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Homogenization of Nonstationary Navier-Stokes Equations 
in a Domain with a Grained Boundary (*). 

A. MIKELI(~ (**) 

Summary. - We prove the convergence of the homogenization process for a nonstationary 
Navier-Stokes system in a porous medium. The result of homogenization is Darcy's law, as 
in the case of the Stokes equation, but the convergence of pressures is in a different function 
space. 

1.  - I n t r o d u c t i o n .  

In this paper we prove the convergence of the homogenization process for nonsta- 
tionary Navier-Stokes equations in a porous medium under a nonhomogeneous 
boundary condition. Our proof is based on new a priori estimates for a pressure in 
L2 (0, T; Lz (~)), ~ e (1, n/(n - 1)). The result of homogenization is Darcy's law, as in 
the case of homogenization for the Stokes equation (see TARTAR [7]). The convergence 
of velocities will be in the same space, but the convergence of pressures will be much 
weaker. 

We use the standard notation required in homogenization theory. Let Y =]0, 1[ n, 
(9 c Y, be an open set strictly contained in Y and locally placed on one side of its 
boundary S (the boundary being a smooth ( n -  1)-dimensional manifold) and Y* = 
= Y~O. Let 

Y ~ = Y + k ,  O k = O + k ,  Y ~ = Y * + k ,  k e Z  ~. 

Let t) r R ~ be a bounded domain, locally placed on one side of its boundary/ '  (being a 
piecewise smooth (n - 1)-dimensional manifold). For sufficiently small e > 0, we con- 
sider the sets 

T~= ( k e Z n : ~ Y k c t 2 } ,  K~= {keZ~:~Yk  n F r  
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and define 

Obviously, 

k e r ~  ' " 

5, = U (,Y )kUr(,Tk aa, = r u s , .  
k e T ~  

The domains (9, and D, represent, respectively, the solid and fluid parts of a porous 
medium t~. We shall consider the nonstationary flow of an incompressible viscous 
fluid in the domain D,, in two and three dimensions. 

Let v ~, p '  and t* > 0 be the velocity, the pressure and the viscosity of the fluid, res- 
pectively, and let f f  be the density of an external body force. Then v ~ and p '  satisfy 
the conditions 

(1.1) av' +(v~V)v~+Vp,_~Av,=ff  in Q,T=t~X(O,T), 
at 

(1.2) div v ~ = 0 in Q~r, 

(1.3) v' = h on Fr = F x (0, T), 

(1.4) v ~ = 0 on S,T = S~ x (0, T), 

(1.5) v ~ (x, 0) = v~ (x) in t], ,  

where v~ is a given initial velocity and h is a given function 
condition 

satisfying the 

f h(., t). = 0. ~ d ~  

Here v denotes the unit outer normal on F. 
We use the usual notation for Sobolev spaces from [3, 4, 8]. In particular, follow- 

ing [3] for a given bounded domain D c R ~, locally placed on one side of its boundary 
aD e C 1'1 and for 1 ~< /~  + %  we introduce the Banach spaces 

WJ (D) = {z e L~ (D): Vz e Lz (D) ~ }, 

~ 1 W~ (D) = {z e W~ (D): z = 0 on aD}, 

(1.7) W~s(D)={zeW~(D):z=O on S, being an open subset of OD}, 

o 
(1.8) Vz(D) = {z e W~ (D)~: divz = 0}. 
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O 

The dual space of W~ (D) is denoted byoW~ -1 (D), where/3-1 _[_ ~-1 = 1. For ~ = 2, we use the 
notation H~(D) = W~(D), H~(D) = W~(D), H~(D) = Wd, s(D) and H-~(D) = W~(D). 
Furthermore, we define H ~/~ (aD) as an image of H 1 (D) under the trace operator. 

Let X be a given Banach space. The usual spaces of/%integrable, essentially 
bounded and continuous functions z: [0, T]-~ X we denote by Lp (0, T;X), L~ (0, T;X) 
and C([0, T];X), respectively. 

We make the following assumptions on data: 

(1.9) h e  C([0, T];W~(t~)~), ah ~-T ~ c([0, T]; W~ (~)~), 

(1.10) 

div h = 0, 

]I~'V~[IL2(~.)~<C, d i v v y = 0  in t~ ,  

f f  eL2(Q~T)~, ~ 2 f ~ f  in L2(QT) ~, when e - . 0 .  (1.11) 

The crucial quantity in our estimates is A(v~, i f ,  h) defined by 
t 

(1.12) A2(v~,f f ,h)  : f l v~ t2+  l e f f l 2 + t V h l 2 + l l h l 2 +  ~'~- + ~ V h 2  + 
t~ o t~ 

The assumptions from (1.9) to (1.11) imply 

(1.13) A(v~, f~, h) < C/~. 

