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Abstract—This article deals with an approach to the design of
planar antennas that use metamaterial-loaded substrates based on
the effective medium approximations. Metamaterials are structured
composite materials with unique electromagnetic properties due
to the interaction of electromagnetic waves with the finer scale
periodicity of conventional materials. They may be used to
modify the effective electromagnetic parameters of planar antenna
substrates and to design antennas with the improved coupling to
the feed, increased impedance matching bandwidths, miniaturized
dimensions, and narrower beamwidths compared to those that
use conventional dielectric materials for the same purposes. The
electromagnetic analysis and optimization based on the effective
medium approximations of metamaterials is very convenient since it
deals with only a few bulk medium parameters instead of a large
number of parameters describing a discrete structure. At the same
time, the most common way of obtaining these effective medium
parameters is transmission/reflection simulations or measurements in
free space or in a homogeneous background medium. For a host
medium which is not homogeneous, as for a grounded substrate, the
effective medium parameters are different from the free space ones.
The scattering losses in a metamaterial medium need to be accurately
taken into account and included as parameters in full-wave bulk
medium models. For this reason, in the effective medium approach
for antenna substrates, one needs to use the appropriate effective
medium approximations that take the coupling between inclusions
into account and also to evaluate the effects of the scattering losses.
In practice, this is done by finding the effective medium parameters
inside an arbitrary substrate medium, and not in a homogeneous host
medium or in free space. This paper presents the methodology and
the results of FDTD analysis of planar antennas that have substrates
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with various metamaterial inclusion densities. The effective bulk
medium approach presented in the article is analyzed by comparing
the antenna return losses and radiation patterns to the ones computed
for a discrete structure. The Green’s function of the host medium
(antenna substrate) is used to calculate the approximate bulk effective
medium parameters of the MTM-loaded substrate.

1. INTRODUCTION

Applications of metamaterials in antenna design have been considered
in recent years by several authors [1–7]. The electromagnetic
analysis of metamaterial-based antennas was carried out using full-
wave modeling and multi-domain discretization of antenna substrate
dielectric properties [5], transmission line analogies [1], and the
lumped embedded circuit approach [7]. In [4], the substrate medium
was already considered to be homogenized and the problem was
solved analytically. Effective medium parameters of composite
electromagnetic materials used in such antennas can be obtained
through various homogenization methods [8–10]. The homogenization
can substantially simplify the electromagnetic analysis since the
electromagnetic wave interaction problem is thereby reduced to the
analysis of the homogeneous bulk medium.

A reduction in the number of effective medium parameters
associated with the metamaterial embedded in a planar antenna
substrate makes the optimization of an antenna with respect to several
parameters (the minimum return loss and the maximum impedance-
matching bandwidth) simpler. The effective medium parameters of
the substrate may be perturbed by various proximity coupling effects
compared to the ones extracted from full-wave simulations for an
infinite lattice. However, as it will be shown in this paper using
numerical validations, these perturbations are often small and the
loaded substrate can still be modeled as a bulk material.

This paper is concerned with the estimation of effective medium
parameters for metamaterials embedded in an antenna substrate and
their use in antenna analysis. Furthermore, the interactions between
inclusions in a 2D periodic lattice embedded in an antenna substrate
are calculated and effective propagation constants are found. Several
examples of antenna designs are used to validate the homogenization
procedures by comparing return losses and radiation patterns for
substrates loaded with discrete structures and the ones that are
described by the corresponding bulk effective medium model.
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2. METHODOLOGY

2.1. Background

Some of the previously published papers dealing with the analysis
and optimization of metamaterial-loaded antenna substrates [5] have
considered full-wave analysis of MTM structures using the density
method, with a fine discretization of the substrate into homogeneous
domains. As it could be expected, this entailed a large number
of parameters used in the optimization, while the optimal solutions
were sensitive to the variations in antenna geometry and required
a new global optimization to be carried out for any change in
the boundary conditions or geometry. Analytical methods for
metamaterial homogenization in the static (low-frequency) limit have
been proposed by Silveirinha [11] and Tretyakov [12]. These methods
allow obtaining effective medium parameters for composite materials
consisting of infinitely-long PEC wires.

