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Abstract. The Maxwell equations in a heterogeneous medium are studied. Nguetseng’s
method of two-scale convergence is applied to homogenize and prove corrector results for
the Maxwell equations with inhomogeneous initial conditions. Compactness results, of two-
scale type, needed for the homogenization of the Maxwell equations are proved.
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1. Introduction

Homogenization results for Maxwell’s equations, by the classical method of asymp-
totic expansions in two scales, are well known (see e.g. [5] and [17]). In this paper we

use the quite new method of two-scale convergence, introduced by Nguetseng [13].
It turns out to be a very simple homogenization procedure with straightforward

and transparent proofs. We show that the Maxwell equations in a heterogeneous
structure possess a unique two-scale limit as the size of the inhomogeneity of the

micro-structure tends to zero. We also prove new corrector results for Maxwell’s
equations.

We consider a material which occupies a bounded open simply connected set Ω in
�
3 and assume that the material is ε-periodic in the sense that it can be viewed as

the union of a collection of disjoint open identical cubes with side length ε (Y ε-cells).
Further, we assume that the boundary ∂Ω is regular, i.e., ∂Ω is a once continuously
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differentiable two-dimensional manifold. (This assumption can be relaxed, it can be

proved that it is enough if ∂Ω is Lipschitz.)
The Maxwell equations in the ε-periodic material read:

∂tD
ε(x, t) + Jε(x, t) = rotHε(x, t) + F ε(x, t)(1.1)

∂tB
ε(x, t) = −rotEε(x, t)(1.2)

divBε(x, t) = 0(1.3)

divDε(x, t) = �ε(x, t)(1.4)

for x ∈ Ω and t ∈ ]0, T [, where Eε, Hε, Dε, Jε and Bε are the electric, magnetic, in-

duced electric, current density and induced magnetic fields, respectively. Moreover,
�ε(x, t) is the charge density which is defined by (1.4) and F ε is a current density

source. We assume that F ε and the time derivative ∂tF
ε belong to L2(0, T ;L2(Ω)3),

i.e. F ε ∈ W 1,2(0, T ;L2(Ω)3), and are bounded in the L2(0, T ;L2(Ω)3)-norm. More-

over, we assume that F ε → F strongly in L2(0, T ;L2(Ω)3) and that divF ε is bounded
in L2(Ω× ]0, T [). The system is equipped with the initial conditions

(1.5) Eε(x, 0) = Eε
0(x), Hε(x, 0) = Hε

0(x),

which are bounded in L2(Ω)3. We assume that Eε
0(x) and H

ε
0 (x) two-scale con-

verge to E0(x, y) and H0(x, y), respectively. We also have the Neumann boundary

condition

(1.6) n ∧Eε(x, t) = 0 on ∂Ω× ]0, T [,

where n is the outer unit normal to ∂Ω. This boundary condition corresponds to the
case when Ω is in contact with an infinitely good conductor. More general boundary

conditions can also be treated, see [2] and [6].
There are also three constitutive relations associated to the system (1.1)–(1.4):

Bε
i (x, t) = µij

(x
ε

)
Hε

j (x, t),(1.7)

Jε
i (x, t) = σij

(x
ε

)
Eε

j (x, t),(1.8)

Dε
i (x, t) = ηij

(x
ε

)
Eε

j (x, t).(1.9)

Here µ, η and σ are the magnetic permeability, electric permittivity and con-
ductivity, respectively. Since these are material dependent they are periodic with

the same period as the material (ε-periodic). Moreover, µ and η are assumed
to be symmetric, i.e., µij = µji and ηij = ηji. Existence of a unique solution
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Eε, Hε ∈W 1,∞(0, T ;Hrot(Ω), L2(Ω)3) was proved in [7]. (For a definition ofHrot(Ω),
see Section 2.) The material can for example be a carbon fiber composite or an im-
pregnation ore consisting of two different kinds of minerals, one highly conductive
distributed periodically in another one with low conductivity. In particular, it can be

applied to the Induced Polarization phenomenon (see [19] and the references given
there), which is used by geophysicists in the search for ores containing gold, silver

and copper among other valuable metals.
The problem to be addressed when modeling the electromagnetic fields is to deter-

mine the macroscopic conductivity, electric permittivity and magnetic permeability.
The homogenization problem for Maxwell’s system (1.1)–(1.6) with constitutional

relations (1.7)–(1.9) is to find the effective constitutive relations, represented by the
mappings

H �→ B,

E �→ J,

E �→ D,

which need not be of the same type as (1.7)–(1.9). (We will find out that the

current density and the induced electric field are obtained by convolutions in time,
i.e. the constitutive relations for the homogenized Maxwell’s equations possess a

memory effect, or in other words, the homogenized permittivity and conductivity
are frequency dependent.) The corresponding effective Maxwell’s equations read

∂tD + J = rotH + F,

∂tB = −rotE,
divB = 0,

divD = �,

E(x, 0) = E0(x), H(x, 0) = H0(x)

for x ∈ Ω and t ∈ ]0, T [, and

n ∧ E(x, t) = 0 on ∂Ω× ]0, T [.

A similar problem has been studied with the use of the classical method of multiple
scales expansion technique (see e.g. [16] and [17] for homogeneous initial conditions

and unbounded domains, see also [2]–[5], [11], [12], [21] and the references given
there). Here we present a new proof based on the two-scale convergence method. We

also prove some new corrector results which open the possibility of better numerical
modeling of the above problem.
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The paper is organized as follows: In Section 2 we present some basic definitions

and the concept of two-scale convergence. In Section 3 we present and discuss the
announced main homogenization and corrector results. In Sections 4 and 5 we present
and prove some compactness results and a priori estimates necessary for the proofs of

the main results. The proofs of the main results can be found in Section 6. Section 7
is reserved for some concluding remarks.

2. Preliminaries

In this text we use the Einstein tensor summation convention. Some standard op-
erator symbols will also be used when it simplifies the notation. By C we denote any

fixed constant which may take different values on any place it appears in an equation
or inequality. The notation for function spaces, not defined below, is standard and

can be found in [20].

