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Homogenization of Elliptic Problems in a Fiber
Reinforced Structure. Non Local Effects.

MICHEL BELLIEUD - GUY BOUCHITTÉ

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVI (1998), pp. 407-436

Abstract. Let S2 be a bounded open subset of]R and (ae) a sequence of functions
on S2 taking very high values on a set of 8-periodically distributed fibers of radius
r e (r e « ~). We study asymptotically as 8 - 0 the elliptic equation

= f + boundary conditions

and find a non local effective equation deduced from a homogenized system of
several elliptic equations.

Mathematics Subject Classification (1991): 35J20, 73B27.

1. - Introduction and statement of the main result

Let S2 be a bounded smooth open subset of and p E (1, +oo) . We are
concerned with the homogenization of quasilinear elliptic problems well

posed in of the form:

where:
- the conductivity coefficient as is s-periodic and satisfies a uniform lower

bound (i.e. co a.e. for some suitable constant co &#x3E; 0),
- ro is an open subset of ( such that H N-I(aro) &#x3E; 0) , r1 = a S2 B ro, n
is the unit exterior normal to 
- the boundary data uo is Lipschitz and f, g are assumed to verify (for sim-

plicity) f E LP’ (Q), g E ( p’ conjugate exponent of p).

Pervenuto alla Redazione il 8 ottobre 1996 e in forma definitiva il 31 dicembre 1997.
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Equivalently, we like to study asymptotically as 8 - 0 the variational

problem:

where

otherwise.

The behaviour of 7~~ as 8 --~ 0 is well understood when (as) is bounded
in (see for Example [9] and [16] in the case p - 2) and leads to a
limit equation of the same type -div f where JRN - R N
represents the so-called effective law of the homogenized system. In [6], it is
shown that the same conclusion holds if the sequence (as) is simply assumed
to be bounded and uniformly integrable in Z~(~).

In fact very few results identifying the homogenized equation are known if
the latter condition is violated. This happens for example when the conductivity
coefficient as becomes very high on small subsets T, of vanishing measure, in
such a way that the integral fT, remains constant. Except in the stratified
case which has been intensively investigated by several authors (see for Exam-
ple [5], [12]), we can not expect the limit equation to be of the same type as
(Ps). Indeed a non local term may appear (see Mosco’s results [14], [15] in the
case p = 2, and also [13]). Find new mathematical tools in order to indentify
this non local term in practical situations seems to us to be a big task. We

present here some results in this direction which have been already announced
in [3].

1.1. - Notations and setting of the problem

In this paper, we consider the case of a fibered stucture in the body
is a cylindrical domain Q := L[, where cv is a bounded connected open
subset of R 2 with smooth boundary. We denote the bases of this cylinder
úJo := a) x f 0 } and WL := cv x {L}.

For every E &#x3E; 0, we consider a partition of w into a set of periodically
distributed cells of size 8 :

where 1£ : := (I e Z2 ; y1 c 
Given a small parameter r£ (later we will assume r £   8), we define:

- D~ := two dimensional disk centered at (e~,e:2) of radius r£,
- T/ : = D/ x ] 0 , L [ , 
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The fibers are represented by the set of thin parallel cylinders T, (see fig.1 )
and are filled up with a medium we assume to be homogeneous with a very
high conductivity 1£ (1, -~ +cxJ). Note that by the definition of I£, we have
D~ C cv so that the fibers do not intersect the lateral part of the boundary.
The matrix Q B T, is assumed to have a constant conductivity coefficient K we
normalize to K = 1. Hiince the diffusion coefficient a,(x) in the equation (P,)
is given by:

Clearly the asymptotic behavior of (a£) in L1 (S2) is characterized by the
parameter:

If 0  k  +cxJ, (2g) is bounded in L1 1 (Q) and converges weakly* in the sense
of measures to the constant function 1 + kn (notice that this convergence does
not hold in L 1 (SZ) weak unless k = 0).

1.2. - Main Results

We show that the asymptotic behaviour of as 8 -~ 0 depends on k
defined by (1.3) and on the parameter y defined by:

(note that, if p &#x3E; 2, we have y = whatever r. ) .



