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HOMOGENIZATION OF FERROMAGNETIC MULTILAYERS
IN THE PRESENCE OF SURFACE ENERGIES ∗

Kévin Santugini-Repiquet
1

Abstract. We study the homogenization process of ferromagnetic multilayers in the presence of
surface energies: super-exchange, also called interlayer exchange coupling, and surface anisotropy. The
two main difficulties are the non-linearity of the Landau-Lifshitz equation and the absence of a good
sequence of extension operators for the multilayer geometry. First, we consider the case when surface
anisotropy is the dominant term, then the case when the magnitude of the super-exchange interaction
is inversely proportional to the interlayer distance. We establish the homogenized equation in these
two situations.
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1. Introduction

Ferromagnetic materials2 are defined by several interesting properties. Contrary to paramagnetic or diamag-
netic materials, they can have a nonzero magnetization in the absence of any exterior excitation. Their global
magnetization presents an hysteresis cycle. The magnetization of a ferromagnet depends not only on the current
magnetic field but also on all its previous history. Due to these properties, ferromagnetic materials are now
omnipresent in the industry, mainly in four fields of applications: magnetic storage of information, telecom-
munications, radar protection, and energy management. Therefore, understanding the magnetic behavior of
ferromagnets is a prime concern in these fields.

While the basic qualitative properties of ferromagnets have been known since antiquity, it was not until the
late forties that quantitative macroscopic models of ferromagnetism were proposed. The micromagnetic model
of Brown [5] describes the different energies involved in ferromagnetism and fully characterizes the equilibrium
states of the magnetization m. Landau and Lifshitz [12] proposed a phenomenological nonlinear PDE to model
the evolution in time of the magnetization in ferromagnets,

∂m

∂t
= −m ∧ h − αm ∧ (m ∧ h), (LL)
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now known as the Landau-Lifshitz equation. The vector field h depends on m and is given by the micromagnetic
model of Brown [5].

Different forms and configurations of ferromagnets can yield very different properties. Ferromagnetic mul-
tilayers have been a strong area of research in recent years because they can yield properties, such as giant
magnetoresistance, that are difficult to obtain otherwise. See [18], Chapter 20, for a description of the observed
properties of ferromagnetic multilayers and their applications. Simply replacing a solid ferromagnetic domain
by a ferromagnetic multilayer in the mathematical model would not account for all these interesting proper-
ties. Indeed, new physical phenomena in the spacers in between the layers such as super-exchange and surface
anisotropy, see [11], must be considered. Super-exchange, penalizes the jump of the magnetization m in between
the layers. Surface anisotropy controls the orientation of the magnetization with respect to the normal to the
surface in between the different layers. These two phenomena or interactions are modeled in the framework of
micromagnetism by adding surface terms to the total energy.

The complexity and the nonlinearity of the equations involved in the micromagnetic model make numerical
simulations a necessary tool to correctly predict the magnetic behavior of ferromagnets. Unfortunately, using
the micromagnetic model to directly compute the behavior of ferromagnetic multilayers is impractical because
the small thickness of each layer would increase the number of cells in the mesh in a prohibitive way. A more
practical way is to derive a macroscopic model of the behavior of ferromagnetic multilayers using homogenization
techniques. The non-linearity of the equations makes the study of convergence highly nontrivial for multilayered
geometries: for such domains, there is no extension operator with “good” properties. The homogenization of
ferromagnetic materials has been previously studied by Hamdache [9], and by Haddar and Joly [7] in 2D.

It is the purpose of this paper to homogenize the equations of micromagnetism when the thickness of each
layer tends to zero while the thickness of the whole body remains constant. We compute the homogenized
equations for different values of the parameters controlling the magnitude of the surface energies with respect
to the interlayer distance. In particular, we study three different cases: dominant surface anisotropy with
either strong super-exchange — see Theorem 12, or weak super-exchange — see Theorem 14, and very strong
super-exchange with weak surface anisotropy — see Theorem 18.

Our contribution is two fold. The first contribution is the correct derivation of the two-scale “limit” of the
nonhomogeneous boundary conditions in the weak formulation using two-scale convergence and its variant with
periodic surfaces. The second contribution is the correct justification of the limits in nonlinear terms. That is, we
show how the presence of surface energies — super-exchange and surface anisotropy — at the interface between
the different ferromagnetic layers can add enough rigidity to the system to ensure the necessary compactness
for the convergence of nonlinear terms in the weak formulations.

This paper is organized as follows. Section 2 reminds the reader the micromagnetic model of ferromagnetism.
Section 3 describes explicitely the multilayer geometry and introduces necessary notations. Section 4 describes
the Landau-Lifshitz system in a multilayer configuration to be homogenized as well as the concept of weak
solutions to the Landau-Lifshitz system. Section 5 reminds the reader the notion of two-scale convergence.
Finally, Section 6 presents the homogenized equations satisfied by the two-scale limit of the weak solution to
the Landau-Lifshitz system when the number N of layers tends to infinity in the three different cases.

2. The equations of ferromagnetism

2.1. The micromagnetic model

One model that explains the qualitative properties of ferromagnetism is the micromagnetic model by Brown [5].
We describe it in this section. A more complete description can be found in Halpern and Labbé [8].

2.1.1. The basic principles

The magnetic state of a ferromagnet filling domain O is characterized by its magnetization m: a vector field
null outside its body. Inside the ferromagnet, the magnetization has a constant modulus Ms equal to 1 after



HOMOGENIZATION OF FERROMAGNETIC MULTILAYERS IN THE PRESENCE OF SURFACE ENERGIES 307

scaling, i.e.

|m| =

{
1 a.e. in O × R

+,

0 a.e. in R
3 \ O × R

+.
(2.1)

To each interaction p involved in ferromagnetism corresponds an energy Ep(m) and an effective magnetic field
Hp(m) related by the formulae

Ep(0) = 0

DEp(m) · v = −
∫
O
H(m) · v dx for all v in H1(O; R3).

Let E(m) be the total energy defined as E(m) =
∑

p Ep(m). The micromagnetic model then defines the
equilibrium states as the local minima of E among vector fields statisfying constraint 2.1.

2.1.2. The volume energies

Inside a ferromagnetic domain, three contributions to the total energy are usually considered:

Exchange energy: This energy has the form Ee(m) =
∫
O

A(x)
2 |∇m|2 dx where A belongs to C(O,R∗

+).
The associated magnetic effective field is he = A�m. Exchange penalizes the variation of microscopic
magnetization and allows the existence of a global magnetization.

Anisotropy energy: In ferromagnetic materials, there are often directions of easy magnetization. This
is modeled by an energy of the form Ea(m) = 1

2

∫
O(Km) ·m, where K is a continuous field over O into

the space of symmetric positive matrices on R
3. The associated magnetic effective field is ha = −Km.

Demagnetization field energy: This energy arises from the magnetostatic equations. It is given by
Ed(m) = 1

2

∫
R3 |hd|2 dx = − 1

2

∫
O m ·hd dx where the vector field hd is the solution to the magnetostatic

system:

rothd = 0 in R
3, div(hd + m) = 0 in R

3,

in the sense of distributions.

Therefore, usually, the total magnetic effective field is defined as

h = A�m − Km + hd.

Let Hd be the linear operator that maps m into hd. We have the following theorem:

Theorem 1. The demagnetization field operator Hd maps the space L2(R3; R3) into L2(R3; R3), is symmetric
negative and has a norm smaller than 1.

Proof. See Friedman [6] for the basic properties of this operator. �

2.1.3. The surface energies

If a spacer I = B × (−l, l) made of weakly magnetic material, is in between a ferromagnetic domain
O = B × (−L−, L+) physical interactions such as super-exchange and surface anisotropy are present, see
Labrune and Miltat [11]. In the micromagnetic framework, these physical interactions are modeled by adding
surface energies to the total energy. The super-exchange energy is

Ese(m) =
J1

2

∫
B

|m(x̂, l) − m(x̂,−l)|2 dx̂ + J2

∫
B

|m(x̂, l) ∧ m(x̂,−l)|2 dx̂,
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where J1 and J2 are positive constants. The second term of the super-exchange energy is the biquadratic term.
The anisotropic surface energy is

Ese(m) =
K+

S

2

∫
B×{l}

|m(x) ∧ ν|2 dx +
K−

S

2

∫
B×{−l}

|m(x) ∧ ν|2 dx

where ν is the exterior normal to B × {± l}, and K+
s and K−

s are two positive real numbers.
Let σ(x1, x2, x3) = (x1, x2,−x3) and mσ = m ◦σ. The Euler-Lagrange stationary conditions for equilibrium

states are m ∧ h = 0 in O and

∂m

∂ν
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 on (∂O \ (B × {−l, l})× R

+,

K±
s (m · ν)

(
ν − (m · ν)m

)
+J1

(
mσ − (mσ · m)m

)
on B × {±l},

+2J2(mσ · m)
(
mσ − (mσ · m)m

) (2.2)

on the boundary. In the absence of surface energies, these boundary conditions simplify to

∂m

∂ν
= 0 on ∂O × R

+.

Should there be more than one spacer, as it will be the case later in this paper, each spacer i has its own set
of constants K+

s ,K
−
s , J1, J2. The positive constants K+

s ,K
−
s , J1, J2 may also depend on the thickness of the

interlayer l.
While the micromagnetic model fully characterizes the equilibrium states of the magnetization, a PDE is

needed in order to have a dynamic model. This PDE was supplied by Landau and Lifshitz [12].

