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Abstract This contribution presents a novel homogeniza-

tion technique for modeling heterogeneous materials with

micro-inertia effects such as locally resonant acoustic meta-

materials. Linear elastodynamics is used to model the micro

and macro scale problems and an extended first order Compu-

tational Homogenization framework is used to establish the

coupling. Craig Bampton Mode Synthesis is then applied to

solve and eliminate the microscale problem, resulting in a

compact closed form description of the microdynamics that

accurately captures the Local Resonance phenomena. The

resulting equations represent an enriched continuum in which

additional kinematic degrees of freedom emerge to account

for Local Resonance effects which would otherwise be absent

in a classical continuum. Such an approach retains the accu-

racy and robustness offered by a standard Computational

Homogenization implementation, whereby the problem and

the computational time are reduced to the on-line solution of

one scale only.

Keywords Locally resonant acoustic metamaterial ·

Computational homogenization · Model order reduction ·
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1 Introduction

The study of the elastodynamics of heterogeneous materials

has led to the discovery of a special class of a composite
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material known as Acoustic Metamaterials [1]. They exhibit

remarkable acoustic properties ranging from near zero trans-

missibility [2], enhanced absorption [3], negative dynamic

mass density [4]/ bulk modulus [5], negative refractive index

[6], super anisotropy, zero rigidity [7] etc. These exotic phe-

nomena have numerous potential applications such as low

frequency noise attenuation [3], isolation of civil structures

from seismic waves [8], superlenses with a resolution beyond

the Rayleigh limit [6,9], waveguides that can be used to chan-

nel acoustic waves, etc.

Two important physical phenomena are responsible for the

extraordinary properties of Acoustic Metamaterials, Local

Resonance and Bragg Scattering [10]. These two phenomena

operate at different length scales, whereby Bragg scattering

is dominant for wavelengths (of the propagating wave) of

the same order as the size of microstructural phases and

Local Resonance at larger wavelengths. This work exclu-

sively deals with the modeling of the latter phenomena, which

are typically applied in the lower frequency regime. The

subclass of Acoustic Metamaterials exhibiting Local Res-

onance is known as locally resonant acoustic metamaterials

(LRAM). A typical unit cell microstructure of a LRAM con-

sists of a matrix with an embedded inclusion or a substructure

[10]. These inclusions/substructures consist of two parts, a

central region with high mass density supported by a sur-

rounding highly compliant region (for eg. rubber coated lead

inclusions [2], also see Fig. 4). This enables the unit cell to

exhibit low frequency localized vibration modes (see Fig. 5)

that strongly couple to the long wavelength propagating wave

in the matrix at the resonance frequency. The strong coupling

around this frequency is what is responsible for the Local

Resonance phenomena [2,4].

A plethora of techniques is available for modeling the

elastodynamics of heterogeneous materials although not all

are equally suitable for describing LRAM. Direct numerical

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-015-1254-y&domain=pdf


424 Comput Mech (2016) 57:423–435

simulation (DNS) of LRAM structures using finite element

method (FEM) is highly unpractical due to the large scale dif-

ference involved in such problems. Therefore it is necessary

to develop efficient methods with more ingenuity. The Bloch-

Floquet (or simply Bloch) theory [10] provides a general

solution for the propagation of free waves (i.e. steady state

waves in an infinite medium) in any periodic heterogeneous

material. Substitution of the Bloch solution into the govern-

ing equations reduces the entire analysis to a single unit cell.

The unit cell problem can then be solved numerically using

various discretization methods such as Plane Wave Expan-

sion [11], Variational Method [12], Finite Difference Time

Domain [1] and FEM [13]. FEM provides a high flexibil-

ity in the design of the unit cell topologies at the cost of

convergence with respect to the mesh size. This limitation

can be overcome to a great extent by using model reduc-

tion techniques [14]. A homogenization scheme based on the

Bloch theory was proposed by Willis [15,16] and revisited

again in [17]. The techniques based on Bloch theory has been

highly successful in the study of free wave propagation but

is mostly limited to this case. It is difficult if not impossible

to account for complex transient loading and macroscopic

boundary effects using this theory. Apart from Bloch theory,

another generalized solution for transmission of free waves in

a heterogeneous medium is given by the Multiple Scattering

Theory [18]. It can be used to predict macroscopic transmis-

sion spectra and provides superior convergence with respect

to discretization size, yet it is highly restricted to simple unit

cell topologies. To the best of our knowledge it has only been

implemented for spherical inclusions and granular media.

Another modeling approach is provided by Enriched or

Micromorphic Continuum Theory [19], first proposed for

elastodynamics by Mindlin [20]. It introduces additional

macroscopic kinematic fields that account for the internal

microscale dynamics in an otherwise homogeneous macro-

scopic medium. A new material property called ‘micro-

inertia’ is postulated that characterizes the microdynamics.

However, the only notable attempt at developing an enriched

model that is especially capable of accounting for Local Res-

onance has been made by Sun et al. [21]. Homogenization,

namely Asymptotic Homogenization [22–28] has also been

a highly successful approach for modeling dispersion behav-

ior in heterogeneous materials but few works exist that are

specifically suitable for modeling LRAM.

The techniques developed thus far have been successful

in studying LRAM behavior but do not provide a generalized

description. A more comprehensive modeling technique for

LRAM should enable the description and analysis of com-

plex microstructure topologies, transient response at both

scales and finite macroscopic structures with various bound-

ary conditions. Motivated by this challenge, this contribution

presents a novel framework for modeling LRAM that is

not only general in its description but also highly efficient,

enabling a fast and straightforward numerical implementa-

tion.

