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Abstract. In the present paper we study the homogenization of the system of partial
differential equations
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posed in a < x < b, 0 < t < T, completed by boundary conditions on v and by initial
conditions on v* and #°. The unknowns are the velocity v¢ and the temperature 6%, while
the coefficients p®, p° and ¢ are data which are assumed to satisfy

0<c <p(x,s) <cay, 0<ez3<cf(x,8) <cq, 0<cs<p(x)<cs,
I

—c7 < a—i(x,s) <0, |Ef(z,8)—c(z,8)| <w(ls—5).

This sequence of one-dimensional systems is a model for the homogenization of nonho-
mogeneous, stratified, thermoviscoplastic materials exhibiting thermal softening and a
temperature-dependent rate of plastic work converted into heat.

Under the above hypotheses we prove that this system is stable by homogenization.
More precisely one can extract a subsequence &’ for which the velocity v and the temper-
ature ¢’ converge to some homogenized velocity v° and some homogenized temperature
6° which solve a system similar to the system solved by v° and 6%, for coefficients p°,
10 and c® which satisfy hypotheses similar to the hypotheses satisfied by p¢, u° and c°.
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360 NICOLAS CHARALAMBAKIS anp FRANCOIS MURAT

These homogenized coefficients p°, u° and c® are given by some explicit (even if sophis-
ticated) formulas. In particular, the homogenized heat coefficient ¢ in general depends
on the temperature even if the heterogeneous heat coefficients ¢* do not depend on it.

Résumé. Dans cet article, nous étudions 'homogénéisation du systeme d’équations
aux dérivées partielles
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posé dans a < x < b, 0 < t <T et complété par des conditions aux limites sur v° et des

conditions initiales sur v° et 6. Les inconnues sont la vitesse v° et la température 6%,
alors que les coefficients p®, u® et ¢ sont des données qui vérifient

0<cp <p(z,8) <co, 0<ecz3<c(x,8)<cy, 0<cs5<p(z)<cg,
op® e € / /
7C7§E(x,5)§0, ‘C (xas)fc ($78)|§w(|878|)

Cette suite de problemes unidimensionnels modélise ’homogénéisation de matériaux ther-
moviscoplastiques hétérogenes dont la résistance diminue avec la température et dont le
taux de travail plastique converti en chaleur dépend de la température.

Sous les hypotheses ci-dessus, nous démontrons que ce systéme est stable par ho-
mogénéisation. Plus précisément, on peut extraire une sous-suite € pour laquelle la
vitesse v° et la température 6 convergent vers une vitesse homogénéisée 1° et une
température homogénéisée #° qui sont solution d’un systéme similaire & celui dont v®
et 6 sont solution, pour des coefficients p°, % et ® qui satisfont des hypotheéses ana-
logues a celles satisfaites par p°, u et ¢°. Les coefficients homogénéisés p®, u® et ¢ sont
donnés par des formules explicites (méme si elles sont assez compliquées). En particulier
le coefficient thermique homogénéisé c® dépend en général de la température, méme si
les coefficients thermiques hétérogenes ¢ n’en dépendent pas.

YOvodig. Xty epyooia avth peketodue, yio o < z < b, 0 < t < T, v o-
HOYEVOTOINGY TOU GUC THUATOG TWV JAPOPIXOY EEICHOENMY YE HEPLXES TOPAY (YOG

o, OV 0 [ . o Ov®
F0% 5 (@5 ) = 1
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HE OUVOPLAXES CUVINXES YiaL TN ouVdPTNOM V° Xal dpYXES CLUVIAXKES YLOL TG CUVAPTACELS
v® xou 0°. Ou dyvwoteg ouvaptioelg elvar 1 toyvtnTa v° xou 1 Veppoxpacio 6%, eved ol
oLVTENECTEC ¢, 1€ xan ¢ elvan Sedouéve CUVOPTACELS KOl LXAVOTOLOVY

0<eci <pf(x,8)<cy, 0<ec3<c(2,8)<cy, 0<es<p(x) < ce,

€

—er < a—“s(x,s) <0, | (z,8) — (2, 8)| < w(ls — §|).
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H oaxohoudio auth povodldoTaTwY CUCTAUATWY Elvol €Vol LWOVTEND YLOL T CUUTERLPORY
OVOUOLOYEVAY, CTPOUATOUOPPWY, VepUolEmTAACTIX®OY UAXGY Tou yopoxtnellovtal ond
Yeppoporaxtonoinon xar TAacTixh Loyd e€aptduevy and T Yeppoxpocia.

Me tig avortépn mpounodéoelg, anodeixviovpue 6Tl To cdoTNHA auTd eivar evoTadéc we
npog v opoyevonoinon. 1o ouyxsxptpsvot oTL pnopoups vae&arydryouye pia boaxolouvdio
e’ yio Ty omola 1 tay TNt ©€ xou 1 Yepuoxpaocio 0°' OLYXAVOUV TPOS XATOLAL OLOYEVOTIOL-
wévn Tt 10 xou Yeppoxpacia 09, Tou emhbouy éva choTua Tne (Blac wopehc pe to
choTHUe Tou eTAbOLY oL v€ xou 6%, yia cuvteheatéc p°, u® xou ¥ mov avonoloLY LToéoEic
OUOLES UE TIC UTOUETELS TTOU LxavoToloy ot p°, u° xou ¢, Autol oL opoyevomomnuévol Guv-
TENEC TEC pO, /LO xon 0 didovton amd diefodixéc (av xou ToAOTAOXES) Exppdoeic. Elbixdtepa,
o opoyevoroinuévoc Yepuxde ouvterestic ¢ elaptdton and T Yeppoxpacia, axdyun xt av
oL avouoloyevelc ouvteheotég ¢ dev edapTdvTal and aUTAHY.
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1. Introduction. In the present work we consider the homogenization of nonhomo-
geneous, stratified, thermoviscoplastic materials exhibiting thermal softening which are
subjected to simple shearing. In mathematical terms we consider the system of partial
differential equations (posed in the given one-dimensional space interval (a,b), a < b,
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362 NICOLAS CHARALAMBAKIS anp FRANCOIS MURAT

and in the given time interval (0,7), T > 0)
ov®  Oo®

p°(x) % Dr + f(t,x) in(0,T) x (a,b), (1.1)
cs(xﬂs)aae; =o° %1;: in (0,7T) x (a,b), (1.2)
o = ,us(xﬂs)% in (0,7T) x (a,b), (1.3)

Oz
where the unknowns are the velocity v¢, the temperature #° and the stress ¢¢, while the
data are the density p°(z), the inertial forces f(¢,x), the heat coefficient ¢*(z,s) and
the viscosity function p®(z,s). The system (I)—(T3]) has to be completed by initial
conditions on v* and 6%, namely

v5(0,2) = v5(x), 6°(0,2) =65(x) in (a,b), (1.4)

where v§(z) and 05(x) are given, and by boundary conditions which impose the shearing,
namely either

v (t,a) = vi(t), v°(t,b) =wv5(t) in (0,7), (1.5)
where v¢(t) and v (t) are given, when the boundary velocities are imposed (Dirichlet
boundary conditions), or

o%(t,a) = o5(t), o°(t,b) = ot(t) in (0,T), (1.6)

€

where of

(t) and of(t) are given, when the boundary stresses are imposed (Neumann
boundary conditions), or finally

v¥(t,a) =vi(t), o°(t,b)=o0p(t) in (0,T), (1.7)

where v¢(t) and of(t) are given, when the velocity is imposed in z = a and the stress is
imposed in x = b (mixed boundary conditions).

The main features of the data are first the fact that p®, ¢® and p® are bounded from
above and from below by strictly positive constants, second the fact that the functions
¢ are uniformly (in x and €) continuous with respect to s, and that the functions u®
are uniformly (in z and ¢) Lipschitz continuous and nonincreasing with respect to s, and
third the fact that all the functions p°, ¢® and p® depend on z in a measurable (and
not necessarily continuou) way. The latest property means that the materials under
consideration are heterogeneous. Homogenization consists in studying the limit of the
problems (LI)-(3) when e, which represents the typical size of heterogeneities, tends
to zero.

The material described by ([LI)—([L3) is stratified in the sense that it is made of layers
perpendicular to a given direction of space, here the z direction, while the shearing
excerced by the boundary conditions is perpendicular to that direction, which allows one
to reduce to one-dimensional (in space) partial differential equations. Homogenization

1Ten years ago, a new generation of heterogeneous materials, called functionally graded materials,
appeared in the mechanical literature (see e.g. [, [2], [3], [4] and [II]). These materials, characterized by
high resistance to loading and/or to temperature increase, have been studied intensively, and numerical
homogenization formulas have been proposed under the assumption of smoothly varying fields, which
means that the different components of these materials are supposed to be perfectly bonded by ther-
momechanical processing in order to exhibit continuously changing properties. In contrast, our analysis
does not assume any continuity of the coefficients with respect to the variable x.
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HOMOGENIZATION OF STRATIFIED THERMOVISCOPLASTIC MATERIALS 363

then consists in considering a (very) large number of (very) fine layers (of thickness,
say, ¢) of different materials, and in describing the overall behaviour of the velocity v,
temperature ° and stress o for fixed external forces. In mathematical terms, this overall
behaviour is expressed by the weak limits v°, 69
Zero.

We prove in the present paper that v°, 6° and ¢° satisfy a system of equations of
the type (ILI)-(L3), corresponding to coefficients p°(z), °(z,s) and u°(z,s). This is
the main result of the present paper. It means that system ([LI)—(L3]) is stable under
homogenization. In this process, the homogenized density p° is obtained as the weak-
star limit of p®, but this is not the case of the homogenized heat coefficient c°(z,s)
and of the homogenized viscosity function u°(z,s), which have to be defined through a
much more sophisticated process (see Remark [35], where this process is summarized). In
particular, a rather strange phenomenon occurs as far as ¢ and c® are concerned. Even
if in problem (TI)-(3) the heat coefficient ¢*(z,s) does not depend on s, i.e. even if
c(z,8) = c*(x), the homogenized heat coefficient ¢”(z, s) does depend in general on s
(see Theorem [6], where explicit formulas are given in the case of a material made of
layers of some given homogeneous phases). This mathematical result is in accordance
with recent experiments and theoretical mechanical studies based on a temperature-

and ¢? of v%, 6° and o° as € tends to

dependent fraction of plastic work converted into heating (see [10], [12] and [13]). Indeed

the heat coefficient ¢ is given by ¢ = where h is the specific heat coefficient and

p
oh’
0B the rate of plastic work converted into heating, a quantity which is related to the
rearrangement of crystals during deformation. It is in general assumed in the literature
that 8 = 0.9. In particular, § is constant with respect to the temperature 6. If p and
h are assumed to be constant with respect to 6, which is a realistic assumption, then
¢ does not depend on 6. Since our result shows that ¢ depends on 6 for homogenized
materials, the hypothesis 8 = 0.9 is unrealistic. As experimental measurement of (3 for
different temperatures is very difficult, estimating ¢ may be very useful for understanding
the overall behavior of stratified materials under high strain rates.