2.2. The dynamic model: the Landau-Lifshitz system

At the mesoscopic scale, the magnetization evolves in time according to the phenomenological Landau-Lifshitz
equation [12],

∂m

∂t
= −m ∧ h − αm ∧ (m ∧ h) in O × R

+, (2.3)

where h is the magnetic effective field provided by the micromagnetic model.
The complete Landau-Lifshitz system is characterized by the non-convex constraint (2.1), the evolution

equation (2.3), an initial condition
m(·, 0) = m0, (2.4)

and the boundary conditions (2.2) for every time t. The stationary boundary conditions are used to complete
the dynamic model mainly because they allow to recover, at least formally, the energy inequality from the
Landau-Lifshitz equation,

E(m(·, T )) +
α

1 + α2

∫ T

0

‖∂m

∂t
‖L2(O;R3) ≤ E(m0)

for all time T > 0.

3. Notations and geometries

In this section, we describe the multilayer geometry and the notations that are used throughout the paper.
Let L > 0. Let B be a convex open bounded subset of R

2 with a smooth boundary. Let Y = [0, 1]. Let
p be a positive nonzero integer. Given p lengths θ0, . . . , θp−1, and p positions 0 = z0 < . . . < zp−1 < 1, let
zi+kp = zi + k, and θi = θi mod p for i in Z. Let z+

i = zi + θi

2 , and z−i = zi − θi

2 . We assume that z+
i < z−i+1
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Figure 1. Example of multilayer domain for p = 5.

for i in Z. Let χ̄i = z−i+1 − z+
i be the thickness of layer i, and χ̄ =

∑p−1
i=0 χ̄i be the total thickness of the layers.

Then, we define the intervals:

Ii = (z+
i , z

−
i+1), Ĩi =

⋃
k∈Z

Ii+kp, Ĩ =
⋃
i∈Z

Ii, I = Ĩ ∩ (0, 1),

Ji = (z−i , z
+
i ), J̃i =

⋃
k∈Z

Ji+kp, J̃ =
⋃
i∈Z

Ji, J = J̃ ∩ (0, 1),

and

ĨN
i =

L

N
Ĩi, ĨN =

p−1⋃
i=0

ĨN
i , IN

i = ĨN
i ∩ (0, L), IN = ĨN ∩ (0, L),

J̃N
i =

L

N
J̃i, J̃N =

p−1⋃
i=0

J̃N
i , JN

i = J̃N
i ∩ (0, L), JN = J̃N ∩ (0, L),

along with the domains:

Ω = B × (0, L), ΩN = B × IN , ΩN
i = B × IN

i ,

QT = Ω × (0, T ), QN
T = ΩN × (0, T ), QN

T,i = ΩN
i × (0, T ).

The domain ΩN is the domain filled with ferromagnetic material when there are N homogenization cells. Since
super-exchange and surface anisotropy are present on the boundary, we define

ΓN
i,k = B ×

{
L

N
zi+kp

}
, ΓN,+

i,k = B ×
{
L

N
z+

i+kp

}
, ΓN,−

i,k = B ×
{
L

N
z−i+kp

}
,

ΓN
i =

N−1−δp−1
i⋃

k=δ0
i

ΓN
i,k, ΓN,+

i =
N−1−δp−1

i⋃
k=δ0

i

ΓN,+
i,k , ΓN,−

i =
N−1−δp−1

i⋃
k=δ0

i

ΓN,−
i,k ,

for all integers i, k, 0 ≤ i ≤ p − 1, 0 ≤ k ≤ N − 1, and where δ is the Kronecker’s symbol. The exterior and
lateral boundaries are denoted by

ΓN
l = ∂B × IN , ΓN

e = ΓN
l ∪ ΓN,−

p−1,N−1 ∪ ΓN,+
0,0 ,
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while the interior boundaries are

ΓN,+ =
p−1⋃
i=0

ΓN,+
i , ΓN,− =

p−1⋃
i=0

ΓN,−
i , ΓN =

p−1⋃
i=0

ΓN
i .

The vector ν always represents the normal to the boundary ΩN whose orientation points to the exterior of ΩN .
Now that the domains ΩN are explicitly defined, we introduce various trace applications:

• Let γ be the operator that maps any sufficiently regular function defined over ΩN into its trace on
ΓN,+ ∪ ΓN,−.

• Let σ be a function that maps (x1, x2, x3) onto (x1, x2,−x3), and τε maps (x1, x2, x3) onto (x1, x2, x3−ε).
Let γ′ be the trace operators that maps any function u into γu ◦ σ ◦ τ2 L

N zi
on ΓN,+

i ∪ ΓN,−
i .

• Let γ+ be the trace operator that maps u into γu ◦ τ− L
2N θi

on ΓN
i and γ− be the trace operator that

maps u into γu ◦ τ L
2N θi

on ΓN
i .

We finally introduce some characteristic functions.

• Let χN be the characteristic function of domain ΩN .
• Let χ be the characteristic function of interval I.

We introduce the spaces H1
loc(O×R

+) which refer to the space of all measurable functions defined over O×R
+

whose restriction to O× (0, T ) are H1 for all T > 0. The space L2
loc(O ×R

+) contains all measurable functions
defined over O × R

+ whose restriction to O × (0, T ) are L2 for all T > 0. By extension, convergence to u in
L2

loc(O × R
+) in any type of convergence (whether strong, weak, two-scale or any other possibility) should be

understood as meaning that, for all T > 0, the restriction to O× (0, T ) converges in this particular type to the
restriction of u to O × (0, T ).

4. The Landau-Lifshitz equation in a multilayer

We first describe explicitly the Landau-Lifshitz system in a periodic ferromagnetic multilayer. Then, we
present the definition of weak solutions to the Landau-Lifshitz system.

4.1. The strong formulation

We consider a ferromagnet filling domain ΩN . To model quantitatively the behavior of this ferromagnet,
we set the micromagnetic parameters for each layer. We assume that there are p positive exchange constants
(A0, . . . , Ap−1), p symmetric positive anisotropy matrices, (K0, . . . ,Kp−1), 2p surface anisotropy constants
(K+

s,0, . . . ,K
+
s,p−1) and (K−

s,0, . . . ,K
−
s,p−1), 2p super-exchange constants (J1,0, . . . , J1,p−1) and (J2,0, . . . , J2,p−1)

as well as two real parameters ρ and � that control the variation of the magnitude of the super-exchange and
surface anisotropy interactions, respectively, with respect to the interlayer distance.

We consider the following system of equations to be homogenized:

∂mN

∂t
= −mN ∧ (Ai �mN −Kim

N +Hd(mN )
)− αmN ∧ (mN ∧ (Ai �mN −Kim

N +Hd(mN )
))
, (4.1a)

in ΩN
i × R

+ for any integer i, 0 ≤ i ≤ p− 1.

|mN | = 1 in ΩN × R
+, (4.1b)

mN (·, 0) = m0 in ΩN , (4.1c)
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and

∂mN

∂ν
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 on ΓN
e × R

+,

K+
s,i

N� (γmN · ν)(ν − (γmN · ν)γmN)

+J1,i

Nρ (γ′mN − (γmN · γ′mN )γmN) on ΓN,+
i × R

+,

+ 2J2,i

Nρ (γ′mN · γmN )(γ′mN − (γmN · γ′mN)γmN )
K−

s,i

N� (γmN · ν)(ν − (γmN · ν)γmN)

+J1,i

Nρ (γ′mN − (γmN · γ′mN )γmN) on ΓN,−
i × R

+.

+ 2J2,i

Nρ (γ′mN · γmN )(γ′mN − (γmN · γ′mN)γmN )

(4.1d)

In system (4.1), only boundary conditions are scaled with respect to the number of homogenization cells N .
This scaling is modeled through two parameters ρ and �. We will study two cases:

(1) In Section 6.1, � = 0 which corresponds to strong surface anisotropy interaction whose magnitude
does not diminish when the number of layers Np goes to infinity. There are two subcases: ρ = 0 in
Section 6.1.1 and ρ = 1 in Section 6.1.2, yielding slight different results.

(2) In Section 6.2, � = 1 and ρ = −1 which corresponds to a fading surface anisotropy and an exploding
super-exchange when the number of layers Np goes to infinity.

We make the following remark on our model:

Remark 2. Ideally, the parameters α and |m| should also depend on the layer. To avoid adding unnecessary
complications, we have chosen to let them remain constant.

4.2. Weak solutions in a multilayer

In this section, we present the definition of weak solutions to the Landau-Lifshitz system (4.1) in a multilayer.
First, note that, when constraint (4.1b) holds, then equation (4.1a) is, at least formally, equivalent to the

Landau-Lifshitz-Gilbert equation

∂mN

∂t
− αmN ∧ ∂mN

∂t
= −(1 + α2)mN ∧ (Ai �mN − Kim

N + Hd(mN )
)
.

