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Homogenization of the Navier-Stokes Equations 
in Open Sets Perforated with Tiny Holes 

I. Abstract Framework, 
a Volume Distribution of Holes 

GREGOIRE ALLAIRE 

Communicated by J. BALL 

Abstract 

This paper  treats the homogeniza t ion  of the Stokes or Navier-Stokes equat ions 

with a Dirichlet  bounda ry  condi t ion in a domain  conta in ing many  t iny solid 

obstacles, periodically dis tr ibuted in each direction of the axes. (For  example, 

in the three-dimensional  case, the obstacles have a size of e a and  are located at 

the nodes of a regular mesh of size e.) A suitable extension of the pressure is used 

to prove the convergence of the homogeniza t ion  process to a Br inkman- type  

law (in which a l inear zero-order term for the velocity is added to a Stokes or 

Navier-Stokes equation).  
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Introduction 

This two-part paper is devoted to the homogenization of the Stokes or Navier- 

Stokes equations, with a Dirichlet boundary condition, in open sets perforated 

with tiny holes. Many physical phenomena involve viscous fluid flow past an 

array of fixed solid obstacles. Such flows are governed by the Stokes or Navier- 

Stokes equations with a no-slip (Dirichlet) boundary condition on the obstacles, 

and the fluid domain is mathematically represented by an open set perforated with 

holes (i.e., obstacles). As the number of holes increases, the flow tends to the solu- 

tion of certain effective or "homogenized" equations which are homogeneous in 

form (i.e., without obstacles). Homogenization is a mathematical method that 

provides such effective models (see, e.g., [6] and [25] for a general introduction 

to this topic). 

In the sequel we pay particular attention to two different kind of flows: in 

porous media, and through mixing grids. For flow in a porous medium it has been 

proved that the homogenization of the Stokes equations leads to the well-known 

Darcy law if the medium is represented as the periodic repetition of an elementary 

cell of size e, in which the solid obstacle is also of size e. (See, e.g., [16], [20], 

and [25] for two-scale methods, and [28] for the proof  of convergence; see also 

[2] for a generalization of [28] to the case of connected solid obstacles.) Beside 

Darcy's law, other equations describe fluid flows in porous media: For  example, 

in the late 1940's H. BRINKMAN [8] introduced a new set of equations, intermediate 

between the Darcy and Stokes equations. The so-called Brinkman's law is ob- 

tained from the Stokes equations by adding to the momentum equation a term 

proportional to the velocity. In this paper we prove the convergence of the solu- 

tions of the Stokes equations to the solution of  Brinkman's law when a porous 

medium is modeled as the periodic repetition of an elementary cell of size e, 

in which the solid obstacle is of size e 3 (in the three-dimensional case). Further- 

more, if the size of the holes is asymptotically larger than this critical size, then we 

establish that the homogenized problem is governed by Darcy's law; if the size 

of the holes is asymptotically smaller than the critical size, then we obtain the 

Stokes equations as the homogenized problem. 

Consider now fluid flow through a mixing grid. C. CONCh [10] and E. SAN- 

CHEZ-PALENClA [26] dealt with Stokes flows through periodic sieves, in which the 

holes have the same size as the period, and obtained an effective model, roughly 

speaking, equivalent to Darcy's law. E. SANCHEZ-PALENClA [27] also studied ideal 

fluid flows through perforated walls, but he was not concerned with the Stokes 

equations, because ideal fluid flows are governed by a Laplace equation for the 

potential of the velocity. Here we propose a mathematical model for fluid flows 

through mixing grids, which is based on a particular form of Brinkman's law (i.e., 
the additional term is concentrated on the plane of the grid). This model is ob- 

tained through homogenization of the Stokes equations in a domain containing 

a mixing grid, which is represented by its vanes of size e 2 (in the three-dimensional 

case) periodically distributed at the nodes of a regular mesh of size e. (We neglect 

the lattice which support the vanes.) 

Although the distribution and the size of the holes are very different in each 

example, the underlying idea of the convergence proof are the same. For this 
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reason we begin by introducing an abstract framework (including both cases) 

which allows us to prove general theorems under theoretical assumptions on 

the hole distribution. The first part of this paper is devoted to this abstract frame- 

work, and to the derivation of Brinkman's law in the case of a volume distribution 

of holes of the critical size. The second part deals with a volume distribution 

of holes, having a size different from the critical one, and with the case of a sur- 

face distribution of holes (leading to our model of fluid flows through mixing 

grids). 

Since the original paper of H. BRINKMAN [8], the derivation and justification 

of Brinkman's law from the Stokes equations has been extensively studied. 

V. A. MAR~ENKO & E. JA. HRUSLOV [22] were the first to prove that Brinkman's 

law describe the limiting behavior of Stokes flow in a periodically perforated 

domain for a particular scaling of the holes. A similar result was obtained by 

A. BRILLARD [7] by using the framework of epi-convergence. E. SANCHEZ-PA- 

LENCIA [24] and T. L~vY [19] also derived Brinkman's law by means of a three- 

scale expansion method. Besides these works, which are concerned with periodic 

homogenization, J. RVmNST~IN [23] dealt with the case of a random array of  

spheres in a three-dimensional domain. Using probabilistic methods, he proved 

that Brinkman's law describes the effective behavior in this context. Like [7], 

[19], [22], and [24], we focus here on obstacles with spatial periodicity rather than 

with a random distribution. Besides recovering the previous results from a new 

perspective, we obtain a number of physically significant new results. First, in 

the two-dimensional setting we show that the limiting Brinkman-type law is 

independent of  the shape of the holes (see Proposition 2.1.6). This is due to a 

version of the Stokes paradox. Second, for holes that are too large to give a Brink- 

man law but still smaller than the inter-hole distance, we show that the limiting 

behavior is described by a Darcy-type law (see Theorem 3.4.4). This situation is 

not the same as that studied by E. SANCHEZ-PALENCIA [25] and L. TARTAR [28], 

although it leads to the same type of effective equations. Third, we give effective 

equations associated with holes distributed on a hypersurface rather than through- 

out the volume of the fluid (see Theorem 4.1.3). Finally, from a theoretical point 

of  view, the major novelty of our analysis is the optimal L2-estimate of the pres- 

sure, which leads to a very simple proof  of the convergence and gives new results, 

including correctors and error estimates. 

We turn now to a more detailed introduction of  this first part of  the paper. 

For a given force f E  [LZ(O)] ~r, consider the Stokes equations (with a Dirichlet 

boundary condition) in a domain f2, obtained by removing from a smooth open 

set O, included in R N, a collection of holes (T/*)I_~i~N(O, 

[ Find (u,, p,) E [Ho1(K2~)]N• [LZ(O,)/1R] such that 
/ 

(s3 t Vp~-~u,=f inS2,, 
V - u , = 0  in ~ , .  

Following an idea of D. CIORANESCU & F. MURAT [9], we introduce, in the first 

section, an abstract framework of Hypotheses (H1) to (H6) on the holes Ti. This 

allows us to construct an extension P~ of the pressure (see Proposition 1.1.4), 

and to pass to the limit, when e tends to 0, with the help of  the energy method 
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due to L. TARTAR [29]. It turns out (see Theorem 1.1.8) that the homogenized 

problem in f2 is governed by a Brinkman law: 

[ Find (u, p) E [H~(Y2)]N• [L2(s such that 

(So) ~ V p - - z S u +  M u = f  in I2, 

I V . u = 0  in ~2 

where M is a positive and symmetric matrix that depends neither on the force 

f nor on the solution (u, p) (see Proposition 1.1.2). We summarize these results 
in the following 

Theorem. Let (u~, p~) be the unique solution of (S~). Let ~ be the extension by 0 

in the holes ( T, ~,) of  the velocity u~. Then (~, P~) converges weakly to (u,p) in [Hol(D)] N 

• [L2(X2)]R], where (u, p) is the unique solution of Brinkman's law (So). 

We also prove various results concerning first-order correctors (see Theorems 

1.2.3 and 1.2.4), and error estimates (see Proposition 1.2.5). 

In the second section of this paper we check the Hypotheses (H1)--(H6) 

when the holes 77 are periodically distributed in each direction of the axes with 

period 2e, and each T2 is similar to the same model hole T scaled to size a~ (see 

Figure 1). The size a~ is assumed to be critical, typically a~ = e 3 for N = 3, 

and a ~ = e x p ( - - 1 / e  2) for N = 2 .  For N_>3  we can calculate the matrix 

M through a local computation of a Stokes flow in R N past the model hole T 

(see Proposition 2.1.4). For N = 2, because of the Stokes paradox, the matrix 

M is always a scalar matrix that does not depend on the choice of the model hole 

T (see Proposition 2.1.6). We also obtain precise bounds for the errors (see Theo- 

rem 2.1.9), and following an idea of R. LIVTON & M. AVELLANEDA [21], we can 

make explicit the extension of the pressure (see Proposition 2.1.2). We summarize 

the results of the second section in the following 

Theorem. Let the hole size a~ satisfy 

a~ 
~+olim eN/(N_ 2) - -  C O for N ~ 3 or ~-+01im -- e 2 Log (a~) = Co for N 2 

where Co is a strictly positive constant (0 < Co < + o0). Then Hypotheses (HI) 

-(H6) are fulfilled, and all the previous results of the first section hold. Moreover, 

the extension P~ of the pressure turns out to be equal to 

1 
f p~ in each hole 7-7, P~ = p~ in f2~ and P~ -- I C~ ] cT 

where C 7 is a "control" volume around the hole T; : C; is that part of the ball of 

radius e with the same center as T 7 which is outside T T. 

5T, 

I f  N = 2, then M ~ -~o Id, whatever the shape of the model hole T. I f  N >= 3, 

cN-2 
then teiMe~ -- 2N f Vw k : Vwi where, for 1 < k < N, e k is the k th 

~ N  T 
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unit basis vector in ~ N  and Wk is the solution of  the following Stokes system 

Vq k -- /kwk : 0 in R N -  T, 

V �9 wk : 0 in ~N -- T, 

w k : 0 on ST, 

w k : e k at infinity. 

It is only for the sake of simplicity that we restrict ourselves to the Stokes 

equations. The same theorems hold (with obvious slight changes) for the stationary 

Navier-Stokes equations, because, in this framework the non-linear term is a 

compact perturbation of (S~) (the matrix M is the same for Stokes or Navier-Stokes 

homogenization). 

The present paper deals exclusively with Dirichlet boundary conditions. In 

a forthcoming paper [4] we generalize our results to the case of a "slip" boundary 

condition consisting of u~ �9 n ----- 0 and an additional condition for the tangential 

component of the normal stress on the boundary. The present results have been 

previously announced in [1] and [3]. 

Notation. Throughout  this paper, C denotes various real positive constants 

independent of e. The duality products between H01(s and H-a(D),  and between 

[H01(s N and [H-1(s N, are both denoted by (,)~r-l,H~(m" (ek)~k~_N is the 

canonical basis of R u. 

1. Abstract Framework 

1.1 Formulation of the problem and the convergence theorem 

Let s be a bounded connected open set inR N (N ~ 2), with Lipschitz boundary 

~s D being locally located on one side of its boundary. Let e be a sequence of 

strictly positive real numbers which tends to zero. For each e we consider a family 

of closed sets (T/~)l_~i<n(~) (the holes), and we define a perforated open set .Q~ by 

N(e) 

i=l 

We assume that ~ is also a bounded connected open set in ~:~X (N ~ 2), locally 

located on one side of its Lipschitz boundary g ~ .  The flow of an incompressible 

viscous fluid in the domain ~2~ under the action of an exterior force f E  [L2(f2)] N, 

with a no-slip (Dirichlet) boundary condition, is described by the following 

problem for the Stokes equations (see Remark 1.1.10 for the case of Navier- 

Stokes equations), where u~ is the velocity, and p~ the pressure of the fluid 

Find (u~, p~) E [Hol(~2~)]N• [L2(,Q~)[R] such that 

Vp~ -- /~u~ = f  in s (1.1.1) 

V - u ~ = 0  in s 
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The viscosity and density of the fluid have been set equal to 1. As is well known, 

the Stokes system (I.1.1) is equivalent to the following variational formulation, 

which has a unique solution 

Find (u~, p~) E [H0~(12~)]u• [L2(f2~)/R] such that 

fvu, : v r -  f p ,  V . v =  f f . v  for each rE  [Hd(12,)] N, (1.1.2) 
D e D e Os 

f q V �9 u~ = 0 for each q 6 L z ( ~ ) / R .  
X2~ 

Introducing ~ = u~ in (1.l.2) leads to 

f Iw ?= 
De -Oe 

Let us denote by ~" the extension operator from Hol(12~) into H01(f2) defined by 

for any 4 E Ho~(12,), ~ = 4 in 12~ and 4~ = 0 in D --  12,. (1.1.3) 

With the help of the Poincar6 inequality in ,(2, it is easy to see that 

llVh~ IIL~(~) < c Ilfllz=(o) (1.1.4) 

where the constant C depends only on 12 (and not on s). Consequently the se- 

quence (u~)~>o is bounded in [Ho~(s N. Thus there exists a subsequence, still 

denoted (u~),>o, and there exists a u 6 [Hol(X2)] N such that if, converges weakly 

to u in [//o1(/2)] N. Note that this result is obtained without any assumptions on 

the holes (T7)1 ~;~N(,). The main problem is now to find an a priori estimate for the 

pressure p~, which yields the existence of a limit pressure p, and to see which 

homogenized equations are satisfied by the limit (u, p). But, while the velocity 

u~ can be naturally continued by zero in g2 --  12~, it is not obvious how to con- 

struct an extension of the pressure p~ that is bounded in L2(-Q)/~. For that 

purpose, we now introduce an abstract framework of hypotheses on the holes, 

which allows us to prove the convergence of the homogenization process in general. 

Of course these assumptions will be verified in the other sections of this paper for 

the typical cases of hole distributions described in the introduction. 