Homogenization is now a well-established mathematical theory, at least as elliptic or
parabolic partial differential equations are concerned. We will only refer to the method
of Tartar [I5], and also, for general references, to the books of Sanchez-Palencia [14]
and of Bensoussan, Lions and Papanicolaou [6], even if those two books are concerned
with the special case of periodic coefficients, a hypothesis which is not assumed in the
present work. Let us explicitly observe that in the one-dimensional (in space) case, the
homogenized coefficients can in general be expressed by formulas involving the weak
limits of the heterogeneous coefficients, or more exactly of some (nonlinear) functions of
them. Such is the case in the present paper.

However, from the bibliographical standpoint, to the best of our knowledge, there
is no paper studying the homogenization of thermoviscoplastic materials, even if the
existence of solutions for (LI)-(T3) has often been studied in the literature. As far as
existence of a solution is concerned, we just quote the pioneering work of Dafermos and
Hsiao [9], the works of Tzavaras [16] and [I7], the recent paper [B] which is concerned
with the numerical analysis of the problem, and our papers [7] and [§] (the second one
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364 NICOLAS CHARALAMBAKIS anp FRANCOIS MURAT

presents existence and uniqueness results of the weak solution of (LI)-(T3)), as well as
its approximation by finite elements).

The plan of the paper is as follows.

In Section 2] we give the precise hypotheses under which we study the problem (Sub-
section [2.0]), then we recall a result of existence, uniqueness and continuity with respect
to the data (Subsection 2.2]), and we state regularity results (Subsection [23]).

Subsection 2.4] is devoted to the statement of the homogenization result (Theorem
2.5)), which is the main result of the present paper.

The rest of the paper is mainly concerned with the proof of this theorem. We begin in
Section [F] by defining the homogenized viscosity function p° and the homogenized heat
coefficient ¢® (Subsection B2 see in particular Remark B.5). Before of that, we motivate
these definitions by a change of unknown functions, which transforms the problem in an
equivalent, but simpler one (Subsection [3]). The proofs concerned with the definitions
of the homogenized viscosity function p° and heat coefficient c? are given in Subsection
B3

We then pass in Section @ to the proof of the regularity (in time) result stated in
Subsection 23] and then in Section Bl to the proof the homogenization result.

Finally Section [l is devoted to the study of the model example in which a heteroge-
neous material is made of fine layers (of size €) of some homogeneous given phases. In
this case we are able to give explicit formulas (Theorem [6.1]) for the homogenized density
p°, the homogenized heat coefficient c® and the homogenized viscosity function p°. These
explicit formulas show that in general the homogenized heat coefficient ¢ depends on
the temperature, even if the heat coefficients of the various phases do not depend on it.

2. Setting of the problem and homogenization result.
2.1. Hypotheses. In this entire paper, we consider a, b and T in R with a < b and
T > 0, and we set

(a,0) =Q, (0,T) x (a,b) = Q.
We also consider a sequence of strictly positive numbers £ which tend to zero.
We consider a sequence of Carathéodory functions p® :  x R — R (the viscosity

functions) which are nonincreasing in s and uniformly (in « and €) Lipschitz continuous
in s, i.e.

x — pf(x,s) is measurable Vs € R,

(2.1)
—cr(s—¢) < p(x,s) — ps(x,s') <0 aexze, Vs, €eR, s>,
where c; > 0 is a given constant. We also assume that
cp <pf(x,s)<co aexe VseR, (2.2)

where 0 < ¢; < ¢3 < +00 are given constants.
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HOMOGENIZATION OF STRATIFIED THERMOVISCOPLASTIC MATERIALS 365
We also consider a sequence of Carathéodory functions ¢ : 2 x R — R (the heat
coefficients) which are uniformly (in = and €) continuous in s, i.e.

x — ¢¢(z,s) is measurable Vs € R,
(2.3)
lef(x,s) — (z,8")] <w(]s—§|) aexzeQ, Vs, s €R,

where w is a modulus of continuity, i.e. a nondecreasing continuous function w:R* — R
with w(0) = 0. We also assume that

cs < cf(x,8) <cy aexe VseR, (2.4)

where 0 < c3 < ¢4 < +00 are given constants.
We finally consider a sequence of L>°(£2) functions p° (the densities). We assume that

cs < pe(x) <cg ae xeQ, (2.5)
where 0 < ¢5 < ¢g < +00 are given constants, and that
p° —p° in L>(Q) weak-star. (2.6)

On the other hand, we consider sequences of external forces f¢, of Dirichlet boundary
conditions v5 and vf, and of initial conditions v§ and 6§, and their limits f°, v, vy, vJ

and 6, which satisfy for a given constant K > 0

fFelQ), fPerl?)Q). fllzeg <K,

2.7)
e — f% in L?(Q) weak,
vE € HY(0,T), v € HY(0,T), 22e HY0,T), v)e HY(0,T),
[vellzor < K, v5llmor < K, (2.8)
ve =00 in HY(0,T) weak, v — o) in H'(0,T) weak,
v5 € HY(Q), wvye HY(Q), |v§llu(o <K,
(2.9)

vy —v) in HY(Q) weak,
v5(a) = vg(0),  vp(b) = v5(0), (2.10)
0 e LNQ), elNQ), el 6w <K,

05 — 09 in D’'(2) weak-star, (2.11)

165] = ~° in D’(2) weak-star.

Observe that (ZI0) are compatibility conditions between the boundary values and the
initial value of v®.

Observe also that introducing 7° in hypothesis ([ZI1) is not necessary when 65 > 0,
which is the physical case, since one has v° = 69 in this case. The assumption v° € L1((2)
will be used in (and only in) the proof of Proposition B3] below.
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366 NICOLAS CHARALAMBAKIS anp FRANCOIS MURAT

2.2. FExistence, uniqueness and continuity with respect to the data result. Theorems
2.1 and 3.1 of our paper [§] prove the following result of existence, uniqueness and local
Lipschitz continuity with respect to the data for the case of Dirichlet boundary conditions
(L3 (see also [7] for another proof of the existence result).

THEOREM 2.1 (Existence, uniqueness and local Lipschitz continuity for Dirichlet bound-
ary conditions). Assume that hypotheses (ZI)—(ZTII) hold true. Then there exists a
unique couple (v¢, 6%) which satisfies

v® € L=(0,T; H(Q)) N HY(0,T; L*(Q)), (2.12)
6° € Wh(0,T; LY(Q)), (2.13)
ot 0 ov®
() . € £ — € : D/ 2.14
F0% 5 (@) 5 ) = 1 Q). (2.14)
95 g 2
(0,0) 0 = (,0°) (f;; ) in D'(Q), (2.15)
v (t, a) = vi(t), ve(t,0) = vp(t) ae. t e (0,7), (2.16)
v¥(0,z) = vj(x) a.e. x €, (2.17)
0°(0,z) = 05(z) a.e x €. (2.18)
Moreover the stress ¢ defined by
ov®
S =puf c 2.19
0 = 1, 0) (219)
satisfies
o € L>=(0,T; L*(Q)) N L*(0,T; H'(Q)), (2.20)
and the following a priori estimates hold true

(> 81}5 *
I llzee .72 o) + 5 ez o miz2 () < €7 (2.21)

154 806 *
16°) 20,7320 + |5 Iz o,z () < €7 (2:22)
lo°l| oo (0,722 () + [0 20,7501 (0)) < CF, (2.23)

where C* denotes a constant which depends only on ¢y, ¢2, ¢3, ¢4, c5, cg and K.

Finally, if (v°,6°) and (9, 6°) are the (unique) solutions of (ZI2)—(2IR) for the data
(fe, v, vf, vg, 05) and (f¢, 05, o5, 05, 65), and if these data satisfy (2.7)(ZII) for the
same constant K, their difference satisfies

[0 = 0%l oirszace) + 107 = 0%l z2o.raar ) + 1165 = 0%l 0. (o)
<Cc* <||fE — Fellz) + G = o6l o.m) + 105 = 95|l o.m) (2.24)
v = 3l2) + 165 = G5l 2oy )

where C** denotes a constant which depends only on c¢1, co, 3, ¢4, 5, cg, 7, (b— a)
and K. 0
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HOMOGENIZATION OF STRATIFIED THERMOVISCOPLASTIC MATERIALS 367

Observe that every term in equations (ZI4) and (ZI5) has a meaning in the sense
of distributions, since u®(x, %) belongs to L*>(Q). Similarly the boundary conditions
(ZI8) have a meaning, since v® belongs to L>(0,T; H*(Q)) and since H'(Q) c C°(Q).
Finally the initial conditions (2I7) and (2I8) have a meaning since v° belongs to
HY(0,T;L*(Q)) < C°0,T); L?(Q)) and since §° belongs to W11(0,T;LY(Q)) C
c CO([0,T); L)),

The regularity (2.20) of the stress o€ is very specific to the fact that the problem is
one-dimensional. This regularity immediately follows, for the first statement, from the

definition ([2.19)) of ¢¢ and from ([2.2)), (Z.12)), and for the second statement, from equation
Oo*® ov®
[@14), which reads as ﬁi =p° 8Ut — f¢, and from 23), @I2) and 7).
x

REMARK 2.2 (Neumann and mized boundary conditions). As pointed out in [§], a
result similar to the result of Theorem [2.1] still holds true when the Dirichlet boundary
conditions (LA]) on v¢ are replaced either by the Neumann boundary conditions (6] on
o or by the mixed boundary conditions (L.7)) on v® and o®.

In those cases, we consider sequences of boundary conditions ¢, and o} which satisfy

o € L?(0,T), of € L?0,T), o%eL?*0,T), o)eL?*0,7),
loallzz0,m) < K, llogllrz0,1) < K, (2.25)

o = 0% in L?(0,T) weak, of — o0 in L*(0,T) weak,

when Neumann boundary conditions are concerned, and

v € HY(0,T), of € L*(0,T), 22e HY(0,T), o) e L*0,T),
lvallmor) < K, llogllzzor) < K, (2.26)

ve =Y in HY(0,T) weak, of — 0% in L?*(0,T) weak,

with the compatibility condition
vg(a) = v5(0), (2.27)

when mixed boundary conditions are concerned.

Under these hypotheses, results of existence, uniqueness and local Lipschitz continuity
with respect to the data similar to Theorem [2.1] continue to hold true in the case of
Neumann or mixed boundary conditions. (|

2.3. Regularity results. In this subsection, we state two regularity results on ¢ and
151

which will play a crucial role in the proof of the homogenization result.