410

As a limit problem, we find a system of two quasilinear elliptic equations
in S2 deduced from the Euler equation of the following minimization problem:

where

(and , in order to allow infinite values of k and y, we adopt the convention:
0 x (+00) = 0).

Here, the boundary data uo has been assumed to be Lipschitz in order to
avoid the possibility that a concentration of fibers in the neighbourghood of lo
forces the infimum value of problem 7£ to go to infinity as s - 0. Therefore

also, having in mind the case k = we add the following assumption

It is easy to check that the functional t&#x3E; is coercive in 
under the condition:

The variable u corresponds to the (strong) limit in L p of the solutions us.
The new variable v corresponds to the weak-star limit in the space A4b(O) of
bounded Radon measures of the sequence defined by:

otherwise

( this means that lim, f~2 q;v£dx = f2 q;vdx whenever cp belongs to the space
of continuous functions vanishing on aS2).

A mathematical justification of the new scaling introduced in (1.9) is the

following implication proved in Appendix (see the assertion i) of Lemma AI):

weakly* in ,

In that sense the variable v describes the average behavior of the restriction
of u, to the fibers. Its contribution to the total energy (D(u, v) comes through a
diffusion term in the direction of the fibers (second term in the right hand side
of (1.6)). The last integral in (1.6) represents the energy interaction between
u and v in term of the capacitary parameter y. Our main theorem extends
the results of Caillerie and Dinari [8] obtained heuristically in the case p = 2,
assuming a homogeneous Dirichlet boundary condition, by using a double-scaled
matched asymptotic expansion.
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THEOREM A. Assume that ( 1.3) ( 1.4) hold with k, y E (0, and let u£ be
the unique solution ofPs. Then (u£) converges weakly to u in W1,p and (v£) given
by (1.9) converges weakly* to v in Mb(Q) where (u, v) is the unique solution in

x LP(w, W 1, P (0, L)) of the system:

Moreover, (u, v) is the unique solution of the variational problem:

and the convergence of associated energies holds, i.e. lim F, (u~ ) = (D (u, v) .
£

To prove this result, we use variational methods and show that the sequence
(Fs) defined by ( 1.2) converges in an appropriate sense to the v).
More precisely

THEOREM B. Under (1.3), (1.4), (1.7), (1.8), we have:
i) (compactness) Let (us) such that sup Fs(u£)  +00. Then (u,) is strongly
relatively compact in LP (Q) and (vs) given by (1.9) is bounded L 1 (Q) and, up to a
subsequence, converges weakly* to a function v E LP(w, W 1 ~ p (o, L)).
ii) (lower bound inequality) For all sequences (u£) such that u£ - u in LP (S2) and
Vs - v weakly*, one has: lim inf,,o v).
iii) (upper bound inequality) For all (u, v) E (Lp (SZ)) 2, there exists (us) such that
Us - u in LP(Q), v, - v weakly* in and lim sup,, 0 F£ (u~)  (D (u, v).

REMARK. i) The conclusions of Theorem A can be easily extended to some
degenerate cases:
- If k = 0, the solution Us converges strongly in to the solution of:
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In this case the fibers completely disappear and 
- If y = 0, we get the same conclusions for the behaviour of u, and the limit

equation is still ( 1.11 ) . However the limit of the energies will contain
an extra term taking into account the diffusion with respect to the variable v
(that is the In this case there is no connection at all

p ax3
between the variables u and v.

ii) The convergence of (u£ ) to u cannot be strong in unless one of
the parameters y or k vanishes. In fact, if k &#x3E; 0, the term 2n y v - 
bears the energy associated with this defect of strong compactness. On the

other hand, if v fl 0, we cannot expect the convergence of to hold weakly
in L1 (S2). Indeed, by Dunford Pettis Theorem, this would imply that (v£) is

uniformly integrable and so v£ = would converge to 0 in L 1 (Q) !
iii) In the case k  the geometrical assumption that the fibers do not
intersect (0, L) can be relaxed (i.e. we can take I, = f i E Z2 ; y1 0}).
The conclusions of Theorem B still hold.