An extended first order Computational Homogenization

framework [29] is taken as the point of departure to setup

the multiscale transient dynamic problem. Except for linear

elasticity and relaxed scale separation assumption the frame-

work is general and the full balance of the linear momentum

is solved at both scales.The relaxed scale separation princi-

ple introduced here retains the long wavelength (quasistatic)

assumption on the matrix material but relaxes it on the inclu-

sions. This accounts for the transient dynamic behavior of

the microstructure characterizing micro-inertia effects, espe-

cially Local Resonance. A Computational Homogenization

framework can be efficiently combined with FEM techniques

for multiscale problems, which in turn gives the freedom to

incorporate complex microsctructure topologies and finite

macrostructure geometries, arbitrary transient excitation and

sophisticated boundary conditions. The first use of Computa-

tional Homogenization to model LRAMs was made by Pham

et al. [30]. The approach proposed in this work is distinctly

different as it aims at obtaining a closed-form description

of the macroscopic continuum, which is enriched to incor-

porate the effect of microscale dynamics. To eliminate the

on-line (expensive) solutions of the microscale problems at

each time step, typically used in a computational homog-

enization approach, a technique called the Craig Bampton

Mode Synthesis [31] is employed. It entails a decomposition

of the solution into two parts, the quasistatic response and

internal dynamics, which makes it possible to condense the

behavior of the microscale model upto the macroscopic level

by applying homogenization. The method employs eigen-

modes to extract the relevant dynamics of the microscale

problem, which effectively captures Local Resonance effects

with a minimum set of degrees of freedom. A highly com-

pact closed-form description of a linear elastic LRAM results

and the corresponding expressions effectively represent an

enriched continuum where the emerging additional field

accounts for the microscopic Local Resonance phenomena.

This approach therefore provides a simple, efficient and gen-

eral description of a linear elastic LRAM. This not only

enables an efficient numerical implementation but also pro-

vides an intuitive understanding of the behavior of such

materials.

The formulation used here to setup the micro and

macroscale problems is defined for a Cauchy continuum in a

two-dimensional space. The method can be easily extended

to three-dimensions or other specialized continua such as

shells, beams etc. The paper is organized as follows. Section 2

presents the overall methodology, including the homogeniza-

tion framework for the problem and the techniques used

to reduce the model towards an enriched continuum. In

Sect. 3, the model is numerically validated against DNS

for a 1D compressional wave test on a well known exam-
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ple of a LRAM structure. The conclusions are given in

Sect. 4.

The following notations are used throughout the paper

to represent different quantities and operations. The Carte-

sian basis vectors are given by ek, k = 1, 2, 3. Unless

otherwise stated scalars, vectors, second- and fourth-order

Cartesian tensors are generally denoted by a (or A), a, A and

A respectively. The standard tensor operations are denoted as

follows, dyadic product: a ⊗ b = ai b j ei ⊗ e j , dot product:

A.b = Ai j b j ei and double contraction: A : B = Ai j B j i

(Einstein summation is used here and for all tensor oper-

ations). The conjugate of any second order tensor, A is

indicated as A C = Ak j e j ⊗ ek . Matrices of any type of

quantity are in general denoted by (•) and the special case of

a column matrix is denoted by (•
˜
). Submatrices of matrix a or

b
˜

are denoted by the left superscript mna and mb
˜

respectively.

Transpose of a matrix is given as (•) T.

2 Homogenization and reduction methodology:

towards an enriched continuum

The classical first order homogenization framework extended

to the transient dynamic case is used to setup the mul-

tiscale problem. The full balance of linear momentum is

considered at both scales. Scale transition relations are for-

mulated that dictate the coupling between the scales. Once the

framework is defined, the focus is shifted to the microscale

problem which is reformulated in a discretized form. Using

the Craig Bampton technique, a compact reduced model

of the microstructure is obtained. The scale transition rela-

tions are then applied to upscale the reduced microscale

balance equations, yielding the governing macroscale con-

tinuum equations, providing a closed form description of the

enriched macroscopic continuum.

2.1 Homogenization framework

2.1.1 Separation of scales

In the classical first order homogenization scheme, the sep-

aration of scales principle requires the following relation to

hold true for a heterogeneous material with n microstructural

constituents (cavities, grains, inclusions, matrix etc.):

l j << λ j , j = 1, . . . , n, (1)

where l j is the typical size of the j th microstructure

constituent and λ j the corresponding shortest characteris-

tic wavelength of the microstructural constituent for a given

applied excitation. Under this assumption, the micro inertial

response of the microstructure becomes negligible leading

to a purely quasistatic response. Therefore a more relaxed

scale separation principle is adopted here. Let nhet and nmat

be the number of microstructural phases constituting the het-

erogeneities and the core matrix, respectively:

Core matrix (long wavelength

approximation): l j << λmat
j , j = 1, . . . , nmat ,

Heterogeneities: lk ≤ λhet
k

, k = 1, . . . , nhet , (2)

where λmat
j and λhet

k are the shortest characteristic wave-

lengths in the j th and kth constituents of the matrix and the

heterogeneity for a given applied excitation, respectively. The

long wavelength approximation still applies to the matrix

whereas a more relaxed hypothesis holds for the hetero-

geneities. The microstructural lengths can now scale with

the wavelengths associated to heterogeneities, incorporating

possible micro-inertia effects.

2.1.2 Macroscale problem

Let D M represent the domain of the macroscale problem and

∂D M its boundary. Let x M give the position vector of any

point in this domain. A Cauchy continuum is assumed with

the displacement vector u M and its gradient ∇ Mu M represent-

ing the primary kinematic fields. It will be shown later that

static rotational equilibrium is not necessarily a priori satis-

fied at each continuum point which requires the use of the full

displacement gradient instead of the symmetric linear strain

tensor. The governing equation in the absence of external

body forces is given by the linear balance of momentum,

∇ . σ M − ṗ
M

= 0, (3)

where σ M and p M are the macroscopic stress tensor and

momentum respectively. Appropriate initial and boundary

conditions should be applied but these are not explicitly stated

here since they are not important for the subsequent deriva-

tions. The macroscale constitutive response1 is derived from

the solution of the microscopic problem via homogenization.

