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Abstract. In the present paper we study the homogenization of the system of partial
differential equations
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,

posed in a < x < b, 0 < t < T , completed by boundary conditions on vε and by initial
conditions on vε and θε. The unknowns are the velocity vε and the temperature θε, while
the coefficients ρε, µε and cε are data which are assumed to satisfy

0 < c1 ≤ µε(x, s) ≤ c2, 0 < c3 ≤ cε(x, s) ≤ c4, 0 < c5 ≤ ρε(x) ≤ c6,

−c7 ≤ ∂µε

∂s
(x, s) ≤ 0, |cε(x, s) − cε(x, s′)| ≤ ω(|s − s′|).

This sequence of one-dimensional systems is a model for the homogenization of nonho-
mogeneous, stratified, thermoviscoplastic materials exhibiting thermal softening and a
temperature-dependent rate of plastic work converted into heat.

Under the above hypotheses we prove that this system is stable by homogenization.
More precisely one can extract a subsequence ε′ for which the velocity vε′

and the temper-
ature θε′

converge to some homogenized velocity v0 and some homogenized temperature
θ0 which solve a system similar to the system solved by vε and θε, for coefficients ρ0,
µ0 and c0 which satisfy hypotheses similar to the hypotheses satisfied by ρε, µε and cε.
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These homogenized coefficients ρ0, µ0 and c0 are given by some explicit (even if sophis-
ticated) formulas. In particular, the homogenized heat coefficient c0 in general depends
on the temperature even if the heterogeneous heat coefficients cε do not depend on it.

Résumé. Dans cet article, nous étudions l’homogénéisation du système d’équations
aux dérivées partielles
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)
= f,

cε(x, θε)
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= µε(x, θε)

(
∂vε
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,

posé dans a < x < b, 0 < t < T et complété par des conditions aux limites sur vε et des
conditions initiales sur vε et θε. Les inconnues sont la vitesse vε et la température θε,
alors que les coefficients ρε, µε et cε sont des données qui vérifient

0 < c1 ≤ µε(x, s) ≤ c2, 0 < c3 ≤ cε(x, s) ≤ c4, 0 < c5 ≤ ρε(x) ≤ c6,

−c7 ≤ ∂µε

∂s
(x, s) ≤ 0, |cε(x, s) − cε(x, s′)| ≤ ω(|s − s′|).

Cette suite de problèmes unidimensionnels modélise l’homogénéisation de matériaux ther-
moviscoplastiques hétérogènes dont la résistance diminue avec la température et dont le
taux de travail plastique converti en chaleur dépend de la température.

Sous les hypothèses ci-dessus, nous démontrons que ce système est stable par ho-
mogénéisation. Plus précisément, on peut extraire une sous-suite ε′ pour laquelle la
vitesse vε′

et la température θε′
convergent vers une vitesse homogénéisée v0 et une

température homogénéisée θ0 qui sont solution d’un système similaire à celui dont vε

et θε sont solution, pour des coefficients ρ0, µ0 et c0 qui satisfont des hypothèses ana-
logues à celles satisfaites par ρε, µε et cε. Les coefficients homogénéisés ρ0, µ0 et c0 sont
donnés par des formules explicites (même si elles sont assez compliquées). En particulier
le coefficient thermique homogénéisé c0 dépend en général de la température, même si
les coefficients thermiques hétérogènes cε n’en dépendent pas.
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1. Introduction. In the present work we consider the homogenization of nonhomo-
geneous, stratified, thermoviscoplastic materials exhibiting thermal softening which are
subjected to simple shearing. In mathematical terms we consider the system of partial
differential equations (posed in the given one-dimensional space interval (a, b), a < b,
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and in the given time interval (0, T ), T > 0)

ρε(x)
∂vε

∂t
=

∂σε

∂x
+ f(t, x) in (0, T ) × (a, b), (1.1)

cε(x, θε)
∂θε

∂t
= σε ∂vε

∂x
in (0, T ) × (a, b), (1.2)

σε = µε(x, θε)
∂vε

∂x
in (0, T ) × (a, b), (1.3)

where the unknowns are the velocity vε, the temperature θε and the stress σε, while the
data are the density ρε(x), the inertial forces f(t, x), the heat coefficient cε(x, s) and
the viscosity function µε(x, s). The system (1.1)–(1.3) has to be completed by initial
conditions on vε and θε, namely

vε(0, x) = vε
0(x), θε(0, x) = θε

0(x) in (a, b), (1.4)

where vε
0(x) and θε

0(x) are given, and by boundary conditions which impose the shearing,
namely either

vε(t, a) = vε
a(t), vε(t, b) = vε

b(t) in (0, T ), (1.5)
where vε

a(t) and vε
b(t) are given, when the boundary velocities are imposed (Dirichlet

boundary conditions), or

σε(t, a) = σε
a(t), σε(t, b) = σε

b(t) in (0, T ), (1.6)

where σε
a(t) and σε

b(t) are given, when the boundary stresses are imposed (Neumann
boundary conditions), or finally

vε(t, a) = vε
a(t), σε(t, b) = σε

b(t) in (0, T ), (1.7)

where vε
a(t) and σε

b(t) are given, when the velocity is imposed in x = a and the stress is
imposed in x = b (mixed boundary conditions).

The main features of the data are first the fact that ρε, cε and µε are bounded from
above and from below by strictly positive constants, second the fact that the functions
cε are uniformly (in x and ε) continuous with respect to s, and that the functions µε

are uniformly (in x and ε) Lipschitz continuous and nonincreasing with respect to s, and
third the fact that all the functions ρε, cε and µε depend on x in a measurable (and
not necessarily continuous1) way. The latest property means that the materials under
consideration are heterogeneous. Homogenization consists in studying the limit of the
problems (1.1)–(1.3) when ε, which represents the typical size of heterogeneities, tends
to zero.

The material described by (1.1)–(1.3) is stratified in the sense that it is made of layers
perpendicular to a given direction of space, here the x direction, while the shearing
excerced by the boundary conditions is perpendicular to that direction, which allows one
to reduce to one-dimensional (in space) partial differential equations. Homogenization

1Ten years ago, a new generation of heterogeneous materials, called functionally graded materials,
appeared in the mechanical literature (see e.g. [1], [2], [3], [4] and [11]). These materials, characterized by
high resistance to loading and/or to temperature increase, have been studied intensively, and numerical
homogenization formulas have been proposed under the assumption of smoothly varying fields, which
means that the different components of these materials are supposed to be perfectly bonded by ther-
momechanical processing in order to exhibit continuously changing properties. In contrast, our analysis
does not assume any continuity of the coefficients with respect to the variable x.
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then consists in considering a (very) large number of (very) fine layers (of thickness,
say, ε) of different materials, and in describing the overall behaviour of the velocity vε,
temperature θε and stress σε for fixed external forces. In mathematical terms, this overall
behaviour is expressed by the weak limits v0, θ0 and σ0 of vε, θε and σε as ε tends to
zero.

We prove in the present paper that v0, θ0 and σ0 satisfy a system of equations of
the type (1.1)–(1.3), corresponding to coefficients ρ0(x), c0(x, s) and µ0(x, s). This is
the main result of the present paper. It means that system (1.1)–(1.3) is stable under
homogenization. In this process, the homogenized density ρ0 is obtained as the weak-
star limit of ρε, but this is not the case of the homogenized heat coefficient c0(x, s)
and of the homogenized viscosity function µ0(x, s), which have to be defined through a
much more sophisticated process (see Remark 3.5, where this process is summarized). In
particular, a rather strange phenomenon occurs as far as cε and c0 are concerned. Even
if in problem (1.1)–(1.3) the heat coefficient cε(x, s) does not depend on s, i.e. even if
cε(x, s) = cε(x), the homogenized heat coefficient c0(x, s) does depend in general on s

(see Theorem 6.1, where explicit formulas are given in the case of a material made of
layers of some given homogeneous phases). This mathematical result is in accordance
with recent experiments and theoretical mechanical studies based on a temperature-
dependent fraction of plastic work converted into heating (see [10], [12] and [13]). Indeed

the heat coefficient c is given by c =
β

ρh
, where h is the specific heat coefficient and

β the rate of plastic work converted into heating, a quantity which is related to the
rearrangement of crystals during deformation. It is in general assumed in the literature
that β = 0.9. In particular, β is constant with respect to the temperature θ. If ρ and
h are assumed to be constant with respect to θ, which is a realistic assumption, then
c does not depend on θ. Since our result shows that c depends on θ for homogenized
materials, the hypothesis β = 0.9 is unrealistic. As experimental measurement of β for
different temperatures is very difficult, estimating c may be very useful for understanding
the overall behavior of stratified materials under high strain rates.

Homogenization is now a well-established mathematical theory, at least as elliptic or
parabolic partial differential equations are concerned. We will only refer to the method
of Tartar [15], and also, for general references, to the books of Sanchez-Palencia [14]
and of Bensoussan, Lions and Papanicolaou [6], even if those two books are concerned
with the special case of periodic coefficients, a hypothesis which is not assumed in the
present work. Let us explicitly observe that in the one-dimensional (in space) case, the
homogenized coefficients can in general be expressed by formulas involving the weak
limits of the heterogeneous coefficients, or more exactly of some (nonlinear) functions of
them. Such is the case in the present paper.

However, from the bibliographical standpoint, to the best of our knowledge, there
is no paper studying the homogenization of thermoviscoplastic materials, even if the
existence of solutions for (1.1)–(1.3) has often been studied in the literature. As far as
existence of a solution is concerned, we just quote the pioneering work of Dafermos and
Hsiao [9], the works of Tzavaras [16] and [17], the recent paper [5] which is concerned
with the numerical analysis of the problem, and our papers [7] and [8] (the second one
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presents existence and uniqueness results of the weak solution of (1.1)–(1.3), as well as
its approximation by finite elements).

The plan of the paper is as follows.
In Section 2, we give the precise hypotheses under which we study the problem (Sub-

section 2.1), then we recall a result of existence, uniqueness and continuity with respect
to the data (Subsection 2.2), and we state regularity results (Subsection 2.3).

Subsection 2.4 is devoted to the statement of the homogenization result (Theorem
2.5), which is the main result of the present paper.

The rest of the paper is mainly concerned with the proof of this theorem. We begin in
Section 3 by defining the homogenized viscosity function µ0 and the homogenized heat
coefficient c0 (Subsection 3.2; see in particular Remark 3.5). Before of that, we motivate
these definitions by a change of unknown functions, which transforms the problem in an
equivalent, but simpler one (Subsection 3.1). The proofs concerned with the definitions
of the homogenized viscosity function µ0 and heat coefficient c0 are given in Subsection
3.3.

We then pass in Section 4 to the proof of the regularity (in time) result stated in
Subsection 2.3, and then in Section 5 to the proof the homogenization result.

Finally Section 6 is devoted to the study of the model example in which a heteroge-
neous material is made of fine layers (of size ε) of some homogeneous given phases. In
this case we are able to give explicit formulas (Theorem 6.1) for the homogenized density
ρ0, the homogenized heat coefficient c0 and the homogenized viscosity function µ0. These
explicit formulas show that in general the homogenized heat coefficient c0 depends on
the temperature, even if the heat coefficients of the various phases do not depend on it.

2. Setting of the problem and homogenization result.
2.1. Hypotheses. In this entire paper, we consider a, b and T in R with a < b and

T > 0, and we set

(a, b) = Ω, (0, T ) × (a, b) = Q.

We also consider a sequence of strictly positive numbers ε which tend to zero.
We consider a sequence of Carathéodory functions µε : Ω × R → R (the viscosity

functions) which are nonincreasing in s and uniformly (in x and ε) Lipschitz continuous
in s, i.e.