Under the assumptions (1.9)-(1.11), classical theory (see [4] or [8]) gives the exis- 
tence of at least one weak solution v~ e L2 (0, T;I-I~(~)~), v ~- h ~ L2 (0, T; V~(~)), 
v ~ e L~ (0, T;L2(f~)~), (a/at)(v ~- h) e L4/a (0, T; (V2 (t~)) ' )  for (1.1)-(1.5). 

For brevity, we denote by C a generic constant not depending on ~ and possibly 
having different values at different places. 

2. - The  operator  R~. 

In order to extend the pressure p~ to the whole medium f~, TARTAR ([7]) introduce 
an operator R ~. It  was an operator between H 1 (t~) ~ and H~~ (t~)L We need an operator 
between Wl(tgY ~ and Wls~(f~) ~ with similar properties. 

LEMMA 2.1. - There exists an operator 

(2.1) RqE~(W~(Y) n , W1.s(Y*)n), 1 < q < + ~ ,  

with the properties 

(2.2) R q w = w  in a neighborhood of aY, 

(2.3) w = 0  on S ~ R q w - - w ,  

(2.4) d i v w =  0 ~ div(Rqw) = 0. 
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REMARK 2.1. - The proof of Lemma 2.1 is very similar to that given in [7] for the 
case q = 2. In addition to the technique used in[7], one needs Lq-regularity for the 
Stokes equation (see [2] or[8]). The same remark applies to other lemmas in this 
section. 

For w �9 W~ (~)~, 1 < q < + ~, we define 

w~(y)=w(~y), y � 9  k�9 

LEMMA 2.2. - The operator R~, defined by the formula 

[(Rqw~)(x/c), x �9 ~Y~', k �9 T~, 
(2.5) (R~w)(x) = t [w(x), x �9 ~Yk, k �9 K~, 

has the properties 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

1 n 1 ~ n Rq�9 ,W~,so(~) ), 

w = 0  on S , ~ R ~ w = w ,  

divw = 0 ~ div(R~w) = 0, 

~ W  n lIR~ II~q(~) ~< C(llwllL~(~)~ + ~llVwll~(~). ~}, 

llV(R;w)II~.<~S ~< C{ 1 Ilwi~.(o). + IlWll~.(~).~}. 

of (2.1), (2.6), one can consider Rqw(R~w) extended by zero to 

(2.10) 

Because 
Y(l)). 

o 
1 n LEMMA 2.3. - For each w e Wq(O~) , the inequality 

(2.11) ilwiiLqr c~llwllLq(~,)~ ~ , 1 < q < + ~, 

holds true. 

LEMMA 2.4 .  - Let w �9 L~ (0, T; W~ (o)n), aw/at �9 L~ (0, T; Wq ~ (O)~) and let R~ be 
given by (2.5). Then one has 

1 ~Q n (2.12) R~ �9 ~2(L~ (0, T; Wq 1 (~)~), L~ (0, T; W~,s, (~) )), 

(2.1~) h~wll~o(o,~(~.)o) + ~llVR~wll~.(0,~;~<~)~ ~) 

C aw 
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3.  - U n i f o r m  e s t i m a t e s .  

LEMMA 3.1. - Le t  v ~ be a weak  solut ion for (1.1)-(1.5) and  let  ~ be  ,,small 

enough~> (~). T h e n  we have  

(3.1) 

(3.2) 

(3.3) 

IIv ~ ]I~(Q~)~ < C,  

P R O O F .  - We define the  func t ion  b ~ by  s e t t i ng  

(3.4) b ~ = R~ h.  

A d i rec t  consequence  of L e m m a s  2.2 and  2.4 is as follows: 

d i v  b ~ = 0, 

(3.5) Jib %o(o,~;~.)~) < c ,  

at L~(O,T;L6(~) ) 

W e  in t roduce  a func t ion  u ~ b y  s e t t i n g  

u ~ = v ~ _ b ~ . (3.6) 

T h e n  ( u  ~, p~} is a solut ion for 

(3.7) 

�9 a u  g , ~ + (u  s V)u ~ + (b ~ V)u ~ + (u ~ V)b ~ = VP ~ + - - ~  - ~nU 

= i f _  Ob__~ ~ +~Ab ~_ (b~V)b" 
~t 

div u ~ = 0 

u ~ 0  

u ~ (x, 0) = vg (x) - b ~ (x, 0) 

in  Q~r, 

in  Q~T , 

on a~9~ x (0, T),  

in  ~9~. 