Let Ω be a bounded open simply connected set in �N and Y = ]0, 1[N a unit
cube in �N , which we will call a Y -cell. F�(Y ) consists of all functions in Floc(�N )

which are periodical repetitions of some function in F (Y ). Hrot(Ω) = {u ∈ L2(Ω)3 :
rotu ∈ L2(Ω)3}, with the norm ‖u‖Hrot(Ω) = ‖u‖L2(Ω)3 + ‖ rotu‖L2(Ω)3 . Hdiv(Ω) =
{u ∈ L2(Ω)3 : div u ∈ L2(Ω)} with the norm ‖u‖Hdiv(Ω) = ‖u‖L2(Ω)3 + ‖ div u‖L2(Ω).
Du = (∂xiu)i = gradu denotes the gradient of u and n∧u denotes the vector product
n ∈ �

3 and u ∈ �
3 . div u = ∂xiui and rotu = curlu = (∂x2u3 − ∂x3u2, ∂x3u1 −

∂x1u3, ∂x1u2 − ∂x2u1) are the usual divergence and curl of vector fields in �
N and

�
3 , respectively. We say that a function u : �N → � is Y -periodic if u(x+ei) = u(x)
for every x ∈ �

N and for every i ∈ {1, 2, 3, . . . , N}, where (e1, . . . , eN ) is the canonical

basis of �N . Sometimes we write σε, ηε and µε for σ
(

x
ε

)
, η

(
x
ε

)
and µ

(
x
ε

)
, respectively.

In 1989 Nguetseng [13] presented a new concept to homogenize scales of partial
differential equations (PDEs), the so called two-scale convergence method which was

generalized to the Lp(Ω)-case by Holmbom in [10] in the following way:

Definition 2.1. A sequence {uε} in Lp(Ω), p ∈ ]1,∞], is said to two-scale
converge to u0 ∈ Lp(Ω× Y ) if

(2.1) lim
ε→0

∫

Ω
uε(x)a

(
x,
x

ε

)
dx =

∫

Ω

∫

Y

u0(x, y)a(x, y) dxdy

for every a ∈ D(Ω;C∞� (Y )). We will sometimes denote two-scale convergence by
2−s
⇀ .

The following useful result is a natural generalization of the corresponding result
stated for L2(Ω) functions in [13].

32



Proposition 2.2 (Uniqueness). Let {uε} be a bounded sequence in Lp(Ω),

p ∈ ]1,∞]. Then for a subsequence (2.1) holds for a (unique) u0 ∈ Lp(Ω;Lp
� (Y )) for

all a ∈ C0(Ω;C�(Y )) and for all a = a1 · a2, a1 ∈ C0(Ω), a2 ∈ Lq
�(Y ), 1/p+ 1/q = 1.

�����. See [10]. �

In [10] Holmbom also enlarged the class of all test functions for which (2.1) holds

to all admissible test functions in the sense defined below.

Definition 2.3. We say that a ∈ Lq(Ω;Lq
�(Y )) is an admissible test function if

a
(
x, x

ε

)
is measurable and

lim
ε→0

∥∥∥a
(
x,
x

ε

)∥∥∥
Lq(Ω)

= ‖a(x, y)‖Lq(Ω×Y ).

������ 2.4. Some examples of admissible test functions are Lq(Ω;C�(Y )) and,
for Ω bounded, Lq

�(Y ;C(Ω)), q ∈ [1,∞[. Moreover, any a which belongs to either of
these spaces for q = 1 satisfies (see the proof of Lemma 5.2 in [1])

lim
ε→0

∫

Ω
a

(
x,
x

ε

)
dx =

∫

Ω

∫

Y

a(x, y) dxdy.

For p � 2 we have the following result:

Theorem 2.5. Let {uε} and {aε} be bounded sequences in Lp(Ω), p ∈ [2,∞[,
and L2(Ω), respectively. Let u0 and a0 be the two-scale limits of subsequences of
the corresponding sequences obtained by the diagonalization procedure. Further,

assume that at least for this subsequence

lim
ε→0

‖aε(x)‖L2(Ω) = lim
ε→0

∥∥∥a
(
x,
x

ε

)∥∥∥
L2(Ω)

= ‖a(x, y)‖L2(Ω×Y ).

Then, for the subsequence selected above,

lim
ε→0

∫

Ω
uε(x)aε(x) dx =

∫

Ω

∫

Y

u0(x, y)a(x, y) dxdy,

lim
ε→0

∥∥∥aε(x)− a
(
x,
x

ε

)∥∥∥
L2(Ω)

= 0.

�����. See [10], where also a nonperiodic case was proved. �

Our next result is a generalization to the Lp-case of the characterization of the
two-scale limit in the L2-case treated in [13].
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Proposition 2.6. Let {uε} be a bounded sequence in Lp(Ω), p ∈ ]1,∞]. Then,
up to a subsequence, {uε} two-scale converges to u0(x, y) ∈ Lp(Ω×Y ) and converges
weakly to u(x) =

∫
Y
u0(x, y) dy in Lp(Ω). Furthermore, u0 is (uniquely) expressible

in the form

u0(x, y) = u(x) + ũ0(x, y) with
∫

Y

ũ0(x, y) dy = 0.

Moreover, if ũ0 �= 0 on a subset of Ω× Y with positive measure, then the sequence

{uε} will not converge strongly in Lp(Ω).

�����. Let u0 be the two-scale limit of {uε} and let a be any function in Lq(Ω),

1/p+ 1/q = 1. We note that a is an admissible test function and it follows that

lim
ε→0

∫

Ω
uε(x)a(x) dx =

∫

Ω

∫

Y

u0(x, y)a(x) dxdy =
∫

Ω

(∫

Y

u0(x, y) dy

)
a(x) dx.

Clearly uε ⇀ u(x) :=
∫

Y u0(x, y) dy weakly in L
p(Ω). By defining ũ0 as

ũ0(x, y) := u0(x, y)−
∫

Y

u0(x, y) dy,

we obtain the desired decomposition of u0(x, y). Moreover, if {uε} tends strongly
to u in Lp(Ω), then {uε} will also two-scale converge to u (cf. Proposition 2.10 in [8]).
It follows that ũ0(x, y) ≡ 0 except on a subset of Ω × Y with measure zero (u0 is
uniquely defined on Ω × Y only up to a subset of measure zero). The proposition

follows now by contraposition. �

We also need the following result, which will be useful when proving corrector
results.

Proposition 2.7. Assume that u ∈ Lp(Ω × Y ), p ∈ ]1,∞[ is an admissible test
fuction. Then, up to a subsequence,

{
u
(
x, x

ε

)}
two-scale converges to u.

�����. See [10]. �

We have the following slight generalization of Proposition 2.8 in [8] for coefficients

in L∞� (Y ). The result is useful for homogenization of PDEs in nonperiodic media.

Lemma 2.8. Let {uε} be a bounded sequence in Lp(Ω), p ∈ ]1,∞], and let
v ∈ C0(Ω;L∞� (Y )). Then a subsequence of

{
uε(x)v

(
x, x

ε

)}
two-scale converges to

u0(x, y)v(x, y), where u0 is the two-scale limit of {uε}.

�����. By the boundedness of {uε} we find that also the sequence {uε(x)×
v
(
x, x

ε

)
} is bounded in Lp(Ω). Let the corresponding two-scale limits be u0(x, y) and
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χ0(x, y). Choose a = a1 · a2, a1 ∈ D(Ω), a2 ∈ C∞� (Y ) as an admissible test function.
It follows that also v · a is an admissible test function, i.e.,

lim
ε→0

∫

Ω
uε(x)v

(
x,
x

ε

)
a

(
x,
x

ε

)
dx =

∫

Ω

∫

Y

u0(x, y)v(x, y)a(x, y) dxdy.