⎧⎨
⎩

x → µε(x, s) is measurable ∀s ∈ R,

−c7(s − s′) ≤ µε(x, s) − µε(x, s′) ≤ 0 a.e. x ∈ Ω, ∀s, s′ ∈ R, s > s′,

(2.1)

where c7 > 0 is a given constant. We also assume that

c1 ≤ µε(x, s) ≤ c2 a.e. x ∈ Ω, ∀s ∈ R, (2.2)

where 0 < c1 ≤ c2 < +∞ are given constants.
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We also consider a sequence of Carathéodory functions cε : Ω × R → R (the heat
coefficients) which are uniformly (in x and ε) continuous in s, i.e.⎧⎨

⎩
x → cε(x, s) is measurable ∀s ∈ R,

|cε(x, s) − cε(x, s′)| ≤ ω(|s − s′|) a.e. x ∈ Ω, ∀s, s′ ∈ R,

(2.3)

where ω is a modulus of continuity, i.e. a nondecreasing continuous function ω :R+→R+

with ω(0) = 0. We also assume that

c3 ≤ cε(x, s) ≤ c4 a.e. x ∈ Ω, ∀s ∈ R, (2.4)

where 0 < c3 ≤ c4 < +∞ are given constants.
We finally consider a sequence of L∞(Ω) functions ρε (the densities). We assume that

c5 ≤ ρε(x) ≤ c6 a.e. x ∈ Ω, (2.5)

where 0 < c5 ≤ c6 < +∞ are given constants, and that

ρε ⇀ ρ0 in L∞(Ω) weak-star. (2.6)

On the other hand, we consider sequences of external forces fε, of Dirichlet boundary
conditions vε

a and vε
b , and of initial conditions vε

0 and θε
0, and their limits f0, v0

a, v0
b , v0

0

and θ0
0, which satisfy for a given constant K > 0⎧⎨

⎩
fε ∈ L2(Q), f0 ∈ L2(Q), ‖fε‖L2(Q) ≤ K,

fε ⇀ f0 in L2(Q) weak,

(2.7)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vε
a ∈ H1(0, T ), vε

b ∈ H1(0, T ), v0
a ∈ H1(0, T ), v0

b ∈ H1(0, T ),

‖vε
a‖H1(0,T ) ≤ K, ‖vε

b‖H1(0,T ) ≤ K,

vε
a ⇀ v0

a in H1(0, T ) weak, vε
b ⇀ v0

b in H1(0, T ) weak,

(2.8)

⎧⎨
⎩

vε
0 ∈ H1(Ω), v0

0 ∈ H1(Ω), ‖vε
0‖H1(Ω) ≤ K,

vε
0 ⇀ v0

0 in H1(Ω) weak,

(2.9)

vε
0(a) = vε

a(0), vε
0(b) = vε

b (0), (2.10)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θε
0 ∈ L1(Ω), θ0

0 ∈ L1(Ω), γ0 ∈ L1(Ω), ‖θε
0‖L1(Ω) ≤ K,

θε
0 ⇀ θ0

0 in D′(Ω) weak-star,

|θε
0| ⇀ γ0 in D′(Ω) weak-star.

(2.11)

Observe that (2.10) are compatibility conditions between the boundary values and the
initial value of vε.

Observe also that introducing γ0 in hypothesis (2.11) is not necessary when θε
0 ≥ 0,

which is the physical case, since one has γ0 = θ0
0 in this case. The assumption γ0 ∈ L1(Ω)

will be used in (and only in) the proof of Proposition 3.3 below.
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2.2. Existence, uniqueness and continuity with respect to the data result. Theorems
2.1 and 3.1 of our paper [8] prove the following result of existence, uniqueness and local
Lipschitz continuity with respect to the data for the case of Dirichlet boundary conditions
(1.5) (see also [7] for another proof of the existence result).

Theorem 2.1 (Existence, uniqueness and local Lipschitz continuity for Dirichlet bound-
ary conditions). Assume that hypotheses (2.1)–(2.11) hold true. Then there exists a
unique couple (vε, θε) which satisfies

vε ∈ L∞(0, T ; H1(Ω)) ∩ H1(0, T ; L2(Ω)), (2.12)

θε ∈ W 1,1(0, T ; L1(Ω)), (2.13)

ρε(x)
∂vε

∂t
− ∂

∂x

(
µε(x, θε)

∂vε

∂x

)
= fε in D′(Q), (2.14)

cε(x, θε)
∂θε

∂t
= µε(x, θε)

(
∂vε

∂x

)2

in D′(Q), (2.15)

vε(t, a) = vε
a(t), vε(t, b) = vε

b(t) a.e. t ∈ (0, T ), (2.16)

vε(0, x) = vε
0(x) a.e. x ∈ Ω, (2.17)

θε(0, x) = θε
0(x) a.e. x ∈ Ω. (2.18)

Moreover the stress σε defined by

σε = µε(x, θε)
∂vε

∂x
, (2.19)

satisfies
σε ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)), (2.20)

and the following a priori estimates hold true

‖vε‖L∞(0,T ;H1(Ω)) + ‖∂vε

∂t
‖L2(0,T ;L2(Ω)) ≤ C�, (2.21)

‖θε‖L∞(0,T ;L1(Ω)) + ‖∂θε

∂t
‖L1(0,T ;L1(Ω)) ≤ C�, (2.22)

‖σε‖L∞(0,T ;L2(Ω)) + ‖σε‖L2(0,T ;H1(Ω)) ≤ C�, (2.23)

where C� denotes a constant which depends only on c1, c2, c3, c4, c5, c6 and K.
Finally, if (vε, θε) and (v̂ε, θ̂ε) are the (unique) solutions of (2.12)–(2.18) for the data

(fε, vε
a, vε

b , vε
0, θε

0) and (f̂ε, v̂ε
a, v̂ε

b , v̂ε
0, θ̂ε

0), and if these data satisfy (2.7)–(2.11) for the
same constant K, their difference satisfies⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

‖vε − v̂ε‖L∞(0;T ;L2(Ω)) + ‖vε − v̂ε‖L2(0,T ;H1(Ω)) + ‖θε − θ̂ε‖L∞(0,T ;L1(Ω))

≤ C��
(
‖fε − f̂ε‖L2(Q) + ‖vε

a − v̂ε
a‖H1(0,T ) + ‖vε

b − v̂ε
b‖H1(0,T )

+‖vε
0 − v̂ε

0‖L2(Ω) + ‖θε
0 − θ̂ε

0‖L1(Ω)

)
,

(2.24)

where C�� denotes a constant which depends only on c1, c2, c3, c4, c5, c6, c7, (b − a)
and K. �
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Observe that every term in equations (2.14) and (2.15) has a meaning in the sense
of distributions, since µε(x, θε) belongs to L∞(Q). Similarly the boundary conditions
(2.16) have a meaning, since vε belongs to L∞(0, T ; H1(Ω)) and since H1(Ω) ⊂ C0(Ω).
Finally the initial conditions (2.17) and (2.18) have a meaning since vε belongs to
H1(0, T ; L2(Ω)) ⊂ C0([0, T ]; L2(Ω)) and since θε belongs to W 1,1(0, T ; L1(Ω)) ⊂
⊂ C0([0, T ]; L1(Ω)).

The regularity (2.20) of the stress σε is very specific to the fact that the problem is
one-dimensional. This regularity immediately follows, for the first statement, from the
definition (2.19) of σε and from (2.2), (2.12), and for the second statement, from equation

(2.14), which reads as
∂σε

∂x
= ρε ∂vε

∂t
− fε, and from (2.5), (2.12) and (2.7).

Remark 2.2 (Neumann and mixed boundary conditions). As pointed out in [8], a
result similar to the result of Theorem 2.1 still holds true when the Dirichlet boundary
conditions (1.5) on vε are replaced either by the Neumann boundary conditions (1.6) on
σε or by the mixed boundary conditions (1.7) on vε and σε.

In those cases, we consider sequences of boundary conditions σε
a and σε

b which satisfy
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σε
a ∈ L2(0, T ), σε

b ∈ L2(0, T ), σ0
a ∈ L2(0, T ), σ0

b ∈ L2(0, T ),

‖σε
a‖L2(0,T ) ≤ K, ‖σε

b‖L2(0,T ) ≤ K,

σε
a ⇀ σ0

a in L2(0, T ) weak, σε
b ⇀ σ0

a in L2(0, T ) weak,

(2.25)

when Neumann boundary conditions are concerned, and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vε
a ∈ H1(0, T ), σε

b ∈ L2(0, T ), v0
a ∈ H1(0, T ), σ0

b ∈ L2(0, T ),

‖vε
a‖H1(0,T ) ≤ K, ‖σε

b‖L2(0,T ) ≤ K,

vε
a ⇀ v0

a in H1(0, T ) weak, σε
b ⇀ σ0

a in L2(0, T ) weak,

(2.26)

with the compatibility condition

vε
0(a) = vε

a(0), (2.27)

when mixed boundary conditions are concerned.
Under these hypotheses, results of existence, uniqueness and local Lipschitz continuity

with respect to the data similar to Theorem 2.1 continue to hold true in the case of
Neumann or mixed boundary conditions. �

2.3. Regularity results. In this subsection, we state two regularity results on σε and
∂vε

∂t
which will play a crucial role in the proof of the homogenization result.

When Ω = (a, b) ⊂ R, an interpolation result (see Lemma 3.1 of [8]) asserts that

L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)) ⊂ L6(Q); (2.28)

this result is specific to the one-dimensional case. Combined with (2.20) and (2.23), this
immediately implies the following regularity result on σε.
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Proposition 2.3 (L6 regularity of σ). Assume that the hypotheses of Theorem 2.1
hold true. Then the stress σε defined by (2.19) satisfies

σε ∈ L6(Q), ‖σε‖L6(Q) ≤ CC�, (2.29)

where C� is the constant which appears in the a priori estimate (2.23) and where C is a
constant which depends only on (b − a). �

On the other hand, as stated by the following theorem,
∂vε

∂t
is bounded in

L∞
loc(0, T ; L2

loc(Ω)) ∩ L2
loc((0, T ); H1

loc(Ω)), when, in addition to the above hypotheses,
∂fε

∂t
is bounded in L2(0, T ; H−1(Ω)).

Theorem 2.4 (Regularity of
∂v

∂t
). Assume that the hypotheses of Theorem 2.1 hold true

and that ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂fε

∂t
∈ L2(0, T ; H−1(Ω)),

‖∂fε

∂t
‖L2(0,T ;H−1(Ω)) ≤ K ′.

(2.30)

For δ > 0 sufficiently small, denote by Ωδ the interval

Ωδ = (a + δ, b − δ). (2.31)

Then the unique solution (vε, θε) of (2.12)–(2.18) satisfies

∂vε

∂t
∈ L∞(δ, T − δ; L2(Ωδ)) ∩ L2(δ, T − δ; H1(Ωδ)), (2.32)

with

‖∂vε

∂t
‖L∞(δ,T ;L2(Ωδ)) + ‖∂vε

∂t
‖L2(δ,T ;H1(Ωδ)) ≤ C�

δ , (2.33)

where C�
δ denotes a constant which depends only on c1, c2, c3, c4, c5, c6, c7, b − a, K,

K ′ and δ. �

Theorem 2.4 is similar to Theorem 3.2 of [8], except for the fact that the regularity is
now local in time (i.e. in (δ, T − δ) and not in (0, T )) as well as in space (i.e. in Ωδ and
not in Ω). This theorem will be proved in Section 4 by a rather classical proof.

Similar regularity results hold true as far as Neumann and mixed conditions are con-
cerned.

2.4. Homogenization result. The main result of the present paper is the following.

Theorem 2.5 (Homogenization). Consider sequences of viscosity functions µε, heat co-
efficients cε, densities ρε, external forces fε, boundary conditions vε

a and vε
b and initial

conditions vε
0 and θε

0, which satisfy (2.1)–(2.11). In addition to (2.7), assume that either
(2.30), i.e.

∂fε

∂t
is bounded in L2(0, T ; H−1(Ω)), (2.34)

or
fε → f0 in L2(Q) strong, (2.35)

holds true.
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Then there exist a subsequence ε′, a homogenized viscosity function µ0 and a homog-
enized heat coefficient c0 which satisfy (2.1) (with a constant c0

7 possibly different from
c7), (2.2), (2.3) (with a modulus of continuity ω0 possibly different from ω) and (2.4)
(with constants c0

3 and c0
4 possibly different from c3 and c4), such that the unique solution

(vε, θε) of (2.12)–(2.18) and the stress σε defined by (2.19) satisfy

vε′
⇀ v0 in L∞(0, T ; H1(Ω)) weak-star, (2.36)

∂vε′

∂t
⇀

∂v0

∂t
in L2(0, T ; L2(Ω)) weak, (2.37)

θε′
⇀ θ0 in D′(Q) weak-star, (2.38){

σε′
⇀ σ0 in L∞(0, T ; L2(Ω)) weak-star

and in L2(0, T ; H1(Ω)) ∩ L6(Q) weak,
(2.39)

where (v0, θ0) is the unique solution of (2.12)–(2.18) for the viscosity function µ0, the
heat coefficient c0, the density ρ0, the external force f0, the boundary conditions v0

a and
v0

b and the initial conditions v0 and θ0, and where the stress σ0 is defined by

σ0 = µ0(x, θ0)
∂v0

∂x
. (2.40)

�
Theorem 2.5 will be proved in Section 5.
Remark 2.6 (Summary of Theorem 2.5). Theorem 2.5 asserts that there exist a subse-

quence ε′, a homogenized viscosity function µ0(x, s) and a homogenized heat conduction
coefficient c0(x, s).