Definition 3. Let mN
0 be in H1(ΩN ; R3), |mN

0 | = 1 a.e. in ΩN , we say that mN in H1
loc(Ω

N × R
+; R3) ∩

L∞(0,+∞; H1(ΩN ; R3)) is a weak solution to the Landau-Lifshitz system if
(1) The non-convex constraint is satisfied, i.e,

|mN | = 1 a.e. in ΩN × R
+. (4.2a)

(2) For all time T > 0, for all φ in C∞(ΩN × [0, T ]; R3),

∫∫
ΩN×(0,T )

∂mN

∂t
· φ dx dt− α

∫∫
ΩN×(0,T )

(
mN ∧ ∂mN

∂t

)
· φ dx dt

= (1 + α2)
p−1∑
i=0

Ai

∫∫
ΩN

i ×(0,T )

3∑
j=1

(
mN ∧ ∂mN

∂xj

)
· ∂φ

∂xj
dx dt

− (1 + α2)
∫∫

ΩN×(0,T )

(
mN ∧Hd(mN )

) · φ dx dt

+ (1 + α2)
p−1∑
i=0

∫∫
ΩN

i ×(0,T )

(
mN ∧ Kim

N
) · φ dx dt
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− (1 + α2)
p−1∑
i=0

K+
s,i

N�

∫∫
ΓN,+

i ×(0,T )

(ν · γmN)(γmN ∧ ν) · φ dx dt

− (1 + α2)
p−1∑
i=0

K−
s,i

N�

∫∫
ΓN,−

i ×(0,T )

(ν · γmN )(γmN ∧ ν) · φ dx dt

− (1 + α2)
p−1∑
i=0

(
J1,i

Nρ

∫∫
ΓN

i ×(0,T )

(γ+mN ∧ γ−mN ) · (γ+φ − γ−φ) dx dt

+ 2
J2,i

Nρ

∫∫
ΓN

i ×(0,T )

(γ+mN · γ−mN )(γ+mN ∧ γ−mN ) · (γ+φ − γ−φ)
)

dx dt. (4.2b)

(3) On ΩN × {0}, in the sense of traces,

mN (·, 0) = mN
0 . (4.2c)

(4) For all time T > 0, the following energy inequality is satisfied:

EN(mN (·, T )) +
α

1 + α2

∫ T

0

∥∥∥∥∂mN

∂t

∥∥∥∥2

L2(ΩN )

dt ≤ EN (mN
0 ) (4.2d)

where

EN (u) =
p−1∑
i=0

Ai

2
‖∇u‖2

L2(ΩN
i ) +

1
2

∫
R3
|Hd(u)|2 dx

+
1
2

p−1∑
i=0

∫
ΩN

i

u · (Kiu) dx +
p−1∑
i=0

K+
s,i

2N�

∫
ΓN,+

i

|γu ∧ ν|2 dσ(x)

+
p−1∑
i=0

K−
s,i

2N�

∫
ΓN,−

i

|γu ∧ ν|2 dσ(x) +
p−1∑
i=0

J1,i

2Nρ

∫
ΓN

i

|γ+u − γ−u|2 dσ(x)

+
p−1∑
i=0

J2,i

Nρ

∫
ΓN

i

|γ+u ∧ γ−u|2 dσ(x). (4.3)

For any admissible initial condition, there exists at least one global weak solution, but no uniqueness result3:

Theorem 4. Let m0 be in H1(ΩN ; R3) |m0| = 1 a.e. in ΩN . There exists at least one weak solution to the
Landau-Lifshitz system in the sense of Definition 3.

Proof. See Theorem 3.2 in [15] for two layers. The proof generalizes itself without difficulty to a finite number
of layers. �

5. The two-scale convergence

This section briefly recalls the important notion of two-scale convergence, described in Allaire [2], in Allaire,
Damlamian and Hornung [3], and in Neuss-Radu [13,14]. Throughout this section, O is an open set of R

3, and
Y = [0, 1]. Let C∞

# (Y ) be the space of 1-periodic indefinitely differentiable functions in R. Let H1
#(Y ) be the

3All known uniqueness results for weak solution to the Landau-Lifshitz system in 3 dimensions are negative, see Alouges and
Soyeur [4].



HOMOGENIZATION OF FERROMAGNETIC MULTILAYERS IN THE PRESENCE OF SURFACE ENERGIES 313

closure of C∞
# (Y ) in H1(Y ). Let C∞(O)⊗C∞

# (Y ) be the space of indefinitely differentiable functions on O×R,
which are 1-periodic on the last variable. Let H1

#(O × Y ) be the closure of C∞(O) ⊗ C∞
# (Y ) in H1(O × Y ).

Definition 5. A sequence of functions uε in L2(O) is said to two-scale converge to a limit u0(x, y) in L2(O×Y )
if

lim
ε→0

∫
O
uε(x)ψ(x,

x3

ε
) dx =

∫
O

∫
Y

u0(x, y)ψ(x, y) dy dx, (5.1)

for all ψ in C∞(O) ⊗ C∞
# (Y ).

We reproduce the compactness Theorem 1.2 in [2]:

Theorem 6. Let uε be a bounded sequence of elements bounded in L2(O), then there exists a subsequence
(εk)k∈N, and u0 in L2(O × Y ) such that uεk

two-scale converges to u0.

We recall a simple criterion that justifies the convergence of products.

Theorem 7. Let uε and vε be bounded sequences in L2(O) that two-scale converge to u0 and v0, respectively in
L2(O × Y ). If

‖u0‖L2(O×Y ) = lim inf
ε→0

‖uε‖L2(O),

then

lim
ε→0

∫
O
uε(x)vε(x)ψ

(
x,
x3

ε

)
dx =

∫
O

∫
Y

u0(x, y)v0(x, y)ψ(x, y) dy dx,

for all ψ in C∞(O) ⊗ C∞
# (Y ).

Proof. See [2] Theorem 1.8. �

We describe the concept of two-scale convergence with periodic surfaces, see Allaire, Damlamian and Hornung [3],
and M. Neuss-Radu [13,14]. Let Y = [0, 1], T be an open set of Y , and Γ its boundary. We define Y ∗ = Y \ T .
Let

ΓN = {x ∈ O, Nx3 ∈ Γ + Z}, ON = {x ∈ O, Nx3 ∈ Y ∗ + Z}. (5.2)

Theorem 8. Let uN be a sequence of functions of L2(ΓN ) such that

1
N

∫
ΓN

|uN (x)|2 dσ(x) ≤ C,

where C is a constant. There exists a subsequence Nk, and u∞ in L2(O × Γ), such that

lim
k→∞

1
Nk

∫
ΓNk

uNk(x)φ(x, Nx3) dσ(x) =
∫
O

∫
Γ

u∞(x, y)φ(x, y) dσ(y) dx, (5.3)

for all φ in C(O) ⊗ C#(Y ).

Proof. See Theorem 1.1 in [3]. �

The relation (5.3) defines the two-scale convergence with periodic surfaces. Under, some assumptions, there
exists a link between the two forms of two-scale convergence.

Proposition 9. Let uN be a sequence of functions in H1(O) such that

‖uN‖L2(O) +
1
N

‖∇uN‖L2(O) ≤ C, (5.4)
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where C > 0 is a constant. Then, the trace of uN on ΓN satisfies

1
N

∫
ΓN

|uN (x)|2 dσ(x) ≤ C, (5.5)

and there exists u∞ in L2(O; H1
#(Y )) and a subsequence Nk, such that

lim
k→∞

1
Nk

∫
ΓNk

uNk(x)φ(x, Nkx3) dσ(x)

=
∫
O

∫
Γ

u∞(x, y)φ(x, y) dx dσ(y),

lim
k→∞

∫
O
uNk(x)ψ(x, Nkx3) dx =

∫
O

∫
Y

u∞(x, y)ψ(x, y) dx dy,

lim
k→∞

1
Nk

∫
O

∂uNk

∂x3
(x)ψ(x, Nkx3) dx =

∫
O

∫
Y

∂u∞

∂y
(x, y)ψ(x, y) dx dy,

for all ψ in C(O) ⊗ C#(Y ).

Proof. See Proposition 2.6 in [3]. �

The following theorem has analogous result to Theorem 7 for the two-scale convergence with periodic surfaces.

Theorem 10. Let uN and vN be two sequences bounded in L2(O), two-scale converging to respectively u∞ and
v∞ in the sense of (5.3). If

lim
N→∞

1
N

∫
ΓN

|uN (x)|2 dσ(x) =
∫
O

∫
Γ

|u∞(x, y)|2 dσ(y) dx,

then, for all φ in C∞(O) ⊗ C∞
# (Y ),

lim
N→∞

1
N

∫
ΓN

uN (x)vN (x)φ(x, Nx3) dσ(x) =
∫
O

∫
Γ

u∞(x, y)v∞(x, y)φ(x, y) dσ(y) dx.

Proof. It is left to the reader to verify that the proof of Theorem 1.8 in [2] can easily be adapted. �

Using the different concepts of two-scale convergence recalled in this section, we can establish the homogenized
equations for ferromagnetic multilayers.

6. The homogenized Landau-Lifshitz equation

In this section, we present the equations satisfied by two-scale limits of subsequences of weak solutions mN to
the Landau-Lifshitz system for different values of the parameters � and ρ. We always assume that the sequence
of initial conditions mN

0 satisfies

sup
N∈N

EN (mN
0 ) ≤ +∞, (6.1)

where EN is the functional given by (4.3).
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6.1. Strong surface anisotropy

In this section, we assume that the magnitude of surface anisotropy does not depend on the interlayer
thickness, i.e. � = 0. In that case, surface anisotropy dominates all other phenomena and forces the limit to
be stationary. We study two subcases: ρ = 0 and ρ = 1, where ρ is the exponent modeling the variation of
the super-exchange constant with respect to the number of homogenization cells N , i.e. the magnitude of the
super-exchange for the quadratic term and biquadratic term are J1,i

Nρ and J2,i

Nρ , respectively. Throughout this
section, let e3 be the vector (0, 0, 1).

