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Abstract. We prove that by scaling nearest-neighbour ferromagnetic energies
defined on Poisson random sets in the plane we obtain an isotropic perimeter
energy with a surface tension characterised by an asymptotic formula. The
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for subadditive processes.
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1 Introduction

In this paper we study a prototypical model of pair-interaction energies on Pois-
son random sets in the plane, and some interesting extension. These energies
are a random version of nearest-neighbour ‘ferromagnetic’ systems defined on
Bravais lattices, whose overall behaviour is that of an interfacial energy [20, 1].
Besides their theoretical interest, the analysis of ferromagnetic energies is rele-
vant for numerical approximations and modeling issues in view of the possibility
of lattice approximations for arbitrary interfacial energies makes (we refer to [15]
for optimal constructions on regular lattices, available even with constraints on
the interaction potentials). Surface energies in turn are an important build-
ing block in the study of general functionals defined on more complex spaces
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of functions of bounded variation, passing through the generalization to func-
tions with a discrete number of values [5] and using the latter to approximate
arbitrary functions by coarea-type arguments (see e.g. [4]). Furthermore, the
study of energies involving bulk and surface part can often be decoupled in the
analysis of each part, which justifies the analysis of surface energies separately
also in that context (see [14, 21] and the recent advances in the analysis and
derivation of complex energies from discrete systems in [6, 7]). The present
contribution can be then viewed as a step towards the extension of the analy-
sis of discrete systems producing bulk and surface integrals to general random
distribution of points. The simplest case of parameters taking only two values
(equivalently, characteristic functions) will allow us to concentrate on the basic
geometric features of the underlying discrete environment.

Discrete energies with randomness producing surface effects have been pre-
viously considered under various hypotheses. Results on regular lattices with
random interactions comprise: random weak membrane models in [17], random
ferromagnetic energies with positive coefficients in [19] and ferromagnetic en-
ergies with a random distribution of degenerate coefficients in [18]. Stochastic
lattices have been considered under the hypothesis that sites be distributed in
such a way that no ‘great holes’ or ‘concentration of sites’ may occur, so that
we obtain uniform upper and lower estimates for the size of the Voronoi cells
of the underlying tessellation. This implies that those lattices can be treated
in average as a regular periodic lattice (see [8, 2, 3, 13]). Our focus is precisely
in avoiding such an hypothesis considering points distributed according to a
Poisson point process in the plane (Poisson random set ). We denote by N such
a set of points and by E the set of the edges of the underlying Delaunay trian-
gulation, which are identified with pairs of points (i, j) in N ×N (the nearest
neighbours in N ). The energy we consider can be viewed as defined on subsets
I of N by

E(I) = #{(i, j) ∈ E : i ∈ I, j 6∈ I}. (1)

Note that the same energy can be interpreted as the number of edges of the
boundary of the set

AI =
⋃
i∈I

Ci, (2)

where Ci is the cell of the Voronoi tessellation containing the point i ∈ N .
Another way to write the same energy is by identifying each set I with a (scalar)
spin function parameterized by indices in N and defined by uIi = 1 if i ∈ I and
uIi = −1 if i 6∈ I, so that we may rewrite E(I) as depending on uI , setting

E(uI) =
1

8

∑
i,j∈N

(ui − uj)2 =
1

4

∑
i,j∈N

|ui − uj |, (3)

the factors coming from double counting and the fact that |ui − uj | ∈ {0, 2}.
Conversely, we may take this as the definition of the energy, and correspondingly
pass to subsets ofN by noting that E(Iu) = E(u), where Iu = {I ∈ N : ui = 1}.
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In order to describe the overall properties of E we perform a discrete-to-
continuum analysis through a scaling procedure. We intoduce a small parameter
ε > 0 and consider the scaled energy Eε defined on subsets of εE by

Eε(I) = ε#{(i, j) ∈ εE : i ∈ εI, j 6∈ εI}, (4)

which again can be interpreted as ε times the number of edges of the boundary
of the scaled set

AεI = ε
⋃
i∈I

Ci/ε. (5)

Note that if we had a uniform upper and lower bound of the size of each
of these edges, then Eε(I) would be comparable with the perimeter of AεI . In
that case, given a family Iε with equibounded Eε(I), the sets Aε = AεIε would
be (locally) precompact in the sense of sets of finite perimeter; i.e., there would
exist a set of finite perimeter A such that, up to subsequences, |(Aε4A)∩Q| → 0
for any cube Q.

For Poisson random sets, the edges of Voronoi cells do not satisfy a uniform
estimate. Nevertheless, very long or very short edges are in a sense negligible.
Indeed, a result by Pimentel [35] implies that a path in which a large proportion
of such sets is present must be ‘short’, and hence, by an isoperimetric argument
encircle a ‘small’ set. Using this result, we can show that if Eε(I) is equibounded
and Aε are defined above, then there exists families of sets B′ε and B′′ε such that
|B′ε ∪B′′ε | → 0 and the perimeter of the sets

(Aε ∪B′ε) \B′′ε (6)

is equibounded. We deduce then that, up to subsequences, Aε still (locally)
converge to a set of finite perimeter A.

We can then characterize the behaviour of the energies Eε by computing
their Γ-limit with respect to this convergence. Note that, by the isotropy of
Poisson random sets, if the limit is of perimeter type, it must be of the form

F (A) = τ0H1(∂A); (7)

i.e., a constant τ0 (the surface tension) times the perimeter of A (in this notation
∂A denotes the reduced boundary of A). The main issue is then to characterize
such τ0 so as to adapt the discrete-to-continuum technique of [19, 18] to this
case. A central observation is that the union of the boundaries of all Voronoi
cells Ci for which we have suitable outer and inner bounds determine a set
which possesses a unique infinite connected component. We then introduce a
parameter α > 0 that quantifies these bounds so that they become less and
less stringent when α → 0. We denote by Vα the union of boundaries of such
‘α-regular’ Voronoi cells. The properties of Vα are derived from percolation
argument as in [18, 19, 17], and can be used to prove that a first-passage per-
colation formula holds for paths in V and at the same time permit to use the
blow-up technique [24, 16] for proving a lower bound. An upper bound is finally
shown by using the subadditive properties of the problems defining τ0.
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The techniques used to prove the homogenization theorem for nearest-neigh-
bour interactions can be used to prove an analogous result when we take into
account interactions corresponding to pairs of nodes in N with distance not
exceeding a constant R. Namely, in place of energies (4), we consider

ERε (I) = ε#{i ∈ εI, j 6∈ εI : ‖i− j‖ ≤ Rε}. (8)

Note that this energy cannot be directly compared with Eε in (4) since some
nearest neighbours in N may be at a distance larger thanR. Nevertheless, using
the properties of α-regular Voronoi cells we are able to show that for R large
enough energies ERε are equicoercive and still converge to an isotropic perimeter

FR(A) = τR0 H1(∂A) (9)

almost surely as ε → 0. This result is interesting in view of applications to
inhomogeneous interactions depending on the distance between the nodes (see
[2, 25]), which may be of use in Data Science.

A further result is an ‘approximate homogenization theorem’, in which for
each α > 0 we consider energies Eαε defined as the restriction of energy (4) to
sets whose boundary is in εVα. By the properties of α-regular Voronoi cells the
length of the boundary of sets is automatically estimated by the energy and
compactness arguments are immediate. We prove that the Γ-limit of Eαε is still
an isotropic perimeter Fα(A) = ταH1(∂A), with τα decreasing to τ0.