1.3. - Non local effects

Let us formaly eliminate the variable v by defining:

Clearly the limit u of the sequence of solutions (u,) (see Theorem B) is

the solution of the variational problem:

Moreover, one may reformulate the assertions ii) and iii) of Theorem B as the
r -convergence of the sequence ( F£ ) to F in LP(Q)( see for instance [1] ] or

[11] for all details relative to this notion of convergence).
Let us stress the fact that, in general, F (u ) is not local. This means that

F(u) cannot be written as the integration over S2 of a local density of energy
of the form f (x, u (x), ... ) like in the classical variational models of

homogenization theory.
Let us give some particular cases where an explicit formula for F(u) can

be obtained: 
"

1) If y = 0, the variables u and v are independent. One gets:

where G = E to ; and E fa} .
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2) Assume p - 2 (then (P£ ) is linear) and that k, y E (0, oo) . Then F(u)
is a Dirichlet form (see [14], [15]) and can be written, using Deny-Beurling’s
representation formula, as:

where x’ = (XI, X2) and is a symetric kernel(’). If for example, we
consider a homogeneous Dirichlet condition on WL U (00, we get Ky,k and Py,k
in closed form as follows (see details in Appendix A5):

3) If y = (or p &#x3E; 2), which corresponds to an infinite average capacity,
one gets v = u and F (u ) is a classical diffusion energy (stronger in the direction
of the fibers):

4) If k = and assuming a homogeneous Dirichlet boundary condition on
one of the basis coo or cvL, we obtain the same homogenized energy as in the
case of a Dirichlet problem on a perforated domain where the so called strange
term is present (see Cioranescu and Murat [10]):

Here, like in the case 3), the non locality of F(u) has disappeared.

(’)The general Deny-Beurling’s representation formula reads, for u E C 1, as

where p are Radon measures on Q = Vj,i) and J is a symetric Radon measure on
Q2 B D (D being the diagonal of Q2). The so called jumping measure J corresponds to the non
local part of the energy. In our case, we find = !8i,j dx , = and

J(dxdy) = § Ky,k(x3, y3)dx3dy3 , where A (dx’dy’) denotes the measure on w2
defined by f fcv2 x’)dx’.
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1.4. - Some variants

The method which consists in introducing new variables to describe the
homogenized system can be adapted to many other geometries. We give here
two examples. In the first one, we need to consider more than one extra variable
and the resulting system of equations leads to a situation quite similar to the
one met in [17]. In the second example, we recover some results announced
in [13]. The proofs rely exactly on the same arguments as the one developed
in Section 2 and can be found in details in [2].

a) Case of coaxial fibers. The fibers are still parallel to the x3-axis but are
filled up now with several media of conductivities (I E 11, M I). We assume
that, on each elementary cylinder, the conductivity coefficient a£ (x ) is radial,
piece-wise constant (with respect to the distance to the axis). Let 

be sequences such that, for I E {1,~}

Denoting D~~~l~ the two dimensional disk centered on x/ of radius r 11 (1), we define
(see fig.2)

Fig. 2.
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In order to describe the limit associated with the sequence of problems
(for p &#x3E; 1), we need to introduce the new variables v ~ 1 ~ , v ~2~ , ... , v ~m~

defined by

Then, we can prove (see [2]) that the limit of (P£ ) is represented by a system of
m -I-1 equations deduced from the Euler equation of the following minimization
problem

where:

and

b) Case of fibers distributed in three orthogonal directions. Taking now for Q
any convex regular bounded open subset of }R3, we denote by T ~3~ (: = T£ ) the
set of x3 -parralel fibers defined in sec. 1.1 and let T (1), T ~2~ the set of fibers

deduced from T ~3~ by rotation of the axis so that (see fig.3) 7~ is x, -parallel
(l = 1, 2, 3). Define:
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Fig. 3.