When Q = (a,b) C R, an interpolation result (see Lemma 3.1 of [8]) asserts that
L>(0,T; L*(2)) N L*(0, T; H'(Q)) € LY(Q); (2.28)

this result is specific to the one-dimensional case. Combined with (2220) and (Z23)), this
immediately implies the following regularity result on o°.
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368 NICOLAS CHARALAMBAKIS anp FRANCOIS MURAT

PROPOSITION 2.3 (LS regularity of o). Assume that the hypotheses of Theorem 2.1
hold true. Then the stress o¢ defined by (2.I9]) satisfies

0 € L%Q), |ollLsq) < CCH, (2.29)

where C* is the constant which appears in the a priori estimate (2Z:23)) and where C' is a
constant which depends only on (b — a). O
UE

ot
((0,T); HL .(Q)), when, in addition to the above hypotheses,

On the other hand, as stated by the following theorem, is bounded in

L (0,T; L2, () N L?

loc loc loc
8 €
7{5 is bounded in L2(0,T; H~'(Q)).
0
THEOREM 2.4 (Regularity of a—:) Assume that the hypotheses of Theorem 2T hold true
and that
af* _ 12 -1
(2.30)
8 £
||Lt”L2(O,T;H*1(Q)) <K'
For § > 0 sufficiently small, denote by s the interval
Qs =(a+6,b—90). (2.31)
Then the unique solution (v¢, 6%) of ZI2)—(2I8)) satisfies
€
‘9(;; € L=(6,T — §; L2(Q)) N L2(5, T — 6; H(Qs)), (2.32)
with 5 5
V& v® N
H7||L°°(5,T;L2(Q(s)) + ”EHL%&,T;HHQ&)) <y, (2-33)
where C§ denotes a constant which depends only on ¢, ¢, ¢3, c4, ¢5, cs, c7, b—a, K,
K’ and 6. O

Theorem [Z4] is similar to Theorem 3.2 of [8], except for the fact that the regularity is
now local in time (i.e. in (6,7 — §) and not in (0,7")) as well as in space (i.e. in 5 and
not in ). This theorem will be proved in Section [ by a rather classical proof.

Similar regularity results hold true as far as Neumann and mixed conditions are con-
cerned.

2.4. Homogenization result. The main result of the present paper is the following.

THEOREM 2.5 (Homogenization). Consider sequences of viscosity functions u¢, heat co-
efficients c®, densities p®, external forces f¢, boundary conditions v and v; and initial
conditions v§ and 65, which satisfy (ZI)-(@II). In addition to (7)), assume that either
@30), i.e.

ofe

ey is bounded in L*(0,T; H~*(Q)), (2.34)

or
e — f° in L*(Q) strong, (2.35)
holds true.
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Then there exist a subsequence &', a homogenized viscosity function " and a homog-
enized heat coefficient ¢® which satisfy (ZI]) (with a constant ¢ possibly different from
cr), @2), @3) (with a modulus of continuity w® possibly different from w) and (Z4)
(with constants cJ and ¢} possibly different from c3 and c4), such that the unique solution

(v%, 6°) of (ZI2)—(ZI8) and the stress o defined by (2.I9]) satisfy

’

v — ¥ in L=(0,T; H'(Q)) weak-star, (2.36)

e 0
agt - % in L2(0, T; L2(Q)) weak, (2.37)
0° — 6° inD'(Q) weak-star, (2.38)

! .0 . Jo%) . T2 —
{ o= — 0% in L>(0,T; L*(Q)) weak-star (2.39)

and in L2(0,T; H*(Q2)) N L%(Q) weak,

where (v°,6°) is the unique solution of ([2I2)—(ZI]) for the viscosity function u°, the
heat coefficient ¢, the density p°, the external force f°, the boundary conditions v? and
vy and the initial conditions v* and 6°, and where the stress 0¥ is defined by

o =y (x, Go)a—vo. (2.40)
oz 0

Theorem will be proved in Section Bl

REMARK 2.6 (Summary of Theorem [23)). Theorem[ZHlasserts that there exist a subse-
quence €', a homogenized viscosity function pg(z, s) and a homogenized heat conduction
coefficient co(z, ).

Actually the subsequence ¢’ and the homogenized functions ;i and c® depend only
(and do depend) on the sequences pf, ¢ and 65, but do not depend on the other data
p°, f5, v, vy and vyg.

The functions p° and ¥ are explicitly constructed through a rather complicated pro-
cess, which involves weak limits (for the subsequence ¢’ and for every s fixed) of some
functions of pu°(z,s), c¢°(x,s) and 65. This process will be described in Section Bl be-
low, where the functions p° and c? as well as the subsequence &’ will be defined (see
Propositions and 3.4t see also Remark where this process is summarized). |

REMARK 2.7 (Stability by homogenization of ¢(x,s)). Theorem [Z1] proves that the
system (2.12)—(2.18) is stable by homogenization, or in other terms is stable for sequences
of viscosity functions p®, heat coefficients ¢ and densities p which satisfy 21))—(23]).

Note however that the subclass where ¢® only depends on z, i.e. the class where

c(z,s8) = c*(x) with ¢f(z) € L>(Q),
(2.41)
3 <cf(r)<cy ae xz€Q,

is not stable by homogenization. Indeed we will exhibit in Section [ below a sequence of
heat coefficients c°(x) satisfying (241]) for which the homogenized heat coefficient ¢ (in
the sense of Theorem [2.5)) is a heat coefficient °(z, s) which does depend on s. O
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REMARK 2.8 (Oscillation and nonoscillation of the unknowns). Let us examine in
ov® ov® 0° and 00° We will
-, an e wi
ot oz 7 ot v
assume in this remark that hypothesis ([2.34) holds true.
In view of ([ZZ1]), the velocities v¢ are bounded in H!(Q), and therefore do not oscillate.

On the other hand, in view of (Z32]) and of Aubin’s compactness lemma, the accelerations
€

more detail the behaviour of the quantities v,

2
loc

are relatively compact in L; (@), and therefore do not oscillate. Finally in view of

ot
(Z23)), the stresses o are bounded in L?(0,T; H'(Q)). Also, since

do= 0% Opf, | 065 Ov°
o~ M@ ) g+ 5 @) T S

0%ve  OuF, .
dwor T os (0 )(m(x,ee)ﬁ cs(z, 6°)

(o),

= Ne(xa 06)

£
the stress rates

; are bounded in L} (Q) + L*(Q) C L? .(Q) in view of (Z32)) and

([229). Thus the stresses ¢ are bounded in H}\ (Q), and therefore do not oscillate.
On the other hand, in view of ([222), the temperatures 6° are bounded in

g

W0, T; L1(€2)), and therefore do not oscillate in time. Similarly the strain rates ; ,
x

which are given by
ov® 1 .
— = —0 2.42
or  ps(z,0¢) (242)
do not oscillate in time since the stresses o do not oscillate and since the temperatures ¢
(and therefore the coefficients pc(z, 6%)) do not oscillate in time. Finally the temperature
154
increases T which are given by

o0 1 o
ot us(:c,ﬁs)cs(x,ﬂf)(a ) (2:43)

do not oscillate in time for the same reason.
In contrast, we claim that the temperatures 8¢ do oscillate in space, which implies, in

ov® 06°
view of (2Z42)) and ([243), that the strain rates and the temperature increases
x
also oscillate in space. Indeed in the proofs below (see Sections [l Ml and [) (and already

in the proofs in [7] and [g8]), very important quantities, herein named the transformed

temperatures 7¢ (see ([BI9]) below), naturally appear. These transformed temperatures
7¢ are proved to be bounded in W(Q) (see ([3.34) below), and therefore do not oscillate.
Such is not the case for the temperatures 6¢, since the formula

6°(t,x) = N°(z,7°(t, z))

(see (B20) below) implies that the temperatures 6° do oscillate in space. ]

REMARK 2.9 (Estimates on the constants). Estimates on the constants ¢, 3, ¢}
and on the modulus of continuity w® in terms of c;, ¢z, c3, c4, c; and w are given in
B49), B50) and FEI). In particular, when the functions ¢°(z,s) are uniformly (in

x and €) Lipschitz continuous in s, i.e. when w(|s|) = cg|s|, then ¢ is also uniformly
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(in z) Lipschitz continuous in s with a constant ¢J possibly different from cg (see Remark
B7). |

REMARK 2.10 (Nonequivalence of hypotheses [234) and (Z35))). Hypotheses ([2.7)
and (234) do not imply (238), and conversely hypothesis ([2:35]) does not imply (234)).
Therefore neither of the two hypotheses [2:34]) and (2:38) reduces to the other one, even
if they are similar in spirit. |

REMARK 2.11 (Neumann and mized boundary conditions). Homogenization results
similar to Theorem hold true as far as Neumann and mixed boundary conditions
are concerned. We leave their statements and proofs to the reader. Let us emphasize
that the homogenized viscosity function u° and heat coefficient ¢ are independent of the
type of the boundary conditions and are identical to the ones which appear in Theorem
O

3. Definition of the homogenized viscosity function ;° and of the homoge-
nized heat coefficient c°.

3.1. Transformation of the problem. As in [7] and [8], we will perform in this sub-
section a change of unknown functions, and we will write the system (ZI2)-2I]) in
an equivalent but simpler form. Although this transformation is not needed in order to
define the functions £ and %, it motivates these definitions and plays an important role
in the proof of Theorem In this subsection, we will also give a regularity result on a
very important quantity, the transformed temperature.

We first make a translation which reduces the problem to homogeneous boundary
conditions. (Such a translation does not have to be done when Neumann boundary
conditions are concerned, and it has to be conveniently modified when mixed boundary
conditions are concerned.) We define

_ (= a)yp(t) + (b — z)vg(t)

v (t,x) = — , (3.1)
up(x) = vg(x) —°(0, 2),
ut(t,x) = v°(t, ) —T°(t, x).
Note that
u§ € Hy (Q), (3.4)

when v§, v5 and v§ satisfy hypotheses (Z8)), (Z9) and (210).
Then (v®, 6%) is a solution of (ZI12)-2I]) if and only if (uf,6%) is a solution of

F05 g (@t (G4 ) = r @ mP@. 69

ot Oz Or ' Oz ot

€ £ 7€ 2
cf(a;,ef)aai = 1z, 6°) (381; + %1; ) in D'(Q), (3.6)
u®(t,a) =0, u(t,b)=0 ae.te(0,T), (3.7
u®(0,2) = ug(z) a.e xz €9, (3.8)
0°(0,z) = 05(z) ae xz el (3.9
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We then perform a change of unknown function by replacing 6(¢, ) by a new unknown
denoted by 7(t,z). We define the functions M€ : Q2 x R — R by

S
M®(x,s) = / (z,8) pf(z,s')ds’ ae. .z €, Vs eR. (3.10)
65 ()

Since in view of ([22)) and ([Z4)) one has
0 < czep < cf(x,8) pf(x,8') < cqen < +00,

the functions s — M¢(z, s) are Carathéodory functions which are uniformly (in z and ¢)
Lipschitz continuous in s and which satisfy

€

oM
. (x,8) <cqeo ae.z€Q, VseR. (3.11)

czc; <

€

Moreover the functions s — (x,s) = ¢(x,s)uc(x,s) are Carathéodory functions

which are uniformly (in 2 and €) continuous in s, since in view of (ZI)—(Z4) one has
M= (2, 5) oMe
Y (rs) —
ds ds

(x,8")| < creqls — 8|+ caw(]s — &)
(3.12)

ae x €, Vs s eR.