Hypotheses (H1)-(H6). Let us assume that the holes T T are such that there exist 

functions (w~,, q~,/~x)j _~k_~u and a linear map R~ such that 

(H1) w~ E [H1(12)] N, q~ C L2(12), 

(H2) V . w ~ = 0  in /2 and w ~ = 0  on the holes TT, 

(H3) w~ ~ e  k in [H1(12)] N weakly, q~ ~ 0 in Lz(D)/R weakly, 

(H4) ~ C [W-l'~(~)] N, 
(H5) For  each sequence re, for each r such that 

~'s ~ ~' in [H1(12)] N weakly, ~ -----0 on the holes T 7 

and for each q~ E D(~)  it follows that 

(Vq~ -- Aw~, 4)V,}H-1,H~(O) -+ (,u~, CbV}H--1,H~(O), 
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(H6) 

I R~ ~ L([HI(~)]N; [HI(f2~)]N), 

If u r [HI(~Qe)] N, then R~fi = u in (2~, 

I f V ' u = 0  in s then V . ( R , u ) = 0  in ,Q,, 

[llR~ull@~) < C ]lulIHo~<~ ) and C does not depend on e. 

Remark 1.1.1. The functions (w~,, q~,,/~k)l___k__<N involved in Hypotheses (H1)-(H5) 

seem, at first sight, rather mysterious. Actually they are the test functions that will 

be used in the energy method in order to prove the convergence of the homogeni- 

zation process. Moreover, from a physical point of view, they turn out to be the 

velocity and the pressure of viscous layers around the holes (see Remark 2.1.5). 

The idea of such an abstract framework has been introduced by D. CIORANESCU 

& F. MURAT for the Laplacian (see [9]), but here, there is a new hypothesis (H6) 

which is crucial for the construction of a bounded extension of the pressure. 

The Hypotheses (H1)-(H6) have also direct consequences for the distribution and 

geometry of the holes: From (H3) and Rellich's theorem one can deduce that the 

sequence w~ converges to eg in [L:(O)] ~ strongly, while being equal to zero on 

the holes T~. This implies that the measure of ~2~ in ~ u  tends to the measure of 

,Q, i.e., the holes are very small and disappear in the limit. Moreover, for a given 

family of holes (T~)~ ~i~s~,) the functions (w~, q~, #~)x _~k_<S which satisfy hypotheses 

(H1)-(H5) are "quasi-unique" (see Proposition 1.2.9 in [1] for more details). 

Now we give some properties of the functions Q'~k)l~k~N" 

Proposition 1.1.2. Let (w~, q~, #k)l ~k~N be functions that satisfy Hypotheses (H1) 

-(HS). Let M be the matrix defined by its columns (#k)l~k~_N, i.e., by its entries 
i (#~)l<=k,i~u given by f2k = IZk �9 e i. Then for each qbC D(f2) we have 

(1.1.5) 

Thus M is a symmetric matrix, which is positive in the following sense 

(Mq~, ~b)H-l,u~(o) ~ 0 for each q~ r [D(-Q)] N. 

Proof. Take r~ = w~ and f = ei in Hypothesis (H5). Then 

(VqT~ -- ~w~, rbWT)H-~,H~(O~ --~- (#~, cbei)i_z-l,H~(O~ for each q5 ~ D(f2). (1.1.6) 

Integrating this expression by parts and using (H2), we reduce the left-hand side 

of (1.1.6) to 

(Vq~ -- &w~, ~OWT~H-1HI(t2) = - -  f q~w~. Vep + f Vw~ : w7 v4~ + f + Vw~ : VwT. 
12 t2 t2 

Combining (H3) and Rellich's theorem in the above equation gives 

lim~_~0 (Vq~ -- Aw~,, ~bW~)H- J,HI(c~) = lim~_+o / 4~ Vw~ : Vw~. 
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Therefore (1.1.6) is equivalent to 

f ~ Vw~ : Vw2 -+ (/~, dPei)H-l,n~(~) 
D 

= (/G +>n-~,~(~). 

Thus (l.1.5) is proved. Moreover M is a symmetric matrix, being the limit of a 

sequence of symmetric matrices (Vw~: Vw~)~ ~,k_~u. On the other hand, for each 
~b ~ [D(~Q)] N 

(M~0, ~)/t-l,Ho~(,o) = lim j 4)k Vw~ ~ 0. (1.1.7) 
e--->O k ~ l  

Thus M is positive. Q.E.D. 

Remark 1.1.3. From equality (1.1.7) we deduce the following equivalence: 

#k ~: 0 if and only if' w~ -+ e k in [H1(/2)] N strongly. 

Consequently, the mere weak convergence of w~, is required to obtain non-zero 

functions #k (corresponding to the interesting cases in the convergence Theorem 

1.1.8). 

Following TARTAR'S idea (see [28]), we construct an extension operator for 

the pressure under hypothesis (H6). 

Proposition 1.1.4. I f  there exists a linear operator Re satisfying (H6), then the 

operator P~ defined by 

(V[P~(q~)], U}H-I,H0~(~) -- (~TG, R~U}H-1,H~(G) , for each u ff [Hol(ff2)] N, (1.1.8) 

is a linear continuous extension operator from Lz(~2,)/R into L2(~2)~ such that 

the following conditions hold for each q, E LZ(f2~)/R: 

O) P,(G) = q~ in L2(f2,)/R, 

(ii) II P~(q,)IIL~(O)/~ ~ C Ilq, lIL=(o~)/a, 

(iii) IlV[P~(q,)] II~-~(.o> <= C 1! Vq~ I[H-~(G) 

where C is a constant independent of  q, and e. 

Before proving Proposition 1.1.4, we need the following three lemmas. 

Lemma 1.1.5. Let co be a bounded connected open set in R N, with Lipschitz boundary 

~o~, co being locally located on one side of  its boundary. Let p be a distribution on 

~o such that Vp C [H-a(oa)] N. Then p ff L2(co)/~%, and 

lip lIL~(o~)/~ G C ]IVp )]H-,(~). 

where the constant C depends only on co. 

Lemma 1.1.6. Let co be a bounded connected open set in R u, with Lipschitz boundary 

~w, co being locally located on one side of  its boundary. Let f E [H-l(co)] N be such 
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that 

(f i  u) H - T,H~, ~ = 0 for each u E [Ho~(~o)] N with 27 . u ~ 0 in ~o. 

Then there exists a p E L2(~o)/R such that f =  Vp. 

Lemma 1.1.7. Let o9 be a bounded connected open set in R N, with Lipschitz boundary 

~o~, o~ being locally located on one side o f  its boundary. For each f E L2(o9), i.e., 

.for each f E  L2(~o) such that f f = O, there exists u E [Hol(O0] N satisfying 
r 

(i) V "u -----f/n co, 

(ii) the map f--> u is linear, and 

]I u II.01(~ ) ~ C IlfllL2(~) 

where the constant C depends only on oJ. 

The proofs of these lemmas are classical and may be found, e.g., in [30] or 

in [1] (with the references to the original papers). 

Proof  of Proposition 1.1.4. Let q, E L2(Oe)/R. Because there exists a linear map 

Re satisfying (H6), we may define a functional F~ on [H01(D)] N by 

(F~, U)a-I,H~(O) = (Vq,, ReU)H--1,HI(oe) for each uE [H~(~)] N. (1.1.9) 

Using the estimate of R~u provided by (H6), we obtain 

IIF~]IH-~(~) <= C IlVq~ IIH-~(~). (1.1.10) 

Thus F~ E [H-~(s N. Furthermore, integrating (1.1.9) by parts, we get 

(F,, U)H-1,H~(O) ---- --  f q, V"  (R~u). 
~2 e 

According to (H6), 27 �9 u ~ 0 in ;2 implies that 27 �9 (R~u) = 0 in s Thus 

(F~, U)H-~,H~(O) = 0 for each uE [H~(O)] N with V .u  = 0 in s (1.1.11) 

Applying Lemma 1.1.6 we deduce from (1.1.11) the existence of Q~ E L2(~2)/R 

such that 

F~ = VQ~ in s 

Then we define the operator P~ by P,(q,) = Q,. It is clear that P~ is a linear con- 

tinuous operator from L2(s into L2(f2)/R. Let us prove that P,(q~)~  q~ 

in L2(s Integrating (1.1.9) by parts, we obtain 

f O~V.u= f q~V.(R~u). 
D O e 

According to (H6), if uE [HoJ(s N, then R f i ~  u in s Thus, for each u 6  
[Hol (s N , 

f (Q - q~) 27. u = 0. (1.1.12) 
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Applying Lemma 1.1.7, we reduce (1.1.12) to f ( Q ~ - q ~ ) f =  0 for each f E  
L2(f2~). In other words, 

Q, -- q~ ~ 0 in L2(y2,)/R. 

In the same way one can obtain estimate (ii), and (1.1.10) is just estimate (iii). 

Q.E.D. 

Now, we are able to state and prove the main theorem about the convergence 

of the homogenization process. 

Theorem 1.1.8. Let Hypotheses (H1)-(H6) hold, and denote by M the matrix 
defined in Proposition 1.1.2. Let (u,, p,) be the unique solution of the Stokes system 
(1.1.1). Let ?t, be the extension o.t" the velocity by 0 in ~2 -- ,Q~. Let P~(p~) be the 

extension of the pressure, where P, is the operator defined in Proposition 1.1.4. 
Then 

({t~, P,(p,)) ~ (u, p) in [n01(~t-~)]Nx [L2(~)/F~] weakly, 

where (u, p) is the unique solution of the homogenized system: 

Find (u, p) E [H01(O)]ux [L2(O)/R] such that 

Vp -- Au + Mu = f in g2, (1.1.13) 

V . u = O  in ~ .  

Remark 1.1.9. The homogenized system (1.1.13) is a law of Brinkman type (see 

the original paper of BRINKMAN [8]). The new term Mu in (1.1.13) expresses the 

presence of the holes which have disappeared after passing to the limit. For the 

Laplacian, the same kind of phenomenon occurs (see D. CIORANESCU & F. MURAT 

[9] who called this new term a "strange term"). Note that if we put the fluid's 

viscosity equal to/z instead of 1, then a mat r ix / ,M would replace M in (1.1.13). 

Proof of Theorem 1.1.8. The proof is divided into two parts. In the first part we 

show that the extension of the pressure is bounded in L2(f2)/R, and in the second 

part we pass to the limit with the help of the energy method, introduced by 

L. TARTAR [29], and adapted by D. CIOV, ANESCU & F. MURAT [9] for the Laplacian 

to an abstract framework similar to ours. 

(1) Recall that P~(p,) is defined by (1.1.8), i.e., 

(V[P,(p,)], r) u l,Hl(t2) = ~Vp,, R,r)it-l,n~(a, ) for each ~E [Hlo(O)] N. 

Introducing equation (1.1.1) and integrating the last equation by parts, we get 

(V[e~(p~)], ~)u-~,uo~(o) = -- f Vu~ : v (Ry)  + f f .  R,~,. 
~2e "Qe 

Thus 

I <V[e~(p,)], r>l < IIVff~ik=(o)[[V(R,~)IIL=(.%) -F Ilflk=w)tlR~'111.=(o~). 
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Combining this with inequality (1.1.4) and (H6), we obtain 

IIV[P~(p~)] ]IH-,(D) =< C I[flIL:(m. (1.1.14) 

According to Lemma 1.1.5, we deduce from (1.1.14) 

11P~(Pe)llL~(m/a ~ C Ilflk~(o) 

where the constant C depends only on D, and not on e. Consequently the sequence 

Pe(P~) is bounded in L 2(O))1%: One can therefore extract a subsequence, still denoted 

Pe(P~), and there exists some p E L2(I2) /R ,  such that P~(p,) converges weakly to 
p in L2(f2)/R. 

(2) Now, we apply the energy method, i.e., for any fixed ~b 6 D(,Q), we introduce 
in the variational formulation (1.1.2) the following test functions 

rH~r D ~ N  ~ 2 v = dOW~k E t o~ e.,J , q = dPq k E L (.Q~)/R. 

We obtain 

f Vue : ~7(+wD - f p~ V. OwD = f f .  (4~w~), 
De "Qe De 

(1.1.15) 
f (4q~) V.  u~ = 0. 

De 

Expanding (1.1.15), and using (H2) (which requires that that w~ be divergence-free), 
gives 

f4v,~:VwZ+ /Vue:~v+- fp~w~.V+= f+f. w~, 
DE D e D e D e 

(1.1.16) 
f Cq; v -ue = 0. 

D e 

But 

f r Vue: Vw; = - lAw; ,  4~e)n-i,/~0~(~ ~ -- f U~ V4: VW;. 
D e D e 

(1.1.17) 

Integrating (1.1.16) by parts, introducing (1.1.17), and adding the two equations 
leads to 

(Vq~ -- &w~, qSff~>H-l,n0~(D ) + f q~u~ " Vrb - -  f ~e vr  Vw; 
D ~2 

+ f v~,. w~ veo- f pew; . v r  = f qbf- w~. (1.1.18) 
O D e D 

Moreover, because Pe(P , )=~P,  in ,Q~ and w~ = 0 in , Q -  ~Q,, we have 

f pew;"  V4) = f Pc(p9 w;. Veo. 
D e -Q 

Then we pass to the limit in (1.1.18) as e tends to zero. The sequence ~ fulfills 
the conditions of hypothesis (H5), and we obtain 

(Vq~ --  Aw~,  (~)Ue)H--1HI(D) ~ ( # k ,  ( ~ U ) H - - 1  H01(.Q) " 
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On the other hand, recalling the following convergences 

9~ ~ u in [//01(2)] N weakly, 

w~ ~ e k in [H1(2)] N weakly, 

qT, ~ 0 in L2(2)/R weakly, 

P~(p~) ~ p in L2(~Q)/R weakly 

and using Rellich's Theorem, we convert (1.1.18) to 

<~k, 4'U)/~-~H0~(a) + f V u : e k V $ - -  f p e k ' V 4 , =  f 4 f ' e , c .  (1.1.19) 
D s D 

Integrating (1.1.19) by parts gives 

(/~k, Su} -- {Au, 4~ek} + (Vp, qSe~} = {f, Sek} for each k E {1, 2 . . . . .  N}. 