As before, we consider the problem (Pc) ( with p &#x3E; 1) and the parameters
k, y defined by (1.3)(1.4). We assume that 0  k  so that, (see part
iii) of the remark after Theorem B), the fibers are allowed to intersect a S2

and the set of indices corresponding to the fibers T ~l~ can be defined as
:= {i i E Z2; T~~~l~ 0}.
In view of the limit process as 8 - 0, it would be natural to introduce

three new variables v ~ 1 ~ , v (2&#x3E; , corresponding to the local behaviour of the
solution us in the neibourghood of each set of fibers T(l), T ~2~ , T ~3~ , that is

In fact, since the intersections T ~l~ n are "large the following
implication holds:

Therefore, as in our main theorem, the limit problem associated with (P,) can
be described through a functional (D depending only on two variables u and v,
where

~2~ It can be shown (see [2], in a more general setting), that a sufficient condition is that, for every
i, j E { 1, 2, 3 }, the 8-periodic set n contains a ball of radius be &#x3E; &#x3E; r, /8-.
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We get that (u,, VB) (u, solution of (P£)) converges to the unique solution of
(1.5) where

Equivalently, we obtain the system of two elliptic equations:

In the case p - 2 and assuming a Neumann homogeneous condition on
(i.e. ro = 0), we obtain (in a stationary setting) the homogenized system

proposed in [13], where non local effects in space were pointed out in the
context of the homogenization of parabolic boundary value problems.

2. - Proofs

In all this section, the letter C denotes a suitable positive constant which
may vary from line to line.

PROOF OF THEOREM A. Set m, inf P, and define, for every u E 
L(u) := JQ fu dx + frl gu dH2. Let Uo denote a Lipschitz extension of uo.
Since k  we have:

We can assume that a£ &#x3E; 1 (recall Ie -+ oo) so that by using the boundary
condition and Poincare’s inequality

where T satisfies
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Then by the continuity of the linear form L(.) on W 1’p, (2.1) and (2.2), we
deduce that  Apply the assertion i) of Theorem B to get

s

(possibly after extraction of subsequences):

where v£ is defined by (1.9) and (u, v) belongs to L)).
By the assertion ii) of Theorem B, we obtain

which proves by (2.1) that mo := inf(phom)  +00. Converserly let r &#x3E;

inf(phOm) and (u, v) such L(u)  r. By the assertion iii) of
Theorem B, we can find a new sequence (u,) such that u, - u in LP(Q),
v£ - v weakly* and is finite, the
convergence of u, holds also weakly in and by the continuity of L (~),
one gets:

From (2.4), (2.5) and by letting r tend to mo, we deduce that:

Hence we have proved that (M, v) is solution of the variational problem ( 1.10) .
The convergence of energies follows since:

The final step consisting in deriving the Euler equation (Phom ) associated with
(1.10) is straightforward and left to the reader. D

PROOF OF THEOREM B. We will use successive claims whose proof sometimes
refers to some lemmas stated in the Appendix. In the following, we choose
a sequence R, such that r,   R£ « 8 and denote by B£ the subset of Q
consisting in the e3-parallel tubes surrounding the fibers of outer radius R,.
Then we write the total energy Fs(u) as the sum of three terms:

where the symbol... denotes the mean value with respect to the integration,
k£ is defined by (1.3) (recall ks - k as 8 - 0) and Qs := x (0, L)
satisfies -~ 
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Preliminary estimates: Let (u,) be a sequence such that sup  + 00.

Recalling that k &#x3E; 0 by (1.8) (so ks -~ we have -

As RE « 8, the sequence converges strongly to 0 in Lp~ (S2). Then, by
(2.7) and Holder inequality,

To estimate the second term we need to construct on every x3
section of Q piece-wise constant approximants of the functions u, and vE (v,
defined by (1.9)). To that aim, we write the section by x3 = 0 of the boundary
of BE as a union of circles of radius r£ and Rs (located in each cell 

and set:

where u£3 (., .) := us(., ., X3) is, by Fubini’s Theorem, well defined in 
for a.e. x3 E (0, L). A lower bound can be then deduced for by
applying Lemma A3 to on each bi-dimensional annulus Ck e, r e := {x’; r, 
Ix’ - I  (where i E 7~ and by notation j~ :== (JCi, X2)):

where (see Lemma A3) ~ :== . By (1.4), yE tends to y as 8 -~ 0.