Finally, for almost every x € Q, the function s — M¢(z, s) is one-to-one from R onto R
and satisfies

M*®(z,05(x)) =0 a.e.xz €. (3.13)
We define N¢(x,r) as the reciprocal function of M*(z, s), i.e.
Mf(z,s)=r <= N°(z,r)=s aexz€f), VsreR. (3.14)
The function » — N¢(x,r) is a one-to-one function from R onto R and satisfies
N¢(z,0) = 05(z) ae. xze. (3.15)
Since M¢(z, N¢(x,r)) = r, the chain rule yields
%(x,]\fg(x,r)) 361\7: (x,r)=1. (3.16)

Thus the functions r — N¢(x,r) are Carathéodory functions which are uniformly (in
and ¢) Lipschitz continuous in s and which satisfy
1 ON¢® 1
— < ——(z,r) < —
C4Co or c3C1

€

ae.x €, Vs € R. (3.17)

Moreover, the functions s — (z,r) are Carathéodory functions which are uniformly

or
(in z and €) continuous in s, since in view of (BI6), (311 and (BIZ), one has
oM*= . OME _ /
‘8]\[5 (z.7) ONE o] = as_(l’,N (x,7)) — W(l‘,]\f (x,r ))‘
or o O e o) O Ne
. o (@ N (1) =5 — (=, N¥(z,1"))
< N — N° / € _ N\E /
~ (e3c1)? <C7C4‘N (z,7) = N°(z,7")| + caw(|N®(z,7) — N*(z,7 )D>,
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which using (I7) implies

ON¢® ON¢® —r!
(@) = S ()| < Tl =+ S w ('T - ')
or or c3ey c5cs c3cy (3.18)
ae.x e, Vrr eR.
We now define the transformed temperature 7¢ by
T(t, ) = M®(z,0°(t, x)). (3.19)

In view of the definition (BI4]) of the reciprocal function N¢, definition ([BI9) is equivalent
to

0°(t,z) = N°(x,7°(t, x)). (3.20)

The reason for the definition of the transformed temperature 7¢ is that, multiplying
equation ([B6) by p°(z,6°) (which is bounded from above and from below by strictly
positive constants), we see that ([B.0]) is equivalent to

2

ore
ot

=t

in D'(Q),

o o
ox ox

while the initial condition (B3] is equivalent to
7°(0,2) =0 a.e.z €.
We finally define the function A° : 2 x R — R by
A (z,r) = p(x, N*(x,7)) a.e.xz € VreR. (3.21)

In view of ([2.1)), 22) and BI7) the functions A° are Carathéodory functions which are
Lipschitz continuous in r and which satisfy

1 < A(x,r)<coy aexze, VreR, (3.22)
Cr 8)\E
— < < .e. Q . 2
0301_8r($’r)_0 aer e, VreR (3.23)
Also one has
e (x, 0°(t, z)) = A°(x, 75(t, x)), (3.24)

£ 7€

o (t,x) = ue(xﬁe(t,x))aa%(t,x) = N (z,7°(t,x)) (%(t,x) + a—i(t,x)) . (3.25)

It is now straightforward to prove the following equivalence result.

PROPOSITION 3.1 (FEquivalence). Assume that hypotheses (2I)-(2II) hold true, and
define 7°, uf, M¢, N° and X\ by @B1), B2), BI0), BI4) and ZI). Defining u®
and 7¢ by B3) and BI9), the couple (v°,0°) satisfies (ZI2)-(ZI8) if and only if the
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couple (uf,7¢) satisfies

u® € L0, T; Hy(Q)) N HY (0, T; L*()), (3.26)
¢ e Whi(0,T; L' (Q)), (3.27)
A S U <L N WP
F05 - 5 (Ve (G G ) ) = - s mP@, 62s)
orc |, . (0w ov\|* .
Fr A (z,7°) (8—:1: + %> in D'(Q), (3.29)
u®(0,z) = ug(x) a.e .z €, (3.30)
7°(0,2) =0 a.e.z €. (3.31)

Moreover the stress o° defined by (Z.I9)) is equivalently defined by (828, and satisfies
o € L°(0,T; L*(Q)) N L(0, T; H (Q)). (3.32)

Finally the mnorms of ©° and 6° in the spaces L>(0,7;H*(Q))N
NHLY(0,T;L?(Q)) and WH1(0,T; L}(Q)) and the norms of u® and 7° in the spaces
L*(0,T; H Q)N HL(0,T; L?(Q)) and WH1(0,T; LY(Q)) are equivalent, with constants
in the equivalences which depend only on ¢, ¢2, ¢35, ¢4, (b —a) and K. O

Note that the initial conditions B30) and (@@3I) have a meaning since
HY(0,T; L*(Q)) € C°([0,T); L*(R2)) and since WH1(0,T; LY(Q)) € C°([0, T]; LY(Q)).

Actually, the transformed temperature 7¢ (which belongs to W11(0,T; L' (Q2)) as
stated in ([B27))) also enjoys regularity properties which are not shared by the tem-
perature 6°. Indeed we have the following result of regularity of 7¢ (which goes back to
Proposition 3.1 of [7]; see also Proposition 3.1 of [§]).

PROPOSITION 3.2 (Regularity of the transformed temperature). Assume that hypotheses
EI)—(ZTI) hold true. Then the transformed temperature 7° defined by ([BI9]) satisfies

5 € W0, T; LY(Q) n W0, T; HY(Q)) n H(0, T; Wh1(Q)), (3.33)

and the following a priori estimates hold true

[ llw 0,5z ) + 175w o, mm @) + 175 lmr 0w ()) < F7 (3.34)
where F* depends only on ¢y, ¢2, ¢3, ¢4, 5, cg and K. O
The proof of Proposition B2l just consists to write as (see (3.25), (3:229) and B31)))
are

E = |0'6|27 TE(O,I') = 0,

which using 2.20) and (Z.23)) implies that 75 € W°°(0,T; L(Q)) and the corresponding
a priori estimate, but which also implies that

0 [0r* 0o®  O1°
= = 20° - =
ot (m) “on on 1) =0
which using H(Q) C L*°(£2), (220) and (Z.23)) implies the other assertions of Proposition

0.2
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3.2. Definition of the homogenized functions u° and c. The goal of this subsection is
to state results which define the functions x° and c® which appear in Theorem 25l These
results will be proved in Subsection For convenience the statements are divided into
two propositions.

PROPOSITION 3.3 (Definition of the subsequence €' and of the functions N° and \°).
There exist a subsequence &’ and two Carathéodory functions N and \° : @ x R — R,
with » — N%(x,7) one-to-one and strictly increasing from R onto R for almost every
x € Q, which satisfy for almost every x € Q and for every r,7’ € R

N°(z,0) = 65(x), (3.35)
1 ON® 1
— < < — 3.36
caco — Or (@,r) < cser’ (3:36)
ONO ON° | crey Ca [r — |
. < S 4 2 3.37
o) = G| < G-+ e (H) e
c1 < X(z,7) < e, (3.38)
2 0
crcs  OA
2 2 <0 3.39
e < S <0 (3.39)
such that the functions N¢ and A\° defined by BI4), BI0) and B2T)) satisty for every
rcR
N (-, r) = N°(-,r) inD'(Q) weak-star, (3.40)
1 1
yerow N 0T in L>°(£2) weak-star. (341D)

From N? and A\° defined in Proposition 3.3, we define x° and ¢° in the following way.

PROPOSITION 3.4 (Definition of the homogenized functions u° and ). First define
MPO(z, s) as the reciprocal function of N°(z,7), i.e.

MO(z,s)=r <= N%x,r)=s ae xcQ, Vs,rcR. (3.42)

Then M?: 2 x R — R is a Carathéodory function, with s — M9(x, s) one-to-one and
strictly increasing from R onto R for almost every x € €2, which satisfies for almost every
z €  and for every 5,5’ € R

M°(z,6°(z)) =0, (3.43)
oM°

cae1 S —5—(2,5) < caca, (3.44)

oMO oMO , crcics cacs C4C2
- - < s+ 22 o = - ). 3.45
5y (@) = @) < T - SR (B2 s)). (e

Then define p° and ¢ : @ x R — R by
W0, 8) = \(a, MOz, 5)), (3.46)
oM° 1

A(z,8) = (3.47)
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for almost every x € Q and for every s € R. Then u° and c® are Carathéodory functions
which satisfy for almost every x €  and for every s,s' € R, s > &

c1 < 'z, 8) < ca, (3.48)
3
~TE2 (5 — ) < 1w, ) — 10z, 8) <0, (3.49)
C3Cq
89 < A(z,5) < %, (3.50)
C2 C1
4.3 2.4 2.3
|2z, 8) — P (z,5")] < <C7§4ZZ + C7C4§2> |s —s'| + % w <% s — s’|) (3.51)
cicf c3cd i} 301

For these functions 1 and ¢ and for the subsequence ¢’ defined in Proposition B.3]
Theorem holds true. O

REMARK 3.5 (Summary of the definitions of the homogenized functions pu° and c).
Let us summarize the way in which the homogenized functions x® and ¢® and the subse-
quence ¢’ are defined.

From the functions pf(z,s) and ¢¢(x, s) and from the initial datum 6§(x), we define

the function M¢(z,s) by BI0), i.e. by
M=
0s
and the function » — N¢(x,r) as the reciprocal function of s — M¢(z,s) (see (B14)).
We then set (see (B21))

(2,5) = ¢ (w,9)u" (a,5), M= (x,65(x)) =0,

A (x,r) = pf(x, N*(z,1)).
The subsequence €’ and the functions N°(z,7) and A\°(z, ) are then chosen such that

for every fixed r € R (see (8:40) and (B.41)))

Ne'(z,7) = NO(z,r) in D’'(Q) weak-star,
1 IR 1
A () A(x )

in L>(£2) weak-star.