The electromagnetic response of a single unit MTM cell can also be
approximated by an embedded equivalent circuit [7]. The expressions
provided in [7] are suitable for calculating effective propagation
constants in a MTM-loaded substrate, however, the scattering losses
are not included in the formulas for the effective permeability explicitly,
and the only losses considered were the Ohmic losses in the conductor
material.

The homogenization of a metamaterial in a wide frequency
range can be carried out by extracting its effective medium electric
polarizability and magnetization of a single MTM inclusion [14, 15]
from plane wave scattering experiments. Under this approach, each
unit cell in an infinitely-periodic metamaterial lattice is characterized
by its effective electric and magnetic polarizability tensors ε and µ and
magneto-electric coupling tensors ζ and ξ . The electric and magnetic
moments can be related to the total electric and magnetic fields using
polarizability matrices as follows: follows:

[
�p
�m

]
= [α]

[
�Et

�Ht

]
, [α] =

[
αee αem

αme αmm

]
(1)

where subscript t refers to the total field.
There exist some metamaterial structures such as the pairs of split

ring resonators (SRR) with the opposing directions of the open wire
loops [1], for which the contributions of magnetoelectric coupling (αem

and αme) can be neglected.
Full-wave FDTD calculations allow obtaining currents flowing in

the inclusions directly, and the subsequent volume integration can be
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used to calculate the polarization/magnetization responses. Thus,
when there is no magnetoelectric coupling assumed, the effective
medium parameters are:

ε = ε0 (εr + αeeN)
µ = µ0 (µr + αmmN)

(2)

where εr and µr are the relative permittivity and permeability of
the homogeneous background medium, N is the volumetric density of
inclusions. The effective permeability and permittivity of the inclusions
embedded in a substrate that has its Green’s function different from
the one of the homogeneous medium require a different approach to
their analysis. The following section describes our approach to the
analysis of MTM-loaded substrates for antenna applications.

2.2. Analysis of the Embedded Metamaterial Effective
Properties

Figure 1 illustrates the geometry of the problem solved in this
section. An infinite PEC-backed dielectric slab is loaded with magnetic
SRR inclusions with polarizability matrices known from previous
calculations, and the dominant incident plane wave component is
described by wavevector �k and vector fields �E and �H. The values
of the effective medium permittivity and permeability for use in a bulk
dispersive model of the substrate need to be found. In addition, some
conducting antenna topology may be printed on the substrate surface.

Figure 1. Electromagnetic wave interaction with magnetic
metamaterial embedded in grounded slab that is used as an antenna
substrate.

In the analysis of effective medium parameters (homogeniza-
tion), electric, magnetic and magneto-electric polarizability matrices
αee, αmm, αem, αme are found for a single isolated inclusion. The
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host medium Green’s function is used to obtain the effective po-
larizability matrices for the semi-infinite lattice inside the substrate:
α
′
ee, α

′
mm, α

′
em, α

′
me.

The quasistatic approximation for the interaction matrix [15] is
not suitable for solving this problem because the Green’s function of
the host medium may be any, and the equations obtained for free
space cannot be applied to the case of the arbitrary host medium.
Let us assume that the linear field response tensor [16] is found
from either analytical formulas or numerical calculations. As in other
homogenization methods, inclusions with diameter D are assumed to
be small compared to the wavelength in the medium (D < λ/4).
Then for the two interacting scatterers inside the host medium, the
interactions can be found from the scattering theory. Since the effective
polarizabilities of inclusions and the medium response are known, the
vectorial scattering equation [16] can be written applying the multiple
scattering formalism in a way similar to the one provided in [17, p. 709].
Since the polarizabilities in our model are associated with a point
scatterer, using the sampling property of the spatial δ-function, this
equation can be written as follows:[

�Et(�r )
�Ht(�r )

]
=

[
�E(�r )
�H(�r )

]
+

∫
V

G(�r, �r ′)Nα(�r ′)

