (13.2), we can 
extract a subsequence of ~ (denoted by ~ again) such that 

(14.3) 

(14.4) 

(14.5) 

Step 2. 

(14.6) 

(14.7) div ~" = 0 i n  ~t .  

We multiply equation (10.1) with t/ e D(Q) : 

I V u ,  V,7 = >t, f u,~ 
fe S~ 

fie 

and the passage to the limit will give us 

S ~ V q = co,~ / O u,7, 
f l  f 

which is 

(14.8) 

Step 3. 

(14.9) 

~ ~ ~ in L 2 (f2) weak for i --- 1, 2 . . . .  N. 

P,u, --, u in H~ (I2) weak, 

:-: 2 e --) 2. 

It follows from (10. I) that 

~ ' . v , = 2 ,  u, o n S , ,  

+ e0 6 -1 ~,~ / 

fie 

where 17 

ttr 

equivalent to 

- d i v ~ = C o 2 O U i n ~ .  

We irttroduee w as solution to the following problem : 

I 
n(w, v) = 0for  v~  W' 

w - H e W ,  

(y) is a homogeneous polynomial of degree 1. We put 
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(14.10) , / =  ~7w in Y*. 

Then r/ satisfies 

{ ~ i v t / = 0 i n  Y*, 
(14.11) . v = 0 on S. 

We extend r/ by zero in the hole and vce put  

(14.I2) r/*(x) = tl(x/D in g2. 

Then we will have 

(14.13) divr/ '  = 0 in s 

Next we define 

(14.14) w ' ( x ) =  ewfx/e). 

A~ b~fore (see Step 3, Theorem (9.1)), we get 

(14.15) w" ~ I I  in L~(s strong. 

Step 4. Let g ~D(s Multiply (14.7) by gw" and (14.13) by gP, u, and 

subtract  : 

(14.16) - f ~ [~  w~+ f tl~ Og f Ox~ ~ P~ u, + 2, u~ g w ~ = 0. 

fie fie S~ 

We can pa~  to 
formula (11.6). 

(14.17)-  ,u+eo;to 

which gives 

~l-I ( Ow'~ gu 
(14.18) zUd . 

Step 5. Now we take I I = y j  ( j = l , 2  . . .  2V), 
t ioa  w = -  X ~j) + yj where X ~s) is defined by (13.9). 

i f (  (14.19) ~, = i--y-] 0~ - Oy, J 0-~" 
y* 

I~Sl r~j gu 

Combining this with (14.8) we obtain 

d2tt 
(14.20) - r o ~ = 2 u .  

the limit directly in the first two terms. For the third we use the 
We get 

ugh = 0  

The corresponding test func- 
So we get 
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Step 6. To complete the proof, we have to show that u # 0. To see this, we take 
g = u~ in (11.6) : 

f f s , u  ,=co (ug. 

'~e ~'ta Qe 

Using (13.1), we pass to the limit in this relation and we obtain 

(14.21) 1 =coO ~ u ~, 

from which it follows that u r O. 

We now give our final result iu the Stekloff case. 

Theorem (14.2) 

Let {I~}, {u~} be the sequences of eigenvalues and eigenvectors of the problem 
(10.1). We suppose that the eigenvectors are normalized according to 
(13.1): ; u~= , -x .  Then 

Se 

(i) i; ~ ~, the l th eigenvalue of the problem (13.12). 

(ii) there exists a subsequence of E (again denoted by ~) such that 

(14.22) P,  u~ ~ u' in H~(t2) weak, 

where u ~ satisfies (13.12): 

~2U - r ~ = 2 u i n t 2 ,  ulda =0' 

(iii) If  2 is a simple eigenvalue of the problem (13.12) then given any eigenvector 
v' associated to ;t ~ satisfying (I4.2), we can choose aa eigertvector v~ of the 
problem (10.1) corresponding to 2~ such that 

(14.23) ; v, 

8 e 

(14.24) P,v~e ~ v' in H~ (f2) weak for the whole sequence. 