It is worth noting that some of the results extend to arbitrary dimension
(mainly, the compactness lemma for sets with equibounded energy), but the
properties of regular Voronoi cells as stated and the characterization of τ0 with
a first-passage percolation formula are particular of the planar case. The treat-
ment of the asymptotic analysis of the energies in higher dimension will require
different tools and homogenization formulas, which justify a separate treatment.

2 Notation and statement of the results

L2(A) or |A| denotes the 2-dimensional Lebesgue measure of a set A, 1A the
characteristic function of the set A, Q = [−1/2, 1/2]2 the unit cube in R2.

2.1 Poisson random sets

N denotes a Poisson random set with intensity λ > 0 in R2 defined on a
probability space (Ω,F ,P). We recall that a Poisson random set or stationary
Poisson point process with intensity λ in R2 is a map from Ω to the set of locally
finite subsets of R2 such that for any bounded Borel set B ∈ R2 the function
#{B ∩N} is a random variable, and the following two conditions are fulfilled:

• for any bounded Borel set B ⊂ R2 the number of points in B ∩ N has a
Poisson law with parameter λ|B|

P{#(B ∩N ) = n} = e−λ|B|
(λ|B|)n

n!
;
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• for any collection of bounded disjoint Borel subsets in R2 the random variables
defined as the number of points of N in these subsets are independent.

We refer for instance to [23] for equivalent definitions of a Poisson random set
and its main properties.

We also assume that the probability space is equipped with a dynamical
system Tx : Ω 7→ Ω, x ∈ R2, and that for any bounded Borel set B and any
x ∈ R2 we have #

(
(B + x) ∩ N

)
(ω) = #

(
B ∩ N

)
(Txω). We recall that Tx is a

group of measurable measure-preserving transformations in Ω, also measurable
as a function T· : Ω×R2 7→ Ω. We suppose that Tx is ergodic. Further details
can be found for instance in [29, Chapter 7].

In what follows, we only consider a Poisson random set with intensity 1,
since the results for as Poisson random set with intensity λ may be obtained by
considering the case with intensity 1 and then applying a scaling transformation
N −→

√
λN .

The cells of the Voronoi tessellation of N are denoted by

Ci := {x ∈ R2 : |x− i| ≤ |x− j| for all j ∈ N}

with i ∈ N . Each Ci thus defined is a polyhedral set; the set of edges of the
Voronoi cells is denoted by V. The set of the vertices of Ci (or endpoints of
elements of V) is denoted by N ∗

Note that we may assume that each point in R2 belongs to at most three
Voronoi cells or three elements of E , since this is an event of probability 1.

The set of edges of the Delaunay triangulation of N is denoted by E and
is identified with the set of pairs (i, j) in N × N such that Ci and Cj share a
common edge.

We define a path of Voronoi cells as a collection {Cij : 1 ≤ j ≤ K} such that
Cij and Cij+1

have an edge in common, or, equivalently, such that (ij , ij+1) ∈ E
for all j ∈ {1, . . . ,K − 1}. From the latter standpoint, we also talk of a path
in E . We say that such a path connects two sets X and Y if X ∩ C1 6= ∅ and
Y ∩CK 6= ∅. If X = {x} and Y = {y} then we simply say that the path connects
x and y.

2.2 Asymptotic behaviour of ferromagnetic energies on
Poisson random sets

For future reference and comparison with the existing literature, we state our
results in terms of energies on (scalar) spin functions, keeping in mind the possi-
ble alternative formulations as energies on sets or on set of points. The (scaled)
ferromagnetic energy of the Poisson random set is defined on spin functions

5



u : εN → {−1, 1} by

Eε(u) =
1

8

∑
(i,j)∈εE

ε(ui − uj)2

=
1

2
ε#{(i, j) ∈ εE : ui 6= uj}

= ε#{(i, j) ∈ εE : ui = 1, uj = −1}, (10)

where the scaling factor 1
8 is due to double counting and to the fact that (uj −

uj)
2 ∈ {0, 4}.
To each u : εN → {−1, 1} we associate the (scaled) Voronoi set of u defined

by

Vε(u) =
⋃

{i:ui=1}

εCi/ε, (11)

and the piecewise-constant interpolation (with underlying set εN ), still denoted
u : R2 → {−1, 1}, defined by

u(x) =

{
1 if x ∈ Vε(u)

−1 if x ∈ R2 \ Vε(u).
(12)

Definition 2.1. We say that a family uε : εN → {−1, 1} converges to a set A
if the piecewise-constant interpolations uε converge to the function 1A − 1R2\A
locally in L1(R2), or, equivalently, if 1Vε(uε) converge to 1A locally in L1(R2).

The following compactness lemma justifies the use of the convergence in
Definition 2.1 in the computation of the Γ-limit of Eε [11, 12]. Note that the
result cannot be directly deduced from the compactness property of sets of
equibounded perimeter, since we cannot deduce the equiboundedness of the
perimeters of the sets Vε(u

ε) from the equiboundedness of Eε(uε).

Lemma 2.2 (compactness). Let uε be such that supεEε(u
ε) < +∞. Then,

up to subsequences uε converges to some set A in the sense of Definition 2.1.
Moreover, the limit set is a set of finite perimeter.

The compactness lemma above ensures that the domain of the Γ-limit of
Eε be the family sets of finite perimeter in R2. The asymptotic behaviour of
Eε will be described by an asymptotic formula similar to those encountered in
first-passage percolation, involving minimal paths on E between points of R2.
To that end we define for all x ∈ R2

π0(x) = closest point of N ∗ to x.

For almost all x this point is uniquely defined. For the remaining points we
choose one of the closest points of N ∗ to x. For x, y ∈ R2 we define

m0(x, y) = min{#{ek} : {ek} is a path in E connecting π0(x) and π0(y)},
(13)
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where a path of segments (in our case edges in V) connecting two points x and
y is a collection of segments [xk−1, xk] with 1 ≤ k ≤ K for some K ∈ N such
that x0 = x and xK = y, and such that the related piecewise-linear curve is not
self-intersecting.

Theorem 2.3 (homogenization theorem). Let E be a Poisson random set with
intensity 1. Then there exists a deterministic constant τ0 ∈ (0,+∞) (the surface
tension) such that almost surely the energies Eε defined in (10) Γ-converge to
the energy F (A) = τ0H1(∂A), defined on sets of finite perimeter, with respect
to the convergence in Remark 3.4. Furthermore the constant τ0 satisfies

τ0 = lim
t→∞

m0

(
(0, 0), (t, 0)

)
t

almost surely, where m0 is given by (13).

The proof of this result will be the content of Section 4.

Remark 2.4. By the scaling argument N →
√
λN , we deduce that if E is a

Poisson random set with intensity λ then the Γ-limit of the corresponding Eε
is
√
λ τ0H1(∂A).

3 Compactness

This section is devoted to the proof of the Compactness Lemma 2.2. Even
though we will use it in the planar case, we note that that result can be proved
in any space dimension d up to minor changes (see Remark 3.3 below).

Π denotes the set of finite connected unions of Voronoi cells (here connected
means that the corresponding set of edges of the Delaunay triangulation is
connected). If P ∈ Π we set

A(P ) = {z ∈ Z2 : (z +Q) ∩ P 6= ∅}.

In what follows, if it does not lead to an ambiguity, we identify A(P ) with the
union of unit squares centered at the points of A(P ).