We will need a particular estimate of the L2(ΩN ) norm of a function:

Lemma 11. There exists C > 0 independent of N such that for all u in H1(ΩN ):

‖u‖2
L2(ΩN ) ≤ C

(‖u‖2
L2(ΓN,+∪ΓN,−)

N
+

‖ ∂u
∂x3

‖2
L2(ΩN )

N2

)
.

Proof. We compute

∫
ΩN

|u(x)|2 dx =
p−1∑
i=0

N−1∑
k=0

∫
B

∫ L
N (z−

i+1+k)

L
N (z+

i +k)
|u((x̂, z), T )|2 dz dx̂

≤
p−1∑
i=0

N−1∑
k=0

∫
ΓN,+

i,k

∫ L
N χ̄i

0

|u(x + ze3, T )|2 dz dσ(x)

≤
p−1∑
i=0

N−1∑
k=0

∫
ΓN,+

i,k

∫ L
N χ̄i

0

∣∣∣∣γu(x, T ) +
∫ z

0

∂u

∂x3
(x + se3, T ) ds

∣∣∣∣2 dz dσ(x). �

6.1.1. The case of ρ = 0

In this section, we present one of our three theorems concerning the homogenization of the Landau-Lifshitz
equation in multilayers. In this theorem, the initial conditions will be required to satisfy inequality (6.1). This
represents a huge constraint on the possible initial magnetization. Before stating and proving this theorem,
we feel important to provide the reader with one possible example of such initial conditions: we may choose
mN

0 constant in each subcell and, to nullify surface anisotropy, equal to either e3 or −e3 everywhere. In this
subcase, the super-exchange energy then forces the number of sign changes to remain bounded independently
of n in this subcase.

Theorem 12. Let � = 0 and ρ = 0. Let mN
0 be a sequence of initial conditions in H1(ΩN ; R3), |mN

0 | = 1 a.e.
in ΩN , satisfying the energy constraint (6.1). Let mN be a sequence of weak solutions to the Landau-Lifshitz
system in the sense of Definition 3. Then, there exists a sequence of extensions to mN in H1

loc(Ω × R
/; R3)

denoted m̃N and a subsequence of (m̃N )N that two-scale converges to m̃∞ in L2
loc(Ω×R

+; R3). The limit m̃∞

is independent of time and is parallel to e3 a.e. in Ω × R
+.

Moreover, let m̄N
0 be the extension by 0 of mN

0 outside ΩN . If there exists m∞
0 in L2(Ω) such that m̄N

0

converges weakly to χ̄m∞
0 in L2(Ω), then the whole sequence converges and m̃∞(·, t) = m∞

0 for all time t ≥ 0.

Proof. According to inequality (4.2d) and constraint (6.1), if ρ = 0, then

‖mN‖2
L∞(R+;H1(ΩN ;R3)) ≤ C,

∥∥∥∥∂mN

∂t

∥∥∥∥2
L2(ΩN×R+;R3)

≤ C,

‖γ+mN − γ−mN‖2
L∞(R+;L2(ΓN ;R3)) ≤ C.
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According to Proposition 23, there exists an extension of mN over Ω × R
+, denoted m̃N that satisfies

‖m̃N‖L∞(Ω×R+;R3) ≤ 1,
∥∥∥∥∂m̃N

∂t

∥∥∥∥
L2(Ω×R+;R3)

≤ C, (6.2a)∥∥∥∥∂m̃N

∂x1

∥∥∥∥
L∞(R+;L2(Ω;R3))

≤ C,

∥∥∥∥∂m̃N

∂x2

∥∥∥∥
L∞(R+;L2(Ω;R3))

≤ C, (6.2b)∥∥∥∥∂m̃N

∂x3

∥∥∥∥
L∞(R+;L2(Ω;R3))

≤ C
√
N. (6.2c)

According to Theorem 6, there exists m̃∞ in L2
loc(Ω × R

+ × (0, 1)), such that for a subsequence m̃Nk :

lim
k→∞

∫∫
Ω×(0,T )

m̃Nk(x, t)φ
(

x, t,
Nk

L
x3

)
dx dt =

∫∫
Ω×(0,T )

m̃∞(x, t)
∫

Y

φ (x, t, y) dy dx dt,

for all time T > 0 and for all φ in C∞(Ω × [0, T ])⊗ C∞(Y ).
According to inequality (6.2c) and Proposition 1.14 in [2], m̃∞ does not depend on the fast variable y.
Since the two quantities ‖mN ∧ e3‖2

L2(ΓN,+∪ΓN,−) and ‖∂mN

∂x3
‖2
L2(ΩN ) are bounded by EN(mN

0 ), Lemma 11
and inequality (4.2d) imply that

‖mN ∧ e3‖2
L∞(R+;L2(ΩN ;R3)) ≤

CEN (mN
0 )

N
,

for some constant C > 0. Since the sequence of initial conditions satisfy the energy boundedness (6.1), there
exists C′ > 0, independent of N , such that

‖mN ∧ e3‖L∞(R+;L2(ΩN ;R3)) ≤ C′
√
N

· (6.3)

Therefore, m̃∞ ∧ e3 = 0 a.e. in Ω × R+.
Let T > 0 and φ = φe3, where φ belongs to C∞(Ω × [0, T ]), in (4.2b):

∫∫
QN

T

∂(m̃N · e3)
∂t

φdx dt+ α

∫∫
QN

T

(m̃N ∧ e3) · ∂m̃N

∂t
φdx dt︸ ︷︷ ︸

I

= −(1 + α2)
p−1∑
i=0

3∑
j=1

Ai

∫∫
QN

T,i

(m̃N ∧ e3) · ∂m̃N

∂xj

∂φ

∂xj
dx dt︸ ︷︷ ︸

II

+ (1 + α2)
∫∫

QN
T

(m̃N ∧ e3) · Hd(m̃N )φdx dt︸ ︷︷ ︸
III

− (1 + α2)
p−1∑
i=0

∫∫
QN

T,i

(m̃N ∧ e3) ·Kim̃
Nφdx dt︸ ︷︷ ︸

IV
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+ (1 + α2)
p−1∑
i=0

J1,i

∫∫
ΓN

i ×(0,T )

(γ+m̃N ∧ e3) · γ−m̃N (γ+φ− γ−φ) dx dt︸ ︷︷ ︸
V

+ 2(1 + α2)
p−1∑
i=0

J2,i

∫∫
ΓN

i ×(0,T )

(γ+m̃N · γ−m̃N )(γ+m̃N ∧ e3) · γ−m̃N (γ+φ− γ−φ) dx dt︸ ︷︷ ︸
V I

, (6.4)

for all φ belonging to C∞(Ω × [0, T ]). The surface anisotropy terms have vanished because (a ∧ ν) · e3 = 0.
According to inequality (6.3) and Theorem 1, terms I, II, III and IV tend to 0 as N tends to +∞. Since
|m| = 1, terms V and V I containing the super-exchange interactions, tend to 0 because they are are bounded
by:

C

(
p−1∑
i=0

N−1∑
k=0

‖γm̃N ∧ ν‖2
L∞(R+;L2(ΓN,+

i ;R3))

) 1
2
(

p−1∑
i=0

N−1∑
k=0

‖γ+φ− γ−φ‖2
L1(0,T ;L2(ΓN

i ;R3))

) 1
2

≤ C′

N
1
2

∥∥∥∥ ∂φ∂x3

∥∥∥∥
L1(0,T ;L2(Ω;R3))

.

Taking the limit in (6.4) yields
∫∫

QN
T

∂(m̃N ·e3)
∂t φ(x, t) dx dt = 0, for all φ in C∞(Ω × (0, T )). Moreover,

m̃∞ ∧ e3 = 0, thus m̃∞ does not depend on the time. �
Looking at the proof, we notice that:

Remark 13. The results of the Theorem 12 are still valid for ρ < 1.

6.1.2. The case of ρ = 1

This subcase is very similar to the previous one. But in this subcase super-exchange is not strong enough
to force the independence of the two-scale limit with respect to the fast variable y. As in the previous subcase,
we provide the reader with one example of a sequence of initial conditions. We use the same basic ideas:
mN

0 constant in each subcell and equal to either e3 or −e3. Since super-exchange has been weakened with
respect to the previous subcase, the number of sign change between the layers does not need to remain bounded
independently of n.

We state and prove the following theorem:

Theorem 14. Let � = 0 and ρ = 1. Let mN
0 be a sequence of initial conditions in H1(ΩN ; R3), |mN

0 | = 1 a.e.
in ΩN , satisfying the energy constraint (6.1). Let mN be a sequence of weak solutions to the Landau-Lifshitz
system in the sense of Definition 3. Let m̄N be the extension by 0 of mN to Ω×R

+. Then, up to a subsequence,
m̄N two-scale converges to m̄∞. The limit m̄∞ is parallel to e3 a.e. in Ω× (0, T )× Ĩ. Furthermore, for almost
all x, t, m̄∞(x, t, ·) does not depend on time, is constant in each interval Ĩi, 0 ≤ i ≤ p− 1 and is null in J̃ .

Moreover, let m̄N
0 be the extension by 0 of mN

0 outside ΩN . If there exists m∞
0 in L2(Ω× Y ) such that m̄N

0

two-scale converges to m∞
0 in L2(Ω×Y ), then the whole sequence converges and m̃∞(·, t, ·) = m∞

0 for all time
t ≥ 0 in Ω × Ĩ.