Proof. From the previous Theorem, we know that (ii) is true for a subsequence 
of E. We obtain also the orthogonality condition for the edgeavectors by means 
of the method of Step 6 of Theorem (14.1) : 

5 (14.25) u' u" = ~0  8,m for l, m > 1. 

Finally, it remains to prove that the limiting point 2 z of {2~e} is the lth eigen- 
value of (13.12). For this, it suffices to verify that 

(14.26) 

(i) there is no eigenvalue other than { 2 } ,  

oo 
(ii) { u ' }  is an orthogonal basis in L 2 (t2). 

for the problem (13.12). 
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In the following, we verify (14.26) (i) The proof of (14.26) (ii) is analogous. 
Lot us suppose that  there is an aigenvalue/z different from 2 ~ with eigenvector u: 

(14.27) 

~ 2 U  
- ro ax--~j = t~u in 19, 

u e ~ (19), 

/z ~ ;t ~ for all l, 

.f uu ~ = 0 for each /, 
t) 

I U ~ = I "  
fi 

We can choose an integer l such that  

(14.28) /~ < ;L ~-1. 

We d~fine w e as the solution of  

- Aw e = 0 in 19e, 

W E ~ W e, 
(14.29) aw~ .~ 

= e f lU O n  ~e" 
Ore 

From the proof of Theorem (14.1), it is seen that  

(14.30) P~w E ~ u in H~0 (19) weak. 

Now consider the element 

| 

(14.31) v ,  = w ~ -  ~ ~ '  [ f w e u  []u[. 
]bm=~. S �9 

Since 

S v , u ~ = 0 f o r  k = l ,  2, . .  . , l ,  
s, 

we have 

(14.32) a" (~e, 9,)  >_ ~ *  I ~ -  
s, 

We now pass to the limit in (14.32) using (11.6). 

f f O~ ~ (WeU,)+c ~ 
8~ ~t 

and so 

I w,uI - ,  Co I Ouu ~ = O. 

S e 

As a consoquence, 

(14.33) PGv, ~ u in H~(19) weak. 

We have, first 

J w~u~, 
Qt 
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Using this and taking g = 2 ~ v ~  in ( l l .6) ,  we get 

(14.34) 2~+ 1 J" v~ --, Co 2 t+l 0. 
s, 

By similar arguments, we prove that 

(14.35) a ' (vo  v,) --, coOg. 

Now passing to the limit in (14.32) we get 

(14.36) g >_ 2 z+~ 

which contradicts (14.28). 
To prove (iii), we remark that 2~ is simple for sufficiently small ~ if 2 ~ is so. 

Afterwards, it suffices to pick up an eigenvector C, associated to 2~ such that 

(14.37) $ v~ v' > O. 
8 G 

Part C: Nemnann eige~value problem 

15. Problem to be stadied 

We consider the following eigenvalue problem 

/Find (u,, 4,) ~ W', x R such that 
t 

- Au~ = 2, u, in Q,, 

(15.1) ~Ou, 

l ev  �9 

\ I  u~ = 1, 

where we have used the notations of w 2 and w 10. Let us denote by {2~} and {u~ z} 
the sequences of eigenvalues and the corresponding eigenvectors of the problem 
(15.1). We know that 

(15 .2)  < < " ' "  - *  oo, 
k{u~}form an orthonormal basis in L 2 (Q,). 

Here, we study the asymptotic behaviour of ;t~ and u~ as ~ --, O. We prove that 
{~,~} converges to the lth eigenvalue of the "homog~ized  problem" 

Since the method folllowed here is similar to Steldoff case, we do not give 
d~tails of the proofs. 

16. Estimates on the eigenvalees 

Proposition (16.1). Let 2~ be the lth eigenvalue of the problem (15.1). Then 
the, re exists a constant c, independent of ~ such that 

At < e~. 
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Proof. 
wa get 

(16.1) 

As in the proof of Proposition (12.1), by the use of mini-max principle 

]'v 2 
;t~ < d Max a 

�9 B i ~'O g " 
fie 

But we saw in the course of the proof of Proposition (12.1) that the right side of 
(16.1) is bounded above independently ef  E and this completes the proof. 