Connected sets of Voronoi cells might have rather irregular geometric struc-
ture. It is more comfortable to deal with their covering by elements of a regular
grid of squares. The lemma below states that for sufficiently large P ∈ Π the
numbers of elements in P and in A(P ) are comparable.

Lemma 3.1 (Pimentel’s polyomino lemma [35]). Let R > 0 and γ > 0. Then
there exists a deterministic constant C such that for almost all ω there exists
ε0 = ε0(ω) > 0 such that if P ∈ Π and ε < ε0 satisfy

P ∩ R
ε
Q 6= ∅, max

{
#{i : Ci ⊂ P},#A(P )

}
≥ ε−γ (14)

then we have

1

C
#{i : Ci ⊂ P} ≤ #A(P ) ≤ C #{i : Ci ⊂ P}. (15)
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Proof. Denote Πz
6r = {P ∈ Π : z + Q ∩ P 6= ∅, #{i : Ci ⊂ P} 6 r} and

Πz
>r = {P ∈ Π : z + Q ∩ P 6= ∅, #{i : Ci ⊂ P} > r}. According to [35,

Theorem 1] and comments to this theorem there exist constants κ1 > 0, κ2 > 0
and κ3 > 0 such that for any z ∈ Z2

P
{

min
P∈Πz>r

#A(P ) 6 s
}
6 e−r/2, if r > κ1s, (16)

and
P
{

max
P∈Πz6r

#A(P ) > s
}
6 e−κ3s, if s > κ2r, (17)

Letting r = κ1s in (16) and summing up over z ∈ Rs
1
γQ ∩ Z2 we obtain

P
{

min
z∈Rs

1
γ Q∩Z2

min
P∈Πz>κ1s

#A(P ) 6 s
}
6 R2s2/γe−

κ1
2 s.

By the Borel-Cantelli lemma a.s. for sufficiently large s we have

min
z∈Rs

1
γ Q∩Z2

min
P∈Πz>κ1s

#A(P ) > s.

Letting s = ε−γ we obtain the first estimate in (15). The second one can be
derived from (17) in the same way.

Note in particular that in the hypotheses of the lemma, we also have

min
{

#{i : Ci ⊂ P},#A(P )
}
≥ 1

C
ε−γ . (18)

Further geometric properties of such Voronoi tessellations can be found in [22].
Lemma 2.2 will be a consequence of the following result.

Lemma 3.2 (compactness of Voronoi sets). Let uε be such that supεEε(u
ε) <

+∞. Then we can write

Vε(u
ε) = (Aε ∪B′ε) \B′′ε ,

where |B′ε|+ |B′′ε | → 0, {Aε} is a family of sets with equibounded perimeter, the
family 1Aε is precompact in L1

loc(R2) and each its limit point is the characteristic
function of a set of finite perimeter A, so that the same holds for 1Vε(uε).

Proof. Since we reason locally, in order to ease the notation we assume that
e.g. all uε are identically −1 outside a fixed cube (or equivalently that Vε(u

ε)
are contained in a fixed cube).

We fix γ > 0 small enough. We subdivide ∂Vε(u
ε) into its connected com-

ponents. We denote by Cγ,+ε the family of such connected components S with

#{i ∈ N : uεi = 1, εCi ∩ S 6= ∅} ≥ ε−γ . (19)
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Note that each such connected component can be identified with the set

P = P (S) =
⋃{

Ci : uεi = 1, εCi ∩ S 6= ∅
}
, (20)

which belongs to the set Π. We denote by Cγ,−ε the family of the remaining
connected components.

The first step will be to identify the small sets B′ε and B′′ε as the ‘interior’
of contours in Cγ,−ε where the inner trace of 1Vε(uε) is 0 and 1, respectively.
In this way the remaining set will have a boundary only composed of ‘large’
components from Cγ,+ε . This argument needs a little more formalization since
we may have contours contained in other contours.

By the finiteness of the energy we have

#Cγ,−ε ≤ C

ε

Note that

#
(
A
(1

ε
S
))
≤ Cε−γ for every S ∈ Cγ,−ε .

Indeed, otherwise #(A( 1
εS)) > Cε−γ > ε−γ , so that the hypotheses of Lemma

3.1 are satisfied and (15) implies that (19) holds, which gives a contradiction.
Hence each S ∈ Cγ,−ε is contained in a set with boundary at most of length
Cε1−γ . By an isoperimetric estimate, the measure of the bounded set sor-
rounded by each S ∈ Cγ,−ε is O(ε2−2γ). Hence, the total measure of such sets is
O(ε1−2γ).

Consider now each maximal S ∈ Cγ,−ε ; i.e., which is not contained in any
other bounded set whose boundary is another element in Cγ,−ε . For each such
S, let P be defined from S by (20). We have two cases, whether εP is interior
to S or not. We denote by Cγ,−1,ε the first family, by Cγ,−2,ε the second one, and

define B′ε as the union of the εCi/ε in the interior of S for some S ∈ Cγ,−1,ε and
such that uεi = 1, and B′′ε as the union of the εCi/ε in the interior of S for some

S ∈ Cγ,−2,ε and such that uεi = −1. If we set

Vε = (Vε(u
ε) \B′ε) ∪B′′ε

then ∂Vε consists only of components in Cγ,+ε , and

|B′ε ∪B′′ε | ≤ Cε1−2γ .

We now write Vε = Aε ∪A′ε, where

Aε =
⋃
{(εz + εQ) : εz + εQ ⊂ Vε}

A′ε = Vε \Aε

Note that
∂Aε ⊂ ε

⋃
S∈Cγ,+ε

∂A(P (S))
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with P (S) defined in (20). By Lemma 3.1 we have

H1(∂A(P (S))) ≤ C#{i ∈ N : uεi = 1, εCi ∩ S 6= ∅}

Summing up over all S ∈ Cγ,+ε we obtain

H1(∂Aε) ≤ C Eε(uε).

Hence, {Aε} is a family of sets with equibounded perimeter, and the functions
1Aε are locally precompact in L1(R2) by the precompactness of sets of equi-
bounded perimeter [10, 34].

Again by Lemma 3.1 we have

|A′ε| ≤ Cε2
∑

S∈Cγ,+ε

#A(P (S)) ≤ CεEε(uε).

This shows that |A′ε| → 0, and proves the claim, upon adding A′ε to B′ε defined
above.

Remark 3.3. The previous compactness result holds in any dimension d with
minor changes in the proof, upon noting that Pimentel’s lemma holds with

A(P ) = {z ∈ Zd : (z +Q) ∩ P 6= ∅}

and Q the coordinate unit cube in Rd [35].

Remark 3.4 (convergence in terms of the empirical measures). To each uε :
εN → {−1, 1} we can associate the so-called empirical measure

µ(uε) =
∑

{i∈εN :uεi=1}

ε2δi.

If uε are such that supεEε(u
ε) < +∞ and uε converge to A as in Definition

2.1, then the measures µ(uε) locally converge to the measure 1AL2 with respect
to the weak∗ convergence of measures. Thanks to Lemma 3.2, then these two
convergences are equivalent.

To check the convergence of µ(uε), we first note that we may suppose that
µ(uε) ⇀ fL2 for some f : R2 → [0, 1]. It suffices to show that f = 0 at almost
every point of density 0 for A (a symmetric argument then shows that f = 1 at
almost every point of density 1 for A).