Finally, the function s — M9(z,r) is defined as the reciprocal function of r — N(x,r)

(see (B.42)). We then define u® by (see ([3.40))
pl(x,s) = X (z, M%(x, 5)),

and finally define ¢ by (see ([B.47))

ds (x’s),uo(x,s)'

In Section [B we will give explicit formulas for p° and ¢ (see formulas ([6I2) and
(EI5) and Theorem [61)) in the case of a material made of layers of given homogeneous
phases characterized by densities p;(x) = p;, viscosity functions p;(xz, s) = p;(s) and heat
coefficients ¢;(z, s) = ¢;(s). O
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REMARK 3.6 (Dependance of the functions u® and ® on pf, ¢ and 65). Note that
the subsequence &’, the homogenized viscosity function p® and the homogenized heat
coefficient ¢ depend on (and depend only on) the sequences 1 (z, s), ¢(z, s) and 65(z).
Let us emphasize that x° and ¢® depend on the sequence of initial temperatures 5. O

REMARK 3.7 (Case where the functions ¢ are Lipschitz continuous in s). When the
functions ¢*(z, s) are uniformly (in « and €) Lipschitz continuous in s, i.e. when

w(lsl) = cssl,
or in other terms when hypothesis (2.3) reads as
|c*(z,8) — (z,8')]| < cgls—5'| ae xzeQ, Vs, s’ €R,

then formula ([B.51) implies that ¥ is also uniformly (in z) Lipschitz continuous in s with
a constant ¢ possibly different from cg. O

3.3. Proofs of Propositions B3 and B4 We begin with a classical lemma which is a
basic tool in the proofs of Propositions [3.3] and [3.41

LEMMA 3.8 (Extracting a weak converging subsequence for Carathéodory functions). Let
E be an open bounded set, E C R™, m > 1, and let F*: ExR* = R, k > 1, be a
sequence of Carathéodory functions which satisfy, for almost every x € E and for every
rr’ e RF
|Fe(x,7) — F&(x,7")| < w(|r —7r']), (3.52)
[F*(z,0)| < G*(x), (3.53)
where w is a modulus of continuity and where G¢ is a sequence of functions such that

G° € L}(E), G¢ bounded in L'(E), G° € L}(E),
(3.54)
G — G° in D'(F) weak-star.

Then there exist a subsequence ¢’ and a Carathéodory function FO : E x R¥ — R which

satisfies (B:52) and
|F°(2,0)] < G°(z) ae.x€E, (3.55)

such that for every fixed r € Rk,
F(-,r) = F°(-,r) in D'(E) weak-star. (3.56)

Moreover, if in ([352]) one has
w(lr]) = C|r| (3.57)

for some constant C' > 0, i.e. if F© is uniformly (in = and €) Lipschitz continuous in r,
and if 2¢ is a sequence such that

2 — 2% in L'(E)" strong, (3.58)

then
F'(,25) = F°(-,2°) in D'(E) weak-star. (3.59)
O
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Proof of Lemma B8l First step: Definition of the subsequence €' and of the function
FO. The estimate
|F2(x,7)| < G5(x) +w(|r|) ae. zeQ, VreRF, (3.60)

which follows from ([3.52)) and [3.53)), implies that F*(-,7) is bounded in L' (E) for every
fixed r € R¥. Therefore one can extract a (diagonal) subsequence ¢’ such that for every

Q"

/

Fe(.,q) = F° inD'(F) weak-star, (3.61)

q
where F belongs to D'(E).
On the other hand, for » = 0, one deduces from [B353), (3.54) and B.61]) that

~G"<F) <G’ inD(E),
which implies that F§ € L'(Q) and satisfies
|F)(x)] < GY(z) ae z€kE. (3.62)
For every ¢ € C2°(FE) one has (see ([3.52)) for every ¢, ¢ € Q*

/Q(Fs(x,Q)*Fe(l”,Q’))@(x)de < llellzre wllg = d'D.

Passing to the limit along the subsequence & thanks to (B61]) implies that for every
¢ € C(F) and for every q,q¢' € QF

(Fg = Fg. @)l < el wlla — 4,
which implies that F;) — F,, belongs to L>°(E) with

1Fg = Follo=(m) <w(a—d') Va,q' € Q" (3.63)
Combining (3:63) and [B:62) implies that
Fp e LN, |IF) = Fylloie) < |BElw(la—d']) Va,q € QF. (3.64)

Therefore an is a Cauchy sequence in L'(Q) if ¢, is a Cauchy sequence in R". For
every r € R*, we define the function F? as the limit in L(E) of any sequence F_) , where
¢n € Q¥ is any sequence which tends to r in R”. This definition is licit since F? depends
only on r and not on the sequence g, as is easily seen by considering two sequences g,
and ¢/, which tend to the same 7.

Moreover inequality (3.63) and the definition of F? implies that

|EY — FX ooy < w(|r —7']) Ve’ € R (3.65)
We now define the function F°: E x R* — R by
FO®z,r) = F(x) ae.x€E, Vr € R".

It immediately follows from this definition and from ([B.65) and (B.62) that F° is a
Carathéodory function which satisfies (352 and (B55).

Second step: Proof of (3508)). Let us now prove that (3:56) holds true for every r € RF
with the above-defined function FO(-,r) and the same subsequence ¢’. Let r € R* be
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fixed. In view of [B.60) we can extract from the subsequence &’ a further subsequence,
say €”, which depends on r, such that
F'(.,r) = F* in D'(E) weak-star,

A

where F* belongs to D’(E). From ([B.52) applied to 7 and r’ = ¢ € QF, we deduce that
for every ¢ € C2°(Q) and every q € QF one has

(E: = g o)l < llellp s wllr —al).-

Using a sequence g, € QF which converges to r and the definition of F?, this implies
that F* = F?. Since the limit of the subsequence F5”(~,7") is uniquely determined
independently of the subsequence £”, the whole sequence F<’ (-,7) converges to F°, which
is nothing but F°(-,r), and ([B.56)) is proved.

Third step: Proof of (359). It remains to prove that (3.59) holds true when one
assumes ([3.57) and (3.58). Since z € L*(E)¥, for every § > 0 there exists a step function ¢
(i.e. a function of the form

((z) = Zci xi(r) ae. x€E,

where the sum is finite, where the ¢; belong to R , and where the y; are characteristic
functions of disjoints measurable sets such that in (z) = 1in E), such that

3

12° = Cllpamyr < 6.
From the formula
Fe(z,((z)) = Z Fe(x,¢;) xi(7),
i
and from ([B56]) one deduces that
F(,¢) = F°(-,¢) inD'(E) weak-star.
On the other hand, one deduces from [B352) and (B57) that
1505 2%) = F2( Ol < Cllz7 = Cllomye-
Similarly, since FY satisfies (3.52)), one has
[FO(,¢) = FO(, 20l ) < ClI2° = Cllpamyx < C6.
The convergence ([B:59) then follows from the previous results, from the convergence
125 = Clr ey — 12° = Cllpaimyx <6

and from the formula
F(2%) = FO(20) = F(,2%) = F¥ (5 Q)+ F9(50) = FO(, Q)+ FO( Q) = FO(,2°),

Lemma [3.§] is proved. a
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Proof of Proposition B3l Since N¢ satisfies (B.I7) and (B15) one has, for almost every
z €  and for every r,7’ € R

1
‘Ne(l‘,’r‘) - NE($7T/)‘ < 7|7ﬂ - 7",|,
C3C1

Ne(z,0) = 05(x), (3.66)

1
[N*(z,r)] < —[r[+ |65 (2)]-
C3C1

Therefore one can apply Lemma B to the sequence N¢ (here we use the fact that
7% € LY(Q) in hypothesis I1)). Similarly, in view of (.I8) and (B.I7), one has, for
almost every x € Q and for every r,7’ € R

ON*® ON*® , crey , Co |r — /|
e _ < 7R 2
ar (xﬂ T) ar (:C,r ) — 0303 |7' r | + 02 2 w )

3C1 3C1 C3C1
(3.67)
1 ON¢© 1

— < (,r) < —
C4Co or c3c,

NE

Therefore one can apply Lemma to the sequence 3
r

This implies that there exists a subsequence &’ and two Carathéodory functions N°
and D° such that for every » € R

NE/(U r) = N°(,r) in D'(Q) weak-star,
ON<
or

where the functions N° and D° satisfy for almost every = € Q and for every r,7’ € R

() = D°(-,r) in L™(Q) weak-star,

1
INO(x,7) — NO(z,r")| < —|r — 7|,
C3Cq1

NO(x,0) = 65(x),

0 0 crcy / €2 [ —1']
|D°(z,7) — D (x,r')<c§cigr_r|+c§c%w( czer )’

From the mean value theorem and from (B.67), we have for some n = n(z,r, h) with
0<n<l1

ON¢®
or

crey ca |h
< [h| (WM +t oo w <—>)
e c3ct €163

ON¢ ON¢
(x,r) h‘ = ‘W(x,r—i—nh) h — o

‘N‘E(x,r—i-h)—NE(m,r)— (x,r) h
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Passing to the weak-star limit in D’(2) along the subsequence &’ implies that

0 0 0 C7C4 Cco |h]
IN°(z,r+h) — N°(z,7) — D°(z,7) h| < |h| (cgc:{’ h|+§c%w<6103 ,

namely that

ON®
DOz, r) = a—(x,r) ae.z €, Vr e R.
x
This proves the assertions of Proposition [3.3] as far as the functions N¢ are concerned.
1
Similarly, in view of (8.22]) and of (8:23), the Carathéodory functions (@) satisfy
x,T
1 1 1
<— aezxze, VreR,
co ~ As(x,r) T
1 1 1
0< — <—QC—7(T—7") ae.x€Q, Vrr eR, r>1'.