[
�E(�r )
�H(�r )

]
d3�r ′

+
∫∫
V

G(�r, �r ′)Nα(�r ′)G(�r, �r ′′)Nα(�r ′′)

[
�E(�r )
�H(�r )

]
d3�r ′d3�r ′′

+ · · · =

[
�E(�r )
�H(�r )

]
+ G(�r, �r ′)Nα(�r ′)

[
�E(�r )
�H(�r )

]

+G(�r, �r ′)Nα(�r ′)G(�r, �r ′)Nα(�r ′)

[
�E(�r )
�H(�r )

]
+ · · · (3)

where �r ′ and �r ′′ are the coordinates of the first and the second point
scatterer and the integrals over the volume of the unit cell V are three-
fold. When the higher order terms (n > 1) in (3) are much smaller
than the single scattering term and can be neglected,[

�Et

�Ht

]
≈

[
�E

�H

]
+ GNα

[
�E

�H

]
=

{
I + GNα

} [
�E

�H

]
(4)

Thus, if the magnitudes of the spatial response tensor components
G(�r, �r ′) decay rapidly enough with distance, then two assumptions
can be made, namely that only the nearest neighboring inclusions
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interact and that the interactions are predominantly single scattering.
These assumptions will not be applicable when the volumetric density
of inclusions is high.

By comparing equations (1) and (4), it can be seen that under the
single scattering approximation and assuming that the MTM inclusions
can be represented by point scatterers polarizability α, the effective
polarizability of a single lattice cell of a periodic inclusion lattice can
be found as:

α
′ = α

[
I +

Nn∑
i

GiNα

]
(5)

where index i refers to the summation of scattered field contributions
by other inclusions, Nn is the number of the nearest neighbors of an
inclusion.

If the host medium is homogeneous, then in the limit of
single scattering of inclusions and for small argument G(�r, �r ′)Nα,
the homogenization procedure in this paper is equivalent to the
quasistatic homogenization approach [15]: the linear response G(�r, �r ′)
can be replaced with the quasistatic interaction constant C, and[
I − CNα

]−1
≈

[
I + GNα

]
.

It is worth mentioning that our homogenization procedure is
derived for one incident wavevector, for instance, for a quasi-TEM
wave introduced in the patch antenna via a microstrip line feed. An
expansion to multiple incident wavevectors is straightforward. The
perturbations due to the finite substrate or the interaction with the
printed antenna topology are also not taken into account.

In summary, our homogenization procedure includes the following
steps:

1) Find the polarizability tensor of a single inclusion;
2) Assume some volumetric density of inclusions in a periodic lattice,

N ;
3) Find the frequency-dependent anisotropic spatial linear response

tensor of the substrate to the embedded electric and magnetic
dipoles;

4) Apply an approximation of the multiple scattering equation
(3) and find the effective polarizability of a periodic lattice of
inclusions in a substrate;

5) Find the effective permittivity and permeability of the periodic
lattice, in accordance with equation (2);
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The practical aspects of calculating the response of the embedded
MTM lattice to the incident field will be considered in Subsection 2.4
of this paper.

This approach to modeling the wave propagation in loaded
substrates is versatile and applicable to any metamaterial inclusions
since it allows one to take into account the medium anisotropy
and chirality and to use them in the bulk dispersive models of the
substrate media. In all numerical validations in this paper, for the
sake of simplicity, an assumption is made that the effective medium
parameters contain no magnetoelectric coupling terms.

As it will be shown in the next subsection, the high density of
inclusions allows obtaining higher real part of effective permeability
near the resonance which is beneficial to the miniaturization of antenna
designs. However, then the design of an actual antenna structure may
be complicated since the interaction constants cannot be obtained in
a closed form.

A general analysis of the embedded metamaterial was presented
in this subsection. The following two sections deal with the analysis
of effective medium parameters, and the numerical spatial response
tensor calculations, as detailed in this section, for a substrate. First the
effective bulk material refractive indices for inclusions in an unbounded
homogeneous medium are found for different inclusion densities, then
the scattering losses of a semi-infinite MTM structure are calculated
for the PEC SRR medium in terms of the radiation resistances and
compared to the previously published analytical results for open loop
resonators of the same radius at the same signal frequency.