For almost all such x0 we have that

lim sup
ε→0

|Vε(uε) ∩ (x0 + ρQ)| = o(ρ2)

and lim sup
ε→0

Eε(u
ε, Qρ) = o(ρ), where we have set

Eε(u
ε, Qρ) =

1

2
ε#{(i, j) ∈ εE : uεi 6= uεj , i or j ∈ ρQ}.
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We may subdivide Vε(u
ε) ∩ (x0 + ρQ) into disjoint connected components:

Vε(u
ε) ∩ (x0 + ρQ) =

⋃
#(Pj∩εN )≤ε−γ

Pj ∪
⋃

#(Lk∩εN )>ε−γ

Lk,

We may apply Lemma 3.1 to each Lk to obtain∑
k

ε2#(Lk ∩ εN ) ≤ Cε2
∑
k

#A
(1

ε
Lk

)
≤ C|Vε(uε)| = o(ρ2).

As for Pj we have

#({Pj}) ≤
1

ε
Eε(u

ε, Qρ) =
1

ε
o(ρ),

∑
j

#(Pj ∩ εN ) ≤ 1

ε1+γ
o(ρ).

In conclusion,

µ(uε)(x0 + ρQ) = ε2#{uεi = 1, i ∈ x0 + ρQ} ≤ o(ρ2) + ε1−γo(ρ).

Letting first ε→ 0 and then ρ→ 0 we prove the claim.

4 Proof of the Homogenization Theorem

In this section we prove Theorem 2.3, first characterizing the surface tension
and then computing the Γ-limit. Preliminarily, we introduce regular Voronoi
cells and study their geometry.

4.1 Geometry of clusters of regular Voronoi cells

The surface tension characterizing the Γ-limit will be expressed by an asymp-
totic average length of minimal paths analogous to first-passage percolation
formulas. A difficulty in our case is that in principle one of the end-points of
such paths could be located in an ‘exceptional region’ where very small Voronoi
cells accumulate. In order to treat this case, we first introduce regular Voronoi
cells and study some percolation characteristics of the grid of such cells.

For α > 0 we set

N 0
α =

{
i ∈ N : Ci contains a ball of radius α, diamCi ≤

1

α
,#edges of Ci ≤

1

α

}
(21)

the family of regular Voronoi cells with parameter α. The following lemma
describes some geometrical features of regular Voronoi tessellations.

Lemma 4.1 (a channel property of N 0
α). Let δ > 0. For every T ∈ R, ν ∈ S1

and x ∈ R2 we define

RνT,δ(x) =
{
x : |〈x− xi, νi〉| ≤ δT, |〈x− xi, ν⊥i 〉| ≤

1

2
T
}
.

11



Then there exist α0, Cδ > 0 such that a.s. there exists T0(ω) > 0 such that for all
T > T0(ω) the rectangle RνT,δ(x) contains at least CδT disjoint paths of Voronoi

cells Ci with i ∈ N 0
α connecting the two opposite sides of RνT,δ(x) parallel to ν.

This property is uniform as x/T vary on a bounded set of R2.

Proof. Our arguments rely on the result known as channel property in the
Bernoulli site percolation model in Z2. The idea of the proof is to consider
a regular grid of squares in R2 and to choose the squares where the Poisson
random set possesses a number of geometric properties (properties (c1)– (c3)
below). These properties are designed in such a way that
i. the events that they hold in disjoint squares are independent, and the prob-
ability of such event does not depend on the position of a square.
ii. the probability that these properties hold in a unit square is close enough to
1,
iii. there exists α > 0 such that any channel of squares where the mentioned
properties are fulfilled contains a path of Voronoi cells Ci with i ∈ N 0

α (α-
channel).

We proceed to the detailed construction. Denote Q5L := [−5L, 5L]2, and
for L, K, α ∈ R+ and j ∈ Z2 denote by E(L,K,α, j) the event that the following
conditions are fulfilled:

(c1) any square [0, L]2 +Li with i ∈ Z2∩ [−4.5, 5.5]2 contains at least one point
of N − 10Lj,

(c2) the total number of points #((N − 10Lj) ∩Q5L) does not exceed K,

(c3) the distance between any two points of (N − 10Lj) ∩ Q5L as well as the
distance from any point of (N − 10Lj)∩Q5L to ∂Q5L is greater than 2α.

Letting ξj be the characteristic function of E(L,K,α, j) and considering the
properties of the Poisson random set we conclude that ξj , j ∈ Z2, are i.i.d.
random variables. For any γ > 0 one can choose sufficiently large L and K and
sufficiently small α > 0 so that

P(E(L,K,α, j)) > 1− γ. (22)

Indeed, the probability that any cube of size L in Q5L contains at least one
point of the Poisson random set tends to 1 as L→∞. Then, given L > 0, the
probability that the number of points in Q5L does not exceed K tends to 1 as
K → ∞. The probability that in the cube Q5L the smallest distance between
two points is less than α goes to zero as α→ 0. Finally, the probability that α-
neighbourhood of ∂Q5L contains at least one point also goes to zero. Combining
this relations we obtain the desired property.

For any two points j′ , j′′ ∈ Z2 such that |j′ − j′′| = 1 denote by Ij′,j′′ the
segment [10Lj′, 10Lj′′] in R2. If ξj′ = ξj′′ = 1 then

(s1) any Voronoi cell Ci that has a non-trivial intersection with Ij′,j′′ belongs
to (Q5L + 10Lj′) ∪ (Q5L + 10Lj′′),
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(s2) any such a cell Ci contains a ball of radius α,

(s3) the number of edges of each such Ci is not greater than K.

In particular, due to (s1) and (c2), the total number of the cells Ci having a
non-empty intersection with Ij′,j′′ does not exceed 2K.

Statement (s1) can be justified as follows: Let x′ be an arbitrary point of
Ij′,j′′ . Denote by Ci the Voronoi cell that contains x′ and by xi the correspond-
ing point of the Poisson random set. Due to (c1) we have |x′ − xi| ≤

√
2L.

Then any point y ∈ ∂
(
(Q5L + 10Lj′) ∪ (Q5L + 10Lj′′)

)
satisfies the inequal-

ity |y − xi| ≥ (5 −
√

2)L. On the other hand, by (c1) the distance of y
from N is not greater than

√
2L. This implies that y 6∈ Ci. Therefore,

Ci ⊂ (Q5L + 10Lj′) ∪ (Q5L + 10Lj′′), and (s1) follows.
In a similar way one can show that for any Ci that has a nontrivial intersec-

tion with Ij′,j′′ and any xj ∈ N such that Ci and Cj have an edge in common
we have xj ∈ (Q5L + 10Lj′) ∪ (Q5L + 10Lj′′). In view of (c2) this yields (s3).

Statement (s2) is an immediate consequence of (c3).
Now the desired channel property follows from the well-known channel prop-

erty in the Bernoulli site percolation model. For the reader convenience we for-
mulate it here. Let ηj , j ∈ Z2, be a collection of i.i.d. random variables taking
on the value 1 with probability p and the value 0 with probability (1− p). We
say that {ji}Mi=1 is a 1-path if ji and ji+1, i = 1, 2, . . . ,M − 1, are neighbouring
points of Z2 and ηji = 1 for all i. Then there exists pcr ∈ (0, 1) such that for all
p > pcr the following statement holds: for any δ > 0 there exists Kδ > 0 such
that for almost each ω ∈ Ω there exists T0 = T0(ω) > 0 such that any rectangle
RνT,δ(x) with T ≥ T0 and x ∈ [−T, T ]2 contains at least Kδ > 0 disjoint 1-paths
connecting the two opposite sides of RνT,δ(x) parallel to ν. We refer to [30] for
further details.