A (x, ) A (z,r!) T 5 csar

1
Therefore one can apply Lemma B.8 to the sequence ~z- This implies that there exists
a further subsequence, still denoted by &’, and a Carathéodory function, that we denote

1
by 0’ such that for every r € R

1 T
N N (] in L>(Q) weak-star,

1
where the function — satisfies

20
1 1 1
<— aezxze VreR,
co ~ AN(z,r) T
1 1 1 ¢ ' / ’
0< — <———1") aezeQ V" cR,r>1,

~ XN(z,r)  AO(x,r) T cfezaq
which implies that
c1 <X (z,r)<cy aexeQ VreR,

0763

0< Xz, r") = A0, 7) < ﬁ(r—r') ae.x € Vrr' eR, r>r.
361

This proves the assertions of Proposition as far as the functions A\° are concerned.
Proposition [3.3] is proved. O
Proof of Proposition 3.4l Since for almost every x € Q the function r — N°(z,r) is
one-to-one and strictly increasing from R into R, since N°(z,0) = 69(z) and since
1 ON® 1
— < ——(z,r) < —,
C4Co or c3C1
its reciprocal function s — M9(z, s) defined by (3.42)) is one-to-one and strictly increasing
from R onto R and satisfies (3.43) and (3.44), and the function M? : Q x R — R is a
Carathéodory function.
Since N°(x, M°(x,s)) = s, the chain rule yields
ON° oOM°

W(x, MO(z,s)) s

(z,5)) = 1,
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which implies, using (3:36]) and (B3.37)

aNo oNo
‘6M0(x s) aMO(z )| = ’W(CE’M e W(x’M (I7S))‘
gs 7T 9s - 9N? ONY

0 0 /

Or (x’M (.%‘,S)) Or (va ('r73))

MO (x,8) — M°(x,s")|
< 2 [ C7C4 500 _ 240 ! G2 | ) )
> (0402) (C%C%'M (SL',S) M ($7S)|+C§C% w cscr )

which using (3:44) implies (343)).
If we now define p¥ by (3.48]), properties (3.48) and ([B3.49) immediately follow from

B38), B39) and B.44). Similarly if we define ¢ by (3.47), property ([3.50) immediately
follows from (344]) and ([B48), and property ([B51) immediately follows from

(2, 5) = (2, )|

1 oM° oM° oM° |0 (z,8) — pul(x, 8"
«_ - |97 oM ’ ’ ) )
— wuO(x,s) | Os (z,5) Os ()| + ’ Os (z,5) po(z, ) ul(x,s")
and from ([348), 345), (3:44) and ([B3:49).
Proposition [3.4] is proved. O

4. Proof of the regularity Theorem [2.4] The idea of the proof is to differentiate

g

v
equation ([ZI4) with respect to time. Setting o

= w°®, and since

g € e _% s%_% E,u(x,ﬁs) 81762
81;(” (3:70 ))_ ds (I,0 ) ot - Os (I’G )Ca($796) ox
a/f e 1 £\2
=% ) F e )

one formally obtains

N Lowt\ of 0 (o, 1 .
P (x)ﬁ - Ox (u(x,H )ﬁ> ot + Ox ( ds (2, )05(33705) (uf(x,ﬁs))Q( )3) '

The right-hand side of this equation is bounded in L2(0,T; H~1(Q2)) in view of hypothesis
g

0
230) on (’9—]:5’ of the a priori estimate [Z29)) on o and of the estimate

C7

ezt

ous 1
B P
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£
Using w*® as test function in this equation formally implies that w® =

L>°(0,T; L2(2)) N L2(0,T; Hi()), or more exactly in

is bounded in

?(?C(OaT; L?OC(Q)) N L2 (07T7 Hlloc(Q)%

loc
. - ov® N ro
since the boundary conditions on 5 only belong to (and are bounded in) L*(0,T'), and
since the initial conditions are even worse.
The above computation is formal, but we will make it rigourous below by writing the
g

v
equation on the differential quotients 9"v° in place of 0 and by using the function
©?(t) Y?(x) O"v®, where ¢ and 1) are cut-off functions, as test function in place of 9"v®.

Note that the proof holds true in any dimension, whenever the a priori estimate ([2.29)
holds true.
Let us now pass to the correct proof of Theorem 2.4

Let (v%,60%) be a solution of ZI2)-(ZI8). For h > 0, we denote by 9"v¢, 8" and
0" f¢ the differential quotients

vE(t+ h,x) — ve(t, o)

h,.e _
o™ (t, ) = 3 )

0°(t + h,x) — 6°(t, x)

ahes(t,$) = h )

8hfs(t,$) — fg(t—Fh,ZIJ})L— fa(t7x).

Making the difference of equation (ZI4]) at time ¢ 4+ h and at time ¢, we have

00 9 ([, R 9 Ohv® hee O [ o OV° oy
20 - o (a8 —o e 2 (i 5 ) mo@. @

where we have set

R (z,0°(t+ h,z)) — p(x,0°(t, 2
) = I ) (o)
We now fix ¢ > 0 sufficiently small and define ¢s(t) and 1s(x) by

os(t) % FO<t<6, s()=1 ift>s,

wg(x):xga ifa<z<a+d, Ps(x)= ng

ifb—06 <z <b,

Ys(x)=1 fa+d<z<b-—0.
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The function ¢2(t) 12(x) 0"ve (¢, z) belongs to L?(0,T; HE(2)) N HY(0,T; L?(2)) and
can be used as test function in (@I]). This yields

1d
35 | P 0 @) 0 ) P
. 2
/ (, 0°(t + R, ) @5(1) 03 () 32};11 (t,z)| dz
/ d%( )3 () |0"° (¢, 2)Pda
dis 9 e

(z,60°(t + h,x)) p3(t) 295 (x )

\

(x) o (t,z) O"ve (t, ) da

S(1) V3 () 0" (t, ) do

\

h,ve
)30 @) O 1,0 da

\

/ ,x) p3(t) 295 (z )dd]é( ) O (t, x) da.

Integration in time from 0 to ¢, estimates (2.2) and 2.1 on p® and p®, and Young’s
inequality yield

C
7 ), FOE@) 0" (¢ o) de

f , 90", [
ra [ [ ewreim| PG v

//|ahftx|da:dt

0 oMvE
ox

dz dt’

C1

+5 [ e

? 1 4c
dz dt’ +——2//\ah S(t, 2)|? da dt’

c 62

(t', )

t
+ / / O o (t x) 2(t') 3 (x) O (t, ) da !

01 55‘h o | Ov¢ ,
6//|8h5ta:|dxdt+5//|'yhtx (ta:) dxdt’.
(4.3)
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Let us now estimate the various terms which appear in the right-hand side of ([@.3]).
We first estimate the fourth term, say IV®, of the right-hand side of (£3]). Since

8 €
by hypothesis (230) the functions / are bounded in L?(0,T; H=(f)), there exist
functions ¢° € L?(Q) such that

ofs  Og°
o= o M9l < CK', (4.4)
where the constant C' only depends on (b — a). Therefore
1 t'+h e
ofe(t x) = n), aé); (s,z)ds

1 [t 0g° o (1 [+ .
_E/t/ 8x(s’x)d8_% E/t, 9°(s,x)ds | .

Then using integration by parts and Young’s inequality we obtain

= [ [0 i i) ) et

B /0 /Q % (% / /M 9°(s,2) ds) PA(t) W3 (x) "o° (1 @) d dt!

I/ (% [ e ds> )@ 20 2 avar

//( /Hh <s,x>d>so<)m()‘“”“(>8hv€<t’,x>dxdt'

L ieltE i tesiaf
SR o Lo

In the last right-hand side, using Cauchy-Schwartz’ inequality, the formula

/ /tt o s)|dsdt’ < h/Hh 12(s)| ds, (4.5)

and the estimate ([4.4) on ¢, we obtain when t + h < T

t'+h t'4+h
/ / / (s,z)ds| dxdt </ / ( / gs(s,x)|2ds> dx dt’
t/

t+h
g/ / l9° (s, z)|*dx ds < C* K",
0 Q

da: dt' -|-
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In short, when t + h < T, we have proved that

ve< _/ /
1 2 /2 / / h,.e
+<C1 5) C°K 5 |0"vE (¢, x)|Pdx dt’.

We next estimate the sixth and eighth terms of the right-hand side of (£3]). Using the
definition (ZI9) of ¢, the estimate ([Z2]) on p°, Holder’s inequality with % + % =1, and
the a priori estimate ([229) on 0¢, we have

//Wht )
= [ it oi(t' )
< % (/Ot/ﬂ|7,§(t',m)|3da:dt’)§ (/Ot/ﬂ|aa(t’,m)|6dxdt')é
OQC*Q (/ / RAGRE" |3da:dt)

On the other hand, the definition (2] of v and the Lipschitz continuity [21I) of p°
with respect to s yield

aah € ,
8.7; (t)a:)

2
dx dt’

(4.6)

(t x) d;v dt’

2
lo®(t', )|*dx dt’

VAN

i ()| =

‘m, 0(t' + b)) — i (2, 0°(1', ) ‘
h

< o + how) — 0°(¢ )| <

But equation ([ZI3) on 6°, definition ([ZI9) of ¢°, and estimates (2.2) and 24]) on u®
and c® yield
06° 00° pF (2, 0% (s, ) | OvF 2
' ot (s,x)‘ ot o0 v = cc(x,0¢(s, 1)) | Oz (s,)

1 ) 1 ,
= . _ 1. |
CE($796(5735))Me(xaeg(S,I))|0 (s, 2)" < C?,C1|J (s, )]

Finally by Hélder’s inequality with % + 2 = 1, we have

Cr 1
it 2)® < <

C3Cq h

’ ’
t'+h C% 1 t'+h

3
|05(s,m)2ds> < 23 ), lo° (s, z)|5dx ds.
3C1 ’
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Using formula ([@H) and the a priori estimate (2:29) on ¢ we obtain when t + h < T
2
C20*2 (2 t+h 3 2
X< ———% / / lo(s,@)|%dzds | < 5 C°C*S.
0 o) C5C

¢ 30 3C1

We finally estimate the term

//|ah ()2 dt’,

which appears in the first, third and seventh terms of the right-hand side of ([@3]), as well
as in the last term of the right-hand side of (£6). Since

t'+h
OME(t, x) = %/ 7 (s,)ds,
t/

ot
. . . L ov®
using Cauchy-Schwartz’ inequality, formula (4.5 and the a priori estimate (2.21]) on o
we have when t + h < T
¢ ¢ 1 V| 9ve 2
/ / |0 (', x)|Pda dt’ < / / —2h/ ——(s,2)| dsdxdt
0o Ja o Jah* Ju 9
(4.8)
t+h v 2
ai(s,x) ds < C*2.

Using in ([43)) the estimates (£6) and @) on IV and X¢ as well as (L), we have
proved that when t + h < T

2 [ e erceore+2 [ [ aee |25 .|

6 4 *2 LY e L1 07 6
<24+ == C — 4+ = |C°K —+ = iC Cc*6
_<5+5201+5> + cl+5 + cl+5 c3ef
Letting h tend to zero, this implies in particular that for every fixed § > 0, every € > 0,
and every t with 6 <t < T, we have

2l

2 Ja,
6 43 2\ e L1\ o LI g

<o(& 22,2 ~ 1 o) ek -

- ((5+5201+5>C + cl+5 ¢ + 01+5 036100

which is nothing but (233)).
Theorem 24 is proved. O

dx dt’

2

d+01/ /Qé < E>tm) dz dt’

ov®

pr —(t,x)
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5. Proof of the homogenization Theorem Since the data satisfy (2II)-
(2I1I), Theorem [ZT] implies that the unique solution (v<,6%) of (ZI12)—-([2I]) satisfies
estimates (ZZI)-([Z22), and that the stress o¢ defined by (ZI9) satisfies the a priori
estimate (223)). By Proposition 23] the stress o¢ also satisfies the a priori estimate
@223,

On the other hand, the transformed temperature 7° satisfies the a priori estimate
B34). Therefore we can extract from the subsequence €’ defined in Proposition B3 a
new subsequence denoted by &” such that for some v, 6, o and 7 we have

"

v® — v in L*(0,T; HY(Q)) weak-star,

o v, o
7 E in L (O,T,L (Q)) Weak,

0" —~ 0 inD'(Q) weak-star, (5.1)
0" — o in L=(0,T; L?(Q)) weak-star,
and in L2(0,T; HY(Q)) N L5(Q) weak,

"
S

7 — 71 in L'(Q) strong,

where for the strong convergence of 7¢" we have used the fact that the embedding of
WEH(Q) in L(Q) is compact.