In classical Computational Homogenization schemes, this

macroscopic constitutive response is not obtained through a

closed-form equation. This is different (and better) for the

present case, see Sect. 2.3, which constitutes an important

step forward.

2.1.3 Microscale problem

To each material point of D M, a fine scale domain D with

boundary ∂D is associated, where the microscale problem

is defined. The domain is selected such that it captures the

1 Note that the constitutive model includes both the relation for the

macroscopic stress and momentum in terms of the kinematic variables.

123



426 Comput Mech (2016) 57:423–435

local microstructural effects at that point. It is termed the

representative volume element (RVE). For (locally) periodic

microstructures, the RVE is defined as the unit cell that spans

the (local) microstructure. For the sake of simplicity, no spe-

cific subscripts are used to indicate the variables associated

to the microstructural domain. Let the total volume and the

infinitesimal volume element of D be represented by V and

dV respectively and an infinitesimal surface element of ∂D

be represented by dS. A Cauchy continuum is assumed for

the microscopic problem with the kinematic field variables

given by displacement u and linear strain ǫ. In order to cap-

ture the micro inertial effects, the full balance of momentum

has to be considered in the RVE,

∇ · σ − ṗ = 0. (4)

A linear elastic material is considered. For every material

constituent domain α
D ⊂ D, the following constitutive rela-

tions hold,

α
σ = α

C : α
∇

symu, (5a)

αṗ = αραü. (5b)

Where ∇
symu = 1

2
(∇u + (∇u) C) and αρ and α

C stand for

the mass density and the elastic material stiffness of the

constituent α respectively. A perfect bonding condition is

assumed;

αn · α
σ = βn · β

σ , (6a)

αu = βu at ∂α
D ∩ ∂β

D. (6b)

Here αn = −βn are the unit normal vectors to the interface

between both constituents. The initial and boundary condi-

tions on the RVE required to solve the micro problem will

be defined upon introducing the scale transition relations.

2.1.4 General microscopic kinematics

The kinematics of the RVE corresponding to a point x M of

D M is given by the following first order representation of the

microscopic kinematics at that point,

u = u M + (∇ Mu M) C · (x − x R) + w. (7)

Here, x R is a reference vector whose definition will be given

later and w, called the microfluctuation field, represents

the fine scale variations due to the microstructure hetero-

geneities. This field provides the necessary kinematic degrees

of freedom to describe the Local Resonance phenomena.

2.1.5 Scale transition relations

With the introduction of the microfluctuation field w, addi-

tional constraints in form of boundary conditions on the RVE

are required to ensure the well posedness of the problem.

These conditions usually follow from the (chosen) rela-

tions coupling both scales. They essentially represent the

kinematic coupling between the macro and microscale and

are called downscaling relations. In the micro-macro direc-

tion upscaling relations recover the macroscopic stress and

momentum from the solution of the RVE boundary value

problem. They result by inserting the downscaling relations

into the Hill-Mandel macrohomogeneity condition, general-

ized to the transient dynamic case. The up and downscaling

relations together constitute the scale transition relations that

dictate the coupling between the two scales.

Downscaling relations (kinematic boundary conditions): The

condition on the macroscopic displacement is formulated as

the overall rigid body displacement of the RVE. This is equiv-

alent to constraining the microfluctuation at a single arbitrary

point, say ax, on the RVE boundary to zero.

w(ax ∈ ∂D) = 0. (8)

The second condition on the macroscopic displacement gra-

dient follows the established averaging theorem [32]

1

V

∫

D

∇u dV = ∇ Mu M. (9)

Substituting the RVE kinematics given by Eq. (7) into the

above expression and simplifying results in

∫

D

∇wdV = 0. (10)

This gives the constraints on the microfluctuation field, which

is easily converted to a boundary integral by applying Gauss

theorem

∫

∂D

n ⊗ wdS = 0, (11)

where n is the outward normal to the RVE boundary. Rela-

tion (11) gives the minimal kinematic constraint that enforces

Eq. (9) for a given macroscopic displacement gradient. It has

been shown in the literature that this constraint is too weak

and generally leads to poor results for small RVEs. There-

fore a stronger form known as periodic boundary condition

(pbc) is applied instead, which provides much better RVE

size convergence [33]. The assumption of periodic bound-

ary displacements can be justified for a transient problem if

the matrix is assumed to behave quasi-statically. Indeed, this
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Fig. 1 Sketch of the boundaries of a RVE and its normal vectors

holds true in the case of the relaxed scale separation prin-

ciple given by Eq. (2), which retains the long wavelength

assumption on the matrix. The periodic boundary conditions

can be formulated as follows. Considering a RVE with a peri-

odic rectangular shape (in 2D), the boundary is split into four

edges: left, right, bottom and top, denoted by L, R, B and T,

respectively. The four vertices are denoted by p1, p2, p3 and

p4 (see Fig. 1). Let the position vectors of the vertices be rep-

resented by p1x, p2x, p3x and p4x, respectively. The normal

unit vector at every corresponding pair of points on oppo-

site boundary sides satisfies, n(x ∈ ∂ L
D) = −n(x ∈ ∂ R

D)

and n(x ∈ ∂ B
D) = −n(x ∈ ∂ T

D). By constraining the

microfluctuations on the edges to be periodic, i.e.

w(x ∈ ∂ L
D) = w(x ∈ ∂ R

D), (12a)

w(x ∈ ∂ T
D) = w(x ∈ ∂ B

D), (12b)

Equation (11) is automatically satisfied. Making the

choice, ax = p1x in Eq. (8) and substituting it in Eq. (12),

gives the following condition on the microfluctuations at

nodes p1, p2 and p4 (which will be used in a later section)

p1w = p2w = p4w = 0. (13)