But M is symmetric, so that 

Vp -- Au + Mu = f in [D'(2)] N. (1.1.20) 

Furthermore, we know that V �9 us = 0 in 2,  and ~ ~ u in [Ho1(2)] u. Passing 

to the limit yields 

V �9 u ---- 0 in 2 .  (1.1.21) 

Regrouping (1.1.20) and (1.1.21) we obtain the following homogenized problem 

Find (u, p) C [H~(,Q)]N• [L2(,C2)/R] such that 

V p - - A u + M u = f  in 2 ,  (1.1.22) 

V . u = 0  in 2 .  

It remains to prove that (1.1.22) admits a unique solution. From Hypothesis 

(H4) we know that Mu belongs to [H-1(2)] N, and from Proposition 1.1.2, that 

M is a positive matrix. Thus, for each u E H01(2)] u, we have 

f IVul 2 + {Mu, U)n-1,i~lo( m >= f Ivu[ ~. (1.1.23) 
g2 D 

From (1.1.23) we deduce the coercivity of the operator (--& + M), and also the 

existence and uniqueness of a solution of (1.1.22). Moreover, because the solution 

of (1.1.22) is unique, all the subsequences of (u,, P,(p,)) converge to the same limit. 

So the entire sequence converges. Q.E.D. 

Remark 1.1.10. When the space dimension is N = 2 or 3, Theorem 1.1.8 can 

be easily generalized to apply to the Navier-Stokes equations: 

Find (u~, p,) E [Hg(2~)]N• [L~(2~)/R] such that 

Vp~ + u, �9 Vu~ -- Au~ = f  in 2~, (1.1.24) 

V - u , = 0  in 2~. 
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It is well-known that there exists at least one solution of system (1.1.24), which 

is unique for small values of ]]f[lL2(~) when N = 2 or 3. For such f ,  with the same 

hypotheses (H1)-(H6) as for the Stokes system, we can prove the same results. 

More precisely, because the sequence he converges weakly to u in [Hol(.Q)] N, 

the non-linear term K~ �9 V~  converges strongly to u �9 Vu in [H-J(~)]  N, and the 

homogenized problem is 

Find (u, p) E [Hi(D)] u • [LZ(-Q)/R] such that 

V p + u . ~ ] u - -  A u + M u = f  in ,Q, (1.1.25) 

V . u = 0  in .Q. 

It is worth noticing that the functions (w;, q~, #k)~-<_~<u that satisfy Hypotheses 

(H1)-(H5), and therefore the matrix M are exactly the same for both the Stokes 

and the Navier-Stokes homogenizations. For more details, see Section 1.7 in 

[1], 

Remark  1.1.11. Hypothesis (H4) can be weakened to /~kE [H-I(~)] N, and 

Theorem 1.1.8 still holds with a slight change in the class of solutions (see Sec- 

tion 1.6 in [1]). 

1.2. Correetors and error estimates 

In this subsection we give correctors for the velocity u~ and the pressure p, 

with the help of a weak semicontinuity result for the energy. Moreover, we give 

abstract error estimates which will be used in the second part of this paper in order 

to obtain explicit bounds for the error in concrete situations. 

Proposition 1.2.1. Let  Hypotheses (H1)-(H5) hold. Then each sequence (z,)~>o 

such that 

z~ - ,  z in [Hi(O)] u weakly,  

V �9 z~ -+ ~7 �9 z in L2([2) strongly, (1.2.1) 

z~ = 0 on the holes T 7 

satisfies 

I~ > f I Vz l~ + ( M z ,  z) n-,,n~(~). l iminf  f IVz~i = 
e-+0 .Q .O 

(1.2.2) 

Proposition 1.2.2. 

suck that 

Let  Hypotheses (H1)-(H5) hold. Then each sequence (z,),>o 

Z e ~ Z in  [O01(~Q)] N w e a k l y ,  

~7 �9 z~ -+ V �9 z in L2(~2) strongly, 

z~ = 0 on the holes T~, 

lim f ]Vz[ 2 -b ( M z ,  Z)H-I,u~(~) 

(1.2.3) 
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satisfies 

(z~ -- Wez) -+ 0 in [wl'q(~t~)] N strongly (1.2.4) 

N 
where We is the matrix defined by Wee k ~ w~, and q -- N -- 1 i f  N ~ 3, 1 ~ q 

< 2  i f  N - - 2 .  

Theorem 1.2.3. Let Hypotheses (H1)-(H6) hold. Then the solution ue o f  the Stokes 

system (1.1.I) satisfies 

~te ~ Weu + re (1.2.5) 

where We is defined by W,e k = w~, u is the solution o f  the homogenized system 

(1.1.13), and re is such 

r~ ~ 0 in [wd'q(,Q)] u strongly (1.2.6) 

N 
with q N - - 1  i f  N ~ 3 ,  l ~ q < 2  if N = 2 .  

Moreover, i f  u is smoother than [H01(O)] N, say, 

u ~ [Wol'N(aQ)/'~ C~ N / f  N ~ 3, 

u~ [Wo',2+%q)] 2, 

then (1.2.6) can be improved: 

r e ----~0 

for  some fl > O, / f N = 2 ,  

in [nol(~Q)] N s t r o n g l y .  

(1.2.7) 

Theorem 1.2.4. Let Hypotheses (H1)-(H6) hold. Let the solution u o f  the homo- 

genized system (1.1.13) be sufficiently smooth, say, 

u C [wd'N+~(-Q)] N for  some ~ ~ O. (1.2.9) 

Then the pressure Pe of  the Stokes system (1.1.1) satisfies 

Pc(Pc -- P -- U" ae) -+ 0 in L2(O)/R strongly, (1.2.10) 

where Qe is the vector defined by Qe �9 ek = q~, (u, p) is the unique solution o f  the 

homogenized syster~ (1.1.13), and Pe is the extension operator defined in Proposi- 

tion 1.1.4. 

Obviously (1.2.10) implies that 

JlP~ -- P -- u" QeJJL2(~p/~t -+ O. (1.2.11) 

Before giving abstract error estimates in the next proposition, we replace 
Hypothesis (H5) by a stronger version (H5'): 

For each k E {1, 2, . . . ,  N), Vq~ -- Aw~ = #i  -- Yl in -(2 

with /zl -+ ffk in [H-I(.Q)] N strongly, 
(H5') 

with 71 ~ #k in [H-I(O)] N weakly, 

and with Yl ~ 0 in [H-a(f2,)] u. 

(l.2.8) 
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(The last equality means that, for any function ~ E [H01(~2)] N that satisfies ~ = 0 

on the holes TT, we have (7~, 'P>H-'I,HI(12) = 0,) 

Obviously (H5) can be deduced from (H5') which was not introduced before 

because we need it only for the following proposition. Of course in the other 

sections of this paper, we check that (H5') is always satisfied in the examples under 

consideration. 

Proposition 1.2.5. Le t  Hypotheses (H1)-(H6) and (H5') hold. Assume that the 

velocity u satisfying the homogenized system (1.1.13) is smooth, say 

U E [~Vr2'e~(~t~)] N- (1.2.12) 

Le t  ~ = p,  - -  p - -  u �9 Q, and re = u, - -  W # .  Le t  M~ denote the matr ix  defined 

by its columns #f~ = M~e k. Then 

[l~[IL=(~e)/~ ~ C Ilullw=,~(m [lime - mll~-~(~) + Illd- W~IIL=(~ + IIQ~ll~-~(o~], 

(1.2.13) 

IIVr~llL=<m < C Ilul[w2,o%m [IIM~ -- Mll/~-~<m + l l ld -  W~lIL~<m + IIQ~I[H ~(~)] 

(1.2.14) 

where the constant C depends only on ~ .  

R e m a r k  1.2.6. The above results on correctors and error estimates are actually 

generalizations to the Stokes equations of previous results obtained for the 

Laplacian operator. In that case, Propositions 1.2.1 and 1.2.2, and Theorem 1.2.3, 

have been proved by D. QORAN~SCU & F. MURAT [9], while Proposition 1.2.5 

(except the result for the pressure) has been proved by H. KACIMI & F. MURAT 

[15]. Theorem 1.2.4 is original because it is devoted to a corrector of the pressure. 

Furthermore, Propositions 1.2.1 and 1.2.2 correspond to the so-called /'-conver- 

gence, introduced by E. DE GIORGI [11], [12]. 

Proof of Proposition 1.2.1. Let q) = (~b 1 . . . .  , ~bN) E [D(AC2)] N. 

quence Ae of real numbers defined by 

Expanding (1.2.15) gives 

= f iVz l 2 + 
D 

Consider the se- 

I (  N As = .~ V z , -  ~ 4kw; . (1.2.15) 
k = l  

f 4~k Swk : 4i Vwi + V4k wk. 
1 ~ i , k = N  [s D 

+ 2  Z f4~Vw~:V4~,wT--2 Z . fVz, :  VchkW ~ 
1 ~ i , k<=N s 1 < ~ k ~ N  

-- 2 ~] fVz~: 4~k Vw~. (1.2.16) 
1 ~k ~N ~2 
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Integrating the last term in (1.2.16) by parts leads to 

f Vz~: '/'k Vw,~ = -- <AwL 4,~Z~)H-,,Hg~O) -- f z, Vr k : Vwl (1.2.17) 
O O 

= (Vq; -- ~w;, CkZ~)H- l,n01(o ) -- f z~ V4~ : Vw; -- (Vq~, 4~kZ~)n- hn~(o)" 
O 

Integrating the last term in (1.2.17) by parts yields 

(Vq~, q~kZ,)H - I H~(O) = --  f q~(z~ " V~bk + ~bk V �9 z~). (1.2.18) 
O 

Now we introduce (1.2.18) and (1.2.17) into (1.2.16): 

s 1 ~i,k ~N O 

+ 2  ~ f e&: Vw~ : Vcb, w~ (1.2.19) 
l~i,k~N O 

- - 2  1 ~k~NZ [ / V Z e : V ~ k W e k - ~  of q~(z ' 'V4# ' - [ -~kV  "Ze) - of z~Vc&:Vw~] 

- -  2 y]  (~Tq~ - -  Aw~, ~&z,) n -  I,H~(O). 
1 ~ k  ~ N  

There exists a subsequence, still denoted by z~, such that 

f iVz~ p2 ___> lim inf f IVz. 12. (1.2.20) 
e - + 0  

O O 

Moreover, because of assumption (1.2.1), the sequence z~ fulfills the conditions 
of (H5), and we obtain 

(~Tq~ --  Aw~, (p~Z~)H-1,H~(O) --> Qtk, cb~Z)l_Z-l,H~(O). (1.2.21) 

On the other hand, Proposition 1.1.2 implies that 

e i 
f f~kflPi VW k : VW~. --> (]2k, ffpk~Pi>H--l,Hl(o). 

O 
(1.2.22) 

Recalling that {X~ => 0, we pass to the limit in (1.2.19)with the help of (1 .2 .20) -  

(1.2.22):  

lim+inf f ]Vz, 12 + f [Vr + Z </*~, 4'~>H-',Ho~,O, 
D O 1 ~k~N 

--2 f g ~ : g z - - 2  y, (/~k,q, kZ).-,,~0Jr 
O 1 _~k ~ N  

(1.2.23) 

Because #kE [m-l'~176 N, we can apply inequality (1.2.23)to a sequence of 
functions ~ that tends to z and pass to the limit. Then 

liminf f IVz~l 2 ~ f IVzJ 2 + <Mz, z>H--LHgr Q.E.D. 
e - + 0  

O Q 
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P r o o f  of Proposition 1.2.2. We now pass to the limit in equality (1.2.19) taking 
into account the new assumption on ze: 

l i m A , =  f IVz] 2 -~ ( M z ,  z )H-1,H~(~)§  f [vr 

§ • ( t  tl,, dPk qb)n-' ,n~(9) --  2 f Vqb : V z  --  2 Z (#g, 4eZ)H -1,no~(~) 
1 ~ k ~ N  ~2 1 ~_k~N 

= / [V(z -- q})12 § ( M ( z  -- ~), (z -- ~5)) H ,,n~(~). (1.2.24) 

Let ~/ be a strictly positive real number. Because D(s is dense in H~(~Q), there 
exists ~ E [D(~Q)] N such that 

Ilz -- ~n ]1no1(9) ~ zl. (1.2.25) 

Then we can bound (1.2.24): 

lim/e_+o ]V(ze -- Wfl~,)[2 __ lirae_,o Ae --<_ ~z § l lml iw-~ ,~(~) [ I (z  - -  ~b,,) 2 ]]w0~,a(.~). 

But [ [ ( z -  ~)2]lw~,a<~) < C]lz-  ~]1~0~(~) where C depends only on ~.  Thus 

lira f IV(z~ - W~fib~)12 ~ (1 § C [[MHw-Uoo(~)) ~z. (1.2.26) 
e-->0 5 

Because z~ - -  W~z = (z~ --  WeqS,7) § W~(q~n --  z), for q ~ 2 we have 

] l z e  - Wezllw~,%o) <= Ilzr - w~,llz~(~) + I! me (~  - z)lIw~,~(~). (1.2.27) 

If  N ~ 3, Ha(~Q) is continuously embedded in L2N/(N-2)(,.Q); then 

]I me(~)zl - -  z)II w1,NI(N--I)(D) ~ II We IIL2~/(N-2)(~) I[V(~ - z ) Ik~(~)  

"~- ][ ~)zl - -  Z ]IL2N/(N-- 2)(L) ) [] V We, lk,(o).  

If N =- 2, Ha(~Q) is continuously embedded in LP(ff2) for any p < § cx~; then 

1 1 t 
with -- §  that if p ~ cx~ then q ( 2 ) .  Consequently, from 

q 2 
(1.2.27) we obtain 

q - -  i f N > ~  3, 
lim Ilz~ - Wez]Iw~o,q(~ ) <= cn with N -  1 (1.2.28) 
e-+0 

l ~ q < 2  if N = 2 .  

Inequality (1.2.28) gives the desired result when z/ tends to zero. Q.E.D. 