(1) See (3.8) and (3.9). 
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Using the energy inequality which corresponds to (3.7) (see[8], p. 291) and the 
inequalities 

(3.8) 

I t 

s 2 2 

one obtains 

(3.9) 

t 
f lu~(t)]2+ (~--C(n,t~,S,l[hllL~(O.T;H~(~)))s 1/e) f f [Vu~ 2~< 

OD 

<~C. lu~(O)12+ Izf~t2+ s ~+ IVb~l 2 +llsVb~H~(o,r;L~(O).2) . 
on 

For  ~ smaller than some fixed ~o, backward substitution, v~= u~+ b ~, implies 

t 

ftv~(t),~+fftvv~l~<. 
Or? 

{f t v 2+ooff[  + v 2+ 12 +12  h}2] + 

+ sup[lteVh(t)lt2~(~)~+ IIh(t)l126(~),~] 1 + <~CA (vo,f ,h)<C/s e O<~t<~T Q.E.D. 

Our next s tep is to introduce a pressure.  Following [8], p. 307, we introduce new 
functions U ~, F ~ and ~ and set  

t t t 

(3.10) U~(t) = fv~(s)ds. F~(t)-- ff~(,,ds. ~(t) = f(v~(s)V)v~(s)ds. 
0 0 0 

If  v ~ is a weak solution for (1.1)-(1.5), then U ~ e C([0, T];H1 (~9~)~) div U ~ = 0 and 
F ~, ~ e C([0, T]; V~ ). The theory developed in TEMAM [8], p. 307, shows that  there  
exist P~ e C([0, T];L2(t~)), VP ~ e C([0, T];H-l(t~)n), such that  

(3.11) VP*(t)+v~(t)-v~-~AU~(t)+~(t)=F~(t) in V~, V t e [ 0 ,  T]. 

LEMMA 3.2. - Let  all assumptions from Lemma 3.1 be fulfilled. Then there  exists 
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an extension P" �9 C([0, T]; L~ (t~)), V/~ �9 (1, n/(n - 1)) of the function P '  such that  the 
inequalities 

(3.12) 

(3.13) 

hold true. 

- ,  C1~2 , IIvP IIc(~o,~;w,(~)-)< 

O 

P R O O F .  - Let ~ �9 Wy (t~) , ~, > n. Then the inequality 

where 0 < ~ < 1 - n/r, implies 

] < VP'  (t), ~>~, J < C {dlf '  lk=(Q,)- + ljv3 Jk~(~)- + I1~ Iko (o, =;=,(~ ) + Ilvv ~II~=(Q=)-= + 

Therefore we may conclude 

and, consequently, 

(3.14) h f P ' ( t ) d i v  
C 

= I<VP'(t), m>~, I< T I I v , d k ~ o ) , ,  ~ , 

o 

v r  �9 w~' (~k) ~ 

o 

v~  �9 w ~ ( Q , )  ~ . 

It is well known that Vg e L~ 1 < q < +0% there exists r e W~(t~) ~ such that  
dive = g and IlCUw~'(~)" ~< CIIglln~ (see [8], p. 35). We use this fact in order to extend the 
pressure. Let us define P~ �9 L2 (t~), 1/fJ + 1/], = 1 by setting 

(3.15) fP~(t)g= ][~(t)divr162 VgeL~ and Yt �9  T]. 

A direct consequence of (3.14) is 

Using the well-known facts that  L ~ (~9) is homeomorphic to Lr (t~)/R and that  
Lz ~ (~9) is a dual space for Ly (~)/R (see [5]), we may conclude 

IIP~(t)NLZ(~) < Ch e. 

Now it is easy to conclude that  the assertions of Lemma 3.2 are 
true. Q.E.D. 
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4. - T h e  c o n v e r g e n c e  t h e o r e m .  