Proof. Inequality (4.2d), and conditions (6.1) imply that

‖mN‖2
L∞(R+;H1(ΩN ;R3)) ≤ C,

∥∥∥∥∂mN

∂t

∥∥∥∥2
L2(ΩN×R+;R3)

≤ C,

‖γ+mN − γ−mN‖2
L∞(R+;L2(ΓN,−;R3)) ≤ CN.
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According to Proposition 23 in the appendix, there exists an extension of m̃N satisfying

‖m̃N‖L∞(Ω×R+) ≤ 1,
∥∥∥∥∂m̃N

∂t

∥∥∥∥
L2(Ω×R+;R3)

≤ C, (6.5a)∥∥∥∥∂m̃N

∂x1

∥∥∥∥
L∞(R+;L2(Ω;R3))

≤ C,

∥∥∥∥∂m̃N

∂x2

∥∥∥∥
L∞(R+;L2(Ω;R3))

≤ C, (6.5b)∥∥∥∥∂m̃N

∂x3

∥∥∥∥
L∞(R+;L2(Ω;R3))

≤ CN. (6.5c)

There exists m̃∞ in L2
loc(Ω × R

+ × (0, 1)) two-scale limit of a subsequence m̃Nk , i.e.,

lim
k→∞

∫∫
Ω×(0,T )

m̃Nk(x, t)φ(x, t,
Nk

L
x3) dt dx =

∫∫
Ω×(0,T )

∫
Y

m̃∞(x, t, y)φ(x, t, y) dt dy dx,

for all time T > 0 and for all φ in C∞(Ω × (0, T )) ⊗ C∞
# (Y ).

We need to establish the characteristics of m̃∞. We begin by proving a simple lemma:

Lemma 15. For all x, t in Ω×R
+, the function m̃∞(x, t, ·) is constant on each interval Ii, i in N, 0 ≤ i ≤ p−1.

Proof of the lemma. Let T > 0 and φ(x, t, y) = ψ(x, t)ζ(y) where ζ has a compact support included in Ĩ. Then,

∫∫
Ω×(0,T )

∂m̃N

∂x3
(x, t)ψ(x, t)ζ(

N

L
x) dx dt

= −
∫∫

Ω×(0,T )̃

mN (x)
∂ψ

∂x3
(x, t)ζ(

N

L
x3) dx dt

− N

L

∫∫
Ω×(0,T )̃

mN (x, t)ψ(x, t)ζ′(
N

L
x3) dx dt.

We divide this equality by N and take the limit in each term as N tends to +∞, using the properties of two-scale
convergence. We obtain ∫∫

Ω×(0,T )

ψ(x, t)
∫

Ĩ

m̃∞(x, t, y)ζ′(y) dy dx = 0,

for all ζ in C∞
c (Ĩ), for all ψ in C∞

c (Ω × (0, T )), and for all finite time T > 0.
Let m̃∞

i (x, t) be the value of the function m̃∞(x, t, ·) on the interval Ĩi. Since the two quantities ‖mN ∧
e3‖2

L2(ΓN,+∪ΓN,−) and ‖∂mN

∂x3
‖2
L2(ΩN ) are bounded by EN (mN

0 ), Lemma 11 and inequality (4.2d) yield that:

‖mN ∧ e3‖2
L∞(R+;L2(ΩN ;R3)) ≤

CEN (mN
0 )

N
,

for some constant C > 0. Since the sequence of initial conditions satisfies the energy boundedness (6.1), there
exists C′ > 0, independent of N , such that

‖mN ∧ e3‖L∞(R+;L2(ΩN ;R3)) ≤
C′
√
N

·

Therefore, m̃∞ ∧ e3 = 0 a.e. in Ω × R
+ × Ĩ.
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Let T > 0 be a finite time. Let φ(x, t) = φ(x, t, N
L x3)e3, with φ belonging to C∞(Ω × (0, T ))⊗C∞

# (Y ), as the
test function in (4.2b), such that φ(x, t, ·) is constant in each interval Ĩi. Let φi(x, t) be the value of φ(x, t, ·)
on the interval Ĩi. We obtain

p−1∑
i=0

∫∫
ΩN

i ×(0,T )

∂(m̃N · e3)
∂t

φi dx dt = α

p−1∑
i=0

∫∫
ΩN

i ×(0,T )

(m̃N ∧ e3) · ∂m̃N

∂t
φi dx dt

− (1 + α2)
p−1∑
i=0

3∑
j=1

Ai

∫∫
ΩN

i ×(0,T )

(m̃N ∧ e3) · ∂m̃N

∂xj

∂φi

∂xj
dx dt

+ (1 + α2)
p−1∑
i=0

∫∫
ΩN

i ×(0,T )

(m̃N ∧ e3) · Hd(m̃N )φi dx dt

− (1 + α2)
p−1∑
i=0

∫∫
ΩN

i ×(0,T )

(m̃N ∧ e3) · Kim̃
Nφi dx dt

+ (1 + α2)
p−1∑
i=0

J1,i

N

∫∫
ΓN

i ×(0,T )

(γ+m̃N ∧ e3) · γ−m̃N(γ+φi − γ−φi−1) dx dt

+ 2(1 + α2)
p−1∑
i=0

J2,i

N

∫∫
ΓN

i ×(0,T )

(γ+m̃N · γ−m̃N )(γ+m̃N ∧ e3) · γ−m̃N (γ+φi − γ−φi−1) dx dt. (6.6)

As in the previous section, the first four terms of the right hand-side tend to 0. The last two terms are bounded by

C

N
1
2

(
p−1∑
i=0

N−1∑
k=0

‖γmN ∧ ν‖2
L∞(R+;L2(ΓN,+

i,k ;R3))

) 1
2

×
(

1
N

p−1∑
i=0

N−1∑
k=0

‖γ+φi+1 − γ−φi‖2
L1(0,T ;L2(ΓN

i,k;R3))

) 1
2

≤ C′

N
1
2
‖φ‖L1(0,T ;L2(Ω×Y )),

and also converge to 0. Thus, taking the limit in equation (6.6), when N tend to +∞, we obtain:

∂m̃∞
i

∂t
= 0, (6.7)

for all integers i, 0 ≤ i ≤ p − 1. The limit m̃∞(x, t, y) depends only on the slow variable x and on the
sublayer Ĩi to which y belongs. Since m̄N = χNm̃N , we can deduce the convergence of a subsequence of m̄N

to m̄∞ = χm̃N . �
Remark 16. In this case, super-exchange is not sufficiently strong to force the non variation of m̃∞ across the
p sublayers.

Looking at the proof, we notice that:

Remark 17. The results of Theorem 14 are still valid for ρ ≥ 1.

6.1.3. Physical interpretation

When surface anisotropy dominates all other terms, the limit of the magnetization, as the number of layer
N tends to +∞, is stationary and aligns itself parallel to the normal of the layers. The magnetization of a
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multilayer is extremely rigid and the energy necessary to change the magnetization becomes infinite as the
number of layers tends to +∞. A physical analysis of the reversal of magnetization in multilayers can be
consulted in [10].

6.2. Strong super-exchange

In this section, we study the homogenization of the Landau-Lifshitz equation when the magnitude of surface
anisotropy is proportional to the interlayer distance. We assume that the exponent � = 1. In this case, we
can only obtain results if the super-exchange exponent ρ is equal to −1, thus having the magnitude of the
super-exchange interaction vary proportionally to the number of layers N . Only in that case, do we have the
necessary compactness to take the limit in nonlinear terms. When ρ = −1, we have a “good” extension operator
by Proposition4 23 in the appendix, and nonlinear terms converge by Theorem 7.

Before stating the theorem, we provide the reader with an example of sequence of initial conditions satisfying
inequality (6.1). We may just choose m0 in H1(Ω; R3) and let mN

0 be the restriction of m0 to ΩN .

Theorem 18. Let � = 1 and ρ = −1. Let mN
0 be a sequence of initial conditions in H1(ΩN ; R3), |mN

0 | = 1 a.e.
in ΩN , satisfying the energy constraint (6.1). Let mN be a sequence of weak solutions to the Landau-Lifshitz
system in the sense of Definition 3. Then there exists a sequence of extensions to mN in H1

loc(Ω×R
+; R3) denoted

m̃N and a subsequence of m̃N that two-scale converges to m̃∞. This limit belongs to L∞(R+; H1(ΩN ; R3)) and
to H1

loc(Ω × R
+; R3) and satisfies variational equality (6.31). Thus, m̃∞ is a weak solution to the homogenized

system:

∂m̃∞

∂t
− αm̃ ∧ ∂m̃∞

∂t
= −(1 + α2)

(
AT m̃∞ ∧�2D m̃∞ +ANm̃∞ ∧ ∂2m̃∞

∂x3
2

)
+ (1 + α2)m̃∞ ∧ K̄m̃∞ − (1 + α2)K̄(m̃∞ · e3)m̃∞ ∧ e3

− (1 + α2)χ̄m̃∞ ∧Hd(m̃∞), in Ω × R
+,

|m̃∞| = 1 a.e. in Ω × R
+,

m̃∞ ∧ ∂m̃

∂νA
= 0, on ∂Ω × R

+,

where

AT =
p−1∑
i=0

χ̄i

χ̄
Ai, AN =

1
χ̄

1∑p−1
i=0

(
χ̄i

Ai
+ 1

L(J1,i+2J2,i)

) ,
K̄ =

p−1∑
i=0

χ̄i

χ̄
Ki, K̄ =

p−1∑
i=0

K+
s,i +K−

s,i

Lχ̄
− (1 − χ̄),

and, denoting by ν = (ν1, ν2, ν3) the exterior normal,

∂m̃

∂νA
= AT ν1

∂m̃

∂x1
+AT ν2

∂m̃

∂x2
+ANν3

∂m̃

∂x3
·

Moreover, let m̄N
0 be the extension by 0 of mN

0 outside ΩN . If m̄N
0 tends weakly to χ̄m∞

0 in L2(Ω; R3), then:

m̃∞(·, 0) = m∞
0 in Ω.