Upscaling relations (Hill-Mandel condition): According to

the principle of virtual work, the total internal virtual work

must be conserved for a dynamic system for any imposed

kinematics. The Hill-Mandel principle extends this concept

to relate the two scales where the volume averaged virtual

work of the RVE is equated to its macroscopic equivalent in

a material point. Therefore, equating the volume average of

the virtual work of Eqs. (3) and (4) gives

1

V

∫

D

σ : δ(∇ symu)dV +
1

V

∫

D

ṗ · δudV

= σ M : δ(∇ Mu M) + ṗ
M

· δu M. (14)

Rewriting the left hand side of the above expression in terms

of the virtual work of the external boundary tractions t = n.σ

on the RVE gives,

1

V

∫

∂D

t · δu dS = σ M : δ(∇ Mu M) + ṗ
M

· δu M. (15)

Substituting Eq. (7) into the above expression and making

use of Eqs. (12) and (13) gives

1

V

∫

∂D

t · δu M dS+
1

V

∫

∂D

t.δ(∇ Mu M) C · (x − x R) dS+
1

V

∫

∂D

t · δw dS

︸ ︷︷ ︸
=0, via (8) & (12)

= σ M : δ(∇ Mu M) + ṗ M · δu M. (16)

Which upon simplification reads,

σ M =
1

V

∫

∂D

t ⊗ (x − x R) dS, (17)

ṗ
M

=
1

V

∫

∂D

t dS. (18)

This gives the corresponding upscaling relations. Note that in

homogenization of static problems, x R vanishes from Eq. (17)

due to static equilibrium (zero net traction on the boundary) of

the RVE. This is no longer the case in a dynamic setting where

the net tractions do not vanish, see Eq. (18), indicating the

dependency of the macroscopic stress on x R and also on the

micro-inertial effects. By employing Gauss theorem and the

microscopic balance given by Eq. (4), the boundary integral

form of Eqs. (17) and (18) can be written in the equivalent

volume integral form as follows,

σ M =
1

V

∫

D

(σ + ṗ ⊗ (x − x R)) dV, (19)

p M =
1

V

∫

D

p dV . (20)

Note that Eq. (19) highlights the explicit coupling of the

macroscopic stress to the microscopic momentum, again

indicating the influence of micro-inertial effects on the

macroscopic stress.

2.2 Discretization and model reduction

Using standard discretization techniques, e.g. based on the

finite element method (FEM), the discrete balance of momen-

tum of the RVE can be written as follows

K.u
˜

+ M.ü
˜

= f
˜
. (21)

Here u
˜
, ü
˜

and f
˜

represent the nodal displacements, accelera-

tions and applied forces respectively in which the quantities

associated to each node are represented by a vector and
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assembled in a vector column fashion. K represents the stiff-

ness tensor matrix and M the mass tensor2 matrix which

transform the nodal displacement and acceleration vectors

respectively into internal nodal force vectors. In the deriva-

tions that ensue, standard Galerkin projection is used to

perform model reduction.

2.2.1 Periodic boundary condition

In order to apply the periodic boundary conditions it is nec-

essary to partition the system into tied (constrained) and

retained nodes denoted by the characters ‘t’ and ‘r’ respec-

tively. The tied nodes constitute the right and the top edge

nodes along with vector point p3 and the retained nodes con-

stitute the remaining boundary nodes and the nodes in the

RVE interior. The discrete form of Eq. (12) can be written in

terms of displacements as follows,

Tu
˜

= Bu
˜

+ p4u Ǐ
˜

− p1u Ǐ
˜
, (22)

Ru
˜

= Lu
˜

+ p2u Ǐ
˜

− p1u Ǐ
˜
, (23)

p3u = p4u + p2u − p1u, (24)

where Ǐ
˜

denotes a column with unit scalar entries of the same

size as Bu
˜

and Lu
˜

. The above expressions give the constraint

relations on the tied nodes in terms of the retained nodes. Let
*

T represent the scalar reduction matrix reflecting this linear

transformation;

[
ru
t̃u
˜

]
=

*

T
ru
˜
. (25)

Applying the reduction (25) on Eq. (21) leads to the reduced

discrete governing equations in terms of the retained nodes

*

K. ru
˜

+
*

M. rü
˜

= rf
˜
. (26)

where

*

K =
*

T
T

K
*

T ,
*

M =
*

T
T

M
*

T , rf
˜

=
*

T
T

f
˜
. (27)

2.2.2 Craig Bampton reduction

The Craig Bampton Mode Synthesis [31] (or Craig Bamp-

ton for/CBMS short) is a popular substructuring technique

used in structural dynamics to obtain reduced models of com-

plex assembled systems (e.g. cars, planes etc). It involves a

reduced description of the dynamic response of the interior

2 Since scalar value shape functions are usually used to discretize the

system, the mass matrix would in general be a scalar matrix, but for

convenience of derivations, it has been transformed to a tensor matrix

by multiplication with an identity tensor.

Quasistatic Response Internal Dynamics

p4

p1 p2

→

p4

p1 p2

+

instantaneous inertial/transient

(Local Resonance)

Fig. 2 Illustration of the Craig Bampton decomposition. The total

dynamic response of an RVE to prescribed boundary displacements

can be represented as a superposition of its quasistatic response and its

internal dynamics spanned by a set of eigenmodes with the prescribed

nodes fixed

of every subsystem or substructure with respect to prescribed

displacements at the external boundary of each subsystem.

The total response is then obtained by assembling the individ-

ual reduced substructure models at the boundaries separating

the substructures. This concept can be applied to a multi-

scale framework where the microscale problem is treated as

a substructure of the macroscale problem. Eigenmodes of the

interior dynamics are used as a reduced basis, which perfectly

capture the Local Resonance phenomena.