Proof of Theorem 1.2.3. We easily check that the solution h~ of the Stokes system 
(1.1.1) satisfies the assumptions of Proposition 1.2.2. Thanks to Theorem 1.1.8 
we know that 

f i ,~ -u  in [H~(s N weakly, V . h ~ = 0  in D, h e = 0  on the holes T;. 
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Moreover, we have 

f f . ~  --> f f . u =  f l V u l  = + ( M u ,  U)H--~H~o( m.  
K2 K2 ~ 

Thus the conclusion of Proposition 1.2.2 holds for fi,, and we conclude that 

N 
~ - -  W~u = r e converges strongly to 0 in [W~'q(O)] N, where q N -  1 if 

N ~ 3 ,  and l ~ q < 2  if N = 2 .  The proof of the improved convergence 

(1.2.8) of r~ when u is smoother is not difficult, and is left to the reader (see [1] 

if necessary). Q.E.D. 

Before proving Theorem 1.2.4, we give a generalization of Hypothesis (H5) 

in the following lemma, the proof of which is elementary. 

Lemma 1.2.7. Let Hypotheses (H1)-(H5) hold. Then (H5) can be generalized thus: 

For each sequence v, and for each v such that v, converges weakly to v in [H~(O)] N 

and v~ = 0 on the holes 7 7, and for each cb which belongs to wg'N(O) /5 C~ 

for N ~= 3, and to Wd'2+n(O), with ~ > O, for N = 2, the following limit 

holds: 

(Vq~ -- Aw~,, q~'Pe)H--l,Hl(~) "-~ ( ~ k ,  CV)H--1,H01(~) " 

P r o o f  o f  Theorem 1.2.4. First remark that u ~ [wI 'N+~(O)]  N C [Z~176 N for 

~ />  0; this implies that u.  Q~CL2(O)/R, and that P~(u.Q~) is meaningful. 

According to Lemma 1.1.5 it is equivalent to prove that 

V[P~(p~ -- p -- u- O~)] -+ 0 in [H-~(O)] n strongly. (1.2.29) 

Let v, be a bounded sequence in [H01(O)] N. We define a real sequence As by 

A, = (V[P~(p, - p - u .  Q,)], V,)n-a,n01(/2). (1.2.30) 

Using Proposition 1.1.4 gives 

As = (Vp~, R~v~) H 1,H01(a~) -- (Vp, R~V~)n-I,H~(~ ) - -  (V(u. Q~), R~V~)H-1,//01(/2~ ). 

(1.2.31) 

In order to simplify the notation, from now on R~v, represents both the function 

in [H01(O,)] N and its extension by 0 in O -- O~. This extension belongs to [H01(f2)] N. 

Introducing Stokes' and Brinkman's equations in (1.2.31), and integrating it by 

parts leads to 

/x~ = f (Vu - Vu~) : V(R,~, )  + ( M u ,  R~V,)H-1,H01(Sa) - -  ( V ( U "  Q~), R,v~) H 1.//1(/2) . 
/2 

(1.2.32) 
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Theorem 1.2.3 asserts that h~ = W , u - ?  r~ and r~-->0 i n  [Ool ( f f~) ]  N strongly. 

Replacing if, by the above expression, and integrating (1.2.32) by parts gives 

i~ = 12f qd  -- W~) Vu : V(R~3 -- ~f Vr~ : V(R~) § 12f Vu : (R~  �9 V W~) (1.2.33) 

-- f Q~ Vu.  Ry~ -- <(VQ~ -- AW~) u, R~V~)H-,,n01(m + (Mu ,  R , v , ) n - l , ~ ( o ) .  
o 

From elementary arguments and Lemma 1.2.7, it follows from (1.2.33) that 

lira ~, = 0 for any sequence v~ bounded in [H01(O)] N. This is equivalent to (1.2.29) 
e --->0 

and therefore Theorem 1.2.4 is proved. Q.E.D. 

Proof of Proposition 1.2.5. Define the matrices M, and / ' ,  by their columns 

#~ = M,e  k and y~ ---- F~e~. Hypothesis (H5') enables us to replace the term 

( V Q , -  AW,) by ( M ~ -  /',) in equality (1.2.33), and we use the fact that 
7~ ~ 0 in [H-~(f2~)] n to obtain 

12 12 D 

-- f Q~ Vu" R,v~ -? ( (M -- M,) u, R,v,)n-l,Hol(O ). (1.2.34) 
12 

Because u is smooth we have 

and 

g2 I <~i,k ~ N  

f Q~ Vu. R~v, = (Q~ Vu, R~r~)n_1,H~( m. 
O 

Moreover, because the gradient operator is continuous from LZ((2) in [H-I(O)]  N, 

we have 

[IVW~IIH-,(~) <= c Hid --  W~]IL:(m. 

Then we bound (1.2.34): 

[;& [ g II Id  - -  w&,(12) IlVu PIL~(~) IIV(R~)FIL=(12) + II Vr~ [[L=(~) llV(R~3 li '(m 

+ C ll~ullwl,~(12) ] l i d  - -  W,I[L:(12) JIR~v~l]~o~(~ ) 

+ IlVuliwa,~(m ]1Q~11~-~(12)I1R~v~/I.~(12) 

+ ]I u Ii w~,~(12) lI M -- M~][n-,(o) II Ry~ riHo~(12). (1.2.35) 

But Hypothesis (H6) implies that ]1R,v, ll~ro~(O ) g C Iiv~ II~o~(12), and Definition (1.2.30) 

of A~ can be rewritten as 

A , = - -  fP~(~,)V.u~ with ~ = p , - p - u . Q , .  (1.2.36) 
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With the help of  Lemma 1.1.7, we obtain for each f E  L2(~2) that  

f P~(o~)f ~ C I]Vr~]lL~(O)I[fllL02~Q~ + C NU]Jw2,eo(f2)l[flJL0~(m [[[Id --  W~]]L~(m 

+ J I M -  M,][,/-l(o,) + llQ~lIn-l(o)]. (1.2.37) 

Because Lz(O)/R is the dual space of  L02(,Q) and because P~(0~)~ o~, in ,Q~, 

we conclude f rom (1.2.37) that  

]I0~liL~(o~)/~ =< C/IVr~]lL=(m 47 C Ilullwz, o~(m [[IM~- ml/u-~(o) 

47 ]l/d - -  We]lL2(m 47 IlQ~llLr-l(o)]- (1.2.38) 

Now it remains to estimate r~ in [H~(sQ)] N. Following an idea of  H. KACIMt & 

F. MURAT [15], we calculate the duality product  (--Ar~, re)H_l,H01(m in two 

different ways. On the one hand we have 

< - - ~ r e ,  r ,>H - -1 ,H I (o  ) = f ]gr, [2. 
~2 

On the other  hand we have 

--Are = - - A ( ~ e -  W~u) 

= --'A[te + We ~u 47 AW, u 47 2(VWe) Vu 

= --Aft, - -  (We - - / d )  Au 47 Au --  (VQe - ~W~) u 

47 2V �9 [(W~ - Id) Vu] 47 VQ~ u. (1.2.39) 

Int roducing the Brinkman equat ion gives 

--Are = (Vpe -- ~[te - - f 4 7  F,u) 47 (M -- Ms) u 47 2V �9 [(We --  Id) gu] 

- -  (W~ -- Id) Au -- V(p~ --  p --  u" Qe) - Vu Q~. (1.2.40) 

Thanks to (H5')  and the Stokes equation, the first term of  the r ight-hand side of  

(1.2.40) is equal to zero in D~. Since r~ ~ 0 on the holes, integrating (1.2.40) 

by parts yields 

( - -Ar t ,  r~}u-1,Uol(Sa)----- ( ( M  --  M~) u, re}ul-,Uo~(O)- (gu  O~, r~}ze-l,ui(a ) 

- 2  f(W~--Id)Vu:Vre-- f(W~--Id) Au.r, 
s D 

+ f ~ v -  r~. (1.2.41) 
g2 

Because u, ~ ,  w~ are divergence-free, we have V.  r~ = --  W~ : Vu = (Id--  W~) : gu. 
Then we can bound (1.2.41), and, using the Poincar6 inequality, we obtain 

IlVreH2,cm < C ]lu[lw2.~(o)lIVr, llL2(m [IIM~ --  MIIH ~(o> 47 [ l i d -  W~IIL.(O) 

47 ]]Q~]]~-,(o)] 47 1]Ullwl,~(a)Hid- Welk,(o)][0r (1.2.42) 

Finally, combining (1.2.38) and (1.2.42) gives the desired result (1.2.13) and 

(1.2.14). Q.E.D. 
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2. Periodically Distributed Holes in the Entire Domain 

This second section is devoted to the verification of Hypotheses (H1)-(H6) 

in the case of identical holes of critical size, periodically distributed in .(2. This 

implies that all the results obtained in the abstract framework of the first section 

hold in the present geometrical situation. Moreover, the periodicity of the geometry 

yields some supplementary results, including explicit expressions for the matrix 

M and for the extension of the pressure, and concrete bounds for the errors. 

2.1. Main results 

Let f2 be a bounded connected open set in R N (N ~ 2), with Lipschitz boundary 

~s D being locally located on one side of its boundary. The set s is covered 

with a regular mesh of size 2e, each cell being a cube P~, identical to (--e, -?e) u. 

At the center of each cube P7 included in s there is a hole T~ ~, each of which is 

similar to the same closed set T rescaled to the size a~. We assume that T is strictly 

included in the unit open ball B~ and that (B~ -- T) is a connected open set, 

locally located on one side of its Lipschitz b0undary2 Moreover, we assume 

that the size of the holes as is critical, i .e. ,  that 

as 
liras_+0 e N / ( N - 2 )  - -  CO for N ~  3, 

lira --  e 2 log (as) = Co for N =- 2 
e--~0 

where Co is a strictly positive constant (0 ~ Co <~ + cx~). 

(2.1.1) 

R e m a r k  2 .1 .1 .  Assumption (2.1.1) gives a unique and explicit scaling of the hole 

size for N ~ 3, but does not do so for the two-dimensional case. Actually, when 

N = 2, many different sizes of the holes satisfy (2.1.1) with the same constant 

Co. For  example, a,  = e p exp (--Co/8 2) is acceptable for any p C P~. In any 

case, assumption (2.1.1) is enough for the sequel, so we do not make more precise 

the scaling of the holes in two dimensions. In the second part of this paper the 

non-critical sizes of the holes (corresponding to zero or infinite limits in (2.2.1)) 

are investigated, and lead to results which are completely different from those 

presented here. 

An elementary geometrical consideration gives the number of holes 

U(e )  = ]'Q[ [1 -~ o(1)1. (211.2) 

The open set f2~ is obtained by removing from s all the holes (T~) 1 Ni~N(e)" ff~e = 
N(~) 

.Q -- kff T~ (see Figure 1). Because we "perforated" only the ceUs entirely in- 
i= l  

cluded in D, we are sure that no holes intersect the boundary #~.  Thus DE is also 
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i 

N 

�9 �9 / x ,  

Fig. 1 

Tie 

a bounded connected open set, locally located on one side of its Lipschitz boundary 

~ .  In each cell P7 we define B 7 as the open ball of radius e included in PT. We 

also define a "control volume" C7 around each hole by (see Figure 2) 

C~ ' ---- B; -- T~. (2.1.3) 

1 
l ap 2e 

~ c f  

Fig. 2 

Now we state the main results for such an open set s including the verification 

of Hypotheses (H1)-(H6). Their proofs are located in the remaining subsections 

2.2, 2.3, and 2.4. 

Proposition 2.1.2. Let the hole size be critical, i.e., be given (2.1.1). Then there 

exists a map R~ satisfying (H6). Furthermore, we construct R~ such that the exten- 

sion operator P~, from L2(-Qe)/]R t o  L2(,.,Q)/R, defined in Proposition 1.1.4, satisfies 

P~(q~) ~- q~ in s 

1 f q, in each hole 7- 7 (2.1.4) for each q, E L2(O~)/R e~(q ' )  - I C~.$ c; 

where C~ is the control volume around T7 defined in (2.1.3). 
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Remark 2.1.3. Proposition 2.1.2 is actually the main new technical result in this 

paper (Subsection 2.2 is devoted to its proof). However, equality (2.1.4) is a 

generalization of a result due to R. Ln, TON& M. AVELLANEDA [21]. It explains 

that the extension of the pressure, obtained by a duality argument from R~, turns 

out to be very simple. Nevertheless, it seems that the theoretical construction of 

P~ in Proposition 1.1.4 cannot be avoided because formula (2.1.4) gives no esti- 

mate for VP,(p,) (as (iii) in Proposition 1.1.4), which is crucial for the proof of 

Theorem 1.1.8. 

Before verifying Hypotheses (H1)-(H5), we introduce the so-called local prob- 

lem when the space dimension is greater or equal to three. Let N ~ 3. For 

k E {1, . . . ,  N}, consider the following Stokes problem: 

Find (qk, Wk) such that 

[[qklIL2(~N_T) < -k- CX~ and IlVWkIIL=<RN_T) < + oo, 

V q k - - ~ W k : 0  in R N - T ,  

V �9 wk = 0 in R N - -  T, 
(2.1.5) 

w k = 0 on OT, 

w~ = e~, at infinity. 

We prove in the Appendix that there exists a unique solution of (2.1.5). We denote 

by F k the drag force applied on Tby  the above Stokes flow, i.e., F k = On 
\ OT 

q~n}, where n is the normal exterior vector of 0T. 
1 

In our framework, the system (2.1.5) is the local problem, around a single 

model obstacle, associated with the homogenization process. In the case of holes 

having the same size e as the period, it is well-known (see, e.g., Section 7.2 in 

[25]) that the local problem holds in a unit cell, with periodic boundary conditions. 

But here, the hole size a~ is asymptotically smaller than the period e. Therefore, 

after a rescaling of the hole size to 1, the boundary of the cell goes to infinity, and 

the periodic boundary condition becomes a uniform boundary condition at in- 

finity. 

Proposition 2.1.4. Let N > 3, and let the hole size be critical, i.e., be given by 

(2.1.1). Then there are functions (w~, q~, ktk)l ~ _ N  constructed f rom the solutions 

(wk, qk)l ~ k ~  of  the local problem (2.1.5), that satisfy Hypotheses (H1)-(H5), and 
(H5'). 

