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Homogenization of the Navier-Stokes Equations 
in Open Sets Perforated with Tiny Holes 

II: Non-Critical Sizes of the Holes 
for a Volume Distribution and 
a Surface Distribution of Holes 

GRI~GOIRE A L L A I R E  

Communicated by J. BALL 

Abstract 

This paper  is devoted to the homogenizat ion of  the Stokes or Navier-Stokes 

equations with a Dirichlet boundary  condit ion in a domain  containing many  

tiny solid obstacles, periodically distributed in each direction of  the axes. For  

obstacles of  critical size it was established in Part  I that  the limit problem is 

described by a law of  Brinkman type. Here we prove that  for smaller obstacles, 

the limit problem reduces to the Stokes or Navier-Stokes equations, and for larger 

obstacles, to  Darcy ' s  law. We also apply the abstract  f ramework  of  Par t  I to  the 

case of  a domain  containing t iny obstacles, periodically distributed on a 

surface. (For  example, in three dimensions, consider obstacles of  size e 2, located 

at the nodes of  a regular plane mesh of  period e.) This provides a mathematical  

model  for fluid flows th rough  mixing grids, based on a special form of  the Brink- 

man  law in which the additional term is concentrated on the plane of  the grid. 
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Introduct ion 

This two-part paper is devoted to the homogenization of the Stokes or Navier- 

Stokes equations, with a Dirichlet boundary condition, in open sets perforated 
with tiny holes. The ultimate purpose is to derive effective equations for the study 

of viscous fluid flows in a domain containing many tiny obstacles (mathematically 

represented by holes perforating a given open set). Throughout this paper we 

consider the Stokes equations (Se) in an open set ~62e obtained by removing from 

a given open set s a collection of holes (TT)l_~i_~N(e): 

[ Find (ue, Pc) • [H01(-Qe)]Nx [LZ(~e)/][~] such that 
I 

(Se) ] ~7pe -- Aue = f in X2~, 

[ V ' u e = 0  in De. 

In the first section of Part I an abstract framework of hypotheses on the 

holes (Ti~), was introduced following an idea of D. CIORANESCU & F. MURAT [9]. 
Under those hypotheses we established that the homogenized problem is described 

by a Brinkman-type law, and we proved the convergence of the homogenization 

process, as well as some other results related to the correctors. The second sec- 

tion of Part I dealt with the verification of those hypotheses in the case of a volume 

distribution of holes having a so-called critical size. This verification led to the proof  

that in this case the homogenization of the Stokes equations yields a Brinkman- 

type law. 

Part II includes the third and the fourth sections of this paper. In the third, 

we investigate all the other possible sizes of the holes, and we prove that for smaller 

sizes the homogenized problem is a Stokes system, and for larger sizes, Darcy's 
law. Moreover, our study illuminates the name "critical" given to the size 

introduced in the second section. More precisely, we consider identical holes 

T 7 periodically distributed in each direction of the axes with period 2e, each hole 
being similar to the same model hole T, rescaled to the size a e. We define a ratio 

~e between the current size of the holes and the critical one. 

(r e =  for N ~ 3 ,  a ~ = e  log for N = 2 .  

Let (us, Pc) be the unique solution of the Stokes system (S~). Let fi~ be the extension 
of the velocity by 0 in .62 -- De. Let P~ be the extension of the pressure p~ defined 

by 

1 
= in each hole T~ P~ Pe in -62e and P e -  ICI~ " cfPe: 

t 

where C~ is a "control"  volume around the hole T~ defined as the part outside T~ 
of the ball of radius s with same center as T 7. Then we prove the 

T h e o r e m .  According to the sealing of the hole size there are three different limit 
flow regimes: 
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(i) I f  lim a~ = + cx~ (so that the holes are small, see Theorem 3.3.1), then (h~, P~) 
~"~ 0 

converges strongly to (u, p) in [H~(s215 [L2(f2)/R], where (u, p) is the unique 

solution of  the Stokes problem 

V p - -  ~ u = f  in ~Q, V ' u - ~ O  in ~,  u = O  on ~ .  