It remains to choose γ in (22) in such a way that 1 − γ > pcr. Labeling
the squares Q5L + 10j with the corresponding points j ∈ Z2 and recalling the
just formulated channel property of the Bernoulli site percolation model with
ηj = ξj we obtain the desired statement.

From the proof of the previous lemma, in particular we obtain the following
proposition.

Proposition 4.2. There exists α0 such that if α < α0 there exists a unique
infinite connected component of N 0

α, and its complement is composed of bounded
connected sets.

With this proposition in mind, we may define clusters of regular Voronoi
cells.

Definition 4.3 (α-clusters). Let α < α0 be as in Proposition 4.2. We denote
by Nα the infinite connected component of N 0

α defined therein. Moreover, we
denote by N ∗α the set of vertices of edges of Ci with i ∈ Nα, by Vα the set of
the edges of such Ci, and by Eα the set of edges of the Delaunay triangulation
defined by set of pairs (i, j) in N 2

α such that Ci and Cj share a common edge.

13



Remark 4.4 (a channel property of Nα). With the notation of Definition 4.3,
note that the paths of cells Ci in Lemma 4.1 can be taken with i ∈ Nα.

4.2 Geometric properties of Voronoi tessellation of Pois-
son set. Surface tension

In this section we consider the geometric properties of the Poisson-Voronoi tes-
sellation and introduce the surface tension in terms of an asymptotic distance
between two points of the grid. In order to apply the subadditive theorem we
should show that the grid distance between two arbitrary points has a finite
expectation. The symbol E stands for the expectation in Ω.

Proposition 4.5. For all t > 0 we have

E(m0((0, 0), (t, 0))) < +∞ (23)

Furthermore, the limit

τ0 = lim
t→+∞

m0((0, 0), (t, 0))

t

exists almost surely and is deterministic.

Proof. We say that a set S ⊂ Z2 is l∞-connected if for any two points i and
j in S there is a path i = i0, i1, . . . , im = j in S such that |ik − ik−1|∞ = 1,
k = 1, . . . ,m.

Consider all l∞-connected sets in Z2 of size n that contain the origin. Ac-
cording to [28, Proof of Theorem 4.20] for any n ≥ 0 the number of such sets is
not greater than Cn2 for some constant C2 > 0.

Next we choose L, K and α > 0 in such a way that C2
2γ <

1
4 , where γ is

defined in (22).
We say that a site j ∈ Z2 is open if conditions (c1)-(c3) in the proof of Lemma

4.1 are satisfied; otherwise j is closed. The probability that a l∞-connected set
in Z2 consists of closed points, has size n and is a maximum l∞-connected
component of closed points does not exceed γn. We denote such a set by S(n).

Consider the sets

S0(n) =
⋃

j∈S(n)

(
Q5L + 10Lj

)
,

S1(n) = S0(n)
⋃{

x ∈ R2 : dist∞(x, 10LS(n)) ≤ 10L
}
.

If S0(n) contains k points of N , then the length of the shortest path from (0, 0)
to (1, 0) does not exceed (k+8nK)2. The probability that S0(n) contains exactly
k points of N is equal to

(100L2n)k

k!
exp(−100L2n).
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Denote L0 = 100L2.
The probability that S(n) is a maximum connected component of closed

sites and that S0(n) contains exactly k points of N is not greater than

pkn =
(
γn
) 1

2

( (L0n)k

k!
exp(−L0n)

) 1
2

.

Summing up over all connected sets in Z2 that contain the origin and over all k
from 0 to +∞, we obtain that the expectation of the shortest path from (0, 0)
to (1, 0) admits the following upper bound:

E(m0((0, 0), (1, 0))) ≤
∞∑
n=0

∞∑
k=0

Cn2 pkn(k + 8nK)2

≤
∞∑

n,k=0

exp
(
(log(C2) +

1

2
log(γ))n

)( (L0n)k

k!
exp(−L0n)

) 1
2

(k + 8nK)2.

Since (L0n)k

k! exp(−L0n) < 1, using the Stirling formula and considering our
choice of γ, one concludes that the series converges. This yields the relation in
(23) for t ≤ 1. For larger t we use the subadditive property of m0((0, 0), (t, 0)).
Namely, for any s1, t1 and s2, t2 we have

m0((0, 0), (s2, t2)) ≤ m0((0, 0), (s1, t1)) +m0((s1, t1), (s2, t2)).

This ensures the relation E(m0((0, 0), (t, 0))) < +∞ for any t > 0.
In the same way one can show that

E
(

sup
0≤t≤1

m0((0, 0), (t, 0))
)
< +∞.

Then the second statement of Proposition follows from the Kingman subadditive
ergodic theorem, see [32, Theorem 5.6] for the continuous-time version of this
theorem that applies in the case under consideration.

Proposition 4.6 (isotropy and uniformity of the surface tension). We have

τ0 = lim
t→+∞

m0(x, x+ tv)

t
(24)

for all v ∈ S1, and the limit is uniform for x = x(t) if |x| ≤ Ct and v ∈ S1.

Proof. Our first goal is to show that there exists a constant C0 such that a.s. for
any κ > 0 and c1 > 0 and for all t ≥ t0(ω, c1) we have

m0(x, y) ≤ C0|x− y|+ κt+
√
t (25)

for all x and y from the cube {x ∈ R2 : |x|∞ ≤ c1t}. To this end we use again
the definition of a cube Q5L given in the proof of Lemma 4.1 and recall that
a site j ∈ Z2 is open if conditions (c1)–(c3) are fulfilled. We then choose the
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parameter γ in (22) sufficiently small so that the open sites form a.s. an infinite
open cluster that we call C. Then a.s. for sufficiently large t the diameter of
any l∞-connected component of sites in in the complement to the infinite open
cluster in {x ∈ R2 : |x|∞ ≤ (10L)−1c1t} does not exceed c2 log t with c2 > 0,
see [28]. Computing the probability to have in a cube of size c2 log t more than√
t points of N , considering the fact that the number of such cubes centred at

j ∈ Z2 and belonging to {x ∈ R2 : |x|∞ ≤ (10L)−1c1t} grows polynomially in
t and using the Borel-Cantelli lemma we conclude that a.s. for sufficiently large
t we have

m0(x, π̃α(x)) ≤
√
t, m0(y, π̃α(y)) ≤

√
t, (26)

where π̃α(x) is the nearest to x vertex of the union of the Voronoi cells that
contain points of the scaled infinite open cluster 10LC.

From the results in [26] it follows that a.s. for sufficiently large t, for any
two points j1 and j2 of the open infinite cluster such that j1, j2 ∈ {x ∈ R2 :
|x|∞ ≤ (10L)−1c1t}, and for any κ > 0 the cluster distance between j1 and j2

is not greater than C2|j1− j2|+κt; here C2 is a positive constant that does not
depend on κ. Combining this estimate with (26) we obtain (25).

Next, we are going to show that for any x ∈ R2 with |x| ≤ C and any v ∈ S1

the limit relation

τ0 = lim
t→+∞

m0(tx, tx+ tv)

t
(27)

holds a.s. In view of (25) it suffices to prove this relation for integer t that tends
to ∞. In the remaining part of the proof we call this parameter n instead of t.