With the periodic boundary conditions incorporated, the

Craig Bampton procedure can now be applied. The total

dynamic response of any structure under prescribed dis-

placements (velocities, accelerations) can be expressed as

a superposition of its corresponding quasistatic response and

its internal dynamics spanned by a minimal set of eigenmodes

of the structure with the prescribed nodes fixed. This is illus-

trated in Fig. 2. This decomposition is essential since it sepa-

rates the Local Resonance effects from the rest of the mechan-

ical response thereby enabling the construction of a reduced

model. The quasistatic response gives the instantaneous

mechanical response whereas the internal dynamics repre-

sents the inertial response due to Local Resonance. The two

subproblems are next treated independently and later super-

posed to obtain the total solution. Note that the incorporation

of internal dynamics is made possible due to the assumption

of the relaxed scale separation principle given by Eq. (2). In

general, when applied incorrectly, the Craig Bampton reduc-

tion could lead to stiff and sometimes incorrect responses

since the eigenmodes are computed on a constrained system,

which may not capture the actual dynamics. However this

is not an issue for homogenization as long as the prescribed

displacement nodes lie on the matrix (which does not exhibit

relevant dynamical behavior in the frequency ranges satisfy-

ing the relaxed separation of scales) and not the inclusion.

In order to proceed with the derivations, the retained nodes

must be further partitioned into prescribed and free nodes

denoted by ‘p’ and ‘f’, respectively. The prescribed nodes

include nodes p1, p2 and p4 and the free nodes consist of the

remaining nodes. The partitioned form of Eq. (26) is written

as
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[ pp ∗
K

pf ∗
K

fp ∗
K

ff ∗
K

]
.

[
pu˜
fu˜

]
+

[ pp ∗
M

pf ∗
M

fp ∗
M

ff ∗
M

]
.

[
pü˜fü˜

]
=

[
pf
f̃0˜

]
, (28)

where f0
˜

represents a column of length Nf (where Nf indi-

cates the number of free nodes) in which each entry is a zero

vector. It can be seen that no external forces act on the free

nodes.

Quasistatic Response: The quasistatic response is recovered

by omitting the mass contribution in Eq. (28), enabling to

solve for the free degrees of freedom using a static conden-

sation procedure. The solution can then be represented in

terms of the prescribed displacements as follows (subscript

‘qs’ is used for quasistatic)

[
fu˜qs

pu˜

]
=

[
S

ppI

]
· pu

˜
. (29)

The term S represents the static condensate (also known

as the Schur complement) of the stiffness matrix
*

K, and ppI

represents a 3×3 matrix with each entry containing a second

order identity tensor. The expression for S reads

S = −
ff *

K
−1

·
fp *

K. (30)

Using Eq. (29) as a reduced basis, model reduction of Equa-

tion (28) gives the governing equations for the quasistatic

response expressed in displacements of the prescribed nodes

only

Kqs · pu
˜

+ Mqs · pü
˜

= pf
˜
, (31)

where,

Kqs =
pp *

K −
pf *

K ·
ff *
K

−1
·

fp *
K,

Mqs = S
CT

·
ff *
M · S +2

pf *
M · S +

pp *
M. (32)

Here, the superscript (•) CT represents the transpose of a

matrix in which each of the tensor entries are conjugated.

Internal dynamics: The internal dynamics is added to the

solution in order to compensate for neglecting the contribu-

tion of the inertial forces when calculating the quasistatic

response. This correction is essential in accounting for Local

Resonance. The solution of the dynamic subproblem is

expressed as a superposition of Nq eigenmodes (here Nq <<

2Nf, 2Nf being the number of free degrees of freedom), com-

puted with prescribed nodes fixed. The expression for this

reads

[
fu˜dyn

pu˜

]
=

[
Φ

pq0

]
η
˜
, (33)

where Φ represents the vector matrix containing the eigen-

modes, η
˜

the corresponding column of generalized scalar

displacements, i.e. the amplitude of the eigenmodes also

referred to as modal displacements and pq0 represents a

3 × Nq zero vector matrix. The eigenvalue problem and the

mass normalization condition of each eigenmode f0
˜

, where

s = 1, 2, . . . , Nq are respectively, given as

(
ff *

K − sω2 ff *

M) · s
Φ
˜

= f0
˜
, (34)

s
Φ
˜

T ·
ff *

K · s
Φ
˜

= 1, (35)

where sω is the eigenfrequency corresponding to s
Φ
˜

and f0
˜

represents a zero vector column of length Nf. To yield a

computationally efficient model, the basis should be con-

structed such that it only contains the essential (or excited)

modes that trigger Local Resonance. A more quantitative

mode selection criteria is briefly described in Sect. 2.3. In

addition, the retained eigenmodes must also satisfy the scale

separation principle given by Eq. (2). Applying Eq. (33) to

reduce Eq. (21) with the help of Eqs. (34) and (35) gives

ω2η
˜

+ η̈
˜

= q0
˜
, (36)

where q0
˜

is a zero scalar column of length Nq and,

ω =

⎡
⎢⎣

1ω 0 0

0
. . . 0

0 0 Nqω

⎤
⎥⎦ . (37)

Note that Eq. (36) describes a set of Nq uncoupled spring

mass systems with eigenfrequencies given by ω. This gives

the simplest description of Local Resonance without any cou-

pling to the macroscopic dynamics. This coupling will be

obtained by combining the solutions of the two subproblems.

Linear superposition: The full solution is now expressed as a

superposition of the quasistatic response fu
˜qs and the internal

dynamics fu
˜dyn. Combining Eqs. (29) and (33) gives,

[
fu
p̃u˜

]
=

[
fu˜qs + fu˜dyn
pu˜

]
=

[
Φ S.
pq0 ppI.

] [
η
p̃u˜

]
. (38)

Projecting Eq. (28) on the subspace of Eq. (38) gives the

reduced coupled dynamic model of the RVE.