2.3. Effective Medium Parameters and Scattering Losses in
Metamaterial

One of the obvious advantages of the homogenization approach
described above is that it allows taking the scattering losses of
inclusions into account directly, while this is more complicated when
other homogenization methods, such as the lumped element method
[1, 7], are used. The following analysis deals with the scattering
loss effects for a semi-infinite lattice of split-ring resonators in a
homogeneous host medium.

It has been previously shown that the effective permeability
tensor of an infinite array of split ring resonators is close to uniaxial
[15, 18]. According to our estimations, one of the tensor elements of
the permeability tensor can be reasonably approximated by a second
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order rational function, as follows:

µii = µ0

(
a2ω2 + a1ω + a0

ω2
0 − ω2 − j2δhω0ω

)
, µjj = µkk = µ0 (6)

where i,j,k correspond to either x,y, or z in the order determined by the
spatial orientation of the inclusion, ω0 is the resonant frequency and
δh is the damping factor. The accuracy of the second-order rational
function fitting will be assessed in Appendix A of this paper.

For a MTM structure, the value of effective permittivity in (6)
depends on the density of inclusions, according to (4), and is affected
by the multiple scattering that is a function of the distance between
them, according to (3).

Developing the previous section arguments, as an example of
the cumulative effects of the density and electromagnetic interactions
between inclusions on the effective refractive index were calculated for
a lattice of SRRs with the outer ring diameter D = 3.6 mm in free
space for different spacings dy (referring to Figure 1). The analysis
was done with FDTD and the parameter extraction was carried out
according to [19]. Figure 2a illustrates the effects of the real part of
the real refractive index and Figure 2b, the same effects but on the
imaginary part of effective refractive index.

(a) (b)

Figure 2. Effective refractive index of a semi-infinite SRR lattice in
free space as a function of frequency for different inclusion spacings,
(a) real part, (b) imaginary part.

The conclusions that can be drawn from simulation results shown
in Figures 2a and 2b are that the decrease in inclusion spacing results
in higher peak values of the real part of the effective refractive index
and lower resonant frequency. At the same time, the half-width of
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the resonance increases. The first effect is consistent with (4), while
the latter two can only be explained by the effects of mutual coupling
between inclusions in the SRR lattice.

One of the parameters in (6) is the damping factor; its analysis is
the subject of the following discussion. The resonant frequency of an
isolated SRR can be found as:

ω0 =
1√
LC

(7)

where L and C are the open loop inductance and the gap capacitance,
respectively. At the same time, the wire loop inductance [20] can be
calculated as:

L = µ0b

(
log

(
8b

a

)
− 2

)
, (8)

where a is the radius of the wire, b is the radius of the circular loop,
µ0 is the permeability of free space.

The damping factor in (6) can also be expressed in terms of
the radiation resistances of inclusions. The radiation resistance of a
structure can be defined as:

Rr =
2Pr

|I|2 (9)

where Pr is the radiated power, I is the current flowing from the feed
into the structure. In this context, metamaterial inclusions can be
treated as wire loop antennas that reradiate some part of the incident
electromagnetic wave. It is well known that the radiation resistance
of an open wire loop is proportional to (D

λ )2, where D is the diameter
of the inclusion and λ is the wavelength in the medium in which the
inclusion is embedded. Thus, the reduction in the effective loss can be
achieved by using the space-filling curves [22, 23].