We fix a small positive θ > 0 and denote by AN the event

AN =
{
ω ∈ Ω :

∣∣∣m0(0, kv)

k
− τ0

∣∣∣ ≤ θ for all k ≥ N
}
.

Since P(AN ) tends to 1 as N →∞, for any δ > 0 there exists N0 = N0(δ) such
that

P(AN0
) ≥ 1− δ.

By the Birkhoff ergodic theorem a.s. for any ν > 0 and κ > 0 there exists
k0 = k0(ω, ν,κ) such that

∣∣∣1
k

k∑
j=1

1AN0
(Tjxω)−P(AN0)

∣∣∣ ≤ ν
for all k ≥ 1

2k0 and moreover inequality (25) holds for all such k. We assume
that ν and δ are small enough so that 3(ν + δ) ≤ 1

2 .
For k ≥ k0 denote by ` the maximum of integers j such that j > k + 1 and

for all i ∈ (k, j) we have Tixω 6∈ AN0 .

Let M be the number of unities in the sequence
{
1AN0

(Tixω)
}k
i=1

. By the

definition of `, the number of unities in
{
1AN0

(Tixω)
}k+`

i=1
is equal to M as well.
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Since k + ` > k0, we have

ν >
∣∣∣ M
k + `

−P(AN0
)
∣∣∣ =

∣∣∣1−P(AN0
)− `+ (k −M)

k + `

∣∣∣.
This yields

`+ (k −M)

k + `
< ν + 1−P(AN0

) ≤ ν + δ.

Since k −M ≥ 0, recalling that ν + δ ≤ 1
6 we obtain ` ≤ 2(ν + δ)k.

For an arbitrary k > max
(
k0, N0

)
and L = 3(ν + δ)k there exists n ∈

[k, k + L] such that Tnxω ∈ AN0
. Then we have∣∣∣1

k
mω

0 (nx, nx+ kv)− τ0
∣∣∣ =

∣∣∣1
k
mTnxω

0 (0, kv)− τ0
∣∣∣ ≤ θ. (28)

Since n− k ≤ 3(ν + δ)k and k > k0, then by (25)∣∣m0(nx, nx+ kv)−m0(kx, kx+ kv)
∣∣ ≤ [3C0C(ν + δ) + κ]k +

√
k.

Dividing by k and considering (28) we obtain∣∣∣1
k
mω

0 (kx, kx+ kv)− τ0
∣∣∣ ≤ θ + [3C0C(ν + δ) + κ] +

1√
k
.

It remains to take into account the fact that θ, ν, δ and κ are arbitrary positive
number, and (27) follows.

In view of estimate (25) the pointwise convergence in (27) implies the uniform
convergence in (24) for |x| ≤ Ct. This completes the proof.

Proposition 4.7 (coerciveness of the surface tension). We have τ0 > 0.

Proof. Given t > 0 take a minimal path {ek} for m0((0, 0), (0, t)). We can apply
Lemma 3.1 with ε = 1/t, R = 1, γ = 1/2, and P ∈ Π with ek ⊂ P for all k. We
then have

t(1 + o(1)) ≤ #A(P ) ≤ C#{Ci : Ci ⊂ P} ≤ C#{ek},

which shows the claim, since the constant in this estimate are independent of t.

Proposition 4.8. There exists a constant C0 such that if t is large enough
then if {ek} is a test path for m0(x, x + tv) with x as in Proposition 4.6 with
#({ek}) ≤ tM , then each point of {ek} is at most at distance C0Mt from x.

Proof. It suffices to apply Lemma 3.1 to the set of all Voronoi cells with non
empty intersection with

⋃
k ek and ε = 1/t. We then cover

⋃
k ek with the union

of at most 2C0Mt cubes, from which the claim follows.
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4.3 Computation of the Γ-limit

Lower bound. We use an argument typical of the blow-up technique [24, 16].
Let uε → A. Since A is of finite perimeter, with fixed σ > 0 and δ > 0 we

consider a disjoint finite family of rectangles

Ri =
{
x : |〈x− xi, νi〉| ≤ δρi, |〈x− xi, ν⊥i 〉| ≤

1

2
ρi

}
such that

H1
(
∂A \

⋃
i

Ri

)
≤ σ and

∣∣∣∑
i

ρi −H1(∂A)
∣∣∣ ≤ σ.

Since Aε → A we may assume that

L2(Aε ∩R+
i ) = o(1), L2((A \Aε) ∩R+

i ) = o(1)

as ε→ 0, where
R±i = Ri ± 2δρiνi.

We now fix an index i. We use the channel property in Lemma 4.1 to find
a path {εC+

j } joining the two sides of R+
i parallel to νi, with j endpoints of

segments of a path in Eα, and such that

L2
(
Aε ∩R+

i ∩ ε
⋃
j

C+
j

)
≤ ε

Cδρi
L2(Aε ∩R+

i ),

which follows from the existence of a number of disjoints paths proportional to
ρi.

Note that, since |εC+
j | ≥ πε2α2, we have

#{j : εC+
j ⊂ Aε} ≤

1

πε2α2
L2
(
Aε ∩R+

i ∩ ε
⋃
j

C+
j

)
≤ 1

επCδρiα2
L2(Aε ∩R+

i ).

Similarly, we define {C−j } joining the two sides of R−i parallel to νi, and
such that

L2
(

(A \Aε) ∩R−i ∩ ε
⋃
j

C−j

)
≤ ε

Cδρi
L2((A \Aε) ∩R−i ),

so that

#{j : εC−j ⊂ (A \Aε)} ≤
1

επCδρiα2
L2(((A \Aε) ∩R−i ).

We define U+
ε as the connected component of R+

i \ ε
⋃
j C

+
j containing the

upper side S+
i = {x ∈ R+

i : 〈x − xi, νi〉 = 3δρi} and U−ε as the connected
component of R−i \ ε

⋃
j C
−
j containing the lower side S−i = {x ∈ R−i : 〈x −

xi, νi〉 = −3δρi}, and define

Ãε = (Aε \ U+
ε ) ∪ U−ε .
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We now consider the connected component of the set (Ri ∪ R+
i ∪ R

−
i ) \ Ãε

containing the upper side S+
i . Note that this connected component does not

contain S−i , so that it contains a path of edges {eεk} in V connecting the two
sides of Ri ∪ R+

i ∪ R
−
i parallel to νi. We denote by x±ε the extreme points of

this path.
Using Proposition 4.6, we can now estimate

#{edges of ∂Vε(u
ε) inside Ri} ≥ #{edges of ∂Aε inside Ri}

≥ #{eεk} −
1

επCδρiα2
o(1)

≥ m0(x−ε , x
+
ε )− 1

επCδρiα2
o(1)

≥ (τ0 + o(1))
ρi
ε
− 1

επCδρiα2
o(1).

Summing up in i we then get

lim inf
ε→0

Eε(u
ε) ≥

∑
i

ρiτ0 ≥ τ0(H1(∂A)− σ)

and prove the claim by the arbitrariness of σ.

Upper bound. By an approximation argument [11, 10] it is sufficient to prove
the upper bound for polyhedral sets. Moreover, we can just deal with a single
connected bounded polyhedron A with a connected boundary since all other
cases can be reduced to that by considering union or complements of such sets.