Actually the subsequence ε′ and the homogenized functions µ0 and c0 depend only
(and do depend) on the sequences µε, cε and θε

0, but do not depend on the other data
ρε, fε, vε

a, vε
b and vε

0.
The functions µ0 and c0 are explicitly constructed through a rather complicated pro-

cess, which involves weak limits (for the subsequence ε′ and for every s fixed) of some
functions of µε(x, s), cε(x, s) and θε

0. This process will be described in Section 3 be-
low, where the functions µ0 and c0 as well as the subsequence ε′ will be defined (see
Propositions 3.3 and 3.4; see also Remark 3.5 where this process is summarized). �

Remark 2.7 (Stability by homogenization of cε(x, s)). Theorem 2.5 proves that the
system (2.12)–(2.18) is stable by homogenization, or in other terms is stable for sequences
of viscosity functions µε, heat coefficients cε and densities ρε which satisfy (2.1)–(2.5).

Note however that the subclass where cε only depends on x, i.e. the class where

⎧⎨
⎩

cε(x, s) = cε(x) with cε(x) ∈ L∞(Ω),

c3 ≤ cε(x) ≤ c4 a.e. x ∈ Ω,

(2.41)

is not stable by homogenization. Indeed we will exhibit in Section 6 below a sequence of
heat coefficients cε(x) satisfying (2.41) for which the homogenized heat coefficient c0 (in
the sense of Theorem 2.5) is a heat coefficient c0(x, s) which does depend on s. �
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Remark 2.8 (Oscillation and nonoscillation of the unknowns). Let us examine in

more detail the behaviour of the quantities vε,
∂vε

∂t
,

∂vε

∂x
, σε, θε and

∂θε

∂t
. We will

assume in this remark that hypothesis (2.34) holds true.
In view of (2.21), the velocities vε are bounded in H1(Q), and therefore do not oscillate.

On the other hand, in view of (2.32) and of Aubin’s compactness lemma, the accelerations
∂vε

∂t
are relatively compact in L2

loc(Q), and therefore do not oscillate. Finally in view of

(2.23), the stresses σε are bounded in L2(0, T ; H1(Ω)). Also, since⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂σε

∂t
= µε(x, θε)

∂2vε

∂x ∂t
+

∂µε

∂s
(x, θε)

∂θε

∂t

∂vε

∂x

= µε(x, θε)
∂2vε

∂x ∂t
+

∂µε

∂s
(x, θε)

1
(µε(x, θε))2 cε(x, θε)

(σε)3,

the stress rates
∂σε

∂t
are bounded in L2

loc(Q) + L2(Q) ⊂ L2
loc(Q) in view of (2.32) and

(2.29). Thus the stresses σε are bounded in H1
loc(Q), and therefore do not oscillate.

On the other hand, in view of (2.22), the temperatures θε are bounded in

W 1,1(0, T ; L1(Ω)), and therefore do not oscillate in time. Similarly the strain rates
∂vε

∂x
,

which are given by
∂vε

∂x
=

1
µε(x, θε)

σε, (2.42)

do not oscillate in time since the stresses σε do not oscillate and since the temperatures θε

(and therefore the coefficients µε(x, θε)) do not oscillate in time. Finally the temperature

increases
∂θε

∂t
, which are given by

∂θε

∂t
=

1
µε(x, θε)cε(x, θε)

(σε)2, (2.43)

do not oscillate in time for the same reason.
In contrast, we claim that the temperatures θε do oscillate in space, which implies, in

view of (2.42) and (2.43), that the strain rates
∂vε

∂x
and the temperature increases

∂θε

∂t
also oscillate in space. Indeed in the proofs below (see Sections 3, 4 and 5) (and already
in the proofs in [7] and [8]), very important quantities, herein named the transformed
temperatures τ ε (see (3.19) below), naturally appear. These transformed temperatures
τ ε are proved to be bounded in W 1,1(Q) (see (3.34) below), and therefore do not oscillate.
Such is not the case for the temperatures θε, since the formula

θε(t, x) = Nε(x, τ ε(t, x))

(see (3.20) below) implies that the temperatures θε do oscillate in space. �
Remark 2.9 (Estimates on the constants). Estimates on the constants c0

7, c0
3, c0

4

and on the modulus of continuity ω0 in terms of c1, c2, c3, c4, c7 and ω are given in
(3.49), (3.50) and (3.51). In particular, when the functions cε(x, s) are uniformly (in
x and ε) Lipschitz continuous in s, i.e. when ω(|s|) = c8|s|, then c0 is also uniformly
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(in x) Lipschitz continuous in s with a constant c0
8 possibly different from c8 (see Remark

3.7). �
Remark 2.10 (Nonequivalence of hypotheses (2.34) and (2.35)). Hypotheses (2.7)

and (2.34) do not imply (2.35), and conversely hypothesis (2.35) does not imply (2.34).
Therefore neither of the two hypotheses (2.34) and (2.35) reduces to the other one, even
if they are similar in spirit. �

Remark 2.11 (Neumann and mixed boundary conditions). Homogenization results
similar to Theorem 2.5 hold true as far as Neumann and mixed boundary conditions
are concerned. We leave their statements and proofs to the reader. Let us emphasize
that the homogenized viscosity function µ0 and heat coefficient c0 are independent of the
type of the boundary conditions and are identical to the ones which appear in Theorem
2.5. �

3. Definition of the homogenized viscosity function µ0 and of the homoge-
nized heat coefficient c0.

3.1. Transformation of the problem. As in [7] and [8], we will perform in this sub-
section a change of unknown functions, and we will write the system (2.12)–(2.18) in
an equivalent but simpler form. Although this transformation is not needed in order to
define the functions µ0 and c0, it motivates these definitions and plays an important role
in the proof of Theorem 2.5. In this subsection, we will also give a regularity result on a
very important quantity, the transformed temperature.

We first make a translation which reduces the problem to homogeneous boundary
conditions. (Such a translation does not have to be done when Neumann boundary
conditions are concerned, and it has to be conveniently modified when mixed boundary
conditions are concerned.) We define

vε(t, x) =
(x − a)vε

b(t) + (b − x)vε
a(t)

b − a
, (3.1)

uε
0(x) = vε

0(x) − vε(0, x), (3.2)

uε(t, x) = vε(t, x) − vε(t, x). (3.3)

Note that

uε
0 ∈ H1

0 (Ω), (3.4)

when vε
0, vε

a and vε
b satisfy hypotheses (2.8), (2.9) and (2.10).

Then (vε, θε) is a solution of (2.12)–(2.18) if and only if (uε, θε) is a solution of

ρε(x)
∂uε

∂t
− ∂

∂x

(
µε(x, θε)

(
∂uε

∂x
+

∂vε

∂x

))
= fε − ρε(x)

∂vε

∂t
in D′(Q), (3.5)

cε(x, θε)
∂θε

∂t
= µε(x, θε)

(
∂uε

∂x
+

∂vε

∂x

)2

in D′(Q), (3.6)

uε(t, a) = 0, uε(t, b) = 0 a.e. t ∈ (0, T ), (3.7)

uε(0, x) = uε
0(x) a.e. x ∈ Ω, (3.8)

θε(0, x) = θε
0(x) a.e. x ∈ Ω. (3.9)
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We then perform a change of unknown function by replacing θ(t, x) by a new unknown
denoted by τ (t, x). We define the functions Mε : Ω × R → R by

Mε(x, s) =
∫ s

θε
0(x)

cε(x, s′) µε(x, s′) ds′ a.e. x ∈ Ω, ∀s ∈ R. (3.10)

Since in view of (2.2) and (2.4) one has

0 < c3c1 ≤ cε(x, s′) µε(x, s′) ≤ c4c2 < +∞,

the functions s → Mε(x, s) are Carathéodory functions which are uniformly (in x and ε)
Lipschitz continuous in s and which satisfy

c3c1 ≤ ∂Mε

∂s
(x, s) ≤ c4c2 a.e. x ∈ Ω, ∀s ∈ R. (3.11)

Moreover the functions s → ∂Mε

∂s
(x, s) = cε(x, s)µε(x, s) are Carathéodory functions

which are uniformly (in x and ε) continuous in s, since in view of (2.1)–(2.4) one has⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣∂Mε

∂s
(x, s) − ∂Mε

∂s
(x, s′)

∣∣∣∣ ≤ c7c4|s − s′| + c2 ω(|s − s′|)

a.e. x ∈ Ω, ∀s, s′ ∈ R.

(3.12)

Finally, for almost every x ∈ Ω, the function s → Mε(x, s) is one-to-one from R onto R
and satisfies

Mε(x, θε
0(x)) = 0 a.e. x ∈ Ω. (3.13)

We define Nε(x, r) as the reciprocal function of Mε(x, s), i.e.

Mε(x, s) = r ⇐⇒ Nε(x, r) = s a.e. x ∈ Ω, ∀s, r ∈ R. (3.14)

The function r → Nε(x, r) is a one-to-one function from R onto R and satisfies

Nε(x, 0) = θε
0(x) a.e. x ∈ Ω. (3.15)

Since Mε(x, Nε(x, r)) = r, the chain rule yields

∂Mε

∂s
(x, Nε(x, r))

∂Nε

∂r
(x, r) = 1. (3.16)

Thus the functions r → Nε(x, r) are Carathéodory functions which are uniformly (in x

and ε) Lipschitz continuous in s and which satisfy

1
c4c2

≤ ∂Nε

∂r
(x, r) ≤ 1

c3c1
a.e. x ∈ Ω, ∀s ∈ R. (3.17)

Moreover, the functions s → ∂Nε

∂r
(x, r) are Carathéodory functions which are uniformly

(in x and ε) continuous in s, since in view of (3.16), (3.11) and (3.12), one has⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∣∣∣∣∂Nε

∂r
(x, r) − ∂Nε

∂r
(x, r′)

∣∣∣∣ =

∣∣∣∣∂Mε

∂s
(x, Nε(x, r)) − ∂Mε

∂s
(x, Nε(x, r′))

∣∣∣∣
∂Mε

∂s
(x, Nε(x, r))

∂Mε

∂s
(x, Nε(x, r′))

≤ 1
(c3c1)2

(
c7c4|Nε(x, r) − Nε(x, r′)| + c2 ω(|Nε(x, r) − Nε(x, r′)|)

)
,
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which using (3.17) implies⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣∂Nε

∂r
(x, r) − ∂Nε

∂r
(x, r′)

∣∣∣∣ ≤ c7c4

c3
3c

3
1

|r − r′| + c2

c2
3c

2
1

ω

(
|r − r′|
c3c1

)

a.e. x ∈ Ω, ∀r, r′ ∈ R.

(3.18)

We now define the transformed temperature τ ε by

τ ε(t, x) = Mε(x, θε(t, x)). (3.19)

In view of the definition (3.14) of the reciprocal function Nε, definition (3.19) is equivalent
to

θε(t, x) = Nε(x, τ ε(t, x)). (3.20)

The reason for the definition of the transformed temperature τ ε is that, multiplying
equation (3.6) by µε(x, θε) (which is bounded from above and from below by strictly
positive constants), we see that (3.6) is equivalent to

∂τ ε

∂t
=

∣∣∣∣µε(x, θε)
(

∂uε

∂x
+

∂vε

∂x

)∣∣∣∣
2

in D′(Q),

while the initial condition (3.9) is equivalent to

τ ε(0, x) = 0 a.e. x ∈ Ω.

We finally define the function λε : Ω × R → R by

λε(x, r) = µε(x, Nε(x, r)) a.e. x ∈ Ω, ∀r ∈ R. (3.21)

In view of (2.1), (2.2) and (3.17) the functions λε are Carathéodory functions which are
Lipschitz continuous in r and which satisfy

c1 ≤ λε(x, r) ≤ c2 a.e. x ∈ Ω, ∀r ∈ R, (3.22)

− c7

c3c1
≤ ∂λε

∂r
(x, r) ≤ 0 a.e. x ∈ Ω, ∀r ∈ R. (3.23)

Also one has

µε(x, θε(t, x)) = λε(x, τ ε(t, x)), (3.24)

σε(t, x) = µε(x, θε(t, x))
∂vε

∂x
(t, x) = λε(x, τ ε(t, x))

(
∂uε

∂x
(t, x) +

∂vε

∂x
(t, x)

)
. (3.25)

It is now straightforward to prove the following equivalence result.