4In Hamdache [9], it is asserted, Lemma 3.2, that the extension operators, with injection constants not depending on N , exist
when the magnitude of the super-exchange interaction does not depend on the interlayer distance, i.e. when ρ = 0. This is
incorrect: see the counter-example in Section A.2.



HOMOGENIZATION OF FERROMAGNETIC MULTILAYERS IN THE PRESENCE OF SURFACE ENERGIES 321

Proof. Before proving the theorem, we make the following remark:

Remark 19. As the solutions to the Landau-Lifshitz system are (most probably) not unique, see the non-
uniqueness result in Alouges and Soyeur [4], it cannot be deduced that the whole sequence converges in
Theorem 18.

By the energy inequality (4.2d) and the conditions (6.1), there exists a constant C > 0, such that

‖mN‖L∞(ΩN×R+;R3) = 1, ‖∇mN‖L∞(R+;L2(ΩN ;R3)) ≤ C,∥∥∥∥∂mN

∂t

∥∥∥∥
L2(ΩN×R+;R3)

≤ C, N‖γ+mN − γ−mN‖2
L∞(R+;L2(ΓN ;R3)) ≤ C.

According to Proposition 23 in the appendix, there exists a constant C > 0, such that for every integer N in
N

∗, there exists m̃N belonging to L∞(R+; H1(Ω; R3)) and to H1(Ω × (0, T ); R3), such that

‖m̃N‖L∞(Ω×R+;R3) ≤ 1, ‖∇m̃N‖L∞(R+;L2(Ω;R3)) ≤ C, (6.10a)∥∥∥∥∂m̃N

∂t

∥∥∥∥
L2(Ω×R+;R3)

≤ C,
1
N

‖N(γ+m̃N − γ−m̃N)‖2
L∞(R+;L2(ΓN ;R3)) ≤ C. (6.10b)

By Theorems 6 and 8, and Proposition 1.14 in [2], there exist

m̃∞in L∞(R+; H1(Ω; R3)) ∩ H1(Ω × (0, T ); R3),

m̃∞
1 in L∞(R+; L2(Ω; H1

#(Y ; R3))),

w∞
i in L∞(R+; L2(Ω; R3)), 0 ≤ i ≤ p− 1,

h∞in L∞(R+; L2
loc(R

3; R3)),

such that, for all finite time T > 0, for all φ in C∞(Ω × R+) ⊗ C∞
# (Y ):

lim
N→∞

∫∫
QT

m̃N(x, t)φ
(

x, t,
N

L
x3

)
dx dt =

∫∫
QT

m̃∞(x, t)
∫

Y

φ(x, t, y) dy dx dt, (6.11a)

lim
N→∞

∫∫
QT

Hd(χNm̃N )φ
(

x, t,
N

L
x3

)
dx dt =

∫∫
QT

∫
Y

h∞(x, t, y)φ(x, t, y) dy dx dt, (6.11b)

lim
N→∞

∫∫
QT

∂m̃N(x)
∂x3

φ

(
x, t,

N

L
x3

)
dx dt =

∫∫
QT

∫
Y

(
∂m̃∞

∂x3
(x, t) +

∂m̃∞
1

∂y
(x, t, y)

)
φ(x, t, y) dy dx dt,

(6.11c)

lim
N→∞

1
N

∫∫
ΓN×(0,T )̃

mN(x)φ
(

x, t,
N

L
x3

)
dσ(x) =

1
L

∫∫
QT

m̃∞(x)
p−1∑
i=0

φ(x, t, zi) dx dt, (6.11d)

lim
N→∞

∫∫
ΓN×(0,T )

(
γ+m̃N(x, t) − γ−m̃N(x, t)

)
φ

(
x, t,

N

L
x3

)
dσ(x) dt

=
1
L

p−1∑
i=0

∫∫
QT

w∞
i (x, t)φ(x, t, zi) dx dt.

(6.11e)

The limit (6.11d) still holds if we replace ΓN by ΓN,+ or ΓN,−.
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First, we prove that |m̃∞| = 1. Since m̃N is bounded in H1(Ω× (0, T )), up to a subsequence, m̃N converges
strongly in L2(Ω × (0, T )) to m̃∞. But

‖|m̃N | − 1‖L2(Ω×(0,T )) = ‖|m̃N | − 1‖L2((Ω\ΩN )×(0,T )) ≤ max(θi)
L

N
‖∂m̃N

∂x3
‖L2((Ω\ΩN )×(0,T ))

for all T > 0. Therefore |m̃∞| = 1.
Since mN is a weak solution to the Landau-Lifshitz system, we have

∫∫
QN

T

∂m̃N

∂t
· φN dx dt− α

∫∫
QN

T

(
m̃N ∧ ∂m̃N

∂t

)
· φN dx dt

= (1 + α2)
p−1∑
i=0

Ai

∫∫
QN

T,i

3∑
j=1

(
m̃N ∧ ∂m̃N

∂xj

)
· ∂φ

∂xj

(
x, t,

N

L
x3

)
dx dt

+ (1 + α2)
N

L

p−1∑
i=0

Ai

∫∫
QN

T,i

(
m̃N ∧ ∂m̃N

∂x3

)
· ∂φ

∂y

(
x, t,

N

L
x3

)
dx dt

− (1 + α2)
∫∫

QN
T

(
m̃N ∧ (Hd(m̃N ) − Kim̃

N
)) · φN dx dt

− (1 + α2)
p−1∑
i=0

K+
s,i

N

∫∫
ΓN,+

i ×(0,T )

(ν · γm̃N )(γm̃N ∧ ν) · γφN dσ(x) dt

− (1 + α2)
p−1∑
i=0

K−
s,i

N

∫∫
ΓN,−

i ×(0,T )

(ν · γm̃N)(γm̃N ∧ ν) · γφN dσ(x) dt

− (1 + α2)N
p−1∑
i=0

(
J1,i

∫∫
ΓN

i ×(0,T )

(γ+m̃N ∧ γ−m̃N) · (γ+φN − γ−φN ) dσ(x) dt

+ 2J2,i

∫∫
ΓN

i ×(0,T )

(γ+m̃N · γ−m̃N)(γ+m̃N ∧ γ−m̃N ) · (γ+φN − γ−φN ) dσ(x) dt
)
, (6.12)

for all T > 0, for all φ in C∞(Ω × R+) ⊗ C∞(Ĩ; R3), if φN (x, t) = φ(x, t, N
L x3). Let φ be independent of the

fast variable y and take the limit in equation (6.12). According to Theorems 7 and 10, we can take the limit in
products. Thus,

χ̄

∫∫
QT

∂m̃∞

∂t
· φ dx dt− χ̄α

∫∫
QT

(
m̃∞ ∧ ∂m̃∞

∂t

)
· φ dx dt

= (1 + α2)
p−1∑
i=0

Ai

∫∫
QT

2∑
j=1

(
m̃∞ ∧ ∂m̃∞

∂xj

)
· ∂φ

∂xj
dx dt

+ (1 + α2)
p−1∑
i=0

Aiχ̄i

∫∫
QT

(
m̃∞ ∧

∫
Ii

(∂m̃∞

∂x3
+
∂m̃∞

1

∂y

)
dy
)
· ∂φ

∂x3
dx dt

+ (1 + α2)
p−1∑
i=0

∫∫
QT

(m̃∞ ∧ χ̄iKim̃
∞)φ dx dt

− (1 + α2)
∫∫

QT

(
m̃∞ ∧

∫
I

h∞ dy
)
φ dx dt
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− (1 + α2)
p−1∑
i=0

K+
s,i +K−

s,i

L

∫∫
QT

(e3 · m̃∞)(m̃∞ ∧ e3) · φ dx dt

+ (1 + α2)
p−1∑
i=0

(J1,i + 2J2,i)θi

∫∫
QT

(m̃∞ ∧ w∞
i ) · ∂φ

∂x3
dx dt, (6.13)

for all T > 0 and for all φ in C∞(Ω × (0, T ); R3). To obtain the equation satisfied by m̃∞, we only need to
establish relations between m̃∞, m̃∞

1 , w∞ and h∞. These are achieved in Lemma 20, and Propositions 21
and 22.

We begin by proving a relation between w∞, m̃∞ and m̃∞
1 that holds independently of the Landau-Lifshitz

equation.