We write the boundary of A as the union of segments [xj−1, xj ] with end-
points x0, . . . , xN ∈ R2 with xN = x0. With fixed m ∈ N and δ > 0, for all
j ∈ {1, . . . , N} and l ∈ {1, . . . ,m} we consider a non-intersecting path {ej,lk } in
V between π0(xεj,m−1) and π0(xεj,m), where

xεj,m =
1

ε

(
xj−1 +

l

m
(xj − xj−1)

)
,

such that

#{ej,lk } ≤
1

mε
|xj − xj−1|(τ0 + δ). (29)

Denoting the union of the rescaled paths

Bδ,mε = ε
⋃
j,l,k

ej,lk

let Aδ,mε be the complement of the infinite connected component of R2 \ Bδ,mε
(note that the paths {ej,lk } may intersect, so that there may be more than
one bounded connected component of the complement of their union). If uε is
defined as

uεi =

{
1 if i ∈ Aδ,mε
−1 if i 6∈ Aδ,mε ,

(30)
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then we have

Eε(u
ε) ≤ ε

∑
j,l,k

#{ej,lk } ≤
∑
j,l

1

m
|xj − xj−1|(τ0 + δ)

= H1(∂A)(τ0 + δ), (31)

since the boundary of Aδ,mε is contained in Bδ,mε .
By Lemma 2.2, thanks to (31) these sets converge as ε→ 0 to a set of finite

perimeter Aδ,m, and

Γ- lim sup
ε→0

Eε(A
δ,m) ≤ H1(∂A)(τ0 + δ). (32)

Thanks to Proposition 4.8 each point of ε{ej,lk } is at most at a distance C/m
from the segment [επ0(xεj,m−1), επ0(xεj,m)], and hence, since

lim
ε→0

επ0(xεj,m) = xj−1 +
l

m
(xj − xj−1),

the boundary of Aδ,m is contained in a C/m-neighbourhood of ∂A. This im-
plies that Aδ,m converge to A as m → +∞ independently of δ. By the lower
semicontinuity of the Γ-limsup [11] we then deduce that

Γ- lim sup
ε→0

Eε(A) ≤ lim
m→+∞

Γ- lim sup
ε→0

Eε(A
δ,m) ≤ H1(∂A)(τ0 + δ),

and the claim is proved.

5 Finite range of interactions.

In this section we consider a Poisson model with finite range of interactions.
Given R > 0 denote by ER the subset of N ×N defined by

ER = {i, j ∈ N , : |i− j| ≤ R}.

The corresponding (scaled) ferromagnetic energy on spin functions u : εN →
{−1, 1} takes the form

ERε (u) =
1

8

∑
(i,j)∈εER

ε(ui − uj)2 =
1

2
ε#{(i, j) ∈ εER : ui 6= uj}

= ε#{(i, j) ∈ εER : ui = 1, uj = −1}. (33)

We assume that R is sufficiently large. In order to clarify this, we fix γ ∈ (0, 1
2 )

and denote by EL(j), j ∈ Z2, the event that the following condition is fulfilled:
• any square [0, L]2 + Li with i ∈ Z2 ∩ [−9.5, 10.5]2 contains at least one point
of N − 10Lj.
The squares 10Lj +Q20L for which this condition holds are called L-good. As
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explained in the proof of Lemma 4.1 the probability of EL(j) tends to 1 as
L → ∞. Letting Q20L(j) = 10Lj + Q20L with j ∈ Z2 we say that a collection
of squares {Q20L(jk)}Nk=1 is admissible if the interiors of these squares do not
intersect. We say that Q20L(j) and Q20L(m) are neighbouring if |m− j| = 2 or
|m− j| =

√
5. The notion of connectedness is introduced accordingly.

Lemma 5.1. There exist L0 > 0 and β > 0 such that a.s. for any R > 0,
there exists ε0(ω,R) such that for any L ≥ L0 and for ε ≤ ε0, any admissible
connected subset S of {Q20L(j)}j∈Z2 with #(S) ≥ ε−γ and S∩[−ε−1R, ε−1R]2 6=
∅ contains at least β#(S) L-good squares.

Proof. The proof relies on the standard counting arguments. Each (20L)-square
has 12 neighbouring squares. Therefore, the total number of connected admissi-
ble sets of squares that contain Q20L(0) and have cardinality N does not exceed
ec̄N with a constant c̄ > 0, see [28]. For any finite collection of admissible (20L)-
squares the events EL(j) are independent. Thus, for any admissible connected
set of such squares that has exactly N squares the probability that the propor-
tion of good L-squares is less than β is less than exp

[(
c̄+log 2+β(1−EL(0))

)
N
]
.

Since, the probability of EL(0) tends to 1 as L → ∞, this yields the desired
statement by the Borel-Cantelli lemma.

From now on we assume that R ≥ 5L0. For the energies defined in (33)
we obtain a Γ-limit (homogenization) result. Since the techniques used here
are quite similar to those used in the previous sections, for the majority of
statements we provide just a sketch of the proofs.

Lemma 5.2. Let R be sufficiently large, and assume that a family {uε} is such
that supεE

R
ε (uε) < +∞. Then Vε(u

ε) admits the following representation:

Vε(u
ε) = (Aε ∪B′ε) \B′′ε ,

where |B′ε|+ |B′′ε | → 0 as ε→ 0, the family 1Aε is precompact in L1
loc(R2) and

each its limit point is the characteristic function of a set of finite perimeter A,
so that the same holds for 1Vε(uε).

Proof. The proof follows the line of the proof of Lemma 3.2 after replacing
the unit square Q with Q10L0 . In particular, the sets B′ε, B

′′
ε , A′ε and A′′ε are

introduced in the same way as in Lemma 3.2. The inequality

H1(∂A′ε) ≤ C ERε (uε)

follows from Lemma 5.1.

Denote JR the set of segments [i, j] ⊂ R2 with (i, j) ∈ ER. Then for any
smooth non-selfintersecting curve ϕ : [0, 1] → R2 such that ϕ has no points in
common with N we set

mRϕ = #
(
{ϕ(t) : t ∈ [0, 1]} ∩ JR

)
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and
mR(x, y) = min

ϕ, ϕ(0)=x,ϕ(1)=y
mRϕ .

The proof of the next statement is exactly the same as that of Proposition 4.5.
It relies on the properties of α-squares introduced above and the subadditive
theorem.

Proposition 5.3. For all t > 0 we have

E(mR((0, 0), (t, 0))) < +∞ (34)

Furthermore, the limit

τR = lim
t→+∞

mR((0, 0), (t, 0))

t

exists almost surely and is deterministic.

The convergence stated in the previous proposition is uniform if the starting
point satisfies the estimate x ≤ Ct. This is granted by the following proposition.

Proposition 5.4. We have

τR = lim
t→+∞

mR(x, x+ tv)

t
(35)

for all v ∈ S1, and the limit is uniform for x = x(t) if |x| ≤ Ct and v ∈ S1.

The proof of this statement is the same as that of Proposition 4.6.
We proceed with the main result of this section.

Theorem 5.5 (homogenization theorem). Let N be a Poisson point process with
intensity 1. Then for sufficiently large R the energies ERε defined in (33) Γ-
converge to the energy FR(A) = τRH1(∂A), defined on sets of finite perimeter,
with respect to the convergence introduced in Definition 2.1.

Proof. The statement of this Theorem can be derived from Lemmas 5.1–5.2 and
Propositions 5.3–5.4, it follows the line of the proof of Theorem 2.3.