Proposition 3.1 (Equivalence). Assume that hypotheses (2.1)–(2.11) hold true, and
define vε, uε

0, Mε, Nε and λε by (3.1), (3.2), (3.10), (3.14) and (3.21). Defining uε

and τ ε by (3.3) and (3.19), the couple (vε, θε) satisfies (2.12)–(2.18) if and only if the
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couple (uε, τ ε) satisfies

uε ∈ L∞(0, T ; H1
0 (Ω)) ∩ H1(0, T ; L2(Ω)), (3.26)

τ ε ∈ W 1,1(0, T ; L1(Ω)), (3.27)

ρε(x)
∂uε

∂t
− ∂

∂x

(
λε(x, τ ε)

(
∂uε

∂x
+

∂vε

∂x

))
= fε − ρε(x)

∂vε

∂t
in D′(Q), (3.28)

∂τ ε

∂t
=

∣∣∣∣λε(x, τ ε)
(

∂uε

∂x
+

∂vε

∂x

)∣∣∣∣
2

in D′(Q), (3.29)

uε(0, x) = uε
0(x) a.e. x ∈ Ω, (3.30)

τ ε(0, x) = 0 a.e. x ∈ Ω. (3.31)

Moreover the stress σε defined by (2.19) is equivalently defined by (3.25), and satisfies

σε ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)). (3.32)

Finally the norms of vε and θε in the spaces L∞(0, T ; H1(Ω))∩
∩H1(0, T ; L2(Ω)) and W 1,1(0, T ; L1(Ω)) and the norms of uε and τ ε in the spaces
L∞(0, T ; H1

0 (Ω))∩H1(0, T ; L2(Ω)) and W 1,1(0, T ; L1(Ω)) are equivalent, with constants
in the equivalences which depend only on c1, c2, c3, c4, (b − a) and K. �

Note that the initial conditions (3.30) and (3.31) have a meaning since
H1(0, T ; L2(Ω)) ⊂ C0([0, T ]; L2(Ω)) and since W 1,1(0, T ; L1(Ω)) ⊂ C0([0, T ]; L1(Ω)).

Actually, the transformed temperature τ ε (which belongs to W 1,1(0, T ; L1(Ω)) as
stated in (3.27)) also enjoys regularity properties which are not shared by the tem-
perature θε. Indeed we have the following result of regularity of τ ε (which goes back to
Proposition 3.1 of [7]; see also Proposition 3.1 of [8]).

Proposition 3.2 (Regularity of the transformed temperature). Assume that hypotheses
(2.1)–(2.11) hold true. Then the transformed temperature τ ε defined by (3.19) satisfies

τ ε ∈ W 1,∞(0, T ; L1(Ω)) ∩ W 1,1(0, T ; H1(Ω)) ∩ H1(0, T ; W 1,1(Ω)), (3.33)

and the following a priori estimates hold true

‖τ ε‖W 1,∞(0,T ;L1(Ω)) + ‖τ ε‖W 1,1(0,T ;H1(Ω)) + ‖τ ε‖H1(0,T ;W 1,1(Ω)) ≤ F �, (3.34)

where F � depends only on c1, c2, c3, c4, c5, c6 and K. �

The proof of Proposition 3.2 just consists to write as (see (3.25), (3.29) and (3.31))

∂τ ε

∂t
= |σε|2, τ ε(0, x) = 0,

which using (2.20) and (2.23) implies that τ ε ∈ W 1,∞(0, T ; L1(Ω)) and the corresponding
a priori estimate, but which also implies that

∂

∂t

(
∂τ ε

∂x

)
= 2σε ∂σε

∂x
,

∂τ ε

∂x
(0, x) = 0,

which using H1(Ω) ⊂ L∞(Ω), (2.20) and (2.23) implies the other assertions of Proposition
3.2.
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3.2. Definition of the homogenized functions µ0 and c0. The goal of this subsection is
to state results which define the functions µ0 and c0 which appear in Theorem 2.5. These
results will be proved in Subsection 3.3. For convenience the statements are divided into
two propositions.

Proposition 3.3 (Definition of the subsequence ε′ and of the functions N0 and λ0).
There exist a subsequence ε′ and two Carathéodory functions N0 and λ0 : Ω × R → R,
with r → N0(x, r) one-to-one and strictly increasing from R onto R for almost every
x ∈ Ω, which satisfy for almost every x ∈ Ω and for every r, r′ ∈ R

N0(x, 0) = θ0
0(x), (3.35)

1
c4c2

≤ ∂N0

∂r
(x, r) ≤ 1

c3c1
, (3.36)∣∣∣∣∂N0

∂r
(x, r) − ∂N0

∂r
(x, r′)

∣∣∣∣ ≤ c7c4

c3
3c

3
1

|r − r′| + c2

c2
3c

2
1

ω

(
|r − r′|
c3c1

)
, (3.37)

c1 ≤ λ0(x, r) ≤ c2, (3.38)

−c7c
2
2

c3c3
1

≤ ∂λ0

∂r
(x, r) ≤ 0, (3.39)

such that the functions Nε and λε defined by (3.14), (3.10) and (3.21) satisfy for every
r ∈ R

Nε′
(·, r) ⇀ N0(·, r) in D′(Ω) weak-star, (3.40)
1

λε′(·, r) ⇀
1

λ0(·, r) in L∞(Ω) weak-star. (3.41)
�

From N0 and λ0 defined in Proposition 3.3, we define µ0 and c0 in the following way.

Proposition 3.4 (Definition of the homogenized functions µ0 and c0). First define
M0(x, s) as the reciprocal function of N0(x, r), i.e.

M0(x, s) = r ⇐⇒ N0(x, r) = s a.e. x ∈ Ω, ∀s, r ∈ R. (3.42)

Then M0 : Ω × R → R is a Carathéodory function, with s → M0(x, s) one-to-one and
strictly increasing from R onto R for almost every x ∈ Ω, which satisfies for almost every
x ∈ Ω and for every s, s′ ∈ R

M0(x, θ0(x)) = 0, (3.43)

c3c1 ≤ ∂M0

∂s
(x, s) ≤ c4c2, (3.44)∣∣∣∣∂M0

∂s
(x, s) − ∂M0

∂s
(x, s′)

∣∣∣∣ ≤ c7c
4
4c

3
2

c3
3c

3
1

|s − s′| + c2
4c

3
2

c2
3c

2
1

ω

(
c4c2

c3c1
|s − s′|

)
. (3.45)

Then define µ0 and c0 : Ω × R → R by

µ0(x, s) = λ0(x, M0(x, s)), (3.46)

c0(x, s) =
∂M0

∂s
(x, s)

1
µ0(x, s)

, (3.47)
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for almost every x ∈ Ω and for every s ∈ R. Then µ0 and c0 are Carathéodory functions
which satisfy for almost every x ∈ Ω and for every s, s′ ∈ R, s ≥ s′

c1 ≤ µ0(x, s) ≤ c2, (3.48)

−c7c4c
3
2

c3c3
1

(s − s′) ≤ µ0(x, s) − µ0(x, s′) ≤ 0, (3.49)

c3c1

c2
≤ c0(x, s) ≤ c4c2

c1
, (3.50)

|c0(x, s) − c0(x, s′)] ≤
(

c7c
4
4c

3
2

c3
3c

4
1

+
c7c

2
4c

4
2

c3c5
1

)
|s − s′| + c2

4c
3
2

c2
3c

3
1

ω

(
c4c2

c3c1
|s − s′|

)
. (3.51)

For these functions µ0 and c0 and for the subsequence ε′ defined in Proposition 3.3,
Theorem 2.5 holds true. �

Remark 3.5 (Summary of the definitions of the homogenized functions µ0 and c0).
Let us summarize the way in which the homogenized functions µ0 and c0 and the subse-
quence ε′ are defined.

From the functions µε(x, s) and cε(x, s) and from the initial datum θε
0(x), we define

the function Mε(x, s) by (3.10), i.e. by

∂Mε

∂s
(x, s) = cε(x, s)µε(x, s), Mε(x, θε

0(x)) = 0,

and the function r → Nε(x, r) as the reciprocal function of s → Mε(x, s) (see (3.14)).
We then set (see (3.21))

λε(x, r) = µε(x, Nε(x, r)).

The subsequence ε′ and the functions N0(x, r) and λ0(x, r) are then chosen such that
for every fixed r ∈ R (see (3.40) and (3.41))

Nε′
(x, r) ⇀ N0(x, r) in D′(Ω) weak-star,
1

λε′(x, r)
⇀

1
λ0(x, r)

in L∞(Ω) weak-star.

Finally, the function s → M0(x, r) is defined as the reciprocal function of r → N0(x, r)
(see (3.42)). We then define µ0 by (see (3.46))

µ0(x, s) = λ0(x, M0(x, s)),

and finally define c0 by (see (3.47))

c0(x, s) =
∂M0

∂s
(x, s)

1
µ0(x, s)

.

In Section 6 we will give explicit formulas for µ0 and c0 (see formulas (6.12) and
(6.15) and Theorem 6.1) in the case of a material made of layers of given homogeneous
phases characterized by densities ρi(x) = ρi, viscosity functions µi(x, s) = µi(s) and heat
coefficients ci(x, s) = ci(s). �
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Remark 3.6 (Dependance of the functions µ0 and c0 on µε, cε and θε
0). Note that

the subsequence ε′, the homogenized viscosity function µ0 and the homogenized heat
coefficient c0 depend on (and depend only on) the sequences µε(x, s), cε(x, s) and θε

0(x).
Let us emphasize that µ0 and c0 depend on the sequence of initial temperatures θε

0. �
Remark 3.7 (Case where the functions cε are Lipschitz continuous in s). When the

functions cε(x, s) are uniformly (in x and ε) Lipschitz continuous in s, i.e. when

ω(|s|) = c8|s|,

or in other terms when hypothesis (2.3) reads as

|cε(x, s) − cε(x, s′)| ≤ c8|s − s′| a.e. x ∈ Ω, ∀s, s′ ∈ R,

then formula (3.51) implies that c0 is also uniformly (in x) Lipschitz continuous in s with
a constant c0

8 possibly different from c8. �
3.3. Proofs of Propositions 3.3 and 3.4. We begin with a classical lemma which is a

basic tool in the proofs of Propositions 3.3 and 3.4.

Lemma 3.8 (Extracting a weak converging subsequence for Carathéodory functions). Let
E be an open bounded set, E ⊂ Rm, m ≥ 1, and let F ε : E × Rk → R, k ≥ 1, be a
sequence of Carathéodory functions which satisfy, for almost every x ∈ E and for every
r, r′ ∈ Rk

|F ε(x, r) − F ε(x, r′)| ≤ ω(|r − r′|), (3.52)

|F ε(x, 0)| ≤ Gε(x), (3.53)

where ω is a modulus of continuity and where Gε is a sequence of functions such that⎧⎨
⎩

Gε ∈ L1(E), Gε bounded in L1(E), G0 ∈ L1(E),

Gε ⇀ G0 in D′(E) weak-star.
(3.54)

Then there exist a subsequence ε′ and a Carathéodory function F 0 : E ×Rk → R which
satisfies (3.52) and

|F 0(x, 0)| ≤ G0(x) a.e. x ∈ E, (3.55)

such that for every fixed r ∈ Rk,

F ε′
(·, r) ⇀ F 0(·, r) in D′(E) weak-star. (3.56)

Moreover, if in (3.52) one has
ω(|r|) = C|r| (3.57)

for some constant C > 0, i.e. if F ε is uniformly (in x and ε) Lipschitz continuous in r,
and if zε is a sequence such that

zε → z0 in L1(E)k strong, (3.58)

then
F ε′

(·, zε′
) ⇀ F 0(·, z0) in D′(E) weak-star. (3.59)

�
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Proof of Lemma 3.8. First step: Definition of the subsequence ε′ and of the function
F 0. The estimate

|F ε(x, r)| ≤ Gε
0(x) + ω(|r|) a.e. x ∈ Ω, ∀r ∈ Rk, (3.60)

which follows from (3.52) and (3.53), implies that F ε(·, r) is bounded in L1(E) for every
fixed r ∈ Rk. Therefore one can extract a (diagonal) subsequence ε′ such that for every
q ∈ Qk

F ε′
(·, q) ⇀ F 0

q in D′(E) weak-star, (3.61)

where F 0
q belongs to D′(E).

On the other hand, for r = 0, one deduces from (3.53), (3.54) and (3.61) that

−G0 ≤ F 0
0 ≤ G0 in D′(E),

which implies that F 0
0 ∈ L1(Ω) and satisfies

|F 0
0 (x)| ≤ G0(x) a.e. x ∈ E. (3.62)

For every ϕ ∈ C∞
c (E) one has (see (3.52)) for every q, q′ ∈ Qk∣∣∣∣

∫
Ω

(F ε(x, q) − F ε(x′, q′))ϕ(x)dx

∣∣∣∣ ≤ ‖ϕ‖L1(E) ω(|q − q′|).

Passing to the limit along the subsequence ε′ thanks to (3.61) implies that for every
ϕ ∈ C∞

c (E) and for every q, q′ ∈ Qk

|〈F 0
q − F 0

q′ , ϕ〉| ≤ ‖ϕ‖L1(E) ω(|q − q′|),

which implies that F 0
q − F 0

q′ belongs to L∞(E) with

‖F 0
q − F 0

q′‖L∞(E) ≤ ω(|q − q′|) ∀q, q′ ∈ Qk. (3.63)

Combining (3.63) and (3.62) implies that

F 0
q ∈ L1(Ω), ‖F 0

q − F 0
q′‖L1(E) ≤ |E| ω(|q − q′|) ∀q, q′ ∈ Qk. (3.64)

Therefore F 0
qn

is a Cauchy sequence in L1(Ω) if qn is a Cauchy sequence in Rk. For
every r ∈ Rk, we define the function F 0

r as the limit in L1(E) of any sequence F 0
qn

, where
qn ∈ Qk is any sequence which tends to r in Rk. This definition is licit since F 0

r depends
only on r and not on the sequence qn, as is easily seen by considering two sequences qn

and q′n which tend to the same r.
Moreover inequality (3.63) and the definition of F 0

r implies that

‖F 0
r − F 0

r′‖L∞(E) ≤ ω(|r − r′|) ∀r, r′ ∈ Rk. (3.65)

We now define the function F 0 : E × Rk → R by

F 0(x, r) = F 0
r (x) a.e. x ∈ E, ∀r ∈ Rk.