We will prove that (v, 6) is a solution of (ZI2)—(@2I8) for the viscosity function ;" and
the heat coefficient ¢ defined in Proposition B.4, and for the density p° and the data
70,02, v, ) and 67 defined in (28)-(2II). Since this solution is unique, this will prove

that it is not necessary to extract a subsequence £” from the sequence &' and that the
whole sequences v¢ , 6" and o converge, as stated in Theorem and Remark
€

5.1. First case: the case where is bounded in L*(0,T; H=1(£2)). In this first case

we assume that, in addition to the hypotheses of Theorem 21| hypothesis [234]) also
holds true. Then Theorem 2.4] implies that 88—”: is bounded in L} (0,T; HL () (see

loc
[233)), namely that

0%ve . . o9
vl bounded in L7, .(Q). (5.2)

Then the definition (ZI9]) of o€, namely

7 (1,7) = (o (1, 2) G (6,2,
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and equation (Z.I5) on 6° imply that

doc 0% ous, . 00° Ov°
o M@ ) e T as W) G e
I TR 1 I
= #, )8x8t " os (,6°) cf(x,ﬁg)u (,6°) <8x) Oz
€ e 82UE 8/"6 & 1 e\3
= 1) st o ) e )

8 €
Using the estimates ([22)), (21) and (24]) on p°, 8—,us’ and ¢®, and the estimates (5.2))
2,
and ([2:29) on 8;1012% and o¢, we conclude that

0o*
ot
Combined with the a priori estimate (2:23) on ¢°, this implies that

o° is bounded in H} (Q).

is bounded in L}, (Q).

Turning back to (Bl and using Rellich’s compactness theorem, we have proved that

"
13

0 — o inL}.(Q) strong. (5.3)

By the definition (BZI)) of the function A\¢, the definition (320) of the transformed
temperature 7¢ and the definition (ZI9) of the stress o€, we have (see ([B3.24))

ov®
(4 — )\E €
g (x’ T ) 8./1: I
or equivalently, in view of the estimates ([8:222) on \*
ov*® 1 R
= — in D'(Q). 5.4
or )\E(x,rs)a in D(Q) (5:4)
1
Since by Proposition B.3] the functions W, which are uniformly (in  and ¢) Lips-
x,T
1
chitz continuous in s (see [B:23))), converge in L>=°() weak-star to ) for every r
z,T

fixed (see (B341), and since 7" converges to 7 strong in L'(Q) (see (5.1)), the second
part of Lemma [3.8 implies that
1 IR 1
Xz, (¢, ) Az, T(¢, 7))

in D'(Q) weak-star,

1
and also in L% (Q) weak-star since the sequence @) is bounded in L*(Q). Com-
x, T
bined with the strong convergence of 0" in L2 (Q) (see ), this allows us to pass to
the limit in (5.4]). We have proved that
ov 1
= in D
Ox /\O(a:,T)U in DAQ),
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or equivalently that
J:A%Lﬂgg in D'(Q). (5.5)

On the other hand, the definition [B20)) of the transformed temperature 7° asserts
that

0°(t,x) = N¥(z, 7°(t, x)). (5.6)

Since by Proposition B3] the functions N¢’ (z,7), which are uniformly (in z and &) Lip-

schitz continuous in s (see (B.I7)), converge to N°(z,r) in D’'(£2) weak-star for every r

fixed, since the functions 65 and 6] satisfy (211, and finally since e’ converges strong
to 7 in L1(Q), the second part of Lemma [B.8 implies that

N (2, 7% (t,2)) = Nz, 7(t,2)) in D'(Q) weak-star.
Therefore passing to the limit in (5.6]) with the help of (51I), we have proved that
0(t,x) = N°(z,7(t,x)).

By the definition (3.42)) of the reciprocal function M? of the function N, this is equivalent
to
m(t,x) = M°(z,0(t, ). (5.7)
In view of the definition ([3.46]) of the function u°, (55) and (5.7) imply that
Ov

U:MQﬁ55 (5.8)

It is now easy to pass to the limit in equation (ZI4]). Since
ot 0
p° ()

_ 2 (E €
and since v¢" tends to v in L?(Q) strong by (5.1 and Rellich’s compactness theorem,

one obtains, in view of (Z.6]), (51 and (27

Jdv  Oo

0 0 iy

9v_ 99 _ D

PO = 0 D Q)

which, in view of formula (E5.8)) for o, is nothing but equation (2.I4) with € = 0.

Similarly, since 0" converges to o in L2, (Q) strong (see (53)), one easily passes to

the limit in equation ([3:29)), namely (see (3:25)))

ore R .
10 nD(@)
This yields
or .
5 o> inD'(Q). (5.9)
But (5.7) and the definition B.47) of ¢(x, s) in Proposition 3.4l imply that
or 0 oM°

00
E(t’x): a(MO(x,Q(t,x))) = 9s (ﬂf,a(t,l’)) a(tax)

00

= (@,8(t,2)) 1z, 6(t,2)) 5

(t,2),
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which, combined with equation ([59), formula (5.8)) for o and the fact that p° is strictly
positive (see ([B:48])), implies that

09 ov\?
0 0 : /
0)— = 0) | — D
P0Gy =0 (51) mQ
i.e. equation (ZI5) with e = 0.

We observe (see (B.I)) that v enjoys the regularity (2.12). We now investigate the
boundary and initial conditions on v. Passing to the limit in (2.I6]) with the help of (5.1I)
and (2.8)) implies that v satisfies

v(t,a) =02(t), w(t,b) =v)(t) ae.te(0,T),

i.e. the boundary conditions (2.I6]) with € = 0.
For what concerns the initial condition on v, we define for every fixed p € C2°(£2) the
functions V¢ : (0,T7) — R by

VE(t) = /st(t,x) p(x)dz ae.te(0,T),

and the function V : (0,T7) — R by

V(t) = /Qv(t,x) p(x)dz ae.te(0,T).

In view of (B.1I), the functions V¢ satisfy

"

V'~V in HY(0,T) weak,
and therefore that
V" =V in C°([0, T)) strong.
This implies in particular that

V<" (0) = /Q v (0,2) p(z) dz — V(0) = / (0, %) () d,

Q
and since v°(0, z) = v§(z) (see [2I1)), this yields in view of (Z9)
v(0,2) =v)(z) ae x€Q,
i.e. the initial condition (ZI7)) with € = 0.
It remains to prove that 6 enjoys the regularity ([2.I3]) and satisfies the initial condition
[2I8) with £ = 0.
For that, using equation (ZI3]) on 6° and the definition (ZTI9) of o¢, we write
a6° I € A 1 E
oy T e Eﬂ(xvo) = e e\, e 5(0)27
ot cf(x,0°) Ox et (x, 0%)us (x, 6°)
which, in view of the estimates ([Z2]) and (Z4]) on x° and ¢® and of the a priori estimate
@29) on ¢°, implies that

06°

py is bounded in L3(Q). (5.10)
Combined with (510), this implies that
00
— e L*(Q). A1
P e Q) G.11)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



392 NICOLAS CHARALAMBAKIS axp FRANGOIS MURAT
We now define for every fixed ¢ € C2°(Q) the functions 7¢ : (0,7) — R by
Te(t) = /QGE(t,x) p(x)dr ae.t e (0,T),
and the function 7 : (0,7) — R by
T(t) = /QG(t,x) o(x)dx ae.te(0,T).

In view of (B.I0]), one has

TE
aat bounded in L3(0, T,
and in view of the initial condition (ZI8) on 6° one has
T5(0) = / 0%(0, 2) () dar = / 08 (2) () da. (5.12)
Q Q

Using estimate (2.11]) on 65, we deduce that 7°(0) is bounded and therefore that 7¢ is
bounded in W13(0,T). Since T¢ converge to 7 in D’(0,T) weak-star in view of (5.1)),
this implies that

7" ~T in W3(0,T) weak,
and therefore that

7" =T inC°([0,T)) strong.
This implies in particular that

7" (0) = /Q 0°(0, z)p(x)dz — T(0) = / 0(0, z)p(z)d.

Q
Using (5.12) and the convergence (2.I1) on 65, we conclude that

0(0,z) = 03(x) ae. xz€Q,
i.e. the initial condition (ZI8]) with € = 0.

Since % belongs to L3(Q) and since 6(0,x) belongs to L!(Q), the distribution @
actually belongs to W13(0,T; LY(Q)), and therefore to W11(0,T; L1(Q)). This proves
that 6 enjoys the regularity (213)).

In conclusion, we have proved that v, 6 and o defined in (5] satisfy (Z12)—(2I8)
and (ZI9) with ¢ = 0. Uniqueness of the solution of this system implies that v = vY,
0 = 0° and o = 0, and that the convergences (5.1]) take place for the whole subsequence
¢’ defined in Proposition and not only for a further subsequence &”.

Theorem 2] is therefore proved when hypothesis (Z:34)) holds true.

5.2. Second case: the case where f€ is compact in L?(Q). In this second case we
assume that (2.35) holds true.

Let 9 be a given function such that

YECHR), >0, /R¢(t)dt:1.

We define the regularizing sequence 1, by

1
‘”"“):ﬂ(%)’ n=0
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Next we consider the functions f; and f,? defined by

folt,a) = /R FE(s,2) Py (t — 5) ds,

0 = ~OS£L’ — S S
fn(tvx)—/Rf(, Yib(t — 5) ds,

where f€ and fO are defined by extending f¢ and f° by zero to R x €, i.e.

Felt,x) = fo(t,x) it 0<t<T,

fet,x)=0 if t<0 orif t>T,
fo(t,z) = fO>t,x) if 0<t<T,
folt,z)=0 if t<0 orif t>T.

The functions f; satisfy
1f5llz2 @) < K,

< KHw/HLl(R) 7

|5
L2(Q) g (5.13)

ot

fi = fy  in L*(Q) weak for 7 fixed,

fY — f° in L*(Q) strong.