FDTD simulations with periodic boundary conditions are run
and effective permeability of the medium is found. The obtained
complex µeff is then fitted with a second order rational function (6),
and the damping factor δ is estimated. It is then assumed that the
relationship between the quality factor Q and the other parameters of
the Lorentzian resonator is [24]:

ω0(RΩ + Rr)Cg = 1/Q =
2δ2ω2

0√
ω2

0 − 2δ2ω2
0

(10)

The gap capacitance of an open loop resonator is found from
the resonance condition (10): Cg = 1

ω2
0L

. Assuming that the Ohmic
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resistance of the inclusion material RΩ = 0,

Rr =
2δ2ω2

0√
ω2

0 − 2δ2ω2
0

Lω0 (11)

Let us assume that inductance of the loop L can be calculated
from (8), and take into consideration that the resonant frequency for
a double SRR with the outer ring radius of 1.2 mm and wire radius of
0.12 mm is 11.5 GHz in free space. The damping factor of the SRR
was estimated by fitting the extracted effective permeability to be
δ = 0.0157. For an open square wire loop with the same radii of
the loop and wire, this resonant frequency is 13.5 GHz in free space,
and the damping factor is δ = 0.0133. Radiation resistances for these
types of MTM inclusions were calculated using (11) from numerical
simulations and also found in literature for the same ratio of the loop
and wire diameters, and the comparison of the results is presented in
Table 1.

Table 1. Comparisons between the radiation resistance values at
resonance for various inclusions.

Inclusion type Radiation resistance, Ω Source

SRR in a cubic lattice 7.43 This paper

Wire loop in a cubic lattice 7.48 This paper

Open wire loop 4.54 [27]

As one can see from Table 1, the split ring resonators in a
cubic lattice have the same order of magnitude but higher radiation
resistances than a single circular open wire loop. The detailed analysis
of the differences between these results is left out of the scope of this
paper, however, it is worth mentioning that among the reasons there
may be the effects of the resonator shape and the effects of the lattice.

Once the electromagnetic response of an isolated inclusion is
known, the Green’s function of the host medium needs to be found
and the effective medium parameters of the loaded substrate medium
need to be obtained.

2.4. Analysis of the Green’s Function of the Substrate

The electromagnetic interaction problem for a known response of a
single inclusion can be solved if the Green’s function of the host



Progress In Electromagnetics Research, PIER 71, 2007 139

medium is known. The methodology for calculating the bulk effective
medium parameters for a semi-infinite lattice of embedded MTM
inclusions was outlined in Subsection 2.2 of this paper.

In some cases, the Green’s function can be found analytically. An
analysis of the wave propagation in grounded slabs with metamaterials
can also be found in [25]. The host medium Green’s function
(medium spatial linear response tensor to electric and magnetic
sources) computed numerically using FDTD and the impressed electric
and magnetic dipole sources. The electric field Ez component is excited
at a single FDTD cell, representing a vertical electric dipole, and all
field components are recorded at various distances from the source.
Similarly, Ey component is excited at a single cell that corresponds
to the horizontal electric dipole location and all field components are
recorded at various distances from the source. By analogy, Green’s
function elements for the H-field are found.

The magnitudes of the electrical and magnetic Green’s functions
of the substrate as functions of distance from the source at 7.75 GHz
signal frequency, for the source located at the depth of 1.25 mm in a
2.5 mm-thick grounded substrate with permittivity εr = 2.2, are shown
in Figure 3.

0 1 2 3 4

0

x, mm

dB

 

 

Ge
zz
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xx

Figure 3. Electric and magnetic components of the Green’s function
of the dielectric substrate evaluated at different distances from the
source at 7.75 GHz frequency, the sources are located at the depth
of 1.25 mm in a 2.5 mm-thick grounded substrate with permittivity
εr = 2.2.



140 Semichaevsky and Akyurtlu

As it can be seen from Figure 3, the magnitudes of the electric and
magnetic responses suggest that the coupling between the inclusions
due to magnetic interactions is substantially stronger than the one
due to the electric interactions. The magnitudes of the magnetic
components of the response tensor also suggest that multiple scattering
by the inclusions can be strong when the inclusions are closely packed.