6 Approximate surface tensions

In this final section we consider the restriction of the energies Eε to (spin func-
tions with corresponding) sets whose boundary is composed of edges of α-regular
Voronoi cells. We denote by Eαε such energies. Note that in this case Eαε (uε)
immediately gives the equiboundedness of the perimeter of the sets Vε(u

ε) and
hence their precompactness. We briefly describe the limit of Eαε at fixed α.

With given α < α0 as in Proposition 4.2 we define for all x ∈ R2

πα(x) = closest point of N ∗α to x.
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For almost all x this point is uniquely defined. For the remaining points we
choose one of the closest points of N ∗α to x. For all x, y ∈ R2 we set

mα(x, y) = min{#{ek} : {ek} is a path in Vα connecting πα(x) and πα(y)}.

Proposition 6.1. For all α < α0 a.s. the limit

τα = lim
t→+∞

mα(x, x+ tv)

t

exists for all v ∈ S1, and the limit is uniform for x = x(t) if |x| ≤ Ct and
v ∈ S1. Furthermore τα ∈ (0,+∞).

Proof. The proof follows that for τ0, and is actually simpler since bounds for
mα(x, x+ tv) are easier.

Theorem 6.2 (homogenization on the α-cluster). For α < α0 almost surely
there exists the Γ-limit of Eαε and it equals ταH1(∂A).

Proof. The proof is the same as for the homogenization theorem in the previous
section, taking care of using the same α as the one labeling the energies in the
proof of the lower bound. Note that it is not necessary to use Proposition 4.8
for the proof of the upper inequality.

Proposition 6.3. We have inf
α<α0

τα = lim
α→0

τα.

Proof. Choose α0 > 0 in such a way that for some L and K we have

P(E(L,K,α0, j)) > pcr.

It suffices to show that τα1 ≤ τα2 , if 0 < α1 < α2 ≤ α0. Since N ∗α2
⊂ N ∗α1

, then

min
{

#{ek} : {ek} is a path in Vα1
connecting πα2

(x0) and πα2
(xt)

}
≤ mα2

(x0, xt),
(36)

where x0 = 0 and xt = (t, 0). We should estimate

min
{

#{ek} : {ek} is a path in Vα1 connecting πα1(xt) and πα2(xt)
}
.

To this end we consider the cubes Q5L + 10Lj, j ∈ Z2, that were introduced in
the proof of Lemma 4.1 and take those of them that satisfy conditions (c1)–(c3)
for α = α0. Under our choice of α0 a.s. these exists a unique infinite cluster
of such cubes. The complement to the infinite cluster consists of connected
bounded sets. Moreover, according to [28], for sufficiently large t the maximal
size of the connected components in the complement to the infinite cluster that
have a non-trivial intersection with [−2t, 2t]2] does not exceed c log(t). This
implies that the size of the maximal connected component of [−2t, 2t]2] \ Vα0

does not exceed c log(t). Since N ∗α0
⊂ N ∗α2

⊂ N ∗α1
, then πα1

(xt) and πα2
(xt)
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belong to the closure of the same connected component of [−2t, 2t]2] \ Vα0 .
Therefore,

lim
t→∞

1

t
min

{
#{ek} : {ek} is a path in Vα1

connecting πα1
(xt) and πα2

(xt)
}

= 0.

Similarly,

lim
t→∞

1

t
min

{
#{ek} : {ek} is a path in Vα1 connecting πα1(x0) and πα2(x0)

}
= 0.

Combining these two relations with (36) we obtain the desired inequality τα1
≤

τα2 .

It turns out that for vanishing α the approximate surface tension τα con-
verges to τ0. It is the subject of the following statement.

Proposition 6.4. The following relation holds

lim
α→0

τα = τ0. (37)

Proof. Due to Proposition 4.6 for large n we have

mα((0, 0), (0, n)) ≥ m0((0, 0), (0, n))(1 + o(1)),

where a.s. o(1) tends to zero as n→∞. Therefore, τα ≥ τ0. Our goal is to prove
the opposite inequality. To this end consider a cube Qn = [−n, n]2, and denote
by Cni the cells of Voronoi tessellation corresponding to the set Nn = N ∩Qn,
the dual set is denoted by N ∗,n, and En is defined accordingly. Letting

πn0 (x) = closest point of N ∗,n to x

for all x ∈ Qn, we introduce

mn
0 (x, y) = min{#{ek} : {ek} is a path in En connecting πn0 (x) and πn0 (y)}

(38)
for x, y ∈ Qn. By the same arguments as those used in the proof of Proposition
4.6 one can show that a.s.

lim
n→∞

mn
0 ((0, 0), (0, n))

n
= τ0. (39)

Then for any κ > 0 and δ > 0 there exists n0 > 0 such that

P
{
mn0

0 ((0, 0), (0, n0)) ≥ τ0n0(1 + δ)
}
≤ κ. (40)

Next we choose α1 > 0, K and L such that, for any j ∈ Z2,

P(E(L,K,α1, j)) > 1− κ. (41)
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The choice of α1, K and L does not depend on n0. Without loss of generality
we may assume that

K ≤ δτ0n0 (42)

and that n0 = (5L+ 10l1L) for some l1 ∈ Z+, that is the point (n0, 0) belongs
to the right side of the cube Q5L + 10Lj1 with j1 = (l1, 0).

As was shown in the proof of Lemma 4.1 the inequality

P
{
E
(
n0

5 ,K2, α2, j
)}

> 1− κ (43)

holds for sufficiently large K2 and sufficiently small α2; here we assume that n0

is large enough.
Denote ei, i = 1, 2, the standard basis in R2. We say that a cube Qn0

is
α2-good, if

• mn0
0 (0,±n0ei) ≤ τ0n0(1 + δ), i = 1, 2;

• ω ∈ E(L,K,α1,±l1ei), i = 1, 2;

• ω ∈ E
(
n0

5 ,K2, α2, 0
)
.

A cube Qn0
+ 2n0j, j ∈ Z2, is said to be α2-good, if the cube Qn0

is α2-good
with respect to the point process N − 2n0j.

Define a random variable θj which is equal to 1, if the cube Qn0
+ 2n0j is

α2-good, and 0 otherwise. The random variables {θj}j∈Z2 are i.i.d. From (40)–
(43) it follows that P{θj = 1} ≥ 1−9κ. Furthermore, for any two neighbouring
α2-good cubes Qn0

+ 2n0j1 and Qn0
+ 2n0j2 with |j1 − j2|∞ = 1 we have

mα2
(2n0j1, 2n0j2) ≤ 2τ0n0(1 + 2δ). (44)

For small enough κ the α2-good cubes {Qn0 + 2n0j} form a unique infinite
cluster which is identified with the corresponding cluster for the variables θj .
For t = 2n0k with k ∈ Z+ denote by ρκ(k) the cluster distance between the
α2-good cubes which are closest to 0 and to t, respectively. According to [28]
the limit ρ̃(κ) = lim

k→∞

(
k−1ρκ(k)

)
exists a.s. and is deterministic. Moreover,

ρ̃(κ)→ 1 as κ → 0. Then for large k we obtain

mα2

(
(0, 0), (0, t)

)
≤ 2τ0n0(1 + 2δ)

(
ρκ(k) + o(k)

)
,

where o(k) tends to zero as k →∞. Dividing the last relation by t and passing
to the limit t→∞ yields

τα2 ≤ τ0(1 + 2δ)(ρ̃(κ)).

Since δ and κ are arbitrary positive numbers and ρ̃(κ) tends to 1 as κ → 0, we
obtain the desired convergence (37).
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