(ii) I f  !ira ~ a~ = a > 0 (so that the holes have criticalsize, see Part I), then (~, P~) 

converges weakly to (u,p) in [H~(f2)]N• where (u,p) is the unique 

solution of the Brinkman-type law 

1 
Vp -- /~u -t--~- Mou ~- J" in .(2, V ' u = 0  in ~Q, u = 0  on ~ .  

(iii) I f  lim a~ ---- 0 (so that the holes are large, see Theorem 3.4.4 and Proposi- 
~--+0 

tions 3.4.8, 3.4.11, and 3.4.12), then (~-~, P~) converges strongly to (u,p) in 

[L2(~)] N • [LZ(.Q)/R], where (u, p) is the unique solution of  Darcy's law 

u =  MoX( f  - Vp) in f2, V . u = O  in f2, u ' n ~ - O  on ~ .  

Moreover, i f  N = 2, then Mo -~ ~ Id, whatever the shape of  the model hole T, 

1 
and i f  N >~ 3, then teiMoek -- 2N f Vwk : Vwi where, for l <-- k <-- N, 

t ~ N - - T  

e k is the k th unit basis vector in I~ W, and Wk is the solution of  the following Stokes 

system 

Vqk -- ~W k = 0 in y~N __ T, V " W k ~ 0 in ~2~N - -  T, 

Wk = 0 on ST, Wk = ek at infinity. 

In the fourth section we consider a different geometric situation, namely a 

surface distribution of the holes. For simplicity, we assume that this surface is 

a hyperplane H that  intersects the open set -(2. More precisely, we consider iden- 

tical holes TT, the centers of which are periodically distributed in each direction 

of the axes of H with period 2s, each hole being similar to the same model hole T, 

rescaled at size a~ (see Figure 4). Note that it is the centers of the holes that are 

located on the hyperplane H;  the holes themselves are closed subsets of .Q that 

are not necessarily included in H. Typically, the appropriate size a~ of the holes 

is •2 for N ~ 3, and e -  1/~ for N = 2. I t  is worth noticing that this size a~, critical 

for a surface distribution, is larger than the critical size for a volume distribution, 

because the number of the holes is smaller, roughly 1/e N-1 instead of lie N. The 

abstract framework introduced in Part  I must be modified slightly to reflect the 

weaker estimate satisfied by the extension of the pressure in this case. We shall 

prove (see Theorem 4.1.3) the following 

Theorem. Let the holes be distributed in a hyperplane H and have a size a~ such 

that 
a 

~-,01im 8(N_l)/(N_21 - -  C o for N >= 3 or lim~__,o --  e log (a~) = Co for N = 2 

where Co is a strictly positive constant (0 < Co < " co). 
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Let (u~, p~) be the unique solution of  the Stokes system (S~). Let {t~ be the exten- 

sion of  the velocity by 0 in 12 -- 12~. Let P~ be the extension of  the pressure p, 

defined by 

1 
f p~ in each hole Ti ~, P~ : p ~  in ~ ,  and P ~ -  I C~ I cT 

where C 7 is the same control volume around T~ as defined in the previous theorem. 

Then ({t~,P~) converges weakly to (u,p) in [H~(g2)]U• where 1 <= 

q' < N/ (N -- 1) ~ 2, and (u, p) is the unique solution of  the following Brinkman 

law : 

Find (u, p) C [H~(12)]N• [L2(12)/IZ] such that 

Vp -- ~u + M u :  f in Q, 

V . u = 0  in 12. 

Moreover, the matrix M is concentrated on the hyperplane H (i.e., equal to 0 in 

.(2 -- H). More precisely, let 0~ denote the measure defined as the unit mass con- 

2~ 
eentrated on H. I f  N - 2, then M = -~o Id Orq, whatever the shape of  the model 

C N - 2  

hole T, and i f  N ~= 3, then teiMe k -- 2N_ 1 f Vw~ : Vwi OH, where wk is the 
lZ N -  T 

solution of  the same Stokes problem in R N --  T as described in the previous theorem. 

This theorem provides an effective model for computing viscous fluid flows 
through porous walls, or mixing grids. For example, consider a mixing grid made 
of small vanes fixed at the nodes of a thin plane lattice (which is neglected). The 
matrix M (which may be non-diagonal in the three-dimensional case) models 
the mixing and slowing effect of the vanes. For works related to flows through 
grids, sieves, or porous walls, we refer to C. CONCA [10] and E. SANCHEZ-PA- 
LENCIA [26], [27]. 