Since the test functions are chosen such that we have unique limits we conclude that
χ0(x, y) = u0(x, y)v(x, y). �

3. The main results

In this section �
N = �

3 . Further, µ, η and σ are bounded, Y-periodic and
coercive tensors, i.e., there exist positive constants c1 and c2 such that |µijξj | � c1|ξ|,
µijξjξi � c2|ξ|2 for all vectors ξ �= 0. Moreover, µ and η are assumed to be symmetric.
First we state the following two-scale convergence result:

Theorem 3.1. Any sequence {Eε(x, t)}, {Hε(x, t)} of solutions to (1.1)–(1.9)
two-scale converges in L∞(0, T ;L2(Ω× Y )3) to the limits E(x, t) +Dyϕ(x, y, t) and
H(x, t) +DyΦ(x, y, t) which are the unique solution of the following two-scale limit

Maxwell system:
∫

Y

(
ηij(y)∂t + σij(y)

)(
Ej(x, t) + ∂yjϕ(x, y, t)

)
dy =

(
rotH(x, t)

)
i
+ Fi(x, t),(3.1)

∫

Y

µij(y)∂t

(
Hj(x, t) + ∂yjΦ(x, y, t)

)
dy = −

(
rotE(x, t)

)
i
,

∂xi

∫

Y

µij(y)
(
Hj(x, t) + ∂yjΦ(x, y, t)

)
dy = 0,

∂xi

∫

Y

ηij(y)
(
Ej(x, t) + ∂yjϕ(x, y, t)

)
dy = �(x, t)

a.e. in Ω× ]0, T [, with the boundary condition

n ∧ E(x, t) = 0 a.e. on ∂Ω× ]0, T [,

initial conditions

E(x, 0) =
∫

Y

E0(x, y) dy, H(x, 0) =
∫

Y

H0(x, y) dy,

and local problems
∫

Y

(
ηij(y)∂t

[
Ej(x, t) + ∂yjϕ(x, y, t)

]

+ σij(y)
[
Ej(x, t) + ∂yjϕ(x, y, t)

])
∂yiv2(y) dy = 0,∫

Y

µij

(
y)

(
Hj(x, t) + ∂yjΦ(x, y, t)

)
∂yiv2(y) dy = 0
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for all v2 ∈ W 1,2
� (Y )/�. Here, E

0(x, y) and H0(x, y) are the two-scale limits of the

initial values Eε(x, 0) and Hε(x, 0), respectively.

We note that the last equation in (3.1) is a definition of the charge density in the
two-scale limit case.

Next we present our main homogenization result.

Theorem 3.2. Any sequence {Eε(x, t)}, {Hε(x, t)} of solutions to (1.1)–(1.9)
converges weakly* in L∞(0, T ;L2(Ω)3) to the limit E(x, t), H(x, t) in W 1,∞(

0, T ;
Hrot(Ω), L2(Ω)3

)
, the unique solution of the following homogenized Maxwell system:

∂tD(x, t) + J(x, t) = rotH(x, t) + F (x, t) + F 1(x, t),(3.2)

∂tB(x, t) = −rotE(x, t),
divB(x, t) = 0,

divD(x, t) = �(x, t)

almost everywhere in Ω× ]0, T [, with the boundary condition

n ∧ E(x, t) = 0 a.e. on ∂Ω× ]0, T [,

and initial conditions

E(x, 0) =
∫

Y

E0(x, y) dy, H(x, 0) =
∫

Y

H0(x, y) dy.

The system (3.2) is equipped with the constitutive relations

Bi(x, t) = µh
ijHj(x, t),(3.3)

Di(x, t) =
∫ t

0
ηh

ij(t− τ)Ej(x, τ) dτ,

Ji(x, t) =
∫ t

0
σh

ij(t− τ)Ej(x, τ) dτ,

where

ηh
ik(t) =

∫

Y

ηij(y)
[
δjkδ(t)− ∂yjχ

k(y, t)
]
dy,

σh
ik(t) =

∫

Y

σij(y)
[
δjkδ(t)− ∂yjχ

k(y, t)
]
dy.

Here the gradient of χk(y, t) ∈ D′(0,∞;W 1,2
� (Y )/�) is given by

∇yχ
k(y, t) = ∇yχ

k
η(y)δ(t) + exp(−At)A∇y

[
χk

σ(y)− χk
η(y)

]
Θ(t),
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where ∇y is the gradient operator with respect to y and Θ(t) is the Heaviside step

function and exp(−At) is the semigroup which is generated by the infinitesimal
generator A defined by Aij = (η−1)ilσlj . χk

η and χ
k
σ are the unique solutions in

W 1,2
� (Y )/� of the local problems

∫

Y

ηij(y)
[
δjk − ∂yjχ

k
η(y)

]
∂yiv2(y) dy = 0, a.e. in Ω× ]0, T [ ∀v2 ∈W 1,2

� (Y ),
∫

Y

σij(y)
[
δjk − ∂yjχ

k
σ(y)

]
∂yiv2(y) dy = 0, a.e. in Ω× ]0, T [ ∀v2 ∈W 1,2

� (Y ),

respectively. Furthermore, µh
ij is given by

µh
ik =

∫

Y

µij(y)
[
δjk − ∂yjχ

k
µ(y)

]
dy,

where χk
µ is the unique solution in W

1,2
� (Y )/� of the local problem

∫

Y

µij(y)
[
δjk − ∂yjχ

k
µ(y)

]
∂yiv2(y) dy = 0 a.e. in Ω× ]0, T [ ∀v2 ∈ W 1,2

� (Y ).

The driving term F 1 is given by

F 1i(x, t) = −
∫

Y

[
ηij(y)∂t + σij(y)

]
(exp(−At))jl∂yl

[
χk

η(y)Ek(x, 0) + ϕ(x, y, 0)
]
dy,

where E(x, 0) +∇yϕ(x, y, 0) is the two-scale limit of the initial electric field.