Moreover, the matrix M appearing in the Brinkman-type law (1.1.13) is given 
by 

c g  2 
Me t = tz k -  2N F k for each k E { I , 2 , . . . , N }  (2.1.6) 
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or, equivalently, 

�9 CoN - 2  

teiMe k = t~ 2N f Vw~ : Vwi for each i, kC {1, 2 . . . .  , N} 
~ N - - T  

or, equivalently, 

CoU-2 
2 (2.1.7) t~M~ - 2 N inf]lgW]lL~(RN--r) 

waE 

with E = {w E [H~o~(RN)]N/V " W = 0 in R u, w = 0 in T, w = ~ at infinity}. 

Remark 2.1.5. Proposition 2.1.4 provides a very simple characterization of the 

matrix M which appears in Brinkman's law. Formula (2.16) gives a physical 

interpretation of M: Each column of M is proportional to the drag force of a 

corresponding Stokes flow. This means that the new term Mu in the homogenized 

system (1.1.13) represents the slowing effect of the obstacles on the macroscopic 

flow. If the model obstacle Tis not isotropic, then M may be non-Scalar, and even 

non-diagonal; this is Brinkman's law for an anisotropic medium. Formula (2.1.7) 

furnishes a mathematical interpretation of M as a "Stokes capacity" of the model 

obstacle T (see [5], and [15] for a similar "capacity-formula" in the case of the 

Laplacian operator). Roughly speaking, the functions (w~, qT,) are constructed 

by rescaling (w~, qg) in each period. Thus they appear as the velocity and pressure 

of a unit boundary layer around the holes (in the e k direction), and the matrix 

M may be seen as the energy of these boundary layers. 

Proposition 2.1.6. Let N =. 2 and' let T contain a small open ball. Let the hole 

size be critical, i.e., be given by (2.1.1). Then, there exist functions (w~, q~, #k)l zkz2 

that satisfy Hypotheses (H1)-(H5), and (H5'). 
Moreover, whatever the shape and the size of  the model hole T are, the matrix 

M appearing in Brinkman's law (1.1.13) is given by 

Yg 

M = -Uoo Id: (2.1.8)  

Remark 2.1.7. In comparison with Proposition 2.1.4, the result of the above 

proposition is quite paradoxical. I n  fact, this result is close to the celebrated Stokes 

9aradox, which asserts that the system (2.1.5) has no solution when the space 

dimension is N = 2. This result can also be connected to the fact that any two- 

dimensional bounded set has zero capacity. 

Remark2.1.8. From Propositions 2.1.2, 2.1.4, and 2.1.6, we know that Hypo- 

theses (H1)-(H6) and (H5') are satisfied by some functions (wT,, q~,/~)1 ~k~N and 
some map R, for any value N ~ 2. Of course, because of that, all the results of 

the first section hold, including the convergence Theorem i. 1.8, and the corrector 

Theorems 1.2.3 and 1.2.4. 

Theorem2.1.9. Let the hole size be critical, i.e., be given by (2.1.1). Let the 

solution (u, p) satisfying Brinkman's law (1.1.13) be smooth, say, u E [W2'~ N. 



Homogenization of the Navier-Stokes Equations I 233 

Then there exists a positive constant C that depends only on [2 and T such that 

[[fi~ - W~ullno,~a ) ~ Ce IlUllw2,~r 

llp~ - p - u �9 Q~lIL=<Za~)m ~ Ce I lU]Iwz,~r  
(2 .1 .9 )  

Remark  2.1.10. We assume that the holes (T/~) are identical; but this condition 

can be weakened, as will be clear from the construction of the functions (w~,, q~) 

that satisfy Hypotheses (H1)-(H5). In two dimensions, the holes may be entirely 

different from one another; provided that they have the required size, we still 

have the same results (in particular M = ~z[CoId). In other dimensions, the hole 

shape may vary smoothly without interfering with the convergence Of the homo- 

genization process. (Of course the matrix M is no longer constant in I2.) 

2.2. Verification of Hypothesis (H6): Proof of Proposition 2.1.1 

In this subsection we construct a linear operator R~ that satisfies (H6), i.e., 

R~ E L([H~(I2)]N; [H~(/2~)]u), such that 

uE [Hol(E2~)] ~r implies that R~h = u in E2~, (2.2.1) 

7 �9 u = 0 in E2 implies that V �9 (R~u) = 0 in ~2~,  (2.2.2) 

ilR~ull~01(a~) ~ C I lui l , ,o% > and C does not depend on e. (2.2.3) 

Following TARTAR'S idea [28], we easily define such an operator R~ that satisfies 

conditions (2.2.1) and (2.2.2). The main difficulty consists in the verification of 

(2.2.3). For this purpose we introduce two technical Lemmas 2.2.3 and 2.2.4, 

which are the keys to the analysis of this section. For technical purposes, we 

decompose each cube P~ entirely included in f2 by 

P~ = T 7 W (~ L/RT~ with K~ = P~ -- B~ (2.2.4) 

where T~ ~ is the hole, C7 is the control volume, and K~ is the remainder, i.e., the 

"corners" of P~ (see Figure 2). 

Lemma 2.2.1 Let  u E [Hl(~O)] N. For each cube P~ entirely included in Q, the fol-  

lowing Stokes  problem 

Find (v~, q;) ~ [HI(C;)]NX [L2(C~.)/R] such that 

~7q~-  Av~ = - - A u  in C~, 

1 
�9 ~ = �9 f V .  u in C~, (2.2.5) V vi V u + ~  

v~ = u on aC~ --  6TT, 

v~ = 0 on ~T; 
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has a unique solution, depending linearly on u, such that 

V ~ 2 < C[JlVull~=(c2vr7 ) + u 2 (2.2.6) 

where the constant C does not depend on e, i, and u. 

Accepting for the moment Lemma 2.2.1, we have 

Proposition 2.2.2. For u E [H01(12)] N, let ~ be the unique solution of system 

(2.2.5). Define an operator Re by: 

For each cube P7 entirely ineluded in 12, 

= ~ ~ in C~, R~u = 0 in T~. (2.2.7) R~u u in K~, R~u = ~'i 

For each cube P7 which meets ~12, 

R,u = u in P7/512. 

Then Hypothesis (H6) holds for the operator R, defined by (2.2.7). 

Proof. It is not difficult to see that R~ is linear and continuous from [H01(12)] N 
into [H01(12~)] N, and satisfies properties (2.2.1) and (2.2.2). Moreover, summing 

the estimates (2.2.6) for all cubes PT, we easily obtain 

which is just property (2.2.3); thus Re satisfies (H6). Q.E.D.: 

Now, using the explicit Definition (2.2.7) of Re, we give the 

Proof of Proposition 2.1.2. We have already proved in Proposition 2.2.2 that R~ 
satisfies (H6). Now, following an idea of R. LIPa'ON & M. AVELLANEDA [21], we 

prove equality (2.1.4). 

Let q~ q L2(12~)/'t%. By Proposition 1.1.4, we already know that P~(q~) = q~ 

in 12~. Recall property (iv) of P~ in Proposition 1.1.4: 

(V[P~(q~)], w)H--1,Ulo(O) = (Vq~, R~W)l~-l,~lo(~A for each wE [//01(/2)] N. 

(2.2.8) 

In order to prove that P~(q~) is a constant in each hole TT, we take w = w; E 
[D(TT)] N in formula (2.2.8), so that w; is a smooth function with compact support 

in the hole ire. Using system (2.2.5), we easily check that R~(wi) ==- O. Thus, from 

(2.2.8) we obtain 

(g[P,(q~)], wi)H-l,u~( m = 0 for each W i ~ [D(T~.)] N. 

That is, 

V[P,(q,)] = 0 in T~, or equivalently, P~(q,) is constant in T~. (2.2.9) 



Homogenization of the Navier-Stokes Equations I 235 

In order to calculate this constant, we now take w = vi E [D(B~)] N in formula 

(2.2.8), so that v~ is a smooth function with compact support in the ball B~. Inte- 

grating (2.2.8) by parts, we obtain 

f P~(q~) V .  v~ = f q~ V .  (R~v~) for each v, E [D(BT)] N. (2.2.10) 
B~ c~ 

Using system (2.2.5) and the fact that P~(q~) is constant in T~, we compute 

1 
= f q~ in each hole T 7. Q.E.D. PXqO ~ ~ 

Now we give some technical leanmas which will be crucial for proving Lem- 

ma 2.2.1. Letr/E R be such that 0 < r / <  �89 We define an open set C~ = B~ -- (r/T) 
where Ba is the unit open ball, and (r/T) is similar to the model hole T rescaled 

at size r/. 

Lemma 2.2.3. There exists a linear continuous operator L such that 

(i) L E L[H'(Ba); H~(C~)], 
(ii) L(u) = u on 8B,, L(u) = 0 on 8(r/T) for each u E H~(Bj), 

(iii) ]IVL(u)IIL2(%) ~ C[]]VU]IL~(B,) + K~ ]]U[IL2(80] for each u E Hi (B , )  

N-Z 1 
2 where K~ = r/ for N ~ 3, K~ -- ] / ~  for N =  2, and C does not de- 

pend on u or r/. 

! 0 
Proof. Define 0E C~ 1] by O(r)= 

[ 2 r - -  1 

for r E [0; �89 

for I"E [�89 
(2.2.11) 

Define 4~E C~ 1] by 4 ( r ) =  

0 

log r 
I 1 - - - -  
[ log ~/ 

/ 1 1 
rN-2 r/N--2 

1 

for rE [0, r/], 

for rE [r/; 1] and N = 2, 

for r E [r/; 1] and N ~  3. 

(2.2.12) 
Let u E H'(BO. Then we define the operator L by 

[ L(u) = 0(r) u - -  ~ u + 4(,') - ~  ~ 

We easily check properties (i) and (ii). From (2.2.13) it follows that 

V (  1 ) 2 u 1 L2(B1) ilVL(u)IIL,,c ,=< u tB, I f u + IB, I f u 
L2(B1) 

1 

(2.2.13) 

(2.2.14) 
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The Poincar6-Wirtinger inequality implies that 

IB~I u --<_ C l l V u I I , ~ .  
LZ(BI) 

Moreover, an elementary calculation gives 

[IVr <= CK~ where C does not depend on r/. 

Thus (2.2.14) leads to the desired property (iii). Q.E.D. 

Lemma2.2.4.  For each fEL2(C~) with f f =  0 there exists rE [Ho1(C~)] N 

such that % 

(i) V . ~ = f  in C~, 
(ii) the map f -+ ~ is linear, and there exists a constant C that does not depend on 

~1 or f such that II~II~/g(c0 ~ C llfl[L~(c~). 

Proof. Let fEL2(C~) with 

/ = f  

We still have f f =  O. 
such that ~l 

f f = 0. We define fC  LZ(BO 
C~ 7 

in C~, f = 0  in (~TT). 

by 

(2.2.15) 

Lemma 1.1.7 asserts that there exists a u E [Hol(B~)] N 

V - u - - - - f  in B~, 
(2.2.16) 

llullt/ol(B~) < C IlfllL=(B,) 

where C depends only on B1 (and not on ~/or f ) .  We distinguish two cases accord- 

ing to the spatial dimension: 

N => 3. We set C~ = (B1 -- B~) kJ r/(B1 --  T), where ~(Bx --  T) denotes the 

set (Bx -- T) rescaled to the size 7. Consider the following problem in ~(B~ -- T): 

Find wE [Ht[~7(B1- T)]] N such that 

V �9 w = f i n  ~/ (B~ - -  T ) ,  

(2.2.17) 
w = u o n  0(~/B0, 

w = 0  on ~(~T). 

Because the compatibility condition of system (2.2.17), namely f f = f u" n, 
~7(B~ --7") ~(nBO 

is satisfied, there exists a solution w. Moreover, if we assume that this solution 

satisfies the estimate 

[]Vw[[L:(n(BI_T) ) ~ CllflfL~(Cn) where C does not depend on ~/, (2.2.18) 

then Lemma 2.2.4 is proved by taking r equal to 

= u in (B1 - -  B ~ ) ,  

(2.2.19) 
= w i n  ~ / (B1 - -  T ) .  



Homogenization of the Navier-Stokes Equations I 237 

It remains to prove that estimate (2.2.18) holds for some solution w of (2.2.17). 

For this purpose we rescale system (2.2.17). For yE (B~ - -T) ,  setting 

1 1 
fo(Y) = fOTY), uo(y) ~- -~  u(ny), wo(y) = --~ wOTY). (2.2.20) 

we obtain the problem 

Find Wo E [HX(B~ -- T)] N such that 

V �9 Wo = fo in (B~  - -  T ) ,  

Wo = Uo on OBt, 

Since 

(2.2.21) 

Wo = t) on ~T. 

f fo = f Uo �9 n, Lemma 1.1.7 implies that there exists a solution Wo 
B1--T OB1 

of (2.2.21), which depends linearly on Uo and fo, such that 

IIVwo IIL=<B,--T) ~ C[]lfo Ilz:(m-r) + II Uo I[L=<B~--T> + IIVUo lk'<~--T)]" (2.2.22) 

N - - 2  and p ' = ~ 2  ' (2.2.24) becomes 

(2.2.23) 

(2.2.24) 

In view of (2.2.20), estimate (2.2.22) can be rewritten in the form 

IlVwl[L~t~(B~--T)I- -< C[['fHL~[n(B~-r)14-IIVUIIL~(wBO @ + IIUIIL~(,,B0] �9 

Using the H61der inequality in ~fla gives 

[ ] ,  1 1  
] l u l l ~ , )  ~ u=q ] f 1 with - -  + = 1 

J tnB, P 77 �9 

N N 
With p -  

2 2N 2N 

As N ~ 3, the following Sobolev embedding holds 

2N 

/-/~(B0 C Lu-2(BO. 

(2.2.25) 

(2.2.26) 

Then (2.2.25) becomes 

IIulI~=<~B1) ~ O12 2 (2.2.27) II U II.a{. 0 

Consequently, from (2.2.23), (2.2.27), and (2.2.16) we obtain the required estimate 

(2.2.18). 