Lemma 20. For all x, t in Ω × R
+,

∫
I

∂m̃∞
1

∂y
(x, t, y) dy +

1
L

p−1∑
i=0

w∞
i (x, t) = (1 − χ̄)

∂m̃∞

∂x3
(x, t). (6.14)

Proof of the lemma. We have

∫∫
QN

T

∂m̃N

∂x3
(x, t)φ(x, t,

N

L
x3) dx dt+

∫∫
QN

T

m̃N (x, t)
∂φ

∂x3
(x, t,

N

L
x3) dx dt

+
N

L

∫∫
QN

T

m̃N (x, t)
∂φ

∂y
(x, t,

N

L
x3) dx dt

=
p−1∑
i=0

∫∫
ΓN

i ×(0,T )

(
γ−m̃Nγ−φN − γ+m̃Nγ+φN

)
dσ(x) dt, (6.15)

for all T > 0, for all φ in C∞
c (Ω × (0, T )) ⊗ C∞

# (Y ), where φN (x, t) = φ(x, t, N
L x3). Dividing equation (6.15)

by N and taking the limit does not yield any interesting result. Instead, we choose φ independent of the fast
variable y. Then, we notice that

p−1∑
i=0

∫∫
ΓN

i ×(0,T )

γ+m̃Nγ+φ− γ−m̃Nγ−φdσ(x) dt

=
p−1∑
i=0

∫∫
ΓN

i ×(0,T )

(
γ+m̃N − γ−m̃N

)(γ+φ+ γ−φ
2

)
dσ(x) dt

+
p−1∑
i=0

∫∫
ΓN

i ×(0,T )

(
γ+m̃N + γ−m̃N

2

)(
γ+φ− γ−φ

)
dσ(x) dt. (6.16)

Taking the two-scale limit, by Taylor expansion of φ, yields

1
L

p−1∑
i=0

∫∫
Ω×(0,T )

w∞
i (x, t)φ(x, t) dx dt+

p−1∑
i=0

θi

∫∫
Ω×(0,T )

m̃∞(x, t)
∂φ

∂x3
(x, t) dx dt. (6.17)
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Thus, if we take the limit in (6.15) as N tends to +∞, we obtain∫∫
Ω×(0,T )

∫
I

(
∂m̃∞

∂x3
(x, t) +

∂m̃∞
1

∂y
(x, t, y)

)
φ(x, t) dy dx dt

+χ̄
∫∫

Ω×(0,T )

m̃∞(x, t)
∂φ

∂x3
(x, t) dx dt

+
1
L

p−1∑
i=0

∫∫
Ω×(0,T )

w∞
i (x, t)φ(x, t) dx dt

+(1 − χ̄)
∫∫

Ω×(0,T )

m̃∞(x, t)
∂φ

∂x3
(x, t) dx dt = 0, (6.18)

for all time T > 0, for all φ in C∞
c (Ω × (0, T )). �

The following proposition shows that we can express m̃∞
1 and w∞

i as functions of ∂m̃∞
∂x3

.

Proposition 21. The function ∂m̃∞
1

∂y (x, t, ·) is constant on each interval Ii, 0 ≤ i ≤ p− 1. We denote by v∞
i

the value of ∂m̃∞
1

∂y (x, t, ·) when y is in Ii. For every integer i, 0 ≤ i ≤ p− 1,

Ai

(∂m̃∞

∂x3
(x, t) + v∞

i (x, t)
)

=
∂m̃∞
∂x3

(x, t)∑p−1
i=0

(
χ̄i

Ai
+ 1

L(J1,i+2J2,i)

) , (6.19a)

(J1,i + 2J2,i)w∞
i (x, t) =

∂m̃∞
∂x3

(x, t)∑p−1
i=0

(
χ̄i

Ai
+ 1

L(J1,i+2J2,i)

) · (6.19b)

Proof of the proposition. We divide equation (6.12) by N and take the limit:

p−1∑
i=0

∫∫
Ω×(0,T )

∫
Ii

(
m̃∞ ∧

(
∂m̃∞

∂x3
(x, t) +

∂m̃∞
1

∂y
(x, t, y)

))
· ∂φ

∂y
(x, t, y) dx dt

+
p−1∑
i=0

∫∫
Ω×(0,T )

(J1,i + 2J2,i) (m̃∞(x, t) ∧ w∞
i (x, t)) · (φ(x, t, z+

i ) − φ(x, t, z−i )) dx dt = 0,

for all T > 0, for all φ in C∞(Ω × (0, T )) ⊗ C∞
# (Y ). We choose φ(x, t, ·) having compact support in Ĩ. We

obtain that ∂m̃∞
1

∂y (x, t, ·) is constant on each interval Ĩi. And,

p−1∑
i=0

∫∫
QT

∫
Ii

Ai

(
m̃∞ ∧

(
∂m̃∞

∂x3
(x, t) + v∞

i (x, t)
))

· [φ(x, t, ·)]z
−
i+1

z+
i

dx dt

+
p−1∑
i=0

∫∫
QT

(J1,i + 2J2,i) (m̃∞(x, t) ∧ w∞
i (x, t)) · [φ(x, t, ·)]z

+
i

z−
i

dx dt = 0.

Thus, for every x, t in Ω × R
+, for any sequences of real numbers ai, a

′
i such that

∑p−1
i=0 ai + a′i = 0, we have:

p−1∑
i=0

m̃∞ ∧
(
aiAi

(
∂m̃∞

∂x3
(x, t) + v∞

i (x, t)
)

+ a′i (J1,i + 2J2,i)w∞
i (x, t)

)
= 0.
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There exists a function C(x, t) such that, for every integer i, 0 ≤ i ≤ p− 1,

Ai

(
m̃∞ ∧ ∂m̃∞

∂x3
(x, t) + v∞

i (x, t)
)

= C(x, t), (6.20a)

(J1,i + 2J2,i) m̃∞ ∧ w∞
i (x, t) = C(x, t). (6.20b)

As |mN | = 1 almost everywhere, for all integers i between 0 and p− 1,

m̃∞(x, t) · v∞
i (x, t) = 0 a.e. in Ω × R

+, (6.21a)

m̃∞(x, t) · w∞
i (x, t) = 0 a.e. in Ω × R

+. (6.21b)

Thus, there exists C ′(x, t) orthogonal to m̃(x, t) almost everywhere, such that

Ai

(∂m̃∞

∂x3
(x, t) + v∞

i (x, t)
)

= C ′(x, t),

(J1,i + 2J2,i) w∞
i (x, t) = C ′(x, t).

By Lemma 20, we have:

C ′(x, t) =
∂m̃∞
∂x3

(x, t)∑p−1
i=0

(
χ̄i

Ai
+ 1

L(J1,i+2J2,i)

) · (6.23)
�

In order to express equation (6.13) with m̃∞ as the only unknown, it remains to compute the homogenized
demagnetization field term h∞:

Proposition 22. The term Hd(χNm̃N) two-scale converges to{
χ̄Hd(m̃∞) − (1 − χ̄)(m̃∞(x, t) · e3)e3 if y ∈ Ĩ ,

χ̄Hd(m̃∞) + χ̄(m̃∞(x, t) · e3)e3 if y ∈ J̃ .
(6.24)

Proof of the proposition. We do as Hamdache in [9], Proposition 3.7. Let ϕN be the potential function in
L∞(0,+∞; H1

loc) such that ∇ϕN = Hd(χNm̃N ). Thus,

div(∇ϕN + χNm̃N ) = 0,

where χN (x) is the characteristic function of ΩN . Since χ(ΩN )m̃N is bounded in L∞(R+; L2(R3; R3)), ϕN is
bounded in L∞(R+; H1

loc(R
3)). Thus, there exist ϕ∞ in L∞(R+; H1

loc(R
3)) and ϕ∞

1 in L∞(R+; L2
loc(R

3; H1
#(Y ))),

such that for all φ in Cc(R3 × R
+) ⊗ C∞

# (Y ),

lim
N→∞

∫∫
R3×R+

ϕN (x, t)φ
(

x, t,
N

L
x3

)
dx dt

=
∫∫

R3×R+
ϕ∞(x, t)

(∫
Y

φ(x, t, y) dy
)

dx dt,
(6.25a)

lim
N→∞

∫∫
R3×R+

∂ϕ∞

∂x3
(x, t)φ

(
x, t,

N

L
x3

)
dx dt

=
∫∫

R3×R+

∫
Y

(
∂ϕ∞

∂x3
(x, t) +

∂ϕ∞
1

∂y
(x, t, y)

)
φ(x, t, y) dy dx dt.

(6.25b)
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But,

∫∫
Ω×R+

χNm̃N (x, t) · ∇xφ

(
x, t,

N

L
x3

)
dx dt

+
N

L

∫∫
Ω×R+

χN (m̃N(x, t) · e3)
∂φ

∂y

(
x, t,

N

L
x3

)
dx dt

= −
∫∫

R3×R+
∇ϕN · ∇xφ

(
x, t,

N

L
x3

)
dx dt

− N

L

∫∫
R3×R+

∂ϕN

∂x3
· ∂φ
∂y

(
x, t,

N

L
x3

)
dx dt, (6.26)

for all φ in Cc(R3 × R
+) ⊗ C∞

# (Y ). Dividing this equality by N and taking the limit, we obtain

∫∫
Ω×R+

m̃∞(x, t) · e3

(∫
Ĩ

∂φ

∂y
(x, t, y) dy

)
dx dt

+
∫∫

R3×R+

∫
Y

(
∂ϕ∞

∂x3
(x, t) +

∂ϕ∞
1

∂y
(x, t, y)

)
· ∂φ
∂y

(x, t, y) dy dx dt = 0. (6.27)

Thus, there exists Υ∞(x, t) such that

Υ∞(x, t) =

{
m̃∞(x, t) · e3 +

(
∂ϕ∞

∂x3
(x, t) + ∂ϕ∞

1
∂y (x, t, y)

)
if y ∈ Ĩ ,

∂ϕ∞

∂x3
(x, t) + ∂ϕ∞

1
∂y (x, t, y) if y ∈ J̃ .