The polarizability tensor of a single inclusion α in numerical
examples will be assumed as uniaxial. This restriction is imposed
because the Weir’s extraction method is used to calculate the
polarizabilities. In addition, an approximation that the scattering
between adjacent inclusions was single, corresponding to a just one
term in the series in equation (4), resulting in the effective medium
tensor given by equation (5). The polarizability of an inclusion is
calculated using the Weir’s method with PEC and PMC boundary
conditions for a plane incident wave propagating along one direction
for a large spacing between inclusions so that the inclusions can
be considered almost non-interacting. The µyy component is then
extracted from the reflection and transmission coefficients, while µxx

and µzz are assumed to be close to one. The electric response is found
to be considerably smaller than the magnetic one and is ignored in
the numerical simulations in Section 3. Then equation (5) is used
to correct the effective polarizability of the embedded metamaterial
for the effects of electromagnetic interactions, obtaining the effective
polarizability matrix of a periodic lattice α

′. These calculations are
carried out for different signal frequencies.

It should be noted that two interrelated factors may be responsible
for the effective polarizability of the MTM lattice embedded in the
substrate: the electric and magnetic coupling that can be calculated
using the interaction constants, and the density of inclusions that
determines the magnitude of the electric and magnetic resonances. The
effective medium model presented in this Section will be validated in
Section 3.

3. NUMERICAL VALIDATION OF BULK DISPERSIVE
SUBSTRATE MODELS

Numerical simulations included in this section will be used to analyze
the FDTD bulk dispersive medium models for homogenized antenna
substrates by comparing the characteristics of these antennas to
the ones computed with FDTD for antennas loaded with discrete
metamaterial structures. Figure 4 compares the return losses for
patch antennas on MTM-loaded substrates computed with FDTD.
One of these return losses is computed for an antenna on a substrate
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loaded with periodic discrete SRR inclusions (label ‘Discrete SRR’),
another return loss is computed using a bulk dispersive model for
the effective medium permeability of the composite medium obtained
from equations (2), (5) (label ‘Bulk medium, loaded substrate’), and
the last one is for the effective permeability computed numerically
for a homogeneous dielectric with εr = 2.2 (label ‘Bulk medium,
homogeneous dielectric’). The patch antenna has dimensions of 12.54
× 16 mm, is fed by a 50 Ohm line feed, and the thickness of the
substrate is 5 mm. The embedded double split rings have the outer
diameter of 4.8 mm, the gap of 0.48 mm and are arranged inside
the substrate as shown in Figure 1 with the spacings dx = 5 mm,
dy = 5 mm. The bulk model was obtained from the extracted effective
medium parameters as discussed in Subsections 2.1 and 2.2 with a
single scattering approximation (4) and implemented via the PLRC
dispersive formulation of FDTD [26].

Figure 4. Return loss dependences for patch antennas on an SRR-
loaded substrate (D = 4.8 mm) with inclusion spacing along y-axis of
5 mm, calculated with FDTD for a discrete metamaterial model and
for a bulk effective medium model.

Results shown in Figure 4 indicate that the return losses of a
MTM-loaded patch antenna calculated with the bulk embedded MTM
model and the discrete MTM are close. The first two resonant
frequencies are only different by several percent, and the magnitudes of
the return losses at resonances are also comparable. At the same time,
the return loss dependence computed using a bulk effective medium
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for a homogeneous dielectric with embedded MTM inclusions of the
same dimensions is less similar to the one for the discrete MTM case.
The differences in the effective medium permeabilities computed with
the two bulk models are in the resonant frequencies and the damping
factors. When the effective permeability of the substrate is calculated,
even in the single scattering approximation, using the spatial response
tensor of the grounded slab, this produces a return loss dependence
that is closer to the one for the discrete embedded MTM than the one
for the effective permeability found using the full-wave calculation of
the coupling but for the homogeneous host medium.

(a)

(b)

Figure 5. Comparison between the input reactances of a horizontal
dipole in free space without superstrate, with discrete MTM
superstrate and with a bulk MTM superstrate, a) input reactances,
b) dipole-superstrate geometry.
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In the second numerical simulation, the effects of the proximity
coupling between an MTM-loaded superstrate and a dipole in free
space on the dipole input impedance. A bulk dispersive anisotropic
FDTD model for a discrete superstrate, a “homogenized” superstrate
was calculated. The homogenization takes into account the full-wave
interactions between inclusions using periodic boundary conditions and
[19], since the structure resides in free space.