It immediately follows from this definition and from (3.65) and (3.62) that F 0 is a
Carathéodory function which satisfies (3.52) and (3.55).

Second step: Proof of (3.56). Let us now prove that (3.56) holds true for every r ∈ Rk

with the above-defined function F 0(·, r) and the same subsequence ε′. Let r ∈ Rk be
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fixed. In view of (3.60) we can extract from the subsequence ε′ a further subsequence,
say ε′′, which depends on r, such that

F ε′′
(·, r) ⇀ F �

r in D′(E) weak-star,

where F �
r belongs to D′(E). From (3.52) applied to r and r′ = q ∈ Qk, we deduce that

for every ϕ ∈ C∞
c (Ω) and every q ∈ Qk one has

|〈F �
r − F 0

q , ϕ〉| ≤ ‖ϕ‖L1(E) ω(|r − q|).

Using a sequence qn ∈ Qk which converges to r and the definition of F 0
r , this implies

that F �
r = F 0

r . Since the limit of the subsequence F ε′′
(·, r) is uniquely determined

independently of the subsequence ε′′, the whole sequence F ε′
(·, r) converges to F 0

r , which
is nothing but F 0(·, r), and (3.56) is proved.

Third step: Proof of (3.59). It remains to prove that (3.59) holds true when one
assumes (3.57) and (3.58). Since z ∈ L1(E)k, for every δ > 0 there exists a step function ζ

(i.e. a function of the form

ζ(x) =
∑

i

ci χi(x) a.e. x ∈ E,

where the sum is finite, where the ci belong to Rk, and where the χi are characteristic
functions of disjoints measurable sets such that

∑
i

χi(x) = 1 in E), such that

‖z0 − ζ‖L1(E)k ≤ δ.

From the formula

F ε(x, ζ(x)) =
∑

i

F ε(x, ci) χi(x),

and from (3.56) one deduces that

F ε′
(·, ζ) ⇀ F 0(·, ζ) in D′(E) weak-star.

On the other hand, one deduces from (3.52) and (3.57) that

‖F ε(·, zε) − F ε(·, ζ)‖L1(E) ≤ C ‖zε − ζ‖L1(E)k .

Similarly, since F 0 satisfies (3.52), one has

‖F 0(·, ζ) − F 0(·, z0)‖L1(E) ≤ C ‖z0 − ζ‖L1(E)k ≤ C δ.

The convergence (3.59) then follows from the previous results, from the convergence

‖zε − ζ‖L1(E)k → ‖z0 − ζ‖L1(E)k ≤ δ

and from the formula

F ε′
(·, zε′

) − F 0(·, z0) = F ε′
(·, zε′

) − F ε′
(·, ζ) + F ε′

(·, ζ) − F 0(·, ζ) + F 0(·, ζ) − F 0(·, z0).

Lemma 3.8 is proved. �
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Proof of Proposition 3.3. Since Nε satisfies (3.17) and (3.15) one has, for almost every
x ∈ Ω and for every r, r′ ∈ R⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

|Nε(x, r) − Nε(x, r′)| ≤ 1
c3c1

|r − r′|,

Nε(x, 0) = θε
0(x),

|Nε(x, r)| ≤ 1
c3c1

|r| + |θε
0(x)|.

(3.66)

Therefore one can apply Lemma 3.8 to the sequence Nε (here we use the fact that
γ0 ∈ L1(Ω) in hypothesis (2.11)). Similarly, in view of (3.18) and (3.17), one has, for
almost every x ∈ Ω and for every r, r′ ∈ R⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∣∣∣∣∂Nε

∂r
(x, r) − ∂Nε

∂r
(x, r′)

∣∣∣∣≤ c7c4

c3
3c

3
1

|r − r′| + c2

c2
3c

2
1

ω

(
|r − r′|
c3c1

)
,

1
c4c2

≤ ∂Nε

∂r
(x, r) ≤ 1

c3c1
.

(3.67)

Therefore one can apply Lemma 3.8 to the sequence
∂Nε

∂r
.

This implies that there exists a subsequence ε′ and two Carathéodory functions N0

and D0 such that for every r ∈ R

Nε′
(·, r) ⇀ N0(·, r) in D′(Ω) weak-star,

∂Nε′

∂r
(·, r) ⇀ D0(·, r) in L∞(Ω) weak-star,

where the functions N0 and D0 satisfy for almost every x ∈ Ω and for every r, r′ ∈ R⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|N0(x, r) − N0(x, r′)| ≤ 1
c3c1

|r − r′|,

N0(x, 0) = θ0
0(x),

|D0(x, r) − D0(x, r′)| ≤ c7c4

c3
3c

3
1

|r − r′| + c2

c2
3c

2
1

ω

(
|r − r′|
c3c1

)
,

1
c4c2

≤ D0(x, r) ≤ 1
c3c1

.

From the mean value theorem and from (3.67), we have for some η = η(x, r, h) with
0 < η < 1⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∣∣∣∣Nε(x, r + h) − Nε(x, r) − ∂Nε

∂r
(x, r) h

∣∣∣∣ =
∣∣∣∣∂Nε

∂r
(x, r + ηh) h − ∂Nε

∂r
(x, r) h

∣∣∣∣
≤ |h|

(
c7c4

c3
3c

3
1

|h| + c2

c2
3c

2
1

ω

(
|h|
c1c3

))
.
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Passing to the weak-star limit in D′(Ω) along the subsequence ε′ implies that

|N0(x, r + h) − N0(x, r) − D0(x, r) h| ≤ |h|
(

c7c4

c3
3c

3
1

|h| + c2

c2
3c

2
1

ω

(
|h|
c1c3

))
,

namely that

D0(x, r) =
∂N0

∂x
(x, r) a.e. x ∈ Ω, ∀r ∈ R.

This proves the assertions of Proposition 3.3 as far as the functions Nε are concerned.

Similarly, in view of (3.22) and of (3.23), the Carathéodory functions
1

λε(x, r)
satisfy

1
c2

≤ 1
λε(x, r)

≤ 1
c1

a.e. x ∈ Ω, ∀r ∈ R,

0 ≤ 1
λε(x, r)

− 1
λε(x, r′)

≤ 1
c2
1

c7

c3c1
(r − r′) a.e. x ∈ Ω, ∀r, r′ ∈ R, r > r′.

Therefore one can apply Lemma 3.8 to the sequence
1
λε

. This implies that there exists

a further subsequence, still denoted by ε′, and a Carathéodory function, that we denote

by
1
λ0

, such that for every r ∈ R

1
λε′(·, r) ⇀

1
λ0(·, r) in L∞(Ω) weak-star,

where the function
1
λ0

satisfies

1
c2

≤ 1
λ0(x, r)

≤ 1
c1

a.e. x ∈ Ω, ∀r ∈ R,

0 ≤ 1
λ0(x, r)

− 1
λ0(x, r′)

≤ 1
c2
1

c7

c3c1
(r − r′) a.e. x ∈ Ω, ∀r, r′ ∈ R, r > r′,

which implies that

c1 ≤ λ0(x, r) ≤ c2 a.e. x ∈ Ω, ∀r ∈ R,

0 ≤ λ0(x, r′) − λ0(x, r) ≤ c7c
2
2

c3c3
1

(r − r′) a.e. x ∈ Ω, ∀r, r′ ∈ R, r > r′.

This proves the assertions of Proposition 3.3 as far as the functions λε are concerned.
Proposition 3.3 is proved. �
Proof of Proposition 3.4. Since for almost every x ∈ Ω the function r → N0(x, r) is

one-to-one and strictly increasing from R into R, since N0(x, 0) = θ0
0(x) and since

1
c4c2

≤ ∂N0

∂r
(x, r) ≤ 1

c3c1
,

its reciprocal function s → M0(x, s) defined by (3.42) is one-to-one and strictly increasing
from R onto R and satisfies (3.43) and (3.44), and the function M0 : Ω × R → R is a
Carathéodory function.

Since N0(x, M0(x, s)) = s, the chain rule yields

∂N0

∂r
(x, M0(x, s))

∂M0

∂s
(x, s)) = 1,
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which implies, using (3.36) and (3.37)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∂M0

∂s
(x, s) − ∂M0

∂s
(x, s′)

∣∣∣∣ =

∣∣∣∣∂N0

∂r
(x, M0(x, s)) − ∂N0

∂r
(x, M0(x, s′))

∣∣∣∣
∂N0

∂r
(x, M0(x, s))

∂N0

∂r
(x, M0(x, s′))

≤ (c4c2)2
(

c7c4

c3
3c

3
1

|M0(x, s) − M0(x, s′)| + c2

c2
3c

2
1

ω

(
|M0(x, s) − M0(x, s′)|

c3c1

))
,

which using (3.44) implies (3.45).
If we now define µ0 by (3.46), properties (3.48) and (3.49) immediately follow from

(3.38), (3.39) and (3.44). Similarly if we define c0 by (3.47), property (3.50) immediately
follows from (3.44) and (3.48), and property (3.51) immediately follows from

⎧⎪⎪⎨
⎪⎪⎩

|c0(x, s) − c0(x, s′)|

≤ 1
µ0(x, s)

∣∣∣∣∂M0

∂s
(x, s) − ∂M0

∂s
(x, s′)

∣∣∣∣ +
∣∣∣∣∂M0

∂s
(x, s′)

∣∣∣∣ |µ0(x, s) − µ0(x, s′)|
µ0(x, s) µ0(x, s′)

,

and from (3.48), (3.45), (3.44) and (3.49).
Proposition 3.4 is proved. �

4. Proof of the regularity Theorem 2.4. The idea of the proof is to differentiate

equation (2.14) with respect to time. Setting
∂vε

∂t
= wε, and since

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂

∂t
(µε(x, θε))=

∂µε

∂s
(x, θε)

∂θε

∂t
=

∂µε

∂s
(x, θε)

µε(x, θε)
cε(x, θε)

(
∂vε

∂x

)2

=
∂µε

∂s
(x, θε)

1
cε(x, θε) µε(x, θε)

(σε)2,

one formally obtains

ρε(x)
∂wε

∂t
− ∂

∂x

(
µ(x, θε)

∂wε

∂t

)
=

∂fε

∂t
+

∂

∂x

(
∂µε

∂s
(x, θε)

1
cε(x, θε) (µε(x, θε))2

(σε)3
)

.

The right-hand side of this equation is bounded in L2(0, T ; H−1(Ω)) in view of hypothesis

(2.30) on
∂fε

∂t
, of the a priori estimate (2.29) on σε and of the estimate

∣∣∣∣∂µε

∂s
(x, s)

1
cε(x, s)(µε(x, s))2

∣∣∣∣ ≤ c7

c3c2
1

.
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Using wε as test function in this equation formally implies that wε =
∂vε

∂t
is bounded in

L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1
0 (Ω)), or more exactly in

L∞
loc(0, T ; L2

loc(Ω)) ∩ L2
loc(0, T ; H1

loc(Ω)),

since the boundary conditions on
∂vε

∂t
only belong to (and are bounded in) L2(0, T ), and

since the initial conditions are even worse.
The above computation is formal, but we will make it rigourous below by writing the

equation on the differential quotients ∂hvε in place of
∂vε

∂t
, and by using the function

ϕ2(t) ψ2(x) ∂hvε, where ϕ and ψ are cut-off functions, as test function in place of ∂hvε.
Note that the proof holds true in any dimension, whenever the a priori estimate (2.29)

holds true.
Let us now pass to the correct proof of Theorem 2.4.
Let (vε, θε) be a solution of (2.12)–(2.18). For h > 0, we denote by ∂hvε, ∂hθε and

∂hfε the differential quotients

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂hvε(t, x) =
vε(t + h, x) − vε(t, x)

h
,

∂hθε(t, x) =
θε(t + h, x) − θε(t, x)

h
,

∂hfε(t, x) =
fε(t + h, x) − fε(t, x)

h
.