N = 2. This case is more complicated, and we "cut"  the open set C n into many 

"slices", the number of which is asymptotically equivalent to [log B 1. Let n E N 
1 1 1 

be such that ~7 > ~ / ~  2n+1. For any integer i, let BlI2 i be the disk of radius-~-, 

centered at the origin of R z. Let Ci be the slice of C~ defined by 

Ci = Bl12i-1 --  B1/:i for 1 --< i <-- n. (2.2.28) 
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Let Cn+ I be the smallest slice defined by 

We have 

Cn+ 1 = Bll2n - -  (~]T) for 1 ~< i ~< n. 

n + l  

c ~ = L / G .  
i=I 

(2.2.29) 

(2.2.30) 

In each slice (C / )2~ i N  n w e  consider the problem 

(s3 

in Ca we consider 

(sl) 

F i n d  ~i ~ [Hl(Ci)] 2 such that 

V . v i = f  in C/, 

1 

~i = bl ICi_I  ~l Cil f ll 
Ci_ lkJC i 

1 
= lg 

~'i u I GWG+llc~vcf+l 

on OBu2i-1 , 

o n  ~Bl[2i ; 

Find vl E [Hi(Ca)] 2 such that 

V . ~ l = f  in C1, 

vl = 0 on ~B1, 

1 
= u f u o n  ~BI/2, 

l C~ W C21 civic2 

and in C,+l we consider 

(s .+,)  

Find vn+a E [HI(Cn+I)] z such that 

V . % + l = f  in C,+1, 

1 

-- f u ~,.+1 u i c .  w c . + l l c ; ~ c . + l  

v,+ l = 0 on ~(~/T). 

o n  OBl/2n, 

It  is easy to check the compatibility conditions of these systems (S~)1<i_~n+l, 

because 

/(  / )  / u ]CgW Ci+l l  u . n =  u ' n .  
OB1]2i Cik) Ci + 1 OB1]2i 

Moreover, for 2 ~< i --< n - -  1 we rescale to the unit-size set (C_1 kJ Co W Ca) by 

1 
Ci-t W Ci W Ci+l -= ~i- (C- i  W CoY CO. (2.2.31) 



Homogenization of the Navier-Stokes Equations I 239 

Consequently, each system (Si)2zizn- i  is similar to the following rescaled system 

Find Vo C [HI(Co)] 2 such that 

V - %  = f o  in Co, 

1 
(So) ~0 = Wo [ c _ 1  v Co I c_l~cof Wo on ~B2, 

1 
---- Wo / Wo on 8B1. ~v o 

l Co W Cl ] Coy%, 

According to Lemma 1.1.7 there exists a solution of (So) such that 

IlV% IlL=(Co) <= C lifo ]tL2(co) + Wo 1C_1 ~ Col c_~vco 1(Co) 

Wo 1 f wo[ ] .  (2.2.32) 
-~ [Co ~ Cl l CoVC~ ~(Co~J 

But the Poincar6-Wirtinger inequality gives 

Wo 1 l ]c_1 ~; Col c_l~Cof Wo ~i~(Co) ~ CII~Two]lL~(c_~VCo>. (2.2.33) 

The same inequality holds for the last term of estimate (2.2.32), which becomes 

IlV~ollL=<Co) _--< C[l[fo Ik=(co) + llVwollL=cc_~vCo~C,)]. (2.2.34) 

now apply inequality (2.2.36) to system (Si) with fo(Y)=f(2Y--7), wo(y)~- We 

2;u (-fT), and v o ( y ) ~ 2 i v i ( - ~ - i ) t o  obtain 

I[ Vvi I]L~(Ci) <= C[~fIIL~(C i) q- II Vu ]IL2(Ci__ lk j CiVCi+ 1) ] (2.2.35) 

where the constant C does not depend on f, u or i. It is not difficult to get equiva- 
lent estimates for ($1), (Sn), and (Sn+l); then, summing those estimates we obtain 
from (2.2.35) that 

IIV~llL~(%) < C[llfllL~(C~) + 3 flVulk=(B~>] ~ C ][fl[L~(c,), 

where v is equal to v~ in each slice Ci. Thus Lemma 2.2.4 is proved. 

Lemma 2.2.5. Let  u E [HI(B1)] N. Consider the non-homogeneous Stokes problem: 

Find (~, q) E [H~(C,)]NX [LE(C~)/R] such that 

Vq -- Z~v : - -Gu in C~, 

1 
V . v = V . u ~- [---~ ~ f V . u in C~, (2.2.36) 

v : u on 891, 

v = 0 on O(~T). 
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There exists a unique solution o f  (2.2.36), which depends linearly on u, such that 

II%'J1,~(%) =< C[ll ~TullL2(~) + K~ ]1 u IIL~(B~)] (2.2.37) 

N--2 1 

where I,:~ = ,~ 2 for N ~ 3. and /r = . , ~  for N = 2; C depends nei- 
gllog~?l 

ther on u nor on ~. 

Proof. Since 

f V ' v :  f V . u +  V . u  = "u " u =  
c~ c n ~ ~ C n ~ T B~ 

= f u . n : f . . n ,  
~B~ ~C~ 

the compatibility condition holds for system (2.2.36). Now using the two previous 

lemmas, we transform system (2.2.36) in order to have a homogeneous Dirichlet 

boundary condition and a divergence-free solution. Then it is easy to obtain esti- 

mate (2.2.37). Q.E.D. 

a~ 
Proof of Lemma 2.2.1. If  we take ~ / :  - - ,  then each control volume C~ is simi- 

e 

lar to C~ rescaled at size e. Consequently, we can apply Lemma 2.2,5 with the 

rescaled variables ~ ( x ) = e ~  ( x ) .  From estimate (2.2.37) we obtain 

k i i 

(2.2.38) 

Because ~1 : e---' the quantity -~- is of the same order 1 in e, and thus 

e 2 U 2 Q.E.D. 

2.3. Verification of Hypotheses (H1)-(H5) 

This subsection is devoted to the explicit construction of functions (w~,, q~, 

/~k)l <x<u that satisfy Hypotheses (H1)-(H5). These functions will be carefully de- 

fined, but many technical computations which are needed in order to verify the 

hypotheses will be omitted. This is done only for the sake of simplicity; no 
fundamental difficulties are avoided. The interested (or suspicious) reader is 

referred to [1] for the complete calculations. We first consider the case N = 2, 

then the case N ~ 3. 



Homogenization of the Navier-Stokes Equations I 241 

2.3.1. Two-dimensional  case: N = 2 ( P r o o f  o f  Proposition 2.1.6) 

Recall the decomposition (2.2.4) of each cube, namely P7 : it7 kJ C7 kJ K 7. 

For k = 1, 2 we define (w~,, q~)C [Ha(eT)] 2• with f q~ = 0, by: 
e 

P i  

For each cube P,  that meets ~D 

{ w~ 

q~ 
k} in P7 f~ [2. 

For each cube P7 entirely included in -Q, 

I W/~ = k in K~, in C~, in T i . 
tq;, t~7 �9 w~ = 0 q~ 

Obviously definition (2.3.1) is meaningful, and the functions (w~, q~)l~k_<Z exist 

and are unique. For an arbitrary model hole T, we cannot explicitly compute these 

functions. However, it is possible to make them explicit when the model hole is 

the unit ball B1, and this gives an appropriate class of comparison functions. As 
T ( B~ let us define, for each cube P~, a ball B a~ of radius a~ that strictly contains 

the hole T~ (see Figure 2). 

Replacing the holes T7 by the balls B~ in Definition (2.3.1), we obtain functions 

(W~)k, qOk)E [HI(P~)] 2 XL2(p~), with f q~k = 0, defined by: 

P7 

For each cube P7 that meets ~.Q, 

Wok = k in P~/~ [2. 

For each cube P7 entirely included in ~ ,  

lq ;  k IV "W;k = 0 

/ w~k = O} in B i . a~ 

tq~ k 0 

(2.3.2) 

Now, we explicitly compute (w~k, q~k)l k~Z in each C~ B% Denoting by ri 

and eri the radial coordinate and unit vector in each C i" -- B~, we actually have 

with 

e . i ~ = xkh(ri ) WOk = Xk t  i f ( r i )  er + g(ri) ek, qok 

f (r i )  = r--- F A %- 4- C, 

B 
g(ri) = - - A  log r i 

for ri E [a~; e], (2.3.3) 

2A 
2r 2 -~ Cr 2 q- D, h(ri) --  r2 4C, 

(2.3.4) 
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with 

A _ 
~ 2  E 2  2Co 

----Co[l +o(1)],  B = - - c o e  ~ [1 +o(1)1, 

1 e 2 log e 
c =-7-[1~o + o(1)], D = l C-----2- [1 + o(1)]. 

Then, for k = 1, 2 we define the "difference" functions (w~, q~), by 

t 6 e t 

w~ = w~ -- Wo~, q~ = q~ -- qok, 

which belong to [Ho1(C7)] 2 • with f q~ = 0, and satisfy 
c~ 

Vqk -- Gwk \ ~r i qo~e; 

V .w;~ ~ = o  

(2.3.5) 

(2.3.6) 

in each control volume C~, (2.3.7) 

} N(e) 
w~ ~ = 0 elsewhere in / 2 -  k J C~ 
qk~ 0 i=I 

where O. ~ is the measure defined as the unit mass concentrated on the sphere 
1 

~B~,, i.e., 

((~ ae, ffP)D,D(I{N ) = f 4,(s) ds for any q5 E D ( R N ) .  

OBTe 

te 
In the sequel we prove that the difference functions (w~ ~, qk)l ~ 2  actually 

converge strongly to (0, 0) in [H~(s 2 •163 In the verification of Hypotheses 

(H1)-(H5), this means that there are almost no differences between the case of 

spherical holes (corresponding to the functions (w;~, q ; k ) l ~ _ 2 ) a n d  the general 

case of arbitrary holes (corresponding to the functions (w~, q~)l ~k_~z). 

Lemma 2.3.1. Let the model hole T contain a small ball. Then the functions 

(wk ~, qff)J~_~2 defined in (2.3.6), which belong to [Ho~(f2)] 2 • satisfy 

t~ t~ t~ 
llqk llL~(o) <= Ce, IIVwk r]L~(~) <= Ce, and J] W k Ilrq(o ) __ ~ Ce 2 

for 1 ~ q < @ 0% (2.3.8) 

where C does not depend on e (but does depend on q). 

Proof. A brief computation gives 

#ri q~ Coa~ 

From (2.3.7) we deduce that in each Cf 

\ ~ r l  qoker " Wk - -  ~oa~ 

- - -  [1 + o(1)] e x 0~. (2.3.9) 

F 

- - [ 1  + o(1)] J e k "  W ;  ~ . (2.3.10) 

~B; e 
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Because T contains a small ball, we may use the Poincar6 inequality in B1 -- T 

for obtaining the following trace estimate: 

IIwlIL~(~B1) ----< C lI~TwllL2(81-r) for any wE HI(B~ -- T)  such that w = 0 on ?T. 

We rescale this estimate at size a~ and use it for w~, ". It implies that 

B! e k w'~ ~- Ca~ ]IVw~flL2(~_r~) (2.3.11) 
0 e 

where the constant C does not depend on e. As (B~ -- T~) Q C~, it follows from 

(2.3.10) that 

llVw2~llL=(c7) =< ce 2. (2.3.12) 

Lemma 2.2.4 leads to an inequality equivalent to (2.3.12) for q~'. Recalling that 

the number of holes is given by (2.1.2), we obtain the desired result: 

If2] [1+o(1) ]  ', 2 ~ _ te 2 = []qk ]]L2(Ci) ~-- C62, Ilqg IIL~(o) 

iiVwi" : I-Q! lk=(o) = ~ [1 + o(1)] llVw'k~]I~=(c7) <_ C~ =. 

Furthermore, the continuous embedding of H01(.Q) into Lq(ff2) leads to the following 

estimate: 

t g  : 

[1W k ][Lq(g2) < Ce for 1 < q < + ~ .  

We can improve this estimate by applying, in each cell, the Sobolev inequality 

to w~ ", which belongs to [Ho~(PT)] 2, for q ~ 2, or by applying the H61der inequality 

'~ q < Ce 2q+:, which im- for q < 2. Then, from (2.3.12) we obtain llw k [[Lq(P~.) : 

t e  = 

plies that [I wk Itzq(s "~ C F,2 for any q ~ 1. Q.E.D. 

Lemma 2.3.2. The .functions (w~, q~)l~kg2 defined in (2.3.1) satisfy Hypotheses 

(HI), (H2), and (H3), i.e., 

(HI) w~ E [H~(s z, q~ C L:(O), 

�9 ~ : ~ : 0 on the holes T~, (H2) V w k 0 in s and w~ 

(H3) w~ ~ e~ in [HI(zQ)] N weakly, q~ ~ 0 in L2(O)/~ weakly�9 

Moreover ,  

[lw~ --e~llLp(~ ) <= Ce 2 ]log el (2.3.13) 

f o r  any 1 ~ p < + cxD where the constant C does not depend on e (but does depend 

on p). 

Proof. By their definition, the functions (w~, q~)i~k_<2 satisfy (H1) and (H2). In 
order to see if (H3) also holds, we remark that Lemma 2.3.1 implies that 

w~ ~ -+ 0 in [HI(.Q)] 2 strongly, q~ -+ 0 in LZ(.Q) strongly. 
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It remains to show that (W~k, q~k)l ~k~2 satisfy (H3). An easy but tedious computa- 

tion yields 

llq~kllL~(.~) =< C, IlVw~llv(a) ~ C, ][W~k --  e~lILP(.o) ~ C6 2 [loge]. 

Thus w~ converges weakly to eg in [Ha(~2)] 2. Because q~k is P~-periodic and bound- 

ed in L2(O), the whole sequence converges weakly to a constant in L2(~2), i.e., 
to 0 in L2(O)/~. Finally, the inequality 11 w~ --  e k ]]~(o) ~ ]1 w~ -- e~ [ILp(o) + 

HWk~]]Lp(a) leads to (2.3.13). Q.E.D. 