We note that in this case, the last equation in (3.2) defines a charge density other
than in the previous case. This is because the two-scale limit of the induced electric

field is not equal to the induced electric field in the latter case, i.e. ηij(y)
(
Ej(x, t) +

∂yjϕ(x, y, t)
)
�=

∫ t

0 η
h
ij(t−τ)Ej(x, τ) dτ , which is also explaining the new source term

introduced in Theorem 3.2.
Finally, we present the corrector results:

Theorem 3.3. Let the sequences {Eε(x, t)}, {Hε(x, t)} of unique solutions to
(1.1)–(1.6) two-scale converge to

Ej(x, t) + ∂yjϕ(x, y, t) and
[
δjk − ∂yjχ

k
µ(y)

]
Hk(x, t),

respectively. Assume that Eε(x, 0) = Eε
0(x) and H

ε(x, 0) = Hε
0 (x) are admissible

test functions. Further, Eε
0(x) and H

ε
0(x) are assumed to two-scale converge to

E(x, 0) +Dyϕ(x, y, 0) and H(x, 0)−Dyχ
k
µ(y)Hk(x, 0), respectively.
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(a) If, in addition, ∂yjϕ(x, y, t) and ∂yjχ
k
µ(y)Hk(x, t) are admissible test functions,

then

(i) lim
ε→0

∥∥∥Eε
j (x, t) − Ej(x, t)− ∂yjϕ

(
x,
x

ε
, t

)∥∥∥
L2(Ω×]0,T [)

= 0

and

(ii) lim
ε→0

∥∥∥Hε
j (x, t)−Hj(x, t) + ∂yjχ

k
µ

(x
ε

)
Hk(x, t)

∥∥∥
L2(Ω)

= 0

for all t ∈ ]0, T [.
(b) Let ∂yjϕ

δ ∈ D(Ω × ]0, T [;C∞� (Y )) be a mollification of ∂yjϕ ∈ W 1,2
(
0, T ;

L2(Ω;L2� (Y ))
)
, and let Hδ

k ∈ D(Ω× ]0, T [) be a mollification of Hk. Then,

(iii) lim
δ→0
lim
ε→0

∥∥∥Eε
j (x, t)− Ej(x, t) − ∂yjϕ

δ
(
x,
x

ε
, t

)∥∥∥
L2(Ω×]0,T [)

= 0

and

(iv) lim
δ→0
lim
ε→0

∥∥∥Hε
j (x, t)−Hj(x, t) + ∂yjχ

k
µ

(x
ε

)
Hδ

k(x, t)
∥∥∥

L2(Ω)
= 0

for all t ∈ ]0, T [.

4. Compactness results

In this section we give some compactness results needed in the proof of the ho-
mogenization theorems. We need the following lemmas.

Lemma 4.1. Assume that Ω ∈ �3 has a regular boundary ∂Ω (i.e., ∂Ω is a once
continuously differentiable two-dimensional manifold). Then C1(Ω)3 is dense in the

spaces Hrot(Ω) and Hdiv(Ω).

�����. See [7]. �

Lemma 4.2. Assume that Ω has a regular boundary ∂Ω with the normal n
directed towards the exterior of Ω. Then the mappings

(i) C1(Ω)3 → C1(∂Ω)3, u �→ n ∧ u|∂Ω
and

(ii) C1(Ω)3 → C1(∂Ω), u �→ n · u|∂Ω
can be extended by continuity to linear and continuous mappings

Hrot(Ω)→ H−1/2(∂Ω)3 and Hdiv(Ω)→ H−1/2(∂Ω),

respectively.

�����. See [7]. �
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We are now ready to present and prove the announced compactness results.

Proposition 4.3. Let {uε} be a bounded sequence in Hrot(Ω). Then {uε} has
a subsequence which two-scale converges to u0(x, y) = u(x) + Dyϕ(x, y), where ϕ
is a scalar-valued function satisfying

∫
Y
Dyϕ(x, y) dy = 0. Moreover, rotuε ⇀ rotu

weakly in L2(Ω)3.

�����. Since {uε} is bounded in L2(Ω)3 it, up to a subsequence, two-scale
converges to u0(x, y) in L2(Ω × Y )3. That is, for any a(x, y) ∈ D(Ω;C∞� (Y ))

3, we

have

(4.1) lim
ε→0

∫

Ω
uε

i (x)ai

(
x,
x

ε

)
dx =

∫

Ω

∫

Y

u0i(x, y)ai(x, y) dxdy.

By using Lemma 4.2, Green’s identity and the compact support of a
(
x, x

ε

)
we obtain

∫

Ω

[
(rotuε(x))i ai

(
x,
x

ε

)
− uε

i (x)
(
rota

(
x,
x

ε

))
i

]
dx

= −
∫

∂Ω
(n ∧ uε(x))i ai

(
x,
x

ε

)
dx = 0.

Here n denotes the exterior normal to the boundary of Ω. Integration by parts and

the use of the chain rule yields

ε

∫

Ω
(rotuε(x))i ai

(
x,
x

ε

)
dx = ε

∫

Ω
uε

i (x)
(
rota

(
x,
x

ε

))
i
dx(4.2)

= ε
∫

Ω
uε

i (x)
(
rotx a

(
x,
x

ε

))
i
dx+

∫

Ω
uε

i (x)
(
roty a

(
x,
x

ε

))
i
dx.

Sending ε→ 0 in (4.2) and using (4.1) gives
∫

Ω

∫

Y

u0i(x, y)(roty a(x, y))i dxdy = 0,

which implies that roty u0(x, y) = 0 a.e. in Ω × Y . Thus we conclude that u0(x, y)
is a gradient with respect to the variable y for some scalar valued function ϕ1(x, y),

i.e. u0(x, y) = Dyϕ1(x, y). According to Proposition 2.6 this can be written as
u0(x, y) = u(x) + Dyϕ(x, y), where u(x) =

∫
Y
u0(x, y) dy, for some scalar-valued

function ϕ(x, y). Next, choose an admissible test function a(x) ∈ D(Ω)3. Integration
by parts yields

lim
ε→0

∫

Ω
(rotuε(x))i ai(x) dx = lim

ε→0

∫

Ω
uε

i (x)(rot a(x))i dx

=
∫

Ω

∫

Y

u0i(x, y) dy(rot a(x))i dx =
∫

Ω
(rotu(x))i ai(x) dx.

The proof follows by using Proposition 2.6. �
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������ 4.4. If Dyϕ(x, y) �= 0, then, by Proposition 2.6, the sequence {uε} will
not converge strongly in L2(Ω)3. Moreover, according to the above proof it clearly
follows that ϕ(x, ·) is Y -periodic.
We also have the following, similar compactness result, which is proved by similar

arguments as in the proof of Proposition 4.3.

Proposition 4.5. Let {uε} be a bounded sequence in Hdiv(Ω). Then, up to a
subsequence,

uε(x)
2−s
⇀ u0(x, y),

ε divuε(x)
2−s
⇀ divy u0(x, y),

and

div uε(x)⇀ div u(x) = div
∫

Y

u0(x, y) dy weakly in L2(Ω).

We need the following lemma, which is proved in [9]:

Lemma 4.6. Let uε(x, t) and ∂tu
ε be bounded uniformly in L∞(0, T ;L2(Ω)3)

and let u0(x, y, t) be the two-scale limit of uε in L∞(0, T ;L2(Ω×Y )3). Then ∂tu0 is

the two-scale limit of ∂tu
ε.