Making the difference of equation (2.14) at time t + h and at time t, we have

ρε ∂ ∂hvε

∂t
− ∂

∂x

(
µε(x, θε(t + h, x))

∂ ∂hvε

∂x

)
= ∂hfε +

∂

∂x

(
γε

h

∂vε

∂x

)
in D′(Q), (4.1)

where we have set

γε
h(t, x) =

µε(x, θε(t + h, x)) − µε(x, θε(t, x))
h

. (4.2)

We now fix δ > 0 sufficiently small and define ϕδ(t) and ψδ(x) by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ϕδ(t) =
t

δ
if 0 ≤ t ≤ δ, ϕδ(t) = 1 if t ≥ δ,

ψδ(x) =
x − a

δ
if a ≤ x ≤ a + δ, ψδ(x) =

b − x

δ
if b − δ ≤ x ≤ b,

ψδ(x) = 1 if a + δ ≤ x ≤ b − δ.
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The function ϕ2
δ(t) ψ2

δ(x) ∂hvε(t, x) belongs to L2(0, T ; H1
0 (Ω)) ∩H1(0, T ; L2(Ω)) and

can be used as test function in (4.1). This yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

d

dt

∫
Ω

ρε(x) ϕ2
δ(t) ψ2

δ (x) |∂hvε(t, x)|2dx

+
∫

Ω

µε(x, θε(t + h, x)) ϕ2
δ(t) ψ2

δ(x)
∣∣∣∣∂ ∂hvε

∂x
(t, x)

∣∣∣∣
2

dx

=
∫

Ω

ρε(x) ϕδ(t)
dϕδ

dt
(t) ψ2

δ(x) |∂hvε(t, x)|2dx

−
∫

Ω

µε(x, θε(t + h, x)) ϕ2
δ(t) 2 ψδ(x)

dψδ

dx
(x)

∂ ∂hvε

∂x
(t, x) ∂hvε(t, x) dx

+
∫

Ω

∂hfε(t, x) ϕ2
δ(t) ψ2

δ (x) ∂hvε(t, x) dx

−
∫

Ω

γε
h(t, x)

∂vε

∂x
(t, x) ϕ2

δ(t) ψ2
δ(x)

∂ ∂hvε

∂x
(t, x) dx

−
∫

Ω

γε
h(t, x)

∂vε

∂x
(t, x) ϕ2

δ(t) 2 ψδ(x)
dψδ

dx
(x) ∂hvε(t, x) dx.

Integration in time from 0 to t, estimates (2.2) and (2.5) on µε and ρε, and Young’s
inequality yield⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c5

2

∫
Ω

ϕ2
δ(t) ψ2

δ(x) |∂hvε(t, x)|2dx

+ c1

∫ t

0

∫
Ω

ϕ2
δ(t

′) ψ2
δ (x)

∣∣∣∣∂ ∂hvε

∂x
(t′, x)

∣∣∣∣
2

dx dt′

≤ c6

δ

∫ t

0

∫
Ω

|∂hvε(t′, x)|2dx dt′

+
c1

4

∫ t

0

ϕ2
δ(t

′) ψ2
δ (x)

∣∣∣∣∂ ∂hvε

∂x
(t′, x)

∣∣∣∣
2

dx dt′ +
1
c1

4c2
2

δ2

∫ t

0

∫
Ω

|∂hvε(t′, x)|2 dx dt′

+
∫ t

0

∫
Ω

∂hfε(t′, x) ϕ2
δ(t

′) ψ2
δ (x) ∂hvε(t′, x) dx dt′

+
c1

4

∫ t

0

∫
Ω

ϕ2
δ(t

′) ψ2
δ (x)

∣∣∣∣∂ ∂hvε

∂x

∣∣∣∣
2

dx dt′ +
1
c1

∫ t

0

∫
Ω

|γε
h(t′, x)|2

∣∣∣∣∂vε

∂x
(t′, x)

∣∣∣∣
2

dx dt′

+
1
δ

∫ t

0

∫
Ω

|∂hvε(t′, x)|2dx dt′ +
1
δ

∫ t

0

∫
Ω

|γε
h(t′, x)|2

∣∣∣∣∂vε

∂x
(t′, x)

∣∣∣∣
2

dx dt′.

(4.3)
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Let us now estimate the various terms which appear in the right-hand side of (4.3).
We first estimate the fourth term, say IV ε, of the right-hand side of (4.3). Since

by hypothesis (2.30) the functions
∂fε

∂t
are bounded in L2(0, T ; H−1(Ω)), there exist

functions gε ∈ L2(Q) such that
∂fε

∂t
=

∂gε

∂x
, ‖gε‖L2(Q) ≤ CK ′, (4.4)

where the constant C only depends on (b − a). Therefore⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂hfε(t′, x)=
1
h

∫ t′+h

t′

∂fε

∂t
(s, x) ds

=
1
h

∫ t′+h

t′

∂gε

∂x
(s, x) ds =

∂

∂x

(
1
h

∫ t′+h

t′
gε(s, x) ds

)
.

Then using integration by parts and Young’s inequality we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

IV ε =
∫ t

0

∫
Ω

∂hfε(t′, x) ϕ2
δ(t

′) ψ2
δ (x) ∂hvε(t′, x) dx dt′

=
∫ t

0

∫
Ω

∂

∂x

(
1
h

∫ t′+h

t′
gε(s, x) ds

)
ϕ2

δ(t
′) ψ2

δ (x) ∂hvε(t′, x) dx dt′

= −
∫ t

0

∫
Ω

(
1
h

∫ t′+h

t′
gε(s, x) ds

)
ϕ2

δ(t
′) ψ2

δ (x)
∂ ∂hvε

∂x
(t′, x) dx dt′

−
∫ t

0

∫
Ω

(
1
h

∫ t′+h

t′
gε(s, x) ds

)
ϕ2

δ(t
′) 2 ψδ(x)

dψδ

dx
(x) ∂hvε(t′, x) dx dt′

≤ c1

4

∫ t

0

∫
Ω

ϕ2
δ(t

′) ψ2
δ (x)

∣∣∣∣∂ ∂hvε

∂x
(t′, x)

∣∣∣∣
2

dx dt′ +
1
c1

∫ t

0

∫
Ω

∣∣∣∣∣ 1h
∫ t′+h

t′
gε(s, x) ds

∣∣∣∣∣
2

dx dt′

+
1
δ

∫ t

0

∫
Ω

∣∣∣∣∣ 1h
∫ t′+h

t′
gε(s, x) ds

∣∣∣∣∣
2

dx dt′ +
1
δ

∫ t

0

∫
Ω

|∂hvε(t′, x)|2dx dt′.

In the last right-hand side, using Cauchy-Schwartz’ inequality, the formula∫ t

0

∫ t′+h

t′
|z(s)| ds dt′ ≤ h

∫ t+h

0

|z(s)| ds, (4.5)

and the estimate (4.4) on gε, we obtain when t + h ≤ T⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ t

0

∫
Ω

∣∣∣∣∣ 1h
∫ t′+h

t′
gε(s, x) ds

∣∣∣∣∣
2

dx dt′ ≤
∫ t

0

∫
Ω

1
h2

(
h

∫ t′+h

t′
|gε(s, x)|2ds

)
dx dt′

≤
∫ t+h

0

∫
Ω

|gε(s, x)|2dx ds ≤ C2K ′2.
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In short, when t + h ≤ T , we have proved that
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

IV ε ≤ c1

4

∫ t

0

∫
Ω

ϕ2
δ(t

′) ψ2
δ (x)

∣∣∣∣∂ ∂hvε

∂x
(t′, x)

∣∣∣∣
2

dx dt′

+
(

1
c1

+
1
δ

)
C2K ′2 +

1
δ

∫ t

0

∫
Ω

|∂hvε(t′, x)|2dx dt′.

(4.6)

We next estimate the sixth and eighth terms of the right-hand side of (4.3). Using the
definition (2.19) of σε, the estimate (2.2) on µε, Hölder’s inequality with 2

3 + 1
3 = 1, and

the a priori estimate (2.29) on σε, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xε =
∫ t

0

∫
Ω

|γε
h(t′, x)|2

∣∣∣∣∂vε

∂x
(t′, x)

∣∣∣∣
2

dx dt′

=
∫ t

0

∫
Ω

|γε
h(t′, x)|2

∣∣∣∣ 1
µε(x, θε(t′, x))

∣∣∣∣
2

|σε(t′, x)|2dx dt′

≤ 1
c2
1

(∫ t

0

∫
Ω

|γε
h(t′, x)|3dx dt′

) 2
3

(∫ t

0

∫
Ω

|σε(t′, x)|6dx dt′
) 1

3

≤ C2C�2

c2
1

(∫ t

0

∫
Ω

|γε
h(t′, x)|3dx dt′

) 2
3

.

(4.7)

On the other hand, the definition (4.2) of γε
h and the Lipschitz continuity (2.1) of µε

with respect to s yield⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|γε
t (t′, x)|=

∣∣∣∣µε(x, θε(t′ + h, x)) − µε(x, θε(t′, x))
h

∣∣∣∣
≤ c7

h
|θε(t′ + h, x) − θε(t′, x)| ≤ c7

h

∣∣∣∣∣
∫ t′+h

t′

∂θε

∂t
(s, x)ds

∣∣∣∣∣ .
But equation (2.15) on θε, definition (2.19) of σε, and estimates (2.2) and (2.4) on µε

and cε yield⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣∣∣∂θε

∂t
(s, x)

∣∣∣∣= ∂θε

∂t
(s, x) =

µε(x, θε(s, x))
cε(x, θε(s, x))

∣∣∣∣∂vε

∂x
(s, x)

∣∣∣∣
2

=
1

cε(x, θε(s, x)) µε(x, θε(s, x))
|σε(s, x)|2 ≤ 1

c3c1
|σε(s, x)|2.

Finally by Hölder’s inequality with 1
3 + 2

3 = 1, we have

|γε
h(t′, x)|3 ≤

(
c7

c3c1

1
h

∫ t′+h

t′
|σε(s, x)|2ds

)3

≤ c3
7

c3
3c

3
1

1
h

∫ t′+h

t′
|σε(s, x)|6dx ds.
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Using formula (4.5) and the a priori estimate (2.29) on σε we obtain when t + h ≤ T

Xε ≤ C2C�2

c2
1

c2
7

c2
3c

2
1

(∫ t+h

0

∫
Ω

|σε(s, x)|6dx ds

) 2
3

≤ c2
7

c2
3c

4
1

C6C�6.

We finally estimate the term∫ t

0

∫
Ω

|∂hvε(t′, x)|2dx dt′,

which appears in the first, third and seventh terms of the right-hand side of (4.3), as well
as in the last term of the right-hand side of (4.6). Since

∂hvε(t′, x) =
1
h

∫ t′+h

t′

∂vε

∂t
(s, x)ds,

using Cauchy-Schwartz’ inequality, formula (4.5) and the a priori estimate (2.21) on
∂vε

∂t
,

we have when t + h ≤ T⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ t

0

∫
Ω

|∂hvε(t′, x)|2dx dt′ ≤
∫ t

0

∫
Ω

1
h2

h

∫ t′+h

t′

∣∣∣∣∂vε

∂t
(s, x)

∣∣∣∣
2

ds dx dt′

≤
∫ t+h

0

∫
Ω

∣∣∣∣∂vε

∂t
(s, x)

∣∣∣∣
2

ds ≤ C�2.

(4.8)

Using in (4.3) the estimates (4.6) and (4.7) on IV ε and Xε as well as (4.8), we have
proved that when t + h ≤ T⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c5

2

∫
Ω

ϕ2
δ(t) ψ2

δ (x) |∂hvε(t, x)|2dx +
c1

4

∫ t

0

∫
Ω

ϕ2
δ(t

′) ψ2
δ (x)

∣∣∣∣∂ ∂hvε

∂x
(t′, x)

∣∣∣∣
2

dx dt′

≤
(

c6

δ
+

4
δ2

c2
2

c1
+

2
δ

)
C�2 +

(
1
c1

+
1
δ

)
C2K ′2 +

(
1
c1

+
1
δ

)
c2
7

c2
3c

4
1

C6C�6.

Letting h tend to zero, this implies in particular that for every fixed δ > 0, every ε > 0,
and every t with δ ≤ t ≤ T , we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

c5

2

∫
Ωδ

∣∣∣∣∂vε

∂t
(t, x)

∣∣∣∣
2

dx +
c1

4

∫ T

δ

∫
Ωδ

∣∣∣∣∣∣∣∣
∂

(
∂vε

∂t

)
∂x

(t′, x)

∣∣∣∣∣∣∣∣

2

dx dt′

≤ 2
((

c6

δ
+

4
δ2

c2
2

c1
+

2
δ

)
C�2 +

(
1
c1

+
1
δ

)
C2K ′2 +

(
1
c1

+
1
δ

)
c2
7

c2
3c

4
1

C6C�6

)
,

which is nothing but (2.33).
Theorem 2.4 is proved. �
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5. Proof of the homogenization Theorem 2.5. Since the data satisfy (2.1)–
(2.11), Theorem 2.1 implies that the unique solution (vε, θε) of (2.12)–(2.18) satisfies
estimates (2.21)–(2.22), and that the stress σε defined by (2.19) satisfies the a priori
estimate (2.23). By Proposition 2.3 the stress σε also satisfies the a priori estimate
(2.29).