ω2η
˜

+ η̈
˜

= −m T

c · pü
˜
, (39)

Kqs · pu
˜

+ Mqs · pü
˜

+ mcη̈˜
= pf

˜
, (40)

where

mc = S CT ·
ff *

M · Φ + ppI ·
pf *

M · Φ, (41)

is the vector matrix providing the coupling between the two

equations.
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2.3 Emerging enriched continuum

The discrete form of the downscaling relations given by

Eq. (13) with account for Eq. (7) is represented as

pu
˜

= pI
˜
.u M + (∇ Mu M) C · 
x

˜
, (42)

where pI
˜

is an identity column of length 3 and 
x
˜

= px
˜

−

x R
pI
˜

, where pI
˜

is a unit scalar column of size 3. Similarly, the

discrete form of the upscaling relations Eqs. (17) and (18) is

given as

σ M =
1

V

pf
˜

T ⊗ 
x
˜
, (43)

ṗ
M

=
1

V

pI
˜

T · pf
˜
. (44)

The macroscopic constitutive relations can now be recov-

ered by substituting Eqs. (40) and (42) into the above

expressions:

σ M =
1

V
(
x

˜
T ⊗ Kqs ⊗ 
x

˜
) LC : ∇ Mu M +

1

V
(
x

˜
T ⊗ Kqs · pI

˜
) LC

︸ ︷︷ ︸
=O(i)

·u M

+
1

V
(mT

c ⊗ 
x

˜
) Tη̈

˜
+

1

V
(
x

˜
T ⊗ Mqs ⊗ 
x

˜
) LC

︸ ︷︷ ︸
≈O(ii)

: ∇ Mü M

+
1

V
(
x

˜
T ⊗ Mqs · pI

˜
) LC

︸ ︷︷ ︸
=O(iii)

·ü M, (45)

ṗ
M

=
1

V

pI
˜

T · Mqs ⊗ 
x
˜︸ ︷︷ ︸

=O(iii)

: ∇ Mü M +
1

V

pI
˜

T · Mqs · pI
˜

· ü M

+
1

V

pI
˜

T · mcη̈

˜
+

1

V

pI
˜

T · Kqs ⊗ 
x
˜︸ ︷︷ ︸

=O(i)

: ∇ Mu M +
1

V

pI
˜

T · Kqs.
pI
˜︸ ︷︷ ︸

=O(i)

· u M.

(46)

Here O stands for the zero tensor and (•) LC stands for the

left conjugate of a higher order tensor defined as A LC

j ikl =

Ai jkl . As shown in the above expression, several terms are

zero or can be neglected. The corresponding justification for

each of these terms is given below:

O(i): These terms are identically zero because pI
˜

is in fact

the null space of Kqs as it describes the rigid body

modes imposed by the prescribed nodes.

O(ii): This term gives the elastic inertia (inertial contribution

to deformation modes) and for the materials of concern

here it is negligible compared to the elastic stiffness

(i.e. (
x
˜

T ⊗ Mqs ⊗
x
˜
) LC << (
x

˜
T ⊗ Kqs ⊗
x

˜
) LC).

Although the total term, (
x
˜

T ⊗Mqs ⊗
x
˜
) LC : ∇ Mü M

can become significant at higher applied frequencies,

ω (since ∇ Mü M ∝ ω2), these frequencies approach

the homogenizability limit (where scale separation is

violated), hence it is justified to drop this term in the

considered regime.

O(iii): These are the cross coupling terms between σ M and ü M

and ṗ
M

and ∇ Mü M. They are in general not zero and

depend on the choice of x R, which was yet unspeci-

fied. The choice of x R does not influence the accuracy

of the final solution. Hence, the value of x R is simply

chosen such that these terms become zero. The phys-

ical interpretation of these terms will be unraveled in

future work.

The homogenized constitutive expressions given by

Eqs. (45) and (46) can now be written in a compact closed-

form as follows,

σ M = C M : ∇ Mu M +
1

V

Nq∑

s=1

sH sη̈, (47)

p M = ρ Mu̇ M +
1

V

Nq∑

s=1

sj sη̇, (48)

where,

C M =
1

V
(
x

˜
T ⊗ Kqs ⊗ 
x

˜
) LC, (49a)

ρ M =
1

V

pI
˜

T · Mqs · pI
˜
, (49b)

sH = sm
˜

T

c ⊗ 
x
˜
, (49c)

sj = pI
˜

T · sm
˜

c. (49d)

Here C M represents the effective elasticity tensor, ρ M is the

average mass density of the RVE. The terms sH and sj repre-

sent the coupling of the sth modal degree of freedom to the

macroscopic stress and momentum respectively. They can be

used to determine the relevant eigenmodes for the reduced

basis. Local resonance modes must have at least one nonzero

(and finite) coefficient in H or j. The displacement gradient

in Eq. (47) can be replaced with the linear strain tensor due to

the symmetries present in the homogenized elasticity tensor

C M. However sH can be asymmetric since rotational eigen-

modes can exist, introducing angular inertia into the system

violating the rotational equilibrium condition accompany-

ing the symmetry of the stress tensor. Hence, this triggers
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Fig. 3 Summary of the main

steps involved in computing the

enriched continuum model

 CBMS

Homo. Constiv.
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Micro 
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(                )

Apply periodic 

boundary 
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the asymmetry of the macroscopic stress tensor in materials

with micro-inertia, in general. In the example problem con-

sidered in this work, the rotational modes have a negligible

Local Resonance amplitude and thus the effect of angular

inertia does not contribute here. They will be discussed in

more detail in forthcoming work.

Finally, the balance of momentum of the internal dynamics

needs to be expressed in its homogenized continuum nota-

tions. Applying Eqs. (42) to (39) gives

sω2 sη + sη̈ = −sj · ü M − sH : ∇ Mü M, s = 1, . . . , Nq.