Summing (2.11) with respect to i E I, and integrating with respect to X3, we
are led to:
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so that:

We need now to estimate ~ 2013 u£1 I and ~ 2013 To that aim, we use a
Poincar6’s type inequality proved in Appendix ( Lemma A4). Apply Lemma A4
to u£3 on the disk with R == 2013 a = sum with respect to

i E I, and integrate with respect to x3. We get:

where the function h is defined by (3.9).
(here we have used the fact that the disks intersect each other no more than
two times and so: E &#x3E;  2 on Q).V2

By (1.4),(2.7), (3.9) and recalling that Rs » r£, we deduce the implication

On the same way, we may apply Lemma A4 to u~3 in the disk D~ :- r,)
with R = r~, a = 1 to get:

Thus, by (2.7)
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Noticing that (2.14) is still valid for p = 1 and since ve is by construction
piecewise constant with respect to x’, we may apply Lemma Al.ii) to derive
the following implication:

Proof of compactness The first part of assertion i) of Theorem B is quite
obvious since, by the Dirichlet condition on ro, (2.7) and Poincare’s inequality,
(u,) is bounded in hence relatively compact in LP(Q) by Rellich
theorem. As regards the relative compactness of the sequence (vs) defined by
(1.9), according to assumption (1.8), we have to consider two cases:

First case: y &#x3E; 0 By (2.7) and (2.12) the sequence (u£ - VB) is bounded in

LP(Q). By (2.13) and the boundedness of (Mg) shown before, the sequence 
is bounded in LP(Q). It follows that is bounded in LP(Q) as well and,
possibly passing to a subsequence, we can assume that v£ converges weakly to
some V E LP(Q). Then we can apply (2.15) to deduce that v, ~ v weakly*
in 

Second case: y = 0 By (1.8), we can assume for example that too C ro. Hence
u£ (x’, 0) = uo(x’, 0) for a.e. x’ E cv and the following pointwise estimate holds:

Then, since uo is bounded,

and (2.7) yields

We may apply the assertion i) of Lemma A2 with Us, dx

and /1 = Noticing that /1 (in the sense of Radon measures) and
that = v,dx, we deduce that, for a suitable subsequence still denoted (v£),
there exists v E LP(Q) such that v£ I v in Mb(Q).

REMARK. By the arguments above, we have proved that any cluster point
v of (v,) belongs to LP(Q). The fact that v E LP((o, L)) appears later
in the proof of the lower bound inequality.

Proof of the lower bound inequality. Possibly passing to a subsequence,
we can assume that:



422

and then using the compactness proved before that:

for a suitable pair (u, v) in x LP(Q).
We look separetely at the three terms appearing in (2.6). A lower bound for

the first one term can be easily deduced since, by (2.8), we have xs Vu

in (Lp(S2))3. Then

Let us show that

Assume that y &#x3E; 0 (otherwise it is trivial). Then, by (2.13), u -~ 0 in
Since the left hand side of (2.12) is bounded and y£ - y, the sequence

(Ds) is bounded in LP(Q) and (2.15) yields that Ds - v -~ 0 in Hence

the sequence (~ 2013 us) is bounded and converges weakly to v - u in 
Then (2.18) follows from (2.12).

It remains now to show that:

Indeed, collecting (2.17), (2.18), (2.20) and taking into account (2.19), (2.21),
we will deduce:

that is the assertion ii) of Theorem B.