Before verifying that (H4), (H5), and (H5') hold, we remark that 

Vqk --  {Xwk =,=iN \ Or i qo~er 6, + ,=1  ~ \ Or, --  qffe~ d, 
(2.3.14) N(e) i~,,,e ) 

_ _  b ~ ,  | ` ~ ' ~ k  - -  

~-~-1 \ Oni qkni 6T~ ' 

N(e) 

Vq'k~ --  AWk" = ,=IE \ er i qk er 6, + ,:1 ~ k---~ri q~ 

(2.3.15) 

- -  i=1 ~]  \ c~ni -- qk nl dr 7 

where 6~ and 6 a~ are the unit masses concentrated on the spheres OB~ and OBT,, 

Or~. is the unit mass concentrated on the hole boundary #TT, and n i is the unit 

exterior normal to T, ~. Then the functions/~ and 7~,, introduced in (H5'), are defined 

by 

N(e) [ OWok ) N(s) l~'"te ) 

#~ = i=l~a \ Or i q~ke~ ~i -~ i_,y~l ~ Or i qk e~ 6i, 
(2.3.16) 

7~c : i=IZ \ On i -- qkn, 077 �9 

Thus Vq7 , -- &w~ : / ~  -- 77, in [H-~(O)] 2, and 7~ ~ 0 in [H-~(D,)] 2 in the fol- 

lowing sense: (7~,, V)H-1,H~(~) = 0 for any v E [H10(~2)] z that satisfies v = 0 

on each hole T~. 

Next we give the following lemma, which immediately implies equality (2.1.8) 

in Proposition 2.1.6, concerning the matrix M in the Brinkman-type law. 

Lemma 2.3.3. The functions (w~, q~)l_<k <_2 defined in (2.3.1) satisfy Hypotheses 
(H4), (H5), and (H5'), i.e., 

7g 
/zk = -~o ek C [w-l'~176162 2, //~ -+ #k in [n-l(f2)] 2 strongly. 

Proof. Because/~k is a constant vector, (H4)is obvious. Moreover we know that 
7g 

(H5') implies (H5), so it remains to prove that ~,  converges strongly to ~ o  e~. 
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First, we prove that 

N(O I~W;~ 

i=l 

\ 
,~ i] (~ ~ 0 in [H-l(ff2)] z s t rongly (2.3.17) - -  - -  q k  e r  

! 

For any sequence v, that converges weakly to a limit r in [H~(~2)] 2 we define the 

sequence of real numbers ~ / ~ i = 1  ~ w ~ - _  '~ i)', v \  i 1 We now N~) I~ c~ri -- qk e~ c57, , / H -  ,H6(Q)" 

introduce the map Re, defined in Proposition 2.2.2, which satisfies (H6) not in 

N(e) ( ( N(e) ,]2 ( i = 1  ]J f2,, but in . Q -  ~_J B~. Actually R,v, belongs to Ho 1 , Q -  ~ j  B;q/ . Note 
i=1 

N(e) ) 
that f2 -- ~j  B a~ C= f2~. Definition (2.2.7) implies that 

i=I 

R,v~ = v, on ~Bf. (2.3.18) 

Thus 

N~ I~ gr i -- qke~ ~ '  /1-I--1,H~(~)" 

N(e) 

Integrating equation (2.3.15) by parts, and noting that R~v~ ~ 0 in / ]  B~, we 
i=1 

obtain 

As = -- f qs V .  (R,v~) + f Vw;~: V(R,,3. (2.3.19) 
s ~2 

We bound (2.3.19) with the help of Lemma 2.3.1: 

(2.3.20) 

which clearly implies (2.3.17). Now we prove that 

,) \ ~r~ qoker 6i -~ ~ ek in [H-I(~Q)] 2 strongly. 
i=l 

We compute 

;) ~ri qoke~ Oi ~- ~o [--ek @ 4(ek " #') e~] [1 + o(1)] d~.. (2.3.21) 

Note that o(1) in the right-hand side of (2.3.21) does not depend on the space va- 

riable x. Rather, o(1) is a sequence of real numbers that tends to zero. Thus, using 
Lemma 2.3.4 below leads to the desired result. Q.E.D. 

Lemma 2.3.4. Let d be a f ixed real number in (0, 1]. Let 6ai ~ be the unit mass con- 
centrated on the sphere ~B/~ (of radius de, and centered at the center of  the cube P~), 
i.e, for each dp E D(~), (6ai~, Cb)D,,D(a) -~ f 4>(s) ds. Let S u denote the area of  
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the unit sphere in ~2~N For N ~ 2: 

N(e) SN d N 
ds O~" -+ 2N in H-1([2) strongly, (2.3.22) 

i~ l  

N(O S N  d N 
i de 6(~(e k �9 e~) e~ ~ ~ e a in [n-l(.Q)] u strongly. (2.3.23) 

i~ l  N 

The proof of (2.3.22) is due to D. CIORANESCU & F. MURAT, and may be 

found in [9]. The proof of (2.3.23) is very similar and left to the reader (see [1], 

if necessary). 

2.3.2. Other cases: N ~= 3 (Proof of  Proposition 2.1.4) 

In this subsection we define the functions (w~, q~)l<k<N using the solutions 
(wk, q~)l~_~_N of the Stokes problem (2.1.5) around the model hole Tin the whole 

space R u. The system (2.1.5) is the local problem which furnishes the value of the 

Matrix M. Because we can easily get estimates and asymptotic behavior at in- 

finity for the solutions (Wk, qk)l_~_~u, we can overcome the main difficulty of this 
paragraph which is to check Hypothesis (H5). First, we give some properties of 

(Wk, q~)1 <k~_N in the following 

Lemma 2.3.5. For k E (1, ..., N}, the unique solution (Wk, qk) of  system (2.1.5) 

at infinity satisfies 

wk=e~  2Sxr~V_ 2 ~ + ( F ~ - e ~ ) e ~  + O  ~ , 

, 

qk -- SNr:v-1 (F~ "er) -k 0 , 

(2.3.25) 

( ') Vw =O , , 

1 ( 2 )  
er qke" -- 2SNr N-a [Fk -k N(Fk " e,) er] -k 0 -7  

f [Ow~ --qkn). where F~ is the drag force exerted by the flow on T, i.e., Fk ---- e~ \ On 

Moreover, 

F k . e i ~  f VWk:VWi for iE{1 , . . . ,N},  
~N-- T 

r k ' e k =  f V w k : V w k ~ i n f  f V w : V w  (2.3.24) 
~N T WEEk y~IV T 

with 

E k -~ {wC [H~oc(RN)]N/ V" W ~ 0 in R N, W ~ 0 in T, and w = e k at infinity}. 

The proof of this lemma is given in the Appendix. 
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In this subsection we use a decomposition of P~ into smaller subdomains 

that differs from the one used in the two-dimensional case. We set 

?7 = T7 U C.~ ~ U D~ ~ U / ~  (2.3.26) 

where C;" is the open ball of radius el2 centered in P7 and perforated by T 7, D~ 

is equal to B~ perforated by C; ~ ~J T/~, and K~ is the remainder, i.e., the corners 

of P7 (see Figure 3). We define the functions (w~, q~)l<k<N in each cube P7 which 
meets ~g2 by 

{w~ in P~ f~ ~2 ek I 
q ~ = 0  ! 

Fig. 3 

s 2s 

m r /  

and in each cube P7 entirely included in .62, by the requirement that (w~, q~,)E 
[HI(PT)]N• with f q~ : 0, and by 

e D i 

w~, = k in Ki, 
tq~ ~7 �9 wk 

Wk ~ Wk I 

in D~., 

1 x 
in C ~, t w O :  0t [q~ = 0 J in T~. (2.3.27) 

Definition (2.1.5) of (wk, qk)l ~_kZN implies that Definition (2.3.27) is meaningful, 
and that the functions (w~, q~)1~_~_~N exist and are unique. 

Lemma 2.3.6. The .functions (w~, q~)l ~ < N  defined in (2.3.27) satisfy Hypotheses 
(H1), (H2), and (H3), i.e., 

(HI) w~ E [HI(~)] N, q~ E L2(/2), 



248 G. ALLAIRE 

(H2) V �9 w~ = 0 in zQ and w~ = 0 on the holes I"7, 

(H3) w~ ~ e ~  in [H~(f2)] N weakly,  

q~ ~ 0 in L2(Q)/R weakly.  

Moreover,  

e 2 f o r  I <~ p < - -  

II w~ - ekllLP(s~) ~ C 

N 

N - - 2 '  

N - - 2  N 
e 2 ]log e I N f o r  p - -  N - -  2" 

2 N  N 

e p(N-2) f o r  p > N'--~--2 

(2.3.28) 

where the constant C does not  depend on e. 

Proof .  Hypotheses  (H1) and (H2) are obviously satisfied. Let  us check (H3). 

x 
Using the scaling x --~ - -  and the fact that  V w  k and qk are bounded  in L2(R u - -  T), 

ae 

we obtain 

V ~ 2 < CaU-2 crsN II wkllL~(c~)= = 

(2.3.29) 
~ C , ~  . 

F r o m  estimates (2.3.25) we deduce tha t  

[I w~ - -  ekll~p(c,~) = a N [lw~ - -  eg IIp , 

N 
e N + 2 p  for  1 ~ p < N ~ - - 2 '  

~v~ N 
/3 N-2 Ilogel for  p N - -  2 '  

N2 N 

e N - 2  for  p > N ~ - - 2 '  

(2.3.30) 

w~(x) = e k + O(e2), Vw~(x)  = O(e) on aCid/5 8D~. (2.3.31) 

I t  follows f rom the definition of  (w~, q~) in D~, and f rom (2.3.31) that  

e 2 m IlVwk IIL2(DT) ~ C 8N+2, 2 .~  c,~N+2 e p ~ c,sN--2Po II q~, llz2(D~) = I1Wk - -  el, IILp(D~) = 

(2.3.32) 
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e e P : " Noting that []w~ -- kllap(r~) ]lekllL~r~ = O(em/(N-2)), and summing (2.3.29), 

(2.3.30), and (2.3.32) over all the cubes P, leads to 

e 2 e 2 IlVwklIL~(m < c, C, = IX qkllC~W-) < 

N 
e 2p for 1 = < p < N _ 2 ,  

2N N 

e _ _  p "~  C /~N-2 ]loge] for p = (2.3.33) ][ W k  e k  IILp('c') : N - -  2 '  

2 N  
�9 N 

e N'2 for p > N~--2" 

From (2.3.33) we deduce the weak convergence of w~ to eg in [Ha(g-2)] N, and because 

q~ is P~-periodic and bounded in L2($2), the whole sequence weakly converges to 
constant in L2(O), i.e., to 0 in L2(.Q)/R. Q.E.D. 

Before checking Hypotheses (H4), (H5), and (H5') we remark that 

Vq~ -- Aw~ = #~ -- y~ in s with y~ ~ 0 in [H-l(~2~)ff, 

N(s) (~W~ , i] (2.3.34) 
IZ~ = ,=IN t--~r ~ - -  qke, l d;/2 + V . (z~(q~ Id  - -  Vw~)) 

where O~/2 is the unit mass concentrated on the sphere OC[ 8 #~ OD~, and Z8 is the 
N(e) 

characteristic function of \ J  D~ (which is equal to 1 on this set, and 0 elsewhere). 
i=1 

) Note that, in the above expression for #~, the term_ 1, c~r i - -  qT, e~ b~ -/2 is a con- 

tribution of the inside of the set Ci'q The equality 7~, ~ 0 in [H-1(s N means 

that (y~c,'k')H--I,HI(D): 0 for any vC [HI(~Q)] N that satisfies v =  0 on each 
hole T 7. 

Lemma 2.3,7. The func t ions  (w~, q~)~ z ~ < u  def ined in (2.3.27) sat is fy  H y p o t h e s e s  

(H4), (H5), and (H5'), i.e., 

cN-2 
#k,= 2N Fg E [ W - l ' ~ ~  N,  ~ek -+ #k  in [H-l(y2)ff s trongly .  

Proof. Obviously (H4) is satisfied because/z k is a constant vector. Furthermore, 
from (2.3.32) we deduce that 

f z~  IVw~l 2 < c~2, f z,(q~)2 G c # .  (2.3.35} 
g2 D 

Thus V �9 (z~(q~ Id  - -  Vw~)) converges strongly to 0 in [H-I(O)] n. Moreover, 
Lemma 2.3.5 yields 

\-~r i - -  qkG r, : = ~ e[Fk + N ( F  k . e~) e'~] + r, 
(2.3.36) 

N 

where ]r~ ]L~(S~) "~ C e  N - 2  . 
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Using (2.3.36), we deduce from (2.3.34) that 

2NcN- -2  N(e) 

- -  er) er] e ~12 _~_ V �9 (z~(qfl d - -  Vw~)) tZ~k : 4Sjv i=~ [F~ + N(F k .  ~ ~ ~ " 

N(O 

+ X ro(x) ~/2. 
i=1  

According to Lemma 2.3.4 we get 

N(s) 8 S N 
[Fk + N(Fe . e~) e~]--~ 0~/2 -+ 2 - ~  Fe. (2.3.37t 

i=1  

CON-2 
Thus, the strong convergence of #~ to # k -  2 u Fk in [H-I(-Q)] N (i.e., 

N(e) 

(H5')) is achieved if we prove that ~ r~(x) ~./2 converges strongly to 0 in 
i ~ l  

[H-~(D)] N. For this purpose we remark that 

N(e) 
I + N2~2 N(e) N(e) ~ I + N2=~__2 

- -C  ~ a7/2 <= N r,(x) 'ee O~ "/2 ~ C ~'~ _ ~. /2 (2.3.38t 
i=1  i=1  i=1  

N(e) 

where, thanks to Lemma 2.3.4, the sequence ).~ e1+~'5"-22 d~ -/2 converges 
i=1  

N(0  

strongly to 0 in H-~(D). By adding C ~ ~ + ~ d~/2 to each side of inequality 
i=1  

(2.3.38), we can use Lemma 2.3.8 (below) to complete the proof. 

Lemma 2.3.8. Let ~ and fi~ be two positive functions in H-~(f2) such that 

0 ~ o~, ~ fl~. (2.3.39) 

I f  fl~ converges strongly to 0 in tt-~(f2), then so does ~ .  