(50)

The emerging macroscopic governing equations of the

enriched continuum can be summarized below

Macroscopic balance of momentum.

∇.σ M − ṗ
M

= 0. (51)

Microscopic balance of momentum. (To be solved at the

macroscale)

sω2 sη+sη̈ = −sj·ü M −sH : ∇ Mü M, s = 1, . . . , Nq. (52)

Homogenized constitutive relations.

σ M = C M : ∇ Mu M +
1

V

Nq∑

s=1

sH sη̈, (53a)

p M = ρ Mu̇ M +
1

V

Nq∑

s=1

sj sη̇. (53b)

Note that η is an emergent field variable, which effectively

‘enriches’ the macroscopic continuum with the micro-inertia

effects, in the micromorphic sense as initially defined by

Eringen [19]. It constitutes an internal field variable that does
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Lead inclusion

Epoxy

Silicone rubber

Fig. 4 Example of a LRAM unit cell designed by [2]

not explicitly appear in the classical macroscopic balance

equation, and is therefore appropriately termed as internal

dynamics.

The entire procedure can be summarized as follows. Start-

ing from the discretized balance of momentum of the RVE,

periodic boundary conditions are first applied to the boundary

nodes. The Craig Bampton decomposition is introduced by

expressing the solution as the superposition of the quasistatic

response and the internal dynamics represented by an opti-

mum eigenmode basis. This expression is then used to obtain

a reduced balance of momentum of the system. The scale

transition relations are then applied to transform the reduced

balance of momentum into the homogenized enriched macro-

scopic continuum equations. The eigenmode problem is

typically solved off-line, in advance. The macroscale on-

line solution procedure therefore reduces to a single scale

enriched problem. The procedure is illustrated in Fig. 3.

3 Numerical validation

3.1 Local resonance acoustic metamaterial (LRAM)

For the purpose of validation of the presented model, a well

known and understood LRAM design of [2] is adopted. The

structure of the unit cell and the macroscopic lattice struc-

ture are shown in Fig. 4. It consists of an epoxy matrix with

an embedded lead inclusion coated with soft rubber. In [2]

spherical inclusions were used. Since derivations are carried

out in 2D space, the inclusions are modeled as infinite cylin-

ders instead. The geometric and material properties of the

LRAM are given in Table 1. The high compliance of rub-

ber combined with the high mass density of lead compared

to the epoxy triggers the observed low frequency localized

resonance modes.

The FEM model of the RVE was constructed using the

Marc Mentat software package. The discretized system con-

tains close to 6000 degrees of freedom. An eigenvalue

analysis was carried out on the system and the first 10 in

plane eigenmodes were extracted. Out of these 10 modes,

only 2, 3, 5 an 6 are Local Resonance modes with finite val-

ues of the momentum coupling coefficient. The remaining

modes have either zero or negligible values of their respec-

2j = 0.9715e2
3j = −0.9715e1

5j = −0.2526e1
6j = 0.2536e2

2ω = 360 Hz
3ω = 360 Hz 5ω = 1239 Hz 6ω = 1239 Hz

mode 2 mode 3 mode 5 mode 6

Fig. 5 Local resonance mode shapes and their associated eigenfre-

quencies and momentum coupling coefficients of the unit cell under

consideration

tive stress and momentum coupling coefficients. Modes 2

and 3 and 5 and 6 are degenerate with eigenfrequencies 360

Hz and 1239 Hz respectively. The mode shapes, the eigen-

frequencies and the momentum coupling coefficients of each

mode are given in Fig. 5. Modes 3 and 5 are coupled along

the e1 direction and modes 2 and 6 are coupled along the

e2 direction. The mode shapes overlap strongly with those

found in [2], hence it can be concluded that these are indeed

the Local Resonance modes.

A simple estimation can be made to verify if the RVE

under consideration satisfies the scale separation criteria. By

neglecting the Local Resonance effects, an approximate esti-

mation of the matrix resonance frequency reads

ω mat ≈
c Mij

2L
, (54)

where L is the length of the RVE and c Mij =

√
C Mij

ρ M
is

the speed of sound for a given wave mode (c M11 indicates

compressive wave and c M12, shear wave, etc). The above

expression gives the order of the frequency at which the

matrix starts behaving dynamically and the relaxed scale

separation is violated. Therefore, it can be used to obtain

an estimation of the limiting frequency. Substituting the val-

ues of the respective quantities into the above expression

gives a value of the order of 104 Hz for both shear and

compressive wave modes. The frequencies of interest deter-

mined by the Local Resonance eigenfrequencies (360 and

1239 Hz) lie well within the limiting frequency. Thus the

LRAM under consideration is well suited for applying the

proposed homogenization method.

3.2 Macroscopic problem construction

The developed homogenized enriched continuum is next ver-

ified against DNS. For the sake of simplicity, the macroscopic

problem is restricted to a 1D compressional wave propagation

test. The DNS model is constructed by sequentially stacking

100 RVEs as shown in Fig. 6a. In order to ensure an effec-

tive 1D macroscopic behavior for this 2D system, periodic

boundary conditions are applied to the top and bottom edges

of the RVEs to mimic an infinitely large structure in the ver-
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Table 1 The geometric and

material properties of the unit

cell under study

Geometrical properties Material properties

Radius of lead inclusion 5 mm Parameter Lead Rubber Epoxy

Thickness of rubber coating 2.5 mm ρ (×103 kg/m3) 11.6 1.3 1.18

Length of the unit cell 20.1 mm λ (N/m2) 4.23 × 1010 6 × 105 4.43 × 109

μ (N/m2) 1.49 × 1010 4 × 104 1.59 × 109

u(t)

u(t)

Periodic Boundary Condition

DNS

Homogenized

L=2.1 [m] Num. of unit cells=100

System

(a) Macroscopic problem setup.