Let us prove (2.19) and (2.20). Thanks to the estimate (2.7), we may
apply Lemma A2 on with f - ax 3 it, = T 1 T£ dx and p = ax3 I TE I
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So, possibly after extracting a subsequence, we can assume that, for a suitable
X E (Lp (SZ))3, we have:

Let us test the convergence (2.22) for functions w E C 1 (!ff). We have:

On the other hand , using Fubini’s formula and integrating by parts with respect
to X3, we get:

where Z~ := Ui D£. Then by (2.16) and (2.24), we have:

Let us take first w E so that the right hand side of (2.25) vanishes.
We deduce that the distributional derivative coincides with x , so that -’- Eax3 ax3

LP(Q). As v E LP(Q), we get (2.19). Then, recalling the definition of F£ in
(2.6) and (1.3), (2.23) implies (2.20).

To prove (2.21), we choose now w of the form w(x) - with
0 E D(Go) , where Go := {x’ E cv; (x’, 0) E rol and with W(0) = 1, = 0.

Taking into account that u£ (x’, 0) - uo (x’, 0) on Go and that 0 is smooth,
equality (2.25) becomes:

By (2.19), we may integrate by parts the left hand side of (2.26) to get
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This holds true for every 0 E D(Go), thus v = uo a.e.on ro n (oo. Similarly
taking 9 E D(GL) where GL := {x’ E cv; (x’, L) E lol and ’11 such that

~(o) = 0, = 1, we obtain v = uo a.e. on io n (OL- So (2.21) holds and
the proof of the assertion ii) of Theorem B is achieved. D

Proof of the upper bound inequality. We are going to prove the assertion
iii) of Theorem B using three steps. We may assume v)  
(otherwise the statement is trivial).

STEP 1. In this step, we assume first that u and v are uniformly Lipschitz
on Q and we construct explicitly an approximating sequence (u,) such that

(2.28) limsup- / v
P~

(here we forget the boundary constraint on ro n (wo U cvL)).
Let us denote by the Euclidean distance of x’ E cv to the set {x~, i E

Is) ( centers of the elementary cells y1), i.e.: p~ (x’) :_ Ix’ I if x’ E Y1.
We associate to a function 0, : JR2 [0, 1] ] by setting

and for rs   R, (which corresponds to the tubular set Bs)

Then we consider the x’-piecewise constant approximations of v defined by

and define:

We claim that the sequence (us) satisfies (2.27) and (2.28).

PROOF OF (2.27). By construction 0, = 0 on aw and so u£ - u on

x (0, L). On the other hand, thanks to the smoothness of u, v and by the
definitions (2.29 - 31), we check easily that (C being a suitable constant):
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It follows that JQ C I Be U T£ I and, since R£   s, we get that
us -~ u in On the other hand, by (2.33), we have 2013~ 0

and then, by the assertion i) of Lemma (:= in
’ 

0

PROOF OF (2.28). As in (2.6) we split the left hand side of (2.28) into
three terms

An upper bound for the first term is quite trivial

To majorize the second term, we notice that by (2.31)

so that, by (2.32)(2.33), we have a.e. on B£

Hence, setting := I Vx, 0, 1, we get

The sequence of non negative functions defined by f£ (x ) . := IVx,Ð£1 is

x3- independent, vanishes on 8w and satisfies, for all i E I,, fyi =

27r f p(r£, R,) (see the definition (3.8)). One checks easily that, whatever the
value of p E (1, oo), we have

so that by (2.35)

To evaluate the right hand side of (2.36), we need to consider two cases,

according to the value of y defined by (1.4):
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Case 1 : y  We find that (/p) is bounded in LP(Q) and that the sequence
of Radon measures converges tightly to 2n y dx on S2. Hence, since

lu - vi E (2.36) yields

Case 2: y = ~-oo As we have assumed v)  +00, we must have
u = v , , so that by (2.36), = 0 and (2.37) still holds (with the

’ 
E

convention 0 x = 0).

Let us finally majorize the third term, that is By (2.30)(2.31), we
have

Since v is smooth, we can use derivation under the integral to get

From Jensen’s inequality, we deduce

Integrating the last inequality on T,, we are led to

Noticing that the sequence of probability measures 2013- dx converges tightly toI I I

"I dx, we may pass to the limit in the right hand side of (2.39), . Taking intoII
account (2.38), we get

Recalling (2.6) and the definition (1.4) of k, we distinguish two cases:
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Case 1: k  +00 Then, by (2.40)

Case 2: k = +oo  +oo, we must have ax3 = 0 a.e. on Q.
ax3

In that case, by (2.30)(2.33), we find that, for every 8, Vu, = 0 on T,.
Thus = 0 and (2.41) still holds.