(17.7) 

with 

17. Asymptotic ~malysis 

With the help of the estimates in w 16 and the normalization condition for the 
eigonve~tors, we propose the following Ansatz for the problem (15.1) : 

(17.1) u , ( x ) = u o ( x , y )  + r  + . . . .  y = x / ~ ,  

(17.2) 2 4 = 2 o + c 2 1  + . . .  

whore uj is deffined on f2 x Y* and it is Y periodic in y. 
We substitute these expressions in equation'(15.1) : 

(17.3) _ (r + 2E -~ A ~  + A,)  (Uo + cut + . . . )  

= ( ~ o  + ,,11 + �9 ..)(Uo + ~ul + . . . ) ,  

(17.4) E -x ~ + vj (Uo + r ul + . . . )  = 0. 

As before, we equate the powers of E on either side and we obtain the following 
results : 

(17.5) u 0 is independent o f y  : Uo(X,y ) = Uo(X ). 

(17.6) u~ (x, y) Z~, . Ouo = - ty)  ~ (x)  + ~, (x),  

whore Z t are defined in (13.9), We get the following equation satisfied by uo 

and A0 : 

O2u~ - 2 o u o i n  f2, 
- s,Jax~Oxj 

(17.8) so = ~ y ~  a(x ~ - y~, - yj) for all i , j .  

So, the corresponding "homogenized problem" in this case can be formulated 

as follows : 

(I7.9) 

Find (u, 2)E Ho~(g2) x R such that 

O"u 2u in s 
- s~ ~ Oxj 

u # O .  
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In the following section, we justify the formal c~lculations done above. 

18. Homogenization theorem 

The proof of the following result proceeds along the lines of Theorems (14.1) 
and (14.2) and therefore omitted. 

Theorem (18.1). Let {2~}, {u~} be the sequences of eigenvalaes and the corres- 
ponding eigenvectors of the problem (15.1) satisfying (15.2). Then 

(i))L[ ~ 2 7, the lth eigenvaltte of the problem (17.9). 

(ii) there exists a subsequence of e (denoted again by e) such that 

P,  u~ ~ u ~ in H i (12) weak, 

where u ~ is an eigenvector corresponding to 2 ~. 

(iii) If 2 ~ is simple, then given any eigenvector C corresponding to 2~such that 

(18.1) J" v • = 1/0, 

we can choose an eigenvector v~ of the problem (15.1) corresponding to 2~ such 
that Pa v~ ~ v ~ in HI (1"2) weak for the whole sequence of ~. 

19. Correctors and error estimates 

In this paragraph, we briefly mention a method of finding correetors of first 
order for simple eigenvalae of the Neumann problem. We will also see that the 
problem of error estimates is reduced to that of stationary problem for which we 
refer to Lions [13]. For the study of correctors in the homogenization theory, 
we refer to Bensoussan et al [3], Bourgat and Dervieux [5], Kesavan [12]. 

We consider a simple eigenvalue 20 of the problem (17.9) with eigenvnctor u0 
satisfying 

(19.1) J" u2o = 1/0. 
t~ 

Let u~, 2~ be eigenvector and eigenvalue of the problem (15.1) satisfying 

(19.2) Pc ut -~ u0 in HoX(12) weak for the whole sequence of E, 

(19.3) 2,-~ 20. 

Let us define w~ as the solution of 

( -  Aw~ = 20 uo in f2~, 

(i9.4) { w , ~  W,, 

~ v c  = O  on ,3,. 

The proof of Theorem (18.1) shows that 

(19.5) Pt wt ~ u0 in H~(g2) weak. 
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Multiplying (19.4) by u t and (15.1) by w~, we obtain 

(19.6)  2, (u~, w,)a,  = 20 (Uo, ut)a,,  

where ( - , - ) a ,  denotes the scalar product in L z (12,). 

First let us prove the following: 

Theorem (19,1) 

With 20, uo, 2,, u~, w~ defined as above, we have 

(19.7) 12, - 2o l ~ C ll W, - uo ll L 'r  

for  sufficiently small ~ and where c > 0 is a constant independent of ~. 