On the other hand, the transformed temperature τ ε satisfies the a priori estimate
(3.34). Therefore we can extract from the subsequence ε′ defined in Proposition 3.3 a
new subsequence denoted by ε′′ such that for some v, θ, σ and τ we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vε′′
⇀ v in L∞(0, T ; H1(Ω)) weak-star,

∂vε′′

∂t
⇀

∂v

∂t
in L2(0, T ; L2(Ω)) weak,

θε′′
⇀ θ in D′(Q) weak-star,

σε′′
⇀ σ in L∞(0, T ; L2(Ω)) weak-star,

and in L2(0, T ; H1(Ω)) ∩ L6(Q) weak,

τ ε′′ → τ in L1(Q) strong,

(5.1)

where for the strong convergence of τ ε′′
we have used the fact that the embedding of

W 1,1(Q) in L1(Q) is compact.
We will prove that (v, θ) is a solution of (2.12)–(2.18) for the viscosity function µ0 and

the heat coefficient c0 defined in Proposition 3.4, and for the density ρ0 and the data
f0, v0

a, v0
b , v0

0 and θ0
0 defined in (2.6)–(2.11). Since this solution is unique, this will prove

that it is not necessary to extract a subsequence ε′′ from the sequence ε′ and that the
whole sequences vε′

, θε′
and σε′

converge, as stated in Theorem 2.5 and Remark 2.6.

5.1. First case: the case where
∂fε

∂t
is bounded in L2(0, T ; H−1(Ω)). In this first case

we assume that, in addition to the hypotheses of Theorem 2.1, hypothesis (2.34) also
holds true. Then Theorem 2.4 implies that ∂vε

∂t is bounded in L2
loc(0, T ; H1

loc(Ω)) (see
(2.33)), namely that

∂2vε

∂x ∂t
is bounded in L2

loc(Q). (5.2)

Then the definition (2.19) of σε, namely

σε(t, x) = µε(x, θε(t, x))
∂vε

∂x
(t, x),
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and equation (2.15) on θε imply that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂σε

∂t
= µε(x, θε)

∂2vε

∂x ∂t
+

∂µε

∂s
(x, θε)

∂θε

∂t

∂vε

∂x

= µε(x, θε)
∂2vε

∂x ∂t
+

∂µε

∂s
(x, θε)

1
cε(x, θε)

µε(x, θε)
(

∂vε

∂x

)2
∂vε

∂x

= µε(x, θε)
∂2vε

∂x ∂t
+

∂µε

∂s
(x, θε)

1
cε(x, θε)(µε(x, θε))2

(σε)3.

Using the estimates (2.2), (2.1) and (2.4) on µε,
∂µε

∂s
, and cε, and the estimates (5.2)

and (2.29) on
∂2vε

∂x ∂t
and σε, we conclude that

∂σε

∂t
is bounded in L2

loc(Q).

Combined with the a priori estimate (2.23) on σε, this implies that

σε is bounded in H1
loc(Q).

Turning back to (5.1) and using Rellich’s compactness theorem, we have proved that

σε′′ → σ in L2
loc(Q) strong. (5.3)

By the definition (3.21) of the function λε, the definition (3.20) of the transformed
temperature τ ε and the definition (2.19) of the stress σε, we have (see (3.24))

σε = λε(x, τ ε)
∂vε

∂x
,

or equivalently, in view of the estimates (3.22) on λε

∂vε

∂x
=

1
λε(x, τ ε)

σε in D′(Q). (5.4)

Since by Proposition 3.3 the functions
1

λε′(x, r)
, which are uniformly (in x and ε) Lips-

chitz continuous in s (see (3.23)), converge in L∞(Ω) weak-star to
1

λ0(x, r)
for every r

fixed (see (3.41)), and since τ ε′′
converges to τ strong in L1(Ω) (see (5.1)), the second

part of Lemma 3.8 implies that

1
λε′′(x, τ ε′′(t, x))

⇀
1

λ0(x, τ(t, x))
in D′(Q) weak-star,

and also in L∞(Q) weak-star since the sequence
1

λε(x, τ ε)
is bounded in L∞(Q). Com-

bined with the strong convergence of σε′′
in L2

loc(Q) (see (5.3)), this allows us to pass to
the limit in (5.4). We have proved that

∂v

∂x
=

1
λ0(x, τ)

σ in D′(Q),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



390 NICOLAS CHARALAMBAKIS AND FRANÇOIS MURAT

or equivalently that

σ = λ0(x, τ)
∂v

∂x
in D′(Q). (5.5)

On the other hand, the definition (3.20) of the transformed temperature τ ε asserts
that

θε(t, x) = Nε(x, τ ε(t, x)). (5.6)

Since by Proposition 3.3 the functions Nε′
(x, r), which are uniformly (in x and ε) Lip-

schitz continuous in s (see (3.17)), converge to N0(x, r) in D′(Ω) weak-star for every r

fixed, since the functions θε
0 and θ0

0 satisfy (2.11), and finally since τ ε′′
converges strong

to τ in L1(Q), the second part of Lemma 3.8 implies that

Nε′′
(x, τ ε′′

(t, x)) ⇀ N0(x, τ(t, x)) in D′(Q) weak-star.

Therefore passing to the limit in (5.6) with the help of (5.1), we have proved that

θ(t, x) = N0(x, τ(t, x)).

By the definition (3.42) of the reciprocal function M0 of the function N0, this is equivalent
to

τ (t, x) = M0(x, θ(t, x)). (5.7)

In view of the definition (3.46) of the function µ0, (5.5) and (5.7) imply that

σ = µ0(x, θ)
∂v

∂x
. (5.8)

It is now easy to pass to the limit in equation (2.14). Since

ρε(x)
∂vε

∂t
=

∂

∂t
(ρε(x)vε)

and since vε′′
tends to v in L2(Q) strong by (5.1) and Rellich’s compactness theorem,

one obtains, in view of (2.6), (5.1) and (2.7)

ρ0 ∂v

∂t
− ∂σ

∂x
= f0 in D′(Q),

which, in view of formula (5.8) for σ, is nothing but equation (2.14) with ε = 0.
Similarly, since σε′′

converges to σ in L2
loc(Q) strong (see (5.3)), one easily passes to

the limit in equation (3.29), namely (see (3.25))

∂τ ε

∂t
= |σε|2 in D′(Q).

This yields
∂τ

∂t
= |σ|2 in D′(Q). (5.9)

But (5.7) and the definition (3.47) of c0(x, s) in Proposition 3.4 imply that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂τ

∂t
(t, x)=

∂

∂t
(M0(x, θ(t, x))) =

∂M0

∂s
(x, θ(t, x))

∂θ

∂t
(t, x)

= c0(x, θ(t, x)) µ0(x, θ(t, x))
∂θ

∂t
(t, x),
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which, combined with equation (5.9), formula (5.8) for σ and the fact that µ0 is strictly
positive (see (3.48)), implies that

c0(x, θ)
∂θ

∂t
= µ0(x, θ)

(
∂v

∂x

)2

in D′(Q),

i.e. equation (2.15) with ε = 0.
We observe (see (5.1)) that v enjoys the regularity (2.12). We now investigate the

boundary and initial conditions on v. Passing to the limit in (2.16) with the help of (5.1)
and (2.8) implies that v satisfies

v(t, a) = v0
a(t), v(t, b) = v0

b (t) a.e. t ∈ (0, T ),

i.e. the boundary conditions (2.16) with ε = 0.
For what concerns the initial condition on v, we define for every fixed ϕ ∈ C∞

c (Ω) the
functions Vε : (0, T ) → R by

Vε(t) =
∫

Ω

vε(t, x) ϕ(x) dx a.e. t ∈ (0, T ),

and the function V : (0, T ) → R by

V(t) =
∫

Ω

v(t, x) ϕ(x) dx a.e. t ∈ (0, T ).

In view of (5.1), the functions Vε satisfy

Vε′′
⇀ V in H1(0, T ) weak,

and therefore that
Vε′′

→ V in C0([0, T ]) strong.

This implies in particular that

Vε′′
(0) =

∫
Ω

vε′′
(0, x) ϕ(x) dx → V(0) =

∫
Ω

v(0, x) ϕ(x) dx,

and since vε(0, x) = vε
0(x) (see (2.17)), this yields in view of (2.9)

v(0, x) = v0
0(x) a.e. x ∈ Ω,

i.e. the initial condition (2.17) with ε = 0.
It remains to prove that θ enjoys the regularity (2.13) and satisfies the initial condition

(2.18) with ε = 0.
For that, using equation (2.15) on θε and the definition (2.19) of σε, we write

∂θε

∂t
=

1
cε(x, θε)

µε(x, θε)
(

∂vε

∂x

)2

=
1

cε(x, θε)µε(x, θε)
(σε)2,

which, in view of the estimates (2.2) and (2.4) on µε and cε and of the a priori estimate
(2.29) on σε, implies that

∂θε

∂t
is bounded in L3(Q). (5.10)

Combined with (5.1), this implies that

∂θ

∂t
∈ L3(Q). (5.11)
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We now define for every fixed ϕ ∈ C∞
c (Ω) the functions T ε : (0, T ) → R by

T ε(t) =
∫

Ω

θε(t, x) ϕ(x) dx a.e. t ∈ (0, T ),

and the function T : (0, T ) → R by

T (t) =
∫

Ω

θ(t, x) ϕ(x) dx a.e. t ∈ (0, T ).

In view of (5.10), one has
∂T ε

∂t
bounded in L3(0, T ),

and in view of the initial condition (2.18) on θε one has

T ε(0) =
∫

Ω

θε(0, x) ϕ(x) dx =
∫

Ω

θε
0(x) ϕ(x) dx. (5.12)

Using estimate (2.11) on θε
0, we deduce that T ε(0) is bounded and therefore that T ε is

bounded in W 1,3(0, T ). Since T ε′′
converge to T in D′(0, T ) weak-star in view of (5.1),

this implies that
T ε′′

⇀ T in W 1,3(0, T ) weak,

and therefore that
T ε′′

→ T in C0([0, T ]) strong.

This implies in particular that

T ε′′
(0) =

∫
Ω

θε(0, x)ϕ(x)dx → T (0) =
∫

Ω

θ(0, x)ϕ(x)dx.

Using (5.12) and the convergence (2.11) on θε
0, we conclude that

θ(0, x) = θ0
0(x) a.e. x ∈ Ω,

i.e. the initial condition (2.18) with ε = 0.

Since
∂θ

∂t
belongs to L3(Q) and since θ(0, x) belongs to L1(Ω), the distribution θ

actually belongs to W 1,3(0, T ; L1(Ω)), and therefore to W 1,1(0, T ; L1(Ω)). This proves
that θ enjoys the regularity (2.13).

In conclusion, we have proved that v, θ and σ defined in (5.1) satisfy (2.12)–(2.18)
and (2.19) with ε = 0. Uniqueness of the solution of this system implies that v = v0,
θ = θ0 and σ = σ0, and that the convergences (5.1) take place for the whole subsequence
ε′ defined in Proposition 3.3 and not only for a further subsequence ε′′.

Theorem 2.5 is therefore proved when hypothesis (2.34) holds true.
5.2. Second case: the case where fε is compact in L2(Q). In this second case we

assume that (2.35) holds true.
Let ψ be a given function such that

ψ ∈ C∞
c (R), ψ ≥ 0,

∫
R

ψ(t)dt = 1.

We define the regularizing sequence ψη by

ψη(t) =
1
η

ψ

(
t

η

)
, η > 0.
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Next we consider the functions fε
η and f0

η defined by

fε
η (t, x) =

∫
R

f̃ε(s, x) ψη(t − s) ds,

f0
η (t, x) =

∫
R

f̃0(s, x) ψη(t − s) ds,

where f̃ε and f̃0 are defined by extending fε and f0 by zero to R × Ω, i.e.⎧⎨
⎩

f̃ε(t, x) = fε(t, x) if 0 < t < T,

f̃ε(t, x) = 0 if t < 0 or if t > T,⎧⎨
⎩

f̃0(t, x) = f0(t, x) if 0 < t < T,

f̃0(t, x) = 0 if t < 0 or if t > T.

The functions fε
η satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖fε
η‖L2(Q) ≤ K,

∥∥∥∥∂fε
η

∂t

∥∥∥∥
L2(Q)

≤
K‖ψ′‖L1(R)

η
,

fε
η ⇀ f0

η in L2(Q) weak for η fixed,

f0
η → f0 in L2(Q) strong.