Eventually, the proof of claim (2.28) is achieved since, collecting (2.34),
(2.37) and (2.41), we get

REMARK. Taking into account the lower bound inequality proved before,
we have in fact lim, = 4$(u, v). Moreover, by localizing this
result on open subsets of Q, we can prove, for every W E the following
convergence:

Before going on with Step 2, let us introduce

where i denotes the product topology of LP(Q) strong by fi4b(Q) weak*.

Looking at the proof of the compactness, we see that , if (D, (u, v) is finite,
then all approximating sequences defined by (2.43) are in a bounded subset of
Lp (S2) x L 1 (Q) which is metrizable for the topology i. Therefore, by a classical
diagonalization argument (see [1]) the infimum in (2.43) is achieved and the
functional is r-lower semicontinuous. Then the upper bound inequality we
have to prove reduces to
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STEP 2. In this step, we prove (2.44) when u, v are smooth (and satisfy
(D (u, v)  +(0). Let £s := {x E Q ; dist (x, lo)  r, I and q;£ a smooth
function such that:

We modify the approximating sequence (u £ ) defined by (2.31), by setting

Clearly uf - u in LP(Q) and v" := 1"1 1,, + v, ( 1 - q;£) converges

weakly* to v in Mb(Q). v)  +cxJ, we have uf = u = v = uo on
ro n (wo n Since us = u on Q B (TE U and we have assumed that the
fibers do not intersect the lateral part of we have also uf = u = uo on
ro f1 8cv x (0, L). Thus, according to (2.42),

On the other hand, using (2.33) and the fact that u = v on io n (wo n WL), the
following estimate holds on E, (recall that u, = u on S2 B (T, U B~))

Hence

It follows that

By (2.42) and denoting by f (E L 1 (S2)) the limit appearing in the right hand
side of (2.42), we have lim sup, fLe a£ (x ) ~ d x  fQ f W dx, for every
~ E [0, 1]) such that = 1 on a small neibourghood of io n (NO U WL).
Hence, by taking a sequence (Wk) such that 0, we get
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On the other hand, by (1.3) and (1.7), we have 1£ IT£ n Lei ̂ J -~ 0 ,

and, choosing the sequence ( R£ ) so that re   R£   (r£)l-p 1 (and R, « 8),
we have 0. Thus the left hand side of (2.46) goes to 0 as 8 - 0.
Then, by (2.45) and recalling (2.28), we conclude that

STEP 3. Let us finally prove (2.43) in the general case. We may assume
that 4$ (u, v)  +00 so that (u, v) E x W1,P(0, L)) and u = uo
on ro and v = u o on io n (NO U úJL). By a standard approximation procedure,
we can find sequences (Uk), (vk) in C I (n) such that

Then one checks easily - 4$(u, v). On the other hand, by
Step 2, we have, for every k, vk). As the convergence of
(uk, vk) to (u, v) holds also for the topology t, by the lower semicontinuity of
~S, one gets

The Step 3 is completed and so the assertion iii) of Theorem B is proved. 0

3. - APPENDIX

As in Section 2, in what follows, C denotes a suitable positive constant
which may vary from line to line. The first lemma Al connects the convergence
of the new variable v~ defined by (1.9) to the average behaviour of u£ on the
set of fibers T,.

LEMMA Al. i) Let (u,) be a sequence in L1(S2) and v E CO(Q) such that
lim£ f TE lu£ - vldx = 0. Then (v£) defined by (1.9) is bounded in and

v£ - v weakly* in A4 b (Q)
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ii) Let (u£),(w£) be sequences in L 1 (S2) such that:

(3.1) (we)is bounded in L1 (S2) ,

Then

REMARK Condition (3.3) avoids strong oscillations of (W:3) on the cells
Y1. It is trivially satisfied in the case of the sequences (Fi,), defined

by (2.8), (2.9) and also if we take v, v being a uniformly continuous
function on Q.