Proof. This is actually a particularly easy case of a more general lemma due to 

D. CIORANESCU & F, MURAT (see Lemma 2.8 in [9]). Let 4~ be any weakly con- 
vergent sequence in Hol(f2). We decompose each q~, into its positive and negative 

parts, which also belongs to Hol(f2): 

q~ = 4>+ -- 41f- with 4) + = sup (q~, 0) and qS~- = sup ( - - ~ ,  0). 

Then using (2.3.39) we obtain 

(fir, qb~-)n-l.nol(n ) �9 (2.3.40) 
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As ~b~ is a weakly convergent sequence in H01((2), its positive and negative parts 

are bounded in H~(12). Then, from (2.3.40) and the strong convergence of fl,, 
it follows that 

<c~,, 6~>z 1,zbz ) -> 0, 

for any sequence q~, that converges weakly in H~(D). Thus, we deduce that o~, 
converges strongly to 0 in H-a(,Q). Q.E.D. 

2.4. Error estimates (Proof of Theorem 2.1.9) 

In order to obtain the desired error estimates (2.1.9), we recall the results of 
Proposition 1.2.5: 

§ IIQ,]IR-,(~)], 

IlVG - W~u)IIL=(~)G C Ilullwz,=~o)[11 M, --  m[[~-l~a) § I l l d  - -  W~ [[z=(o) 

where the constant C depends only on f2. It only remains to prove that 

Lemma 2.4.1. Let (w~,, q~)l<=kZN be the functions defined in ( 2 . 3 . 1 ) / f N :  2, ot" in 
(2.3.27) if  N >= 3. Then 

[[ w~ -- e k ]]L~(~) ~ Ce, (2.4.1) 

][q~ II~z-~(~) G C~ (2.4.2) 

where the constant C does not depend on e. 

Proof. From the previous results (2.3.13) (for N = 2) and (2.3.28) (for N >= 3) 

we immediately have (2.4.1). On the other hand, from their definitions we have 

f qT, = 0 for N = 2 and f q~ ~ ! q~ for N _>_ 3. (2.4.3) 

Using estimates (2.3.25) from Lemma 2.3.5 we easily obtain flq~ <= Ce N+I. 
Then for any value of the dimension N, c~ '~'" 

1 
f ~ qk <= Ce. (2.4.4) 
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Because q~ is equal to 0 in the cubes P7 that intersect the boundary ~s we have 

for any q~E Ho~(-Q) that 

N(O 

(q~,~>~--~,/~0~(a) = f q~4~= Z f q~ (2.4.5) i=1 p~ 

=f~'[efqZ(+= ]p~.,ef4~)l f q~]. 

But 

e f  q~ 4' i pTI ~b ~ q~, Ilz~(e~ H ~ -- i pi'-- ~ 1" 4' ~(1,~) " 
(2.4.6) 

Using the Poincar6-Wirtinger inequality, we convert (2.4.6) to 

1 pf  cb ) < Cellq~llL:(pT) llV'bllL~p?). J ';r = (2.4.7) 

With the help of (2.4.4) and (2.4.7) we obtain from (2.4.5) that 

N(e) F I f r<q , I < c, Z [llq~l[L~(pr)[]V6jjL~(pr)+ P 

I-N(e) : ] 
Li= 1 

(2.4.8) 

From (2.4.8) we deduce the desired result Ilq~l]z~-,(~) ~ Ce. Q.E.D. 

Lemma 2.4.2. Let H1p(P) be the space of functions belonging to H~(P) that are 
restrictions to P of functions belonging to H~oc(R N) and have period P = (--  1, + 1)U. 

Let (. ,  .>1, denote the duality product between H~(P) and its dual. Let h belong to 
the dual of H~(P), and be such that 

(h, l>p = 0. (2.4.9) 

Then there exists a unique solution ~ of the problem." 

Find r E Hi(p) such that 

--A~ = h in P. 
(2.4.10) 

Let he be the distribution defined by 

(he, 4> = e N (h(x), oh(x)> for each ~ E D(RN). (2.4.11) 
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Formally (2.4.11) is equivalent to h , ( x ) = h  ( ~ ) .  Then for each cube Q o f I~  N 

we have 

II h, I1H-~(Q) < e II Vr Ik~(p) (2.4.12) 

The proof of this lemma is due to R. V. KOHN & M. VOGELIUS [17], and may 

also be found in [15]. 

Lemma 2.4.3. Let (/[/'~r be the functions defined by 

N(O [ ~W~ k __ ~ i ~ 
#~ = i=IZ ~ 8r e qokG 5i -[- i=l ~ \ 8ri qk G 5i for N = 2, 

/t;=,=,~_, \~r ,  - - q k G ] ~  § V . ( z , ( q a l d -  Vwk)) for  N ~  3 

(see (2.3.16) and (2.3.34)) where 6~i is the unit mass concentrated on the sphere 85~., 

6~/2 is the unit mass concentrated on the sphere 8Cff F~ 8D;, and X~ is the charac- 
N(O 

teristic function of  t, ff D;. Then 
i--1 

I1~; - ~11/~ ,(~) < ce (2.4.13) 

where the constant C does not depend on e. 

Proof. We begin with the case N > 3. we  have 

i=l \ Sri -- qker ~12 __ 

From (2.3.35) we deduce that 

llV �9 (z~(q~: Id -- VwD)ll/,-~w) < llx.q; IIL:(O~ + IIz. Vw~tlL:(o) < Ce. (2.4.15) 

(2.4.14) 

Now we apply Lemma 2.4.2 in order to estimate the last term of (2.4.14). We set 

N ( .  

h~(x) = i=l ~ \ 8ri -- qker i t}sii2 - -  # k .  (2.4.16) 

Using the asymptotic expansion (2.3.36), we decompose h~ into two parts 

h~(x) = hi(x) § h~2(x) with 

2N cf f  - 2 N(O 
hi(x) -- 4 ~  Z [Fk @ N(Fk " er e~] e ~12 _ Pk, 

i = l  

N(O 

hRx) = S,  rXx) ~"1"- 
i=1 
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N 
with It, ILo~(o) ~ Ce N-2. By taking differences in (2.3.36), we see that the average 

of r~ on each sphere OC~F~ ~D~. is equal to zero. Following to (2.4.11), for 

y E P, we choose 

2 U - : c ~ - :  
h~(y) SN [Fk + N(Fk . er) er] ~12 __/zk, 

(2.4.17) 
h2(y ) = ro(y ) 6~ 12 

where 6~/2 is the measure defined as the unit mass on the sphere of radius �89 centered 

at the origin. From the properties of r,, we deduce that ro has a zero average on 
2 

the sphere of radius �89 and that [r0 ]L~<e) =< Ce u-2.  Then, it is straightforward 

to check that both hi and h: belong to the dual of HI(P ) and (hi, 1)p = @2, 1)p 

= 0. Applying Lemma 2.4.2 twice we get 

[lh] I/H-~(o) ~< Ce IIV~llL~(p) and Ilh~ll~-~(o) =< Ce IIV~21IL~r (2.4.18) 

where v~ and r2 are defined as the solutions of (2.4.10) with h~ and hz as the right, 

hand sides. Then summing inequalities (2.4.15) and (2.4.18) we obtain the desired 

result. 

Now we consider the case N = 2. In view of (2.3.16) we have 

N~ ) ~w;8 ) 0~" H__l(~l ) I[/Z~ --/Zk ]IH-~(o) ~ \ gri qk~e~ 

@ ~ ~r i qoker di --[~k H-~(~) 

From (2.3.20) we get 

We set 

) \ ~r i q~e[ ~ Ce. (2.4.19) 

N(e) /a,,,e ) 
he(X) ~- Z ( t/'vOk e i e i:1 \ ~r---~ qoker 6i -- #k; according to (2.4.tl) we find 

2 :r 
h(y) = ~oo (--ek + 4(ek" er) er) [1 + o(1)1 61 -- Coo ea for y E P (2.4.20) 

where 6o 1 is the measure defined as the unit mass on the sphere #B~, and o(1) does 

not depend on y, as in (2.3.21)�9 It is straightforward to check that h belongs to 

the dual of HI(P) and that (h, 1)p = 0. Then we can apply Lemma 2.4.2, and 

arguing as previously for N ~ 3, we finally obtain r[/z; -- #~ r[n-l(m ~ Ce. Q.E.D. 

Appendix 

This appendix is devoted to the proof of Lemma 2.3.5. Throughout this 

discussion, we assume that the space dimension N ~ 3. Recall the Stokes prob- 
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lem (2.1.5): 

[IVWklIL2(RN--r) < 4- C~ and 

Vqk -- &w~ = 0 

V - w k = 0  

w k = 0  

Wk = ek 

Find (wk, qk) such that 

II qk I[L2t~oN--T) < 4- ~ ,  

i n  A N - -  T, 

in A N -- T, 

on ~T, 

at infinity. 

The existence and uniqueness of a solution of (2.1.5) is classical (see, e.g., Theorem 4, 

p. 40 in [18], or Section 2 in [13]) if one weakens the condition qk E La(R n - -  T )  

into Vqk E [ H - I ( A  n - -  T)] n. The assumption that N ~ 3 is essential, because 

existence of a solution of (2.1.5) fails if N = 2 (this is the the well-known Stokes 

paradox). To the best of my knowledge the only way previously known to prove 

that q~ actually belongs to L2(A N --  T) is to use the asymptotic behavior (2.3.25). 

We give here a new proof  of this fact, relying only upon variational arguments, 

and more precisely upon Lemma 2.2.4. 

For any real R ~ 1, let BR be the open ball of radius R, centered at the origin. 

Let ~b E [H~(BR --  T)] n. Multiplying the equation of system (2.3.24) by ~, and 

integrating the product by parts, we find that 

f q k V . ~ =  f Vw~:V+. (A.1) 
B R - - T  B R - - T  

1 1 
Now we apply Lemma 2.2.4 in the open set B~ -- ~ T = -~- (BR -- T). After 

rescaling we obtain that for each f E  LZ(BR --  T)  with f f = 0, there exists 
B R -- T 

a cbE [HI(BR --  T)] N such that V -~b = f i n  B R - -  T and IIVqblIL~(BR_ r) ~ CIIf]]L2(BR_T) 

where the constant C does not depend on R. Then we deduce from (A.1) that 

Ilqk[[C2(nR_rl/~ <_ C IIVwklIL2(SR_T)< C where the constant C does not depend 

on R. Letting R - +  + ec, we easily see that q~ belongs to L2(A  N - -  T)ff1~. A 

priori  the pressure qkis defined up to a constant (that is why the space L 2 is factored 

by the set A of real constants). However, because in the present case constants 

(except 0) do not belong to L2(N N --  T),  there exists only one representative of  
the class qg in L 2 ( R ,  N - -  T ) / R  that belongs to L 2 ( A  N - -  T). 

Next, we seek the pointwise estimates (2.3.25), namely 

1 [  ] 
w~ = ek 2SNrN_ 2 ~ 4- (Fk " e~) e~ 4- 0 

, (1) 
qk --  SNrN -x (Fk " e,) 4- 0 - ~  , 

/ 1 = ) 

Or qge~ --  2SNr N_ ~ [Fk + N(F~ . e~) e~l 4- 0 
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where Fk is the drag force, i.e., Fk Jr \ ~n -- qkn with n the unit exterior nor- 

mal to T. For this, we use the theory of hydrodynamical potentials due to B. K. G. 

ODQVIST & L. Lmm~NSmN (see [13] and [18] for details and references). Consider 

the fundamental singular solutions of the Stokes equations 

which satisfy 

and 

x~ -- Yk 

pk  - s N  Ix - y l  N'  

4 : ~  ( N - 2 )  lx - -  

(x k -- yg) (xj -- yj) ] 
ylU-2 ~- [x : y i~  

gpk -- Au k = d(x -- y) % V �9 uk = 0 in ] :~N 

(A.2) 

(A.3) 

xj -- yj (A.4) 
p = O(x - y),  uj - SN t X - -  Y Ju 

which satisfy 

Vp -- s  = 0, V- u = d(x -- y) in R N. (A.5) 

By convolving these fundamental singular solutions (A.2) and (A.4) with the 

source terms (provided that they are smooth enough), we obtain solutions of the 

Stokes systems in the whole space. 

Let 0ED(B,)  such that 0 ~ 1  in the vicinity o f T .  We set 

[ qk : (1 -- 0) qk t which implies that 
/ Wk = (1 -- 0) Wk#' 

(A.6) 
t ~ c c ~ ( R ~ ) ,  ~ ~ q~ in R ~ - -  B,}  

tff'~ C [C~(RN)] N, w~ ~ w~ in R N B1 

We set also 

{fkgk =V-= V~k~k- LX~} = w h i c h '  implies that 

Then it is easy to check that in Rar -- BI, 

f~ E [D(BOINI (A.7) 

E D(Bj) ]" 

q~(x) = gk(x) + ~--~ / ( x  -- Y) "~(Y) ylN 

, l f ( x - y )  , ,  I f A ( y )  
wk(x) = ek +-~-- J . . . .  7Ngk(y) dy @" ?N "-'TN_ 2 dy 

~ N  2~ N X - -  Y l 2(N--  2) SN !x 

f ( x  - ,)  . a(y) .x 
+ 2SN p# l x ' ~  f"~ ( -- y) dy" (A.8) 
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Asymptot ica l ly  (A.8) becomes 

q ~ , ( x ) = ~ x  x " IxlN + \ l x l ,~}  

1 m B, 1 

w~,(x) = e ~ - i - 2 ( N _ 2 )  S N l xl  N-2 + ~  " l xlN + O , 

In t roducing  F k = - -  f f k ( Y ) d y  and r -=  Ix l in (A.9) leads to the desired esti- 
B1 

mates (2.3.25). 

I t  remains to prove  equalities (2.3.24). Mult iplying equat ion (2.1.5) by  wi, 

integrat ing the result by parts ,  and using estimates (2.3.25), we obtain 

F a .  e, = f V w k : V w  i for  iE { 1 , . . . , N } .  (A.10) 
~N--T 

I t  is wel l -known tha t  

F k �9 e k = f Uw k : Vw  k = inf  [ Vw:  Vw (A.11) 
P~N--T WeEk ~N--T 

with 

Ek = {WE [H~oc(RN)]N/w = 0 in 7', V .w = 0 in R N - -  T and w = e k at infinity}. 
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