LEMMA 4.1. - There exist subsequences of {v ~ }, { U ~ } and {P~ } (again denoted by 
{v~}, {U ~} and {P~}) and functions v e L 2 ( q T )  ~, UeC([O,T];L2(t~)n), 
P e L~ (0, T; L~ (t2)), 1 < fl < n/(n - 1), such that  

(4.1) v ~ v  weakly in L2(QT) ~, 

(4.2) U~-~ U weak* in L~ (0, T;L2(t~)~), 

(4.3) 2p~__~p weak* in L~(O,T;L~(Q)),  

as ~-o 0. The functions v and U satisfy the equations 

(4.4) divv = 0 in t~, (a.e.) on (0, T), 

(4.5) div U = 0 in ~, Vt e [0, T], 

t 

(4.6) U(t) = J v(x, s) ds, 
o 

(4.7) v" v = h- v on F, (a.e.) on (0, T), 

t 

(4.8) U. v = ~ h. v on F, Vte  [0, T]. 
0 

Let w ~, ~ (i = 1, . . . ,n) be a Y-periodic solution of the problem 

(4.9) -Vr:i § zlwi + e~= O in Y* ,  

(4.10) divw i =  0 in Y * ,  

(4.11) w i = 0 on S. 

This problem has a unique solution w i e H 1 (Y*)~, =i e L2(Y*) (=i defined up to a con- 
stant). Let 

= (K~j)i,j=l,.,n, K~j = f (wi ) jdy .  K 
Y 

The matrix K (permeability tensor) is symmetric and positive definite (see[6]). 
Let  

Note that  because of the basic lemma on the periodic extension 

1 1 =1 ,  as s--~0. (4.13) (w~'~)j~Kij weakly in L,(~), -7 + ~ 



A. MIKELI~: Homogenization of nonstationary Navier-Stokes, etc, t75 

LEMMA 4.2. - ([7]). The functions (4.12) satisfy the conditions 

(4.14) -evr~i'~+~2Awi'~Tei=O in ~9~, 

(4.15) div w i'~ = 0 in t2~, 

(4.16) w ~,~ = 0 on S~, 

and the following inequalities holds: 

(4.17) t[=~'~[[L~(~) ~< C, 

Vwi,~ ,~ C (4.18) ]l NL~(~) ~< 7 "  

LEMMA 4.3. - (F. MURAT, private communication). Let  w i'~ be defined by (4.12). 
Then 

C (4.19) [[Vw~'~]]L~(~y ~< ~- ,  W e (1, +oo]. 

Fur thermore ,  

(4.20) s2Vwi'~vu~-o Us weak* in L~ (0, T;L~,(t2)n), 

as ~ ~ 0, ~' = 2~/(~ + 2). 

LEMMA 4.4. - Let  w i'~ be given by (4.12) and P~ by (3.15). Then one has 

T T 

(4.21) J J~P~V~wi '~JJPv~ .Jw  i, as ~-->0, VgEC~(QT). 
0 ~  0~2 Y* 

PROOF. - Let  us define ~'~ by sett ing 

(4.22) 

Then we have 

(4.23) coi' ~--~ 0 

(4.24) 

Obviously, if we prove 

T 

(4.25) 

we easily obtain (4.21). 

o)i ,  ~ ~ w i ,  e _ f wi,~ 1 
r a l  " 

weakly in Lr ~ (t2) n, r -1 -'k ~ -1  __. 1 ,  

in R.  la 
t2 Y* 

f f~2D~V~coi'~---~ 0 as ~ O, 
o ~  
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o 

There exists a sequence { ~ }  r W~(Q)~/Vy(O), such that d i v ~  ~= ~ and 

(4.26) ~ - - ~  0 weakly in Wiy(o)~/Vr(,9). 

Now it is easy to see that there exists a sequence {~b~}, div,~ "= oJ~ ~ with the 
property 

(4.27) II~b~ IIw~(a)'- ~~'~~ 
O 

The sequence { ~ }  is bounded in W~(O)L Therefore, there exists a subsequence 
o 

which convergences to zero weakly in Wy(O)I ~ and strongly in L ~ (O)L 
Consequently, we have 

(4.28) 

T 

IU ..k 
T 

o OXk / o  

+ 

+ 

T 

O" ~ OXk 
<~ CI[~ VP IILo(o,r;w;'(oor)x 

i,~ o 2 ~  i ,e i ,e  Xl~rCk IIw#(a,). + CII~ P {Is.(o,T;L2(a)) <~ c(llr IILa<~>~, 
(4.25) is now a direct consequence of (4.28). Q.E.D. 