PROOF. By the previous remark, we have only to prove ii). By (3.2), the
sequence zs :_ satisfies lim, z~ () L 1 ~~) = 0. Hence it is enough
to show that (zE) is bounded in L 1 (Q) and that 0 weakly* in

Thanks to (3.3), for a.e. x3 E (0, L), the gap between the mean values
on y1 of w£3 and z~3 (resp. IW,IX3 and is majorized by W£ (X3). Hence

Summing (3.5)with respect to i E I, and integrating with respect to x3, we get:

Thus, by (3.1 ), (z~ ) is bounded in L 1 (Q). On the other hand, let q; E Co (Q)
and its piecewise constant approximates defined by

(recall that xi is the center of each bidimensional cell Y1). Then clearly ws ~ ~p
uniformly on SZ and, by (3.4),



431

so that

By (3.3) and since (Ze - ws) is bounded in L 1 (Q), it follows that

Our second lemma states, in a particular case, a lower bound inequality
for convex functionals on measures (see [4], [7] for more general versions).

*

LEMMA A2. Let and it bounded Radon measures in jRN such that It. JL.
Let (fe) be a sequence -measurable functions such that sup  

Then:

i) The sequence of measures fe is *-weakly relatively compact and every cluster
point I is of the form I = f it with f E L~ (R N).
ii) If f, c,c, then lim inf ( f lpdg .

1 1-
PROOF. By Hölder inequality, we have f If£I ,

so that the sequence f, ~£ is uniformly bounded in variation, hence *-weakly
relatively compact. Possibly passing to a subsequence, we can assume that
f£ i,c£ - 1. Applying this convergence to a test function q; E and using
Fenchel’s inequality, we get

As the left hand side of (3.6) is bounded, we deduce that

Thus I, seen as an element of the dual space of LP’ (jRN), can be identified with
an element f E ( i.e. 1 = f it). So (3.6) can be rewritten as:

Choosing (p in (3.7) converging to in LP,, we get the lower bound of
the assertion ii). 0
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In the next two lemmas, we are in }R2 and denote for every r &#x3E; 0 and

Lemma A3, crucial in the proof of the lower bound inequality, leads to a variant
of Poincar6’s inequality (Lemma A4).

LEMMA A3. For every U E (D(rl , r2)), we have

where

and u ds denotes the mean value of the trace of u on Cr with respect to the one
dimensional Hausdorff measure.

PROOF. Using polar coordinates (r, 0), we can write

By a straightforward computation, we find that:

(just solve the Euler equation of this one dimensional problem). Hence, for

every 9 E [0, 27r), the following lower bound holds:

Integrating with respect to 9 and using Jensen’s inequality, we conclude that:
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LEMMA A4. There exists a constant C &#x3E; 0 such that, for every (R, a) E
R+ x (0, 1)

where

PROOF. We need only to prove the inequality for R = 1, since the general
case is deduced by making the change of variable y - R . Denote for every
r E (0, 1), 1(r) u ds. By Lemma A3, we have for every r E (0, 1)

On the other hand, integrating in polar coordinates on the disk D1,

Thus, by (3.10) and Holder inequality

Recalling (3.8) and using the substitution in r = ap, we get

so that
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From the classical Poincare-Wirtinger inequality

we deduce

Since h (a) is bounded on (0, 1], the result follows for R = 1. D

A5 - JUSTIFICATION OF (1.13). By (1.12), we have F(u) = 4$(u, v) where,
for a.e. x’ E (0, v(x’, ~) is the solution of the following one dimensional
boundary value problem on (0, L):

The solution of (3.11) is given by

where, for every t E (0, L), the Poisson kernel G(., t) solves the equation

We find

Integrating by parts and thanks to (3.11), we obtain
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Thus, by (1.6) and substituting v by its expression (3.12), we get

Replacing G (s, t) by its explicit form (3.13), we deduce ( 1.13) after an easy
computation. D
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