(5.13)

Let (vε
η, θε

η) be the unique solution of (2.12)–(2.18) for the external forces fε
η , the

coefficients µε, cε and ρε and the data vε
a, vε

b , vε
0 and θε

0. Since the second assertion

of (5.13) ensures that for η > 0 fixed,
∂fε

η

∂t
is bounded in L2(0, T ; H−1(Ω)), the result

proved in the previous subsection implies that for η > 0 fixed one has⎧⎨
⎩

vε′

η ⇀ v0
η in L∞(0, T ; H1(Ω)) ∩ H1(0, T ; L2(Ω)) weak-star,

θε′

η ⇀ θ0
η in D′(Q) weak-star,

(5.14)

where the subsequence ε′ is defined in Proposition 3.3, and where (v0
η, θ0

η) is the unique
solution of (2.12)–(2.18) for the external forces f0

η , the coefficients µ0, c0 and ρ0 and the
data v0

a, v0
b , v0

0 and θ0
0.

On the other hand, since ‖fε
η − f0

η‖L2(Q) ≤ ‖fε − f0‖L2(Q), we have for every ε > 0
and every η > 0⎧⎨

⎩
‖fε

η − fε‖L2(Q) ≤ ‖fε
η − f0

η‖L2(Q) + ‖f0
η − f0‖L2(Q) + ‖f0 − fε‖L2(Q)

≤ 2 ‖fε − f0‖L2(Q) + ‖f0
η − f0‖L2(Q).
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Since (vε
η, θε

η) and (vε, θε) respectively correspond to the data (fε
η , vε

a, vε
b , v

ε
0, θ

ε
0) and

(fε, vε
a, vε

b , v
ε
0, θ

ε
0), the a priori estimate (2.24) implies that

⎧⎨
⎩

‖vε
η − vε‖L∞(0,T ;L2(Ω)) + ‖vε

η − vε‖L2(0,T ;H1(Ω)) + ‖θε
η − θε‖L∞(0,T ;L1(Ω))

≤ C��‖fε
η − fε‖L2(Q),

where C�� is a constant which depends only on c1, c2, c3, c4, c5, c6, c7, (b − a) and K.
Therefore we have⎧⎨

⎩
‖vε

η − vε‖L∞(0,T ;L2(Ω)) + ‖vε
η − vε‖L2(0,T ;H1(Ω)) + ‖θε

η − θε‖L∞(0,T ;L1(Ω))

≤ C��(2 ‖fε − f0‖L2(Q) + ‖f0
η − f0‖L2(Q)).

(5.15)

For (v0
η, θ0

η) and (v0, θ0), the same a priori estimate (2.24) implies that

⎧⎨
⎩

‖v0
η − v0‖L∞(0,T ;L2(Ω)) + ‖v0

η − v0‖L2(0,T ;H1(Ω)) + ‖θ0
η − θ0‖L∞(0,T ;L1(Ω))

≤ C��‖f0
η − f0‖L2(Q).

(5.16)

We now write ⎧⎨
⎩

vε − v0 = vε − vε
η + vε

η − v0
η + v0

η − v0,

θε − θ0 = θε − θε
η + θε

η − θ0
η + θ0

η − θ0.

(5.17)

Combining (5.17) with (5.15), (5.14), (5.16) and (5.13) proves that, for the subsequence
ε′ defined in Proposition 3.3,

⎧⎨
⎩

vε′
⇀ v0 in L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)) weak-star,

θε′
⇀ θ0 in D′(Q) weak-star,

where (v0, θ0) is the solution of (2.12)–(2.18) for the coefficients µ0, c0 and ρ0 and for
the data (f0, v0

a, v0
b , v0

0 , θ0
0). Since vε is bounded in L∞(0, T ; H1(Ω)) ∩ H1(0, T ; L2(Ω))

(see (2.21)), the convergence of vε′
also takes place in L∞(0, T ; H1(Ω))∩H1(0, T ; L2(Ω))

weak-star. This proves convergences (2.36), (2.37) and (2.38). Convergence (2.39) is
then proved using (5.4) as in the previous subsection.

Theorem 2.5 is therefore proved when hypothesis (2.35) holds true. �

6. An example showing that the homogenized heat coefficient c0 depends
in general on the temperature. In this section we consider the case of a material
made of layers of size ε of some given homogeneous phases characterized by densities
ρi(x) = ρi, viscosity functions µi(x, s) = µi(s) and heat coefficients ci(x, s) = ci(s),
i = 1, ..., I. In this special case we give explicit formulas for the homogenized density ρ0,
the homogenized viscosity function µ0 and the homogenized heat coefficient c0.
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In this setting, the density, the viscosity function and the heat coefficient are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρε(x) =
I∑

i=1

ρi χε
i (x),

µε(x, s) =
I∑

i=1

µi(s) χε
i (x),

cε(x, s) =
I∑

i=1

ci(s) χε
i (x).

(6.1)

Here, for every fixed ε > 0, the functions χε
i (x) are characteristic functions of disjoint

measurable sets whose union is Ω, i.e. functions which satisfy

χε
i (x)(1 − χε

i (x)) = 0 for i = 1, ..., I,

I∑
i=1

χε
i (x) = 1 a.e. x ∈ Ω,

(this setting generalizes the case of a material made of layers of size ε), the constants ρi

satisfy for i = 1, ..., I

c5 ≤ ρi ≤ c6,

the functions µi : R → R are bounded, Lipschitz continuous, nonincreasing functions
which satisfy for i = 1, ..., I

−c7 ≤ ∂µi

∂s
(s) ≤ 0, c1 ≤ µi(s) ≤ c2 ∀s ∈ R,

and finally the functions ci : R → R are bounded, uniformly continuous functions which
satisfy for i = 1, ..., I

|ci(s) − ci(s′)| ≤ ω(|s − s′|), c3 ≤ ci(s) ≤ c4 ∀s, s′ ∈ R,

where ω is a modulus of continuity. Then the functions ρε(x), µε(x, s) and cε(x, s) defined
by (6.1) satisfy hypotheses (2.1)–(2.5).

We moreover assume that for i = 1, ..., I

χε
i ⇀ pi in L∞(Ω) weak-star, (6.2)

where the function pi describes the volume fraction of the material i at the point x in
the homogenized material. Under this hypothesis, the extraction of a subsequence ε′ in
Proposition 3.3 and in the homogenization Theorem 2.5 is no longer necessary. Note
that

0 ≤ pi(x) ≤ 1 for i = 1, ..., I,

I∑
i=1

pi(x) = 1 a.e. x ∈ Ω.

Let us give in this case explicit formulas for the functions ρ0, µ0 and c0 which appear
in the homogenization Theorem 2.5.

The homogenized density ρ0 is given by (see (2.6))

ρ0(x) =
I∑

i=1

ρi pi(x) a.e. x ∈ Ω. (6.3)

Considering for simplicity the case where

θε
0(x) = 0, (6.4)
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and defining, for I = 1, ..., I, the functions Mi : R → R by

Mi(s) =
∫ s

0

ci(s′) µi(s′) ds′, ∀s ∈ R, (6.5)

as well as their inverse functions Ni : R → R by

Mi(s) = r ⇐⇒ s = Ni(r) ∀s, r ∈ R, (6.6)

we have (see (3.10) and (3.14))

Mε(x, s) =
I∑

i=1

Mi(s) χε
i (x) a.e. x ∈ Ω, ∀s ∈ R,

Nε(x, r) =
I∑

i=1

Ni(r) χε
i (x), a.e. x ∈ Ω, ∀r ∈ R.

Then the function N0 defined by (3.40) is given by

N0(x, r) =
I∑
i

Ni(r) pi(x). (6.7)

The function M0(x, s) is then defined as the reciprocal function of N0(x, r) (see (3.42)),
i.e.

M0(x, s) = r ⇐⇒ N0(x, r) = s a.e. x ∈ Ω, ∀s, r ∈ R.

Defining, for i = 1, ..., I, the functions λi : R → R by

λi(r) = µi(Ni(r)), ∀r ∈ R, (6.8)

we have (see (3.21))

λε(x, r) = µε(x, Nε(x, r)) =
I∑

i=1

λi(r) χε
i (x) a.e. x ∈ Ω, ∀r ∈ R.

Then the homogenized function λ0 defined by (3.41) is given by

1
λ0(x, r)

=
I∑

i=1

pi(x)
λi(r)

. (6.9)

Finally, the homogenized viscosity function µ0 and the homogenized heat coefficient
c0 defined by (3.46) and (3.47) are given by

µ0(x, N0(x, r)) = λ0(x, r), (6.10)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c0(x, N0(x, r))=
∂M0

∂s
(x, N0(x, r))

1
µ0(x, N0(x, r))

=
∂M0

∂s
(x, N0(x, r))

1
λ0(x, r)

.

(6.11)

We deduce from (6.10) and (6.9) that

µ0(x, N0(x, r)) =

(
I∑

i=1

pi(x)
λi(r)

)−1

. (6.12)
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On the other hand, using the chain rule formula in r = Mi(Ni(r)) and the definitions
(6.5) and (6.8) of Mi and λi, we have for i = 1, ..., I

1 =
∂Mi

∂s
(Ni(r))

∂Ni

∂r
(r) = ci(Ni(r)) µi(Ni(r))

∂Ni

∂r
(r) = ci(Ni(r)) λi(r)

∂Ni

∂r
(r).

In view of (6.7), this yields

∂N0

∂r
(x, r) =

I∑
i=1

∂Ni

∂r
(r) pi(x)=

I∑
i=1

pi(x)
ci(Ni(r)) λi(r)

. (6.13)

Similarly, using the chain rule formula in the identity M0(x, N0(x, r)) = r, we have

∂M0

∂s
(x, N0(x, r))

∂N0

∂r
(x, r)) = 1, (6.14)

and therefore using (6.11) and (6.14), and then (6.13) and (6.9)

c0(x, N0(x, r)) =
1

∂N0

∂r (x, r)
1

λ0(x, r)
=

(
I∑

i=1

pi(x)
ci(Ni(r)) λi(r)

)−1 (
I∑

i=1

pi(x)
λi(r)

)
. (6.15)

In this particular setting of a material made of layers of homogeneous phases, we have
proved the following result.

Theorem 6.1 (Explicit formulas for a material made of layers of homogeneous phases).
When ρε, µε and cε are defined by (6.1), and when (6.2) and (6.4) are satisfied, Propo-
sitions 3.3 and 3.4 and Theorem 2.5 hold true for the whole sequence ε and for the
functions µ0 and c0 given by formulas (6.12) and (6.15), where the function N0(x, r) is
defined by formula (6.7). �

We now claim that in general the homogenized heat coefficient c0 does depend on s,
i.e. on the temperature, even if the heat coefficients of each phase do not depend on it,
i.e. even if for i = 1, ..., I

ci(s) = ci ∈ R ∀s ∈ R. (6.16)

Indeed in the special case where (6.16) holds true, formula (6.15) reads as

c0(x, N0(x, r)) =

(
I∑

i=1

pi(x)
ci λi(r)

)−1 (
I∑

i=1

pi(x)
λi(r)

)
. (6.17)

When all the ci are all equal to some c�, i.e. when cε(x, s) = c� is fixed independently of
x and of s, then formula (6.17) implies that c0(x, s) = c�, and of course the homogenized
heat coefficient does not depend on the temperature in this case. But when the ci are
different, i.e. when the cε(x, s) do oscillate, then the heat coefficient c0(x, s) in general
depends on s.

Let us first consider the example of the mixture of two phases. Then c0(x, N0(x, r))
reads as

c0(x, N0(x, r)) =
p1(x)
λ1(r) + p2(x)

λ2(r)

p1(x)
c1 λ1(r) + p2(x)

c2 λ2(r)

=
p1(x)
p2(x) + λ1(r)

λ2(r)

1
c2

(
c2
c1

p1(x)
p2(x) + λ1(r)

λ2(r)

) . (6.18)

When λ1(r)/λ2(r) is not constant, the right-hand side of (6.18), and therefore its left-
hand side, depends on r. Then c0(x, s) depends on s.
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In the general case of I phases with I > 2, the function c0(x, N0(x, r)) also depends
on r in general. Let us consider for simplicity the case where the volume functions pi(x)
do not depend on x, i.e. the case where pi(x) = pi for i = 1, ..., I. Set for i = 1, ..., I

zi(r) =
pi

ciλi(r)
.

Then c0(x, N0(x, r)) does not depend on x and reads as

c0(x, N0(x, r)) =

I∑
i=1

cizi(r)

I∑
i=1

zi(r)

.

Therefore the function c0(x, N0(x, r)) does not depend on r if and only if there exists a
constant c� such that

I∑
i=1

cizi(r) = c�
I∑

i=1

zi(r),

i.e. if and only if
I∑

i=1

(ci − c�)zi(r) = 0.

When the functions zi, i = 1, ..., I, are linearly independent, this is never the case except
when ci = c� for i = 1, ..., I, i.e. when cε(x, s) = c� is fixed independently of x and of s.
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