Since
∫

Y
∂ϕ∞

1
∂y dy = 0,

Υ∞(x, t) =
∂ϕ∞

∂x3
(x, t) + χ̄m̃∞(x, t) · e3. (6.28)

Thus, the two-scale limit of Hd(χNm̃N ) is

∂ϕ∞

∂x3
(x, t) +

∂ϕ∞
1

∂y
(x, t, y) =

{
∂ϕ∞

∂x3
(x, t) − (1 − χ̄) m̃∞(x, t) · e3 if y ∈ Ĩ ,

∂ϕ∞

∂x3
(x, t) + χ̄m̃∞(x, t) · e3 if y ∈ J̃ .

(6.29)

We choose φ independent of y and take the limit in (6.26), we obtain:

χ̄

∫∫
Ω×R+

m̃∞(x, t) · ∇xφ(x, t, y) dx dt+
∫∫

R3×R+
∇ϕ∞ · ∇φdx dt = 0. (6.30)

Thus, div(∇ϕ∞ + χ̄m̃∞) = 0 and ∇ϕ∞(x, t) = χ̄Hd(m̃∞). Hence, the two-scale limit of Hd(χNm̃N ) is{
χ̄Hd(m̃∞) − (1 − χ̄)(m̃∞(x, t) · e3)e3 if y ∈ Ĩ ,

χ̄Hd(m̃∞) + χ̄(m̃∞(x, t) · e3)e3 if y ∈ J̃ .

�
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We merge the results of Propositions 21 and 22 in equation (6.13):

χ̄

∫∫
QT

∂m̃∞

∂t
· φ dx dt− αχ̄

∫∫
QT

(
m̃∞ ∧ ∂m̃∞

∂t

)
· φ dx dt

= (1 + α2)
∫∫

QT

p−1∑
i=0

Aiχ̄i

2∑
j=1

(
m̃∞ ∧ ∂m̃∞

∂xj

)
· ∂φ

∂xj
dx dt

+ (1 + α2)
χ̄∑p−1

i=0

(
χ̄i

Ai
+ 1

L(J1,i+2J2,i)

) ∫∫
QT

(
m̃∞ ∧ ∂m̃∞

∂x3

)
· ∂φ

∂x3
dx dt

− (1 + α2)χ̄
∫∫

QT

(
m̃∞ ∧ (Hd(χ̄m̃∞) − (1 − χ̄)(m̃∞ · e3)e3

)) · φ dx dt

+ (1 + α2)
∫∫

QT

(
m̃∞ ∧

p−1∑
i=0

χ̄iKim̃
∞
)
· φ dx dt

− (1 + α2)
p−1∑
i=0

K+
s,i +K−

s,i

L

∫∫
QT

(e3 · m̃∞)(m̃∞ ∧ e3) · φ dx dt

+ (1 + α2)
1 − χ̄∑p−1

i=0

(
χ̄i

Ai
+ 1

L(J1,i+2J2,i)

) ∫∫
QT

(
m̃∞ ∧ ∂m̃∞

∂x3

)
· ∂φ

∂x3
dx dt, (6.31)

for all time T > 0, for all φ in C∞(Ω × (0, T ); R3).

7. Conclusion

The homogenization of the Landau-Lifshitz equation is non trivial since it is a highly nonlinear partial
differential equation. If surface anisotropy dominates, we have obtained satisfactory results up to order 0.
Characterizing the limit up to the first order as

√
N(m − (m · e3)e3) two-scale converges to a first order term

is an interesting project for future research.
If surface anisotropy does not dominate the other energy terms, an homogenized equation when the magnitude

of super-exchange is inversely proportional to the interlayer distance is obtained. With a weaker super-exchange,
no “good” extension operator can be constructed and the convergence of nonlinear terms to their intuitive limits
remains uncertain. The homogenization of the Landau-Lifshitz equation in this difficult case would require
compactness criteria for strong two-scale convergence analogous to those of Simon [16] for the usual strong
convergence.

A. Extensions operators in a multilayer

In this section, we describe one “optimal” extension operator. Let L > 0. Let z1, . . . , zN and z′1, . . . , z′N be
2N real numbers such that 0 < z1, z′N < L, zi < z′i for all i ∈ N, 1 ≤ i ≤ N , and z′i < zi+1 for all integers i,
1 ≤ i ≤ N − 1. We define

Ii = (zi, z
′
i), for all i ∈ N, 1 ≤ i ≤ N, I =

N⋃
i=1

Ii, Î = (z1, z′N)·

We define θ+i and θ−i for all integers i, 1 ≤ i ≤ N − 1 by the formulae:

θ+i =
z′i+1 − zi+1

zi+1 − z′i
, θ−i =

z′i − zi

zi+1 − z′i
·
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A.1. An “optimal” extension operator

The following proposition holds:

Proposition 23. Let B be an open set of R
n, n ∈ N, n ≥ 1. Then, there exists an operator P

P: H1(B × I) → H1(B × Î),

such that for all u belonging to H1(B × I):

‖P(u)‖L∞(B×Î) ≤ ‖u‖L∞(B×I)

‖P(u)‖L2(B×Î) ≤ (1 + 2α)‖u‖L2(B×I),

‖∂xiP(u)‖L2(B×Î) ≤ (1 + 2α)‖∂xiu‖L2(B×I), for i = 1, 2∥∥∥∥∂P(u)
∂x3

∥∥∥∥
L2(B×Î)

≤ (1 + 2α+ 2β)
∥∥∥∥ ∂u∂x3

∥∥∥∥
L2(B×I)

+ µ

(
N−1∑
i=1

‖u(·, zi+1) − u(·, z′i)‖2
L2(B)

) 1
2

,

where α, β, µ are positive real numbers. For example, we choose

α =
(

max
1≤i≤N−1

(θ+i , θ
−
i )
) 1

2 , β =
(

min
1≤i≤N−1

(θ+i , θ
−
i )
)− 1

2 ,

µ =
(

min
1≤i≤N−1

(zi+1 − z′i)
)− 1

2 .

Proof. For all u in H1(B × I), we define

P(u)(x̂, x3) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u(x̂, x3) if x3 belongs to I,
zi+1 − x3

zi+1 − z′i
u
(
x̂, θ−i (z′i − x3) + z′i

)
+
x3 − z′i
zi+1 − z′i

u
(
v̂x, θ+i (zi+1 − x3) + zi+1

) if x3 belongs to (z′i, zi+1),

for all integers i such that 1 ≤ i ≤ N − 1. The function P(u) belongs to H1(B × I) and the operator P has the
required properties. �

A.2. A counter example

We announced in Section 6.2 that if � = 1, then we need ρ = −1 to have uniform bounds on the H1 norm
of the extension. This is true with the operator defined in the previous section but we could always imagine
that another extension operator might have better bounds. In this section, we show that it is not possible to
improve in a significant manner the operator in every single case. Let’s consider a simpler geometry. Let B be
a bounded convex open set with a smooth boundary of R

2. Let θ ∈ R
+ be such that 0 < θ < 1

2 . For all positive
integers N , we define

zN,+
i =

i+ θ

N
, zN,−

i =
i− θ

N
,

Y N =
N−1⋃
i=1

(zN,+
i , zN,−

i+1 ), Y = [0, 1],

ON = B × Y N O = B × Y.
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We also introduce the notations

IN =
⋃

1≤i≤N−1
i odd

(zN,+
i , zN,−

i+1 ), JN =
⋃

1≤i≤N−1
i even

(zN,+
i , zN,−

i+1 ).

Then, the following lemma holds:

Lemma 24. Let ũ be in H1(O) such that ũ = u on ON . Then,∥∥∥∥ ∂ũ∂x3

∥∥∥∥
L2(O\ON)

≥
√
N√
θ

(N−1∑
i=1

‖u(·, ·, zN,+
i ) − u(·, ·, zN,−

i )‖2
L2(B)

) 1
2
.

Proof. We have

(N−1∑
i=1

‖u(·, ·, zN,+
i ) − u(·, ·, zN,−

i )‖2
L2(B)

) 1
2

≤
⎛⎝N−1∑

i=1

∫∫
B

∣∣∣∣∣
∫ zN,+

i

zN,−
i

∂ũ

∂x3
(x1, x2, x3) dx3

∣∣∣∣∣
2

dx2 dx1

⎞⎠
1
2

≤
√

θ

N

(
N−1∑
i=1

∫∫
B

∫ zN,+
i

zN,−
i

∣∣∣∣ ∂ũ∂x3
(x1, x2, x3) dx3

∣∣∣∣2 dx2 dx1

) 1
2

. �

Let uN be defined by

uN(x1, x2, x3) =
1√
N

{
0 if x3 belongs to IN

1 if x3 belongs to JN .

Then, (N−1∑
i=1

‖uN(·, ·, zN,+
i ) − uN (·, ·, zN,−

i )‖2
L2(B)

) 1
2

= |B| 12 , ‖uN‖H1(ON) ≤
√

2
2

·

According to Lemma 24, if ũN is an extension of uN on O, then

‖ũN‖H1(O) ≥
√
N√
2
|B| 12 .
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