5. A priori estimates

Let H = L2(Ω)6 = L2(Ω)3 × L2(Ω)3, which is equipped with the usual scalar
product. Let the operator A be defined by

AΦ = {−rotψ, rotϕ}

for any Φ ∈ D(A), where

D(A) = {Φ = {ϕ, ψ} ∈ H : rotϕ ∈ L2(Ω)3, rotψ ∈ L2(Ω)3, n ∧ ϕ|∂Ω = 0}.

We can now state the following lemma:

Lemma 5.1. The domain D(A) is dense in H and A is closed. Further,

A∗ = −A and D(A∗) = D(A).

As usual, A∗ denotes the adjoint operator of A.
�����. The proof follows easily after some minor changes in the proof of a

similar result in [7]. �
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According to Lemma 5.1 the following corollary clearly follows

Corollary 5.2. (AΦ,Φ)H = 0 for all Φ ∈ D(A).

For Φ = {ϕ, θ} let MεΦ = {σεϕ, 0} define a linear operator Mε : H → H. We
also define a linear operator N ε : H → H by N εΦ = {ηεϕ, µεθ}.
We are now in position to present the following useful a priori estimates:

Proposition 5.3. If F ε ∈ W 1,2(0, T ;L2(Ω)3) has a bounded norm, then the se-

quences Eε, Hε, ∂tH
ε, ∂tE

ε, rotHε and rotEε are all bounded in L∞(0, T ;L2(Ω)3).

�����. First we note that by summing up (1.1) and (1.2) we get

(5.1) N ε∂tU
ε(x, t) +AUε(x, t) +MεUε(x, t) = Gε(x, t),

where Uε = {Eε, Hε} and Gε = {F ε, 0}. Taking the scalar product in H with Uε

we obtain

(
N ε∂tU

ε(t), Uε(t)
)
+

(
AUε(t), Uε(t)

)
+

(
MUε(t), Uε(t)

)
=

(
Gε(t), Uε(t)

)
.

Moreover, by using Corollary 5.2, the symmetry of η and µ, the coerciveness of σ,

the definition of N ε,Mε and the scalar product in H, we get

1
2
∂t

(
Eε(t), Dε(t)

)
+
1
2
∂t

(
Hε(t), Bε(t)

)
+ C‖Eε(t)‖2 �

(
F ε(t), Eε(t)

)
.

By integrating with respect to t and using the initial conditions and Hölder’s in-
equality, we find that, for any T1 ∈ ]0, T [,

1
2

(
Eε(T1), Dε(T1)

)
+
1
2

(
Hε(T1), Bε(T1)

)
+ C

∫ T1

0
‖Eε(t)‖2 dt

�
(∫ T1

0
‖F ε(t)‖2 dt

)1/2(∫ T1

0
‖Eε(t)‖2 dt

)1/2

+
1
2

((
Eε(0), Dε(0)

)
+

(
Hε(0), Bε(0)

))
.

The boundedness of F ε and Gronwall’s inequality yield

∫ T

0
‖Eε(t)‖2 dt � C,

i.e., Eε ∈ L2(0, T ;L2(Ω)3). This implies that
(
Eε(t), Dε(t)

)
� C and

(
Hε(t), Bε(t)

)

� C. By considering all t ∈ ]0, T [ and the coerciveness of η and µ we arrive at
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max
0�t�T

‖Eε(t)‖L2(Ω)3 � C and max
0�t�T

‖Hε(t)‖L2(Ω)3 � C. Thus Eε, Hε are bounded

in L∞(0, T ;L2(Ω)3).

Next, we shall derive an estimate, uniformly in ε, for the time derivatives ∂tE
ε and

∂tH
ε. We start by making a partition PN , N ∈ �, of the interval [0, T ], i.e., PN :=

{0 = t0, t1, . . . , tN = T : ti−1 < ti}. We consider the subintervals In(N) = (tn−1, tn)
and the local time steps kn = tn − tn−1. Let Uε

n = Uε(tn) and (Uε
n)
′ = ∂tnU

ε(tn)

which satisfy the Maxwell equations at the time t = tn. By using two sets of unique
solutions at t = tn−1 and t = tn, respectively, we can write

(
N ε (U

ε
n)
′ − (Uε

n−1)
′

kn
,
Uε

n − Uε
n−1

kn

)

H
+

(
A Uε

n − Uε
n−1

kn
,
Uε

n − Uε
n−1

kn

)

H

+

(
MεU

ε
n − Uε

n−1
kn

,
Uε

n − Uε
n−1

kn

)

H
=

(
Gε

n −Gε
n−1

kn
,
Uε

n − Uε
n−1

kn

)

H
.

By using similar argument as above and letting kn → 0 we obtain

1
2
∂t

(
∂tE

ε(t), ∂tD
ε(t)

)
+
1
2
∂t

(
∂tH

ε(t), ∂tB
ε(t)

)
+ C‖∂tE

ε(t)‖2(5.2)

�
(
∂tF

ε(t), ∂tE
ε(t)

)
.

Moreover, from (5.1) and Lemmas 4.1 and 5.1 it follows that

(N ε∂tU
ε(0), v) = −(AU0, v)− (MεU0, v) + (Gε(0), v)

for all v ∈ C∞0 (Ω)6. This implies that N ε∂tU
ε(0) = −AU0 −MεU0 −Gε(0) almost

everywhere in Ω, i.e.,

‖N ε∂tU
ε(0)‖H = ‖Gε(0)−AU0 −MεU0‖H = C0

for some positive constant C0. By integrating (5.2) with respect to t and using the

initial conditions and Hölder’s inequality, we obtain that, for any T1 ∈ ]0, T [,

1
2

(
∂tE

ε(T1), ∂tD
ε(T1)

)
+
1
2

(
∂tH

ε(T1), ∂tB
ε(T1)

)
+ C

∫ T1

0
‖∂tE

ε(t)‖2 dt

�
(∫ T1

0
‖∂tF

ε(t)‖2 dt
)1/2(∫ T1

0
‖∂tE

ε(t)‖2 dt
)1/2

+ C0.

The boundedness of ∂tF
ε and Gronwall’s inequality yield

∫ T

0
‖∂tE

ε(t)‖2 dt � C.
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Similar arguments as above give

max
0�t�T

‖∂tE
ε(t)‖L2(Ω)3 � C, max

0�t�T
‖∂tH

ε(t)‖L2(Ω)3 � C.