2π/ω 4π/ω

u
in

p
(t

)
[m

]

uinp(t) = 5e−4(1 − cos(ωt))

×10−3

0

1

0

(b) Input displacement function

Fig. 6 Construction of the macroscopic compression wave test using DNS and the enriched homogenized model. The right edge is constrained

and a prescribed displacement u inp(t) is applied on the left edge. a Macroscopic problem setup. b Input displacement function

tical direction. The right edge of the system is fully clamped,

and prescribed displacements are applied on the left edge. A

harmonic loading function of frequency ω is applied on the

left end for 2 time periods as shown in Fig. 6b. The finite ele-

ment model of the total DNS system contains over 500,000

degrees of freedom.

The homogenized model of the system is constructed by

discretizing a 1D enriched continuum using 100 linear finite

elements with 101 nodes. The problem is discretized in time

using an implicit Newmark scheme. The nodal degrees of

freedom consist of the horizontal macroscopic displacement

and the two generalized modal displacements associated with

Mode 3 and 5 (only the modes providing coupling in e1

direction are retained since the problem considered here only

involves wave propagation in this direction). The right most

node is constrained and the prescribed displacements are

applied on the left most node (see Fig. 6a).

Four transient simulations tests were performed at dif-

ferent excitation frequencies ω, which are selected to probe

various regions of interest. It is well known in the litera-

ture [2], that the Local Resonance coupling is strongest in

the frequency regions above each eigenfrequency known as

‘stop bands’. For the simulation, the first excitation frequency

is selected at 200 Hz which is far below the first eigenfre-

quency where the Local Resonance effects should have a

weak influence. The response is expected to be predomi-

nantly quasistatic at this frequency. The second frequency is

selected at 450 Hz which is in the first stop band. The Local

Resonance coupling will be strong there. The third frequency

is selected at 800 Hz which is in between the two stop bands

and the fourth is selected at 1330 Hz in the second stop band.

The results are shown in Fig. 7. Two plots of the horizon-

tal displacement are displayed for each excitation frequency,

one as a function of position after two time periods and the

second as a function of time at x = 0.42 m. The homogenized

solution matches the DNS results in an excellent manner, thus

validating the developed method.

A quasistatic homogenization solution (i.e. the simula-

tion with Local Resonance effects ignored) is also shown

in order to be able to judge the impact of the Local Reso-

nance coupling. At 200 Hz, the behavior of the LRAM is

still captured reasonably well by the quasistatic solution.

At 400 Hz, the quasistatic solution cannot reproduce the

LRAM behavior at all, showing the pronounced influence

of the Local Resonance phenomenon which is picked up

remarkably well by the proposed homogenization scheme.

Even though the transient simulation is carried out for only 2

time periods without damping, a strong wave decay effect

of the stop band is clearly visible in the simulation. At

800 Hz, propagating waves reappear in the LRAM but the

wavelength and speed are significantly higher compared to

that of the quasistatic wave. This is due to the fact that

the resonance of the first eigenmode causes decoupling of

the mass from its host matrix reducing the overall effec-

tive dynamic mass density of the system. This in turn

causes the wave speed to increase resulting in a longer

wavelength. Finally, at 1330 Hz, the wave decay phe-

nomena is again active, this time due to the second stop

band.

To conclude, the above results illustrate the importance of

correctly accounting for the micro-inertia effects in homog-

enizing the behavior of LRAM. The proposed enriched

continuum resulting from the homogeniation and reduction

scheme is effective in achieving the correct response.
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Fig. 7 Plot of horizontal nodal

displacement [m] versus a

position after two time periods

of the input excitation

(t = 4π/ω) and b time at

position x = 0.42 m for

excitation frequency (i)

ω = 200 Hz, (ii) ω = 450 Hz,

(iii) ω = 800 Hz and (iv)

ω = 1330 Hz
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4 Conclusions

This paper presented a novel approach towards the model-

ing and analysis of LRAM with linear elastic constituents.

By applying the Craig Bampton reduction to a transient

dynamic Computational Homogenization framework, a com-

pact closed form description has been obtained. The resulting

equations reveal that an enriched continuum model emerged,

with additional degrees of freedom representing the internal

dynamics of the microstructure. The method was validated

against the DNS solution for a 1D transient compressional

wave test of a LRAM structure consisting of a rubber coated

lead inclusions at different excitation frequencies. An excel-

lent match was thereby obtained. An order of 3 decade

reduction in the problem size with respect to DNS was

achieved without any loss of accuracy. The comparison of

the results with the quasistatic solution showed the strong

influence of Local Resonance on the macroscopic dynam-

ics beyond the low frequency (long wavelength) quasistatic

regime.

The main features and advantages of the developed tech-

nique, that distinguishes it from other available techniques

for the modeling and analysis of materials with Local Reso-

nances (or long wavelength micro-inertia effects in general),

can be summarized as follows,

– Generality: The full balance of momentum is considered

at both scales, which allows the incorporation of com-

plex boundary conditions, transient loading and arbitrary

topologies.

– Efficiency:

– Model reduction allows for a highly compact repre-

sentation of the microscale problem which naturally

implies improved numerical efficiency.

– An Enriched macroscopic homogenized continuum

description emerges, allowing to use any appropriate

solution technique. Therefore discretization schemes

with superior convergence properties such as Spectral

Element Method etc. can be used as well.

– It also offers an additional benefit over standard tran-

sient dynamic multiscale implementations in the fact

that the homogenization procedure has to only be car-

ried out once and not at each time step.

– Extendability: Many possibilities exist for further extend-

ing the present formulation, e.g. to incorporate moderate

nonlinearities [34,35], damping, multiphysical effects,

material nonlocality (second order gradient) etc.

In conclusion, the approach presented here aims to pave the

path towards integrating core capabilities of Computational

Mechanics into the realm of Acoustic Metamaterials. This

could provide a breakthrough needed for the practical design

and production of such materials for real world applications.
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