Let (v5,0;) be the unique solution of ([2.I2)-([2.I8) for the external forces fy, the
coefficients ©°, ¢® and p® and the data v, v;, vj and 0F. Since the second assertion
€

0
of (BI3) ensures that for n > 0 fixed, (,;;n is bounded in L%(0,7; H=1(£2)), the result

proved in the previous subsection implies that for n > 0 fixed one has

v =9 in Lo(0,73 HY(Q)) N H'(0,T; L*(Q2)) weak-star,
(5.14)
9;/ — 6y inD'(Q) weak-star,

where the subsequence &’ is defined in Proposition B3] and where (vg, 92) is the unique

solution of (ZI2)-(2.I8) for the external forces fp, the coefficients u°, ¢® and p® and the
data v2, v, v and 67.

On the other hand, since || f5 — flllz2(q) < [1f€ — fllL2(q), we have for every e > 0
and every n > 0

Ifs = el < Nfs = fllez) + 1) = FOllzeq) + 150 = Folle2@

<2012 = fOllea + 1y = P2
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Since (v5,0;) and (v°,0°) respectively correspond to the data (fy,v5, vj,v5,05) and

(fe,ve, vE, 05, 05), the a priori estimate (2:24)) implies that
v, = v¥|| oo (0,722 () + ||Ufy — 0% 200,151 () + ||957 — 0%l o< 0,152 ()

<O fe = fellze @),

where C** is a constant which depends ounly on ¢1, ¢, c3, c4, ¢5, ¢s, ¢7, (b—a) and K.
Therefore we have

HU; — % pee 0,1;22(02)) + ||Ufy — 0% 200,751 () + ||957 — 0% Lo 0,1521 ()

(5.15)
< C*2f5 = Plleeo) + 11 = fOlle(q))-
For (vg, 92) and (v°,6°), the same a priori estimate (Z24]) implies that
l[vg = vl Lo 0,7502(0) + Iy — v0 20,751 (0)) + 1105 — 0%l 0,522 ()
(5.16)
<O 0 = Ollzeq)-
We now write
€ 0 _ ¢ € € 0 0 0
VT —v =V fanrvnfanrvnfv R
(5.17)

0 _ 0 g0 _ g0
0° —0° =0°— 07 + 0, — 0, + 06, — 6.
Combining (5.17) with (5.13)), (614), (5I6]) and (5I3]) proves that, for the subsequence

¢’ defined in Proposition [3.3]
v = in L(0,T; L*(Q)) N L2(0, T; H'(Q)) weak-star,
0" —~ 09 in D'(Q) weak-star,

where (v°,6°) is the solution of ([ZI2)-(2I]) for the coefficients u°, ® and p° and for
the data (f9, 02, vp, vJ, 63). Since v° is bounded in L>(0,75 H'()) N H'(0,T; L*(2))
(see (Z2T))), the convergence of v°" also takes place in L>(0,T; H*(Q)) N H' (0, T; L*(Q))
weak-star. This proves convergences (Z36]), (Z37) and (Z38). Convergence ([239) is
then proved using (54) as in the previous subsection.

Theorem is therefore proved when hypothesis ([235) holds true. O

6. An example showing that the homogenized heat coefficient ¢ depends
in general on the temperature. In this section we consider the case of a material
made of layers of size € of some given homogeneous phases characterized by densities
pi(x) = p;, viscosity functions pu;(xz,s) = pi(s) and heat coefficients ¢;(z,s) = ¢;(s),
i=1,..., 1. In this special case we give explicit formulas for the homogenized density pg,
the homogenized viscosity function pg and the homogenized heat coefficient cg.
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In this setting, the density, the viscosity function and the heat coefficient are given by
I
pe(x) = pix§ (),
i=1

I
(ws) = ils) X3 (), (6.1)
i=1
I
E(ws) =Y eils) Xi (@),

i=1

Here, for every fixed € > 0, the functions x5(z) are characteristic functions of disjoint
measurable sets whose union is €2, i.e. functions which satisfy

I
(@)L —x5(x) =0 fori=1,...1, > xi(z)=1 aezeq,
=1

(this setting generalizes the case of a material made of layers of size ¢), the constants p;
satisfy for i =1,...,1
¢s < pi < g,

the functions p; : R — R are bounded, Lipschitz continuous, nonincreasing functions
which satisfy for i =1,...,1

—c7 < %‘:
and finally the functions ¢; : R — R are bounded, uniformly continuous functions which
satisfy for i =1,...,1

lei(s) —ci(8)] Sw(|s—§']), c3<ci(s) <ey Vs,s' € R,

(s) <0, c1 <pi(s) <co Vs € R,

where w is a modulus of continuity. Then the functions p®(z), u¢(z, s) and ¢*(z, s) defined

by (@) satisfy hypotheses ([21)—(23]).

We moreover assume that for i =1, ..., 1
X; = p; in L®(Q) weak-star, (6.2)

where the function p; describes the volume fraction of the material ¢ at the point x in
the homogenized material. Under this hypothesis, the extraction of a subsequence &’ in
Proposition [3.3] and in the homogenization Theorem is no longer necessary. Note
that

I
0<pi(z) <1 fori=1,..,1, Zpi(x)zl a.e. x € .
i=1

Let us give in this case explicit formulas for the functions p°, u° and ¢® which appear
in the homogenization Theorem
The homogenized density p° is given by (see (2.0))

I
P(x) = Zpi pi(x) ae. x €. (6.3)

Considering for simplicity the case where

05 (x) = 0, (6.4)
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and defining, for I =1, ..., I, the functions M; : R — R by

M;(s) = / ci(s) pi(s)ds', Vs eR, (6.5)
0
as well as their inverse functions N;: R — R by
Mi(s)=r <= s=N;(r) Vs,reR, (6.6)
we have (see (BI0) and (B14))

1
M= (z,s) = ZMZ(S) X;(z) ae ze, VseR,
i[:l
Neé(z,r) = ZNi(T) X;(x), ae xze, VreR.
i=1
Then the function N defined by ([3.40) is given by
I
N°(z,r) = ZNi(r)pi(x). (6.7)
i

The function M°(z, s) is then defined as the reciprocal function of N°(x,7) (see (B.42)),
ie.
M(z,s)=r <= N%z,r)=s aexzc, Vs rcR.
Defining, for ¢ = 1, ..., I, the functions A; : R — R by

we have (see (B:21)))
I
A (x,r) = pf(x, N(x,1)) = Z)\i(r) X;(x) ae xzeQ, VreR.
i=1
Then the homogenized function A" defined by (B.41)) is given by

r pi()
NO(z,7r) ; Ai(r) (6.9)

Finally, the homogenized viscosity function u° and the homogenized heat coefficient
¥ defined by (3.46) and ([3.47) are given by

~

ul(z, NO(z, 7)) = \o(z,7), (6.10)

oM° 1

CO(Z’NO(*%T)): Js (w’NO(x’T))M()(Z‘,NO(x,T»
(6.11)
0
= 82? (x7N0(x,r))>\O(i A
We deduce from (@I0) and (69) that
I —1
0(g. NO(z. 7)) = pi(x)

10 (x, NO(z, 7)) (; >\i(7")> (6.12)
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On the other hand, using the chain rule formula in » = M;(N;(r)) and the definitions
635) and [6.3) of M; and \;, we have for : =1,..., T

1= S N) S 0) = N ) i (Vi) ) = eaNa() M) S0,

In view of ([G.1), this yields

0 _ (z
aalr(% =), 88]:? (r)pi(z)=" __mle) (6.13)

P — ¢i(Ni(r)) Ai(r)
Similarly, using the chain rule formula in the identity M°(z, N°(z,7)) = r, we have
0 0
O e N ) ) = 1, (6.14)
and therefore using (611]) and (614), and then ([GI3]) and (@9
I L
1 1 pi(z) pi(7)
Az, N(z, 7)) = = — . (6.15
(@ N = g 5\ amen ) \ae ) O

In this particular setting of a material made of layers of homogeneous phases, we have
proved the following result.

THEOREM 6.1 (Explicit formulas for a material made of layers of homogeneous phases).
When p°, pf and ¢® are defined by (6], and when (62) and ([G4]) are satisfied, Propo-
sitions B.3] and B.4] and Theorem hold true for the whole sequence € and for the
functions p° and ¢ given by formulas (612) and (6.I5), where the function N(z,r) is
defined by formula (G.7]). O

We now claim that in general the homogenized heat coefficient ¢ does depend on s,
i.e. on the temperature, even if the heat coefficients of each phase do not depend on it,
i.e. evenif fori=1,...,1

ci(s)=c; R VseR. (6.16)

Indeed in the special case where ([6.I6]) holds true, formula ([G.I5) reads as

I L
0 0 pi(x) pi(z)

c(x,N"(x,r)) = . 6.17

o= (SAG) (S50 o1
When all the ¢; are all equal to some ¢*, i.e. when ¢*(z, s) = ¢* is fixed independently of

x and of s, then formula (B.I7) implies that c®(z, s) = ¢*, and of course the homogenized
heat coefficient does not depend on the temperature in this case. But when the ¢; are
different, i.e. when the c*(z,s) do oscillate, then the heat coefficient °(z,s) in general

depends on s.
Let us first consider the example of the mixture of two phases. Then c(z, N°(z,7))

reads as
Beey _ mgea)
0 0 _ A1 (r Ao (T o pa(x Ao (7
ez, N (z, 7)) = pi@) o pa@) 1 (e pi) NPSIGAN (6.18)
c1 A1 (r) c2 A2 (r) ca \ c1 p2(x) A2 (r)

When A (r)/A2(r) is not constant, the right-hand side of ([G.I8]), and therefore its left-
hand side, depends on r. Then c°(x, s) depends on s.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



398 NICOLAS CHARALAMBAKIS anp FRANCOIS MURAT

In the general case of I phases with I > 2, the function c’(z, N°(z,r)) also depends
on r in general. Let us consider for simplicity the case where the volume functions p;(x)
do not depend on x, i.e. the case where p;(x) =p; fori=1,...,I. Set for i =1,....T

D
zi(r) = m

Then °(z, N°(z,r)) does not depend on z and reads as

I
Zcizi(r)

Az, N(z,r)) = 12117
Zzl(r)

Therefore the function ¢®(z, N°(z,r)) does not depend on 7 if and only if there exists a
constant ¢* such that

I
Z cizi(r) =c* Z zi (1),
i=1 i=1
i.e. if and only if
I
Z(Ci —")zi(r) =0.
i=1

When the functions z;, i = 1, ..., I, are linearly independent, this is never the case except
when ¢; = ¢* for i = 1,..., I, i.e. when ¢*(x,s) = ¢* is fixed independently of z and of s.
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