Therefore ∂tE
ε, ∂tH

ε are bounded in L∞(0, T ;L2(Ω)3). Moreover, it follows from

the Maxwell equations that rotHε = ηε∂tE
ε + σεEε − F ε and rotEε = −µε∂tH

ε

are bounded in L∞(0, T ;L2(Ω)3). The proof is complete. �

6. Proofs of the main results

����� of Theorem 3.1. By taking the divergence of (1.1), using equation (1.3)
and the constitutional laws (1.7)–(1.9) we obtain

∂xi

(
ηij

(x
ε

)
∂tE

ε
j + σij

(x
ε

)
Eε

j

)
= ∂xiF

ε
i ,(6.1)

∂xi

(
µij

(x
ε

)
Hε

j

)
= 0.(6.2)

(The quantity ∂xiF
ε
i is an external source of charges per time and volume unit.) Note

that, by assumption, ∂xiF
ε
i is bounded for a.e. t ∈ ]0, T [, in L2(Ω). We obtain a weak

formulation of (6.1) and (6.2) by multiplying with εv1v2, v1 ∈ D(Ω), v2 ∈ W 1,2
� (Y )

and integrating over Ω. Moreover, integrating by parts and using Lemmas 2.8, 4.6
and Propositions 4.3 and 4.5, we arrive at the following two-scale limit system when

ε→ 0:
∫

Ω

∫

Y

(
ηij(y)∂t

[
Ej(x, t) + ∂yjϕ(x, y, t)

]
(6.3)

+ σij(y)
[
Ej(x, t) + ∂yjϕ(x, y, t)

])
v1(x)∂yiv2(y) dxdy = 0,∫

Ω

∫

Y

µij(y)
(
Hj(x, t) + ∂yjΦ(x, y, t)

)
v1(x)∂yiv2(y) dy dx = 0.(6.4)

We will now study the two-scale limit of the Maxwell system (1.1)–(1.3). Using
v(x, t) = v1(x)b(t), where v1 ∈ D(Ω) and b ∈ D(0, T ), as test functions, we get the

following weak formulation of (1.1)–(1.3):

∫ T

0

∫

Ω

[
∂t

[
ηij

(x
ε

)
Eε

j (x, t)
]
+ σij

(x
ε

)
Eε

j (x, t)
]
v1(x)b(t) dxdt

=
∫ T

0

∫

Ω
[rotHε(x, t) + F ε(x, t)]i v1(x)b(t) dxdt,

∫ T

0

∫

Ω
∂t

[
µij

(x
ε

)
Hε

j (x, t)
]
v1(x)b(t) dxdt = −

∫ T

0

∫

Ω
[rotEε(x, t)]i v1(x)b(t) dxdt,

∫ T

0

∫

Ω
∂xiµij

(x
ε

)
Hε

j (x, t)v1(x)b(t) dxdt = 0.
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Passing ε → 0, while considering that ηij

(
x
ε

)
v1(x)b(t), µij

(
x
ε

)
v1(x)b(t), σij

(
x
ε

)
×

v1(x)b(t) and v1(x)b(t) are admissible test functions, we obtain, by using Lemmas 2.8
and 4.6 and Propositions 4.3 and 4.5, the following two-scale limit of the Maxwell
equations:

∫ T

0

∫

Ω

∫

Y

(
ηij(y)∂t

[
Ej(x, t) + ∂yjϕ(x, y, t)

]

+ σij(y)
[
Ej(x, t) + ∂yjϕ(x, y, t)

]
v1(x)b(t)

)
dxdy dt

=
∫ T

0

∫

Ω
(rotH(x, t))i v1(x)b(t) dxdt+

∫ T

0

∫

Ω
Fi(x, t)v1(x)b(t) dxdt,

∫ T

0

∫

Ω

∫

Y

µij(y)∂t

[
Hj(x, t) + ∂yjΦ(x, y, t)

]
v1(x)b(t) dxdy dt

= −
∫ T

0

∫

Ω
(rotE(x, t))i v1(x)b(t) dxdt,

∫ T

0

∫

Ω

∫

Y

∂xiµij(y)
[
Hj(x, t) + ∂yjΦ(x, y, t)

]
v1(x)b(t) dxdy dt = 0.

The charge density is defined by

∂xi

∫

Y

ηij(y)
[
Ej(x, t) + ∂yjϕ(x, y, t)

]
dy = �.

The proof is complete. �

The two-scale limit system can be proved to have a unique solution by using similar
arguments as in the ε-dependent problem (cf. [7]). The next results will be used in

the proof of Theorem 3.2.
For ∇yϕ,∇yθ ∈ L2� (Y )3 we define the scalar product

(6.5) 〈∇yϕ,∇yθ〉 =
∫

Y

ηij(y)∂yjϕ(y)∂yiθ(y) dy.

We note that this is a different scalar product compared with the one used in [17].
For fixed ∇yϕ (and σ) we consider the map

∂yiθ �→
∫

Y

σij(y)∂yjϕ(y)∂yiθ(y) dy

which is a bounded linear functional on the Hilbert space L2� (Y )
3. Thus, by the

Riesz representation theorem, there exists an element A∇yϕ ∈ L2� (Y )3 such that

〈A∇yϕ,∇yθ〉 =
∫

Y

σij(y)∂yjϕ(y)∂yiθ(y) dy,

which defines an operator A. We find that Aij = (η−1)ilσlj . Obviously, A is a positive
definite operator and −A generates a uniformly continuous semigroup, exp(−At).
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������ 6.1. It follows from the Lummer-Phillips Theorem that −A is a dis-
sipative operator and that −A is the infinitesimal generator of a C0 semigroup of
contraction, exp(−At), on L2� (Y )3 (see e.g. [14]). It follows that ‖ exp(−At)‖ � 1 for
t � 0.

����� of Theorem 3.2. We will in particular use Theorem 3.1 and some argu-
ments in the proof of this theorem. We start with a separation of the variables in

(6.4) by assuming that Φ(x, y, t) = −Hk(x, t)χk
µ(y). It follows from the Lax-Milgram

Lemma that χk
µ is the unique solution in W

1,2
� (Y )/� to the local elliptic problem

(6.6)
∫

Y

µij(y)
[
δjk − ∂yjχ

k
µ(y)

]
∂yiv2(y) dy = 0

for all v2 ∈W 1,2
� (Y ).

We also introduce functions χk
η, χ

k
σ ∈W 1,2

� (Y )/�, which solve the local problems

∫

Y

ηij(y)
[
δjk − ∂yjχ

k
η(y)

]
∂yiv2(y) dy = 0 ∀v2 ∈ W 1,2

� (Y )/�,(6.7)
∫

Y

σij(y)
[
δjk − ∂yjχ

k
σ(y)

]
∂yiv2(y) dy = 0 ∀v2 ∈ W 1,2

� (Y )/�

respectively. The point of doing this is that we can identify ηijEj and σijEj with

the functions ∂yiχ
k
ηEk and Aij∂yjχ

k
σEk, respectively, when they are multiplied with

test functions in the space L2� (Y )
3 equipped with the scalar product (6.5) in the local

problem (6.3). To be explicit, by using (6.7) we get

∫

Y

ηij(y)Ej(x, t)∂yiv2(y) dy =
∫

Y

ηij(y)δjkEk(x, t)∂yiv2(y) dy

=
∫

Y

ηij(y)∂yjχ
k
ηEk(x, t)∂yiv2(y) dy ∀v2 ∈ W 1,2

� (Y )/�.