Figure 5a provides comparisons between the input reactances of
a horizontal dipole of length l = 3.6 mm, wire radius a = 0.07 mm
in free space in presence of an anisotropic superstrate (for its bulk
and discrete representations) and without it. The superstrate has
thickness of 3.6 mm and is placed 1.8 mm from the dipole. The discrete
structure consists of double split rings The split rings lie in the z-
y plane, where dipole is along y-axis, and the discrete lattice has
dimensions 8 × 4 resonators in the x-y plane. In the bulk model, the
superstrate is considered to be uniaxial with µyy component assigned
the dispersion while other components of µ are assumed to be equal
to one. Figure 5b shows the dipole-superstrate geometry used in this
numerical experiment.

As the results shown in Figure 5 suggest, the effective bulk medium
model and the discrete model for the MTM superstrate provide the
reasonably close input reactances of the dipole antenna. At the same
time, the frequency-dependent reactance of the dipole in free space is
different from the ones computed for the dipole-superstrate structure.
This suggests that the homogenization model is highly accurate.

4. CONCLUSIONS

Metamaterial-loaded planar antennas can be analyzed with sufficient
accuracy assuming that a discrete metamaterial embedded in a
substrate can be represented by an effective bulk model for
electromagnetic parameters. Due to the reduced number of design
parameters in the effective medium model as compared to the other
substrate medium models, the analysis and optimization of the antenna
can be substantially simplified.

The interactions between embedded inclusions can be properly
taken into account if the polarizability and magnetization responses
for a single isolated inclusion are known from either simulations or
measurements. The anisotropic Green’s function and multiple scat-
tering approaches allow computing the effective medium parameters
that account for the coupling between inclusions inside an arbitrary
substrate.

The analysis of electromagnetic interactions between MTM
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inclusions in a host medium or in free space suggests that two
phenomena can affect the effective medium parameters: the density
of inclusions and the strength of mutual coupling that depends on
the Green’s function of the host medium and the distance between
inclusions, i.e., on inclusion density. Thus, any effective medium model
should take these effects into account.

Numerical calculations that were used to compare the models
for the bulk and discrete embedded metamaterial showed that the
frequency-dependent return losses of patch antennas calculated for the
discrete structure and for the bulk medium agree reasonably. The
input impedances for a dipole in presence of a dispersive anisotropic
superstrate modeled using the bulk and discrete models are also close.

A certain advantage of the proposed homogenization approach is
that it allows one to take into account the scattering/radiation losses in
addition to the Ohmic losses in the inclusions. This is important when
the MTM-loaded antenna characteristics are to be calculated with high
accuracy.

APPENDIX A. SECOND ORDER RATIONAL
FUNCTION FOR PERMEABILITY TENSOR
COMPONENTS

This Appendix includes the validation of the equation (6) approxima-
tion for the effective medium permeability of a semi-infinite array of
SRR inclusions.

Figures A1a and A1b present the real and imaginary parts of
the effective refractive index for the incident wavevector perpendicular
to the SRR slab, respectively. These were calculated by fitting the
effective permeability of the SRR inclusion array with the second
order rational function of frequency. The double split rings have
outer diameters of 3.6 mm and are arranged in a cubic lattice with
the lattice constant of 5 mm. The effective medium parameters
were obtained for a semi-infinite lattice of SRRs in free space using
transmission/reflection method [19] and periodic boundary conditions
in FDTD.

The following bulk effective model parameters for the SRR lattice
were obtained by polynomial fitting of the effective permeability of
the medium, in reference to equation (10): ω0 = 4.6585e10 rad/s,
δh = 0.004, a2 = −1.2832−j0.1052, a1 = 2.3149e10+j5.6731e9, a0 =
1.8754e21 − j5.2666e19.

An FDTD-PLRC model for equation (6) with these parameters is
readily available.
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(a)

(b)

Figure A1. Refractive indices obtained as a result of fitting the
effective permeability of an SRR with a second order rational function,
(a) real part, (b) imaginary part.
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