LEMMA 4.5. - The functions U and P, defined, respectively, by (4.2) and (4.3), sat- 
isfy the condition 

(4.29) U = ~K(F - VP), 

where 

(4.30) 

t 

F(., t) = f f(., s)ds. 
o 

PROOF. - We use eq. (3.11). After multiplying (3.11) by z'~wi'~, ~ e C$ (QT), we 
find 

T T 

(4.81) ~ f f vu~vw~,~ ~+~'~ f f vg~v~ow~, ~- 
O,.Q O~q 

T T T T T 

-~f f~'v~w~," +~f f~'~,'-~f f~w~,~ +~f f~(r ~f f 
0 D  0 0  0 D  0 D  0 

F~w~, ~" 
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As a direct consequence of the inequalities (3.1), (3.2), (3.3), (3.12) and (4.19) we 
have 

T 

$2 f f vu V Owi,  
oo 

T 

$2 f f <<. $2 
oo 

Therefore, using Lemmas 4.3 and 4.4, we obtain 

T T 

(4.32) f f f 
OO OD 

2 JlfVZ~Wi,~ ~ C$, 

g~ 

= 0  

and hence (4.29). Q.E.D. 

It  is easy to conclude that, in fact, P e C([0, T]; H 1 (t))) and VP �9 C([0, T]; L2 (t~) ~). 
This enables us to differentiate (4.29) in the distribution sense in QT; setting 

0_0p 
(4.33) P = at ' 

we obtain 

K (4.34) v= ~ - ( f - V p ) ,  (a.e.) on QT, 

and p �9 L2 (0, T;H 1 (t))), Vp �9 L2 (0, T;L2 (o)n). 

THEOREM 4.1. - There exists an extension P~ e L~ (O, T; L~ ~ (t))) of the function p~ 
such that  

v ~ --* v weakly in L2 (QT)n, 

$2~ttP~-~ p weakly in W21(O,T;L~(.Q)), 

(as $-o 0), where v, p is the solution of the homogenized problem 

(4.35) div v = 0 in L2 (QT), 

K (4.36) v = ~ - ( f -  Vp) in L~(QT), 

(4.37) v .~=h .v  in L2(O,T;H1/2(I')). 

PROOF, - The conclusion follows immediately from (3.1), (3.2), (3.3) and (3.11). Be- 
cause of the positive definiteness of the matrix K, the system (4.35)-(4.37) has a 
unique solution v e L2(QT) n, p e L2(O, T;HI(O) nL~ Therefore, the limits in 
(4.1), (4.2) and (4.3) do not depend on the subsequences {v~}, {P~}. Q.E.D. 
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5. - S o m e  c o n c l u d i n g  r e m a r k s .  

In our considerations, the viscosity coefficient is fixed, but  it may also take a 
small value. Following[6], p. 142-144, we consider the problem 

(5.1) 5v~ +(v~V)v~-g.r in Q~T, 
~t 

(5.2) div v ~ = 0 in Q~T, 

(5.3) v ~ (x, 0) = 0 in t)~, v~ = 0 o n  S~T �9 

Then, a s traightforward consequence of the results  in this article is as fol- 
lows: 

THEOREM 5.1. - Let  0 ~< y < 3/2 and l e t f  e L2 (QT)n. Then there exists an extension 
P~ e L~ (0, T; L~ (t))), 1 < fi' ~< 2 for ], < (6 - n)/4 and 1 < fi' < n/(n - 3 + 2],) for 
~. >i (6 - n)/4 of the function P~, such that  

V ~ 
" ----> V (5.4) ~2-y 

t 

(5.5) P = fp  
0 

weakly in L2(QT) ~ , 

weak* in L~ (0, T; L2, (t))), 

(as ~ 0), where  v, p is the solution of the homogenized problem 

div v = 0 in L 2 (QT), 

K ( f _  Vp) in L2 (QT), v=  7 

v.v = 0 in L2(0, T;H1/2(F)). 

The case ~, = 3/2 is critical. Formal  homogenization (see [6], p. 142-144) gives a 
nonlinear Darcy law (Forchheimer-type law). Unfortunately,  it is no longer clear that  
Lemma 3.2 is valid. Hence the results  in this paper  do not cover this case. Also, let us 

term f(v ~ V)v ~ ?w i'~ does not tend to zero any longer and it seems remark  that the that  
t~ 

it gives a second-order te rm in velocity. 
Finally, it is easy t o s e e  that  all these results  can be extended to the case when one 

has -t~ div (A(x/DVv ~) instead of --~Av ~ (see [1] for more detail). 
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