Thus, by using the described identification, (6.3) can be written as

∂t〈∇yχ
k
ηEk(x, t) +∇yϕ(x, t),∇yv2〉+ 〈A∇y

(
χk

ηEk(x, t) + ϕ(x, t)
)
,∇yv2〉

= 〈A∇y

(
χk

η − χk
σ

)
Ek(x, t),∇yv2〉

for every v2 in W
1,2
� (Y )/�. This is an ordinary differential equation with a solution

∇yχ
k
η(y)Ek(x, t) +∇yϕ(x, y, t)(6.8)

= ∇y

[
χk

η(y)Ek(x, 0) + ϕ(x, y, 0)
]
exp(−At)

+
∫ t

0
exp(−A[t− τ ])A∇y

(
χk

η(y)− χk
σ(y)

)
Ek(x, τ) dτ.
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By solving (6.8) for ∇yϕ the two-scale limit of the electric field can be written

Ej(x, t) + ∂yjϕ(x, y, t)

=
[
δjk − ∂yjχ

k
η(y)

]
Ek(x, t)

+
∫ t

0
(exp(−A[t− τ ]))jlAli∂yi

(
χk

η(y)− χk
σ(y)

)
Ek(x, τ) dτ

+
(
exp(−At)

)
jl
∂yl

[
χk

η(y)Ek(x, 0) + ϕ(x, y, 0)
]
.

This proves existence of a solution of the local problem.
Consider the solutions of the local equations (6.3) and (6.4). By defining

∇yχ
k(y, t) = ∇yχ

k
η(y)δ(t) + exp(−At)A∇y

[
χk

σ(y)− χk
η(y)

]
Θ(t),

the two-scale limit of the electric field can be written as

Ej(x, t) + ∂yjϕ(x, y, t) =
∫ t

0

(
δjkδ(t− τ)− ∂yjχ

k(y, t− τ)
)
Ek(x, τ) dτ

+ (exp(−At))jl∂yl

[
χk

η(y)Ek(x, 0) + ϕ(x, y, 0)
]
.

Then, by inserting it in (3.1), the homogenized system can be written as

∂t

∫ t

0
ηh

ij(t− τ)Ej(x, τ) dτ +
∫ t

0
σh

ij(t− τ)Ej(x, τ) dτ(6.9)

= (rotH(x, t))i + Fi(x, t)

−
∫

Y

(
ηij(y)∂t(exp(−At))jl∂yl

(
χk

η(y)Ek(x, 0) + ϕ(x, y, 0)
)

− σij(y)(exp(−At))jl∂yl

(
χk

η(y)Ek(x, 0) + ϕ(x, y, 0)
))
dy,

µh
ij∂tHj(x, t) = −(rotE(x, t))i,
∂xiµ

h
ijHj(x, t) dxdt = 0,

∂xi

∫ t

0
ηh

ij(t− τ)Ej(x, τ) dτ = �(x, t)

a.e. in Ω× ]0, T [,
n ∧ E(x, τ) = 0 a.e. on ∂Ω× ]0, T [,

where the homogenized coefficients ηh
ik(t), σ

h
ik(t) and µ

h
ik are given by

ηh
ik(t) =

∫

Y

ηij(y)
[
δjkδ(t)− ∂yjχ

k(y, t)
]
dy,

σh
ik(t) =

∫

Y

σij(y)
[
δjkδ(t)− ∂yjχ

k(y, t)
]
dy,

µh
ik =

∫

Y

µij(y)
[
δjk − ∂yjχ

k
µ(y)

]
dy.
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We note that the last equation in (6.9) defines the charge density in the homogenized

problem. The proof is complete. �

We will now continue with the proof of the corrector results.

����� of Theorem 3.3. Let vε(x, t) = E(x, t)+∂yϕ
(
x, x

ε , t
)
, uε(x, t) = H(x, t)−

∂yχ
k
µ

(
x
ε

)
Hk(x, t), rε(x, t) = Eε(x, t) − vε(x, t) and pε(x, t) = Hε(x, t) − uε(x, t). By

the coerciveness assumptions of σε
ij , η

ε
ij , µ

ε
ij and the symmetry of η

ε
ij and µ

ε
ij we get

0 � C
(
‖Eε − vε‖2L2(]0,T [×Ω)3 + ‖Hε(T )− uε(T )‖2L2(Ω)3

)
(6.10)

�
∫ T

0

∫

Ω
σε

ijr
ε
j (x, t)r

ε
i (x, t) dxdt+

1
2

∫

Ω
ηε

ijr
ε
j (x, T )r

ε
i (x, T ) dx

+
1
2

∫

Ω
µε

ijp
ε
j(x, T )p

ε
i (x, T ) dx

=
∫ T

0

∫

Ω
σε

ijr
ε
j (x, t)r

ε
i (x, t) dxdt

+
1
2

∫ T

0
∂t

∫

Ω

(
ηε

ijr
ε
j (x, t)r

ε
i (x, t) + µ

ε
ijp

ε
j(x, t)p

ε
i (x, t) dxdt

)

+
1
2

∫

Ω
ηε

ijr
ε
j (x, 0)r

ε
i (x, 0) dx+

1
2

∫

Ω
µε

ijp
ε
j(x, 0)p

ε
i (x, 0) dx.

In (6.10) there is a set of different limits which have to be evaluated. By using

Corollary 5.2 and the Maxwell equations (1.1)– (1.2) and the fact that F ε
i → Fi

strongly in L2(Ω) for any t ∈ ]0, T [ we find that

∫ T

0

∫

Ω
Jε

i (x, t)E
ε
i (x, t) dxdt+

1
2

∫ T

0
∂t

∫

Ω
Dε

i (x, t)E
ε
i (x, t) dxdt

+
1
2

∫ T

0
∂t

∫

Ω
Bε

i (x, t)H
ε
i (x, t) dxdt→

∫ T

0

∫

Ω
Fi(x, t)Ei(x, t) dxdt

as ε → 0. We note that Ej and ∂tEj are bounded in L2(Ω × ]0, T [) so they can
be considered as admissible test functions. Further, by assumption, ∂yjϕ