Proof. We have 

20 (u,, Uo - we) a ,  �9 2, - 20 = (u,, w , )a ,  

But (ut, w~)a, ~ 1 as e ~ 0 and so we obtain (19.7). 

Now, we give a result which estimates the error between the eigenvectors by 

choosing an eigenvector cerrespond2ng to 2,. For that,  we first define zc uniquely 

as follows : 

f a" (z,, v) - 2, (z,, v) a ,  = 2, (u,, v ) a ,  - 20 (u0, v) re, for v e W,, 

(19.8) e 1u 

I~. (z,, u,) a.  = O. 

Then 

(19.9) 

is an eigenvector of the problem (15. l) corresponding to 2t. 

estimate for z, : 

L e m m a  (19.1). There is a constant c > 0 independent of e such that  

(19.10) [ z , ] j , a , ~ c ] j A ~ w ~ - - 2 o u o ] i L ' t a O .  

Proof. Sapposo (19.10) is not  true. Then there will be a subsequence of c 

(again denoted by e) such that 

(19.11) I z, l x, a ,  = 1, 

(19.12) [I 2,  w, - AoUo H L'{a,} ~ 0. 

We can pass to the limit in (19.8) as we did in equation (15.1). 

(19.13) P ,  z, ~ zo in H~(F~) weak, 

where Zo satisfies 

~Zo  = 20 Zo in ~2, 
(19.14) - s~ ~xuaxs 

zo uo = 0. 
fl 

We have tho following 

We obtain 
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Since 2 o is simple, this implies that  

(19.15) zo = 0. 

On the other hand, taking v = zc in (19.18), we get 

1 = 2~ (z~.  z . )  ~ ,  + ( 2 .  w .  - 20 uo. z .  ) ~ ,  

which, at the limit, gives a contradiction. 

Theorem (19.2) 

Let 20, 2,, w~, Uo, fi~ be defined as above. Then there is a constant c > 0 inde- 

pendent of ~ such that  

(19.16) [[ fi, - Uo [[L~,a,) __< C 11 W, -- Uo [JL'm,)" 

Proof. We write 

~ .  - -  UO = ZG + WG - -  frO" 

The proof  is completed by using (19.11) and Theorem (19.1) and the fact that 

11 z ,  II L'~a.~ _< c I z ,  1 .  ca.~. 

Now we give a first order correcter  for  the eigenvalue 2,. We use (19.6). We 

express 

24 = 2  o + c 2 1  + . . .  

u .  = u o + e u x  + . . .  

W, = U o + eW 1 + . . .  

We put these expressions in (19.6) and identify powers of  ~ : we got 

(uo, w 0  n .  
(19.17) 21 = - 2o (Uo, Uo)o" , 

where w~ is the first order correcter  for w~. The estimate we give below is better 

than that  given by Theorem (19.1). 

Theorem (19.3) 

Let  2,, 20, wt, Uo be as in the previous Theorem. Let 21 be [defined by (19.17). 

Then we have 

12 .  - 2o - ~ 21 I < c {  �9 II w,  - uo IIL=m,~ + II w,  - uo II=L=to=j 

+ II w,  - uo - �9 wl II L'~o~)}, 

where c is a constant independent of  E. 
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Proof. We have 

2o (uo, uo + a w l  - w , ) a ,  
;t~ - 20 - ~ 21 = (Uo, Uo) a ,  

(Uo, eW~)o, E 2~ . (uo , w,)  o ,  _ 20" 3 . 
- ( ~ ,  - ~to) (no,  ~o) ~. + ( ~  ~o) n ,  

We only have to estimate the last term. But using (19.6), one can express 

last term as follows: 

2, (uo. w . )a .  - 20 2. 
(u0. u0)o. = ( ~ U o ) ~  (uo - r , . .  w. - "o}, .  

2 ,  - 20 (uo, Uo - ~ , )  ~ c II w,  - Uo I ? L ' m , ~ ,  
+ (u0. Uo) ~.  

by Theorems (19.1) and (19.2). This completes the proof. 

the 
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