(
x, x

ε , t
)

is an admissible test function and according to Lemma 2.8, also σε
ijEj , ηε

ij∂tEj ,
ηε

ij∂yjϕ
(
x, x

ε , t
)
and σε

ij∂yjϕ
(
x, x

ε , t
)
are admissible test functions.
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Integrating by parts with respect to time and taking Proposition 4.3, Lemma 4.6,

the local problem (6.3) and Theorem 3.2 into account we obtain that

−
∫ T

0

∫

Ω
σε

ij

(
Ej(x, t) + ∂yjϕ

(
x,
x

ε
, t

))
Eε

i (x, t) dxdt

−
∫ T

0

∫

Ω
ηε

ij∂t

(
Ej(x, t) + ∂yjϕ

(
x,
x

ε
, t

))
Eε

i (x, t) dxdt

→ −
∫ T

0

∫

Ω

∫

Y

σij(y)(Ej(x, t) + ∂yjϕ(x, y, t))(Ei(x, t) + ∂yiϕ(x, y, t)) dy dxdt

−
∫ T

0

∫

Ω

∫

Y

ηij(y)∂t

(
Ej(x, t) + ∂yjϕ(x, y, t)

)(
Ei(x, t) + ∂yiϕ(x, y, t)

)
dy dxdt

= −
∫ T

0

∫

Ω
Ji(x, t)Ei(x, t) dxdt−

∫ T

0

∫

Ω
∂tDi(x, t)Ei(x, t) dxdt.

Using similar arguments we find that

−
∫ T

0

∫

Ω

(
Jε

i (x, t) + ∂tD
ε
i (x, t)

) (
Ei(x, t) + ∂yiϕ

(
x,
x

ε
, t

))
dxdt

→ −
∫ T

0

∫

Ω

(
Ji(x, t) + ∂tDi(x, t)

)
Ei(x, t) dxdt

and
∫ T

0

∫

Ω
σε

ij

(
Ej(x, t) + ∂yjϕ

(
x,
x

ε
, t

)) (
Ei(x, t) + ∂yiϕ

(
x,
x

ε
, t

))
dxdt

+
1
2

∫ T

0
∂t

∫

Ω
ηε

ij

(
Ej(x, t) + ∂yjϕ

(
x,
x

ε
, t

))(
Ei(x, t) + ∂yiϕ

(
x,
x

ε
, t

))
dxdt

→
∫ T

0

∫

Ω

(
Ji(x, t) + ∂tDi(x, t)

)
Ei(x, t) dxdt.

Moreover, Proposition 4.3, the local problem (6.6) and the same argument as
above yield

−1
2

∫ T

0
∂t

∫

Ω
µε

ij

[
δjk − ∂yjχ

k
µ

(x
ε

)]
Hk(x, t)H

ε
i (x, t) dxdt

→ −
∫ T

0

∫

Ω
∂tBi(x, t)Hi(x, t) dxdt =

∫ T

0

∫

Ω
[rotE(x, t)]iHi(x, t) dxdt.

The admissibility of Eε(x, 0) and Hε(x, 0) yields

1
2

∫

Ω
ηε

ijr
ε
j (x, 0)r

ε
i (x, 0) dx+

1
2

∫

Ω
µε

ijp
ε
j(x, 0)p

ε
i (x, 0) dx→ 0.
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Then, by using Corollary 5.2, we conclude that the limit of (6.10) is bounded by

∫ T

0

∫

Ω
(Fi − Ji − ∂tDi)Ei + (rotE)iHi dxdt

=
∫ T

0

∫

Ω
[−(rotH)iEi + (rotE)iHi] dxdt = 0.

This proves (i). Integrating with respect to time (t) to any T1 ∈ [0, T ] and using the
same argument proves (ii). The proof of (a) is complete.
(b) Let vε,δ(x, t) = E(x, t)+∂yϕ

δ
(
x, x

ε , t
)
, uε,δ(x, t) = H(x, t)−∂yχ

k
µ

(
x
ε

)
Hδ

k(x, t),

rε,δ(x, t) = Eε(x, t)−vε,δ(x, t) and pε,δ(x, t) = Hε(x, t)−uε,δ(x, t). Similar argument
as in (a) gives

0 � C lim
ε→0

(
‖Eε − vε,δ‖2L2(]0,T [×Ω)3 + ‖Hε(T )− uε,δ(T )‖2L2(Ω)3

)

�
∫ T

0

∫

Ω
[−(rotH)iEi + (rotE)iHi] dxdt

+
(
‖σij

(
Ej + ∂yjϕ

δ
)
‖L2(Ω×Y×]0,T [)

+ ‖ηij∂t

(
Ej + ∂yjϕ

δ
)
‖L2(Ω×Y×]0,T [)

)
‖∂yiϕ

δ − ∂yiϕ‖L2(Ω×Y×]0,T [)

+ ‖µij∂t

(
Hj + ∂yjχ

k
µH

δ
k

)
‖L2(Ω×Y×]0,T [)‖∂yjχ

l
µ

(
Hl −Hδ

l

)
‖L2(Ω×Y×]0,T [) → 0

as δ → 0 by assumption and Corollary 5.2. This proves (iii). Integrating with respect
to time (t) to any T1 ∈ [0, T ] and using the same argument proves (iv). The proof is
complete. �

7. Concluding remarks

������ 7.1. Existence and uniqueness of solutions to (3.2)–(3.3) supplied with
homogeneous initial conditions are given in [15]. Their proof also holds in the case

with non-homogeneous initial conditions.

������ 7.2. The memory effect indicates that the homogenized material pos-

sesses frequency dependent properties. In the special case when the conductivity is
proportional to the permittivity, i.e. σ(y) = constant ∗ η(y) for almost every y ∈ Y ,
the memory effect vanishes and the local equations boil down to two elliptic equations
(see also [15], [16] and [17]). This corresponds to the case where we have no surface

charge distributions on the boundaries between the two different materials in the do-
main (e.g. see [18]). We conclude that the memory effect in the homogenized system

is caused by surface charges on the internal boundaries between different materials.
It is remarkable that this effect remains even in the case when the conductivity and
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permittivity functions are continuously distributed without any discontinuity sur-

faces in the medium. We also get pure elliptic local problems when the displacement
current can be neglected or when J = 0 (see for instance [21]).

������ 7.3. We also remark that the solution of the local equation generates
an extra driving term in the homogenized Maxwell system. This effect vanishes if

the initial electric field has a vanishing two-scale limit.

������ 7.4. By using Lemma 2.8 we find that the main Theorems 3.1–3.3 hold

true also in the case when ηij , µij , σij ∈ C0(Ω;L∞� (Y )). This is, for example, the
case when we have a nonperiodic material with piecewise constant properties.

������ 7.5. A final remark is that the charge density in the original ε-problem,
i.e. �ε, cannot be bounded in L2(Ω). That would give a contradiction to our local

problem for the electric field. This can also be understood from the heuristic point of
view. The charge density can be expected to grow as 1/ε, due to the growing number

of discontinuity surfaces in the material and the corresponding surface charges.
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