Notation. Throughout this paper, C denotes various real positive constants 
independent of 5. The duality products between H~(12) and H-Z(12), and between 
[Hol(D)] N and [H-~(12)] N, are each denoted by (,)H-~,eo~(O ). (ek)lNk~ N is the 

canonical basis of t~ u. 

3. Non-Critical Sizes of the Holes for a Volume Distribution 

3.1. Setting of the problem 

As in Part I of this paper, we consider a volume distribution of the holes in 
a domain I2, but the size of the holes will be specified in each subsection. Let 12 
be a bounded connected open set in R u (N => 2), with Lipschitz boundary 012, ~2 



Homogenization of the Navier-Stokes Equations II 265 

being locally located on one side of its boundary. The set ~C2 is covered with 

a regular mesh of size 2e, each cell being a cube P~, identical to (--e q-e) N. At 

the center of each cube P7 included in .Q we make a hole T~, each hole being simi- 

lar to the same closed set T rescaled at size a~. We assume that T contains a small 

open ball B~ (with radius oc > 0), and is strictly included in the open ball B1 of 
unit radius. We also assume that B1 -- T is a connected open set, locally located 

on one side of its Lipscbitz boundary. The open set ~C2~ is obtained by removing 

from D all the holes (/'~)l--<i~N(0 (where the number of holes N(e) is equal to 
[s [/(2e)N[1 -- O(1)]). Because only the cells entirely included in s are per- 

forated, it follows that no hole meets the boundary 8s Thus s is also a bounded 

connected open set, locally located on one side of its Lipschitz boundary 8D~ 
(see Figure 1 in Part I). Thus 

N(e) 

O~ = s -- ~] TT. (3.1.1) 
i = 1  

The flow of an incompressible viscous fluid in ~he domain 12~ under the action 
of an exterior force f E  [L2(~)] N, with a no-slip (Dirichlet) boundary condition, 

is described by the following Stokes problem, where u~ is the velocity, and p~ 

the pressure of the fluid (the viscosity and density of the fluid have been set equal 

to 1). 

Find (u~, p~) C [H~(s215 [L2(s such that 

V p ~ -  Au~ = f  in ~2~, (3.1.2) 

V . u ~ = 0  in D~. 

Throughout  this paper, the size of the boles is smaller than the size of the mesh, 

i.e., 

lim as = 0 or equivalently 0 ~ a~ ~ s. (3.1.3) 
e ---> 0 8 

The case of the hole size exactly of order e (so that lira aJs > 0) has been ex- 
8~-0  

tensively studied by the two-scale method (see [16], [20], [25], and [28]). Here, the 

situation is completely different because the holes are much smaller than the period, 

as expressed by assumption (3.1.3). In particular, the celebrated two-scale method 

is useless. 

In the first part of this paper we introduced a so-called critical size of the holes 
(2.1.1). Now, we define a ratio ~ between the actual size of the holes and the critical 

size: 

~ ~- ~a-~_2] for N ~ 3 ~ - -  for N = 2. (3.1.4) 

To be precise, if the limit of ~ ,  as e tends to zero, is strictly positive and finite, 
then the hole size is called critical. In that case we already know from Part I that 
the homogenized system is a Brinkman law. The goal of this section is to in- 

vestigate all the other sizes. For smaller sizes (for which lim as = 4- cx0 we show 
e-->0 

that the limit problem is a Stokes system, while for larger sizes (for which lira a~ -= 0) 
e ~ 0  

it is a Darcy law. 
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Remark 3.1 1. For the same geometry, the homogenization of the Laplace equa- 

tion involves the same critical size (see [9]). The investigation of all other sizes, for 
the Laplace equation, has been addressed by H. KACIM! in her thesis [14]. 

3.2. Critical size: Brinkman's law 

Let us give a very brief summary of Part I. First, we establish the main results 

of convergence for the homogenization process using an abstract framework of 
hypotheses on the holes. Second, we verify these hypotheses in the case of a volume 

distribution of the holes, for holes of critical size. Let us recall 

Hypotheses (H1)-(H6). We assume that the holes T~ are such that there exist 

functions (w~, q~, #k)l<k=<X and a linear map R~ such that 

(HI) w~ E [H1(/2)] N, q~ C L2(/2). 

(H2) V . w ~ = 0  in s and w ; = 0  on the holes T~. 

(H3) w~--'-e k in [H1(/2)] N weakly, q~-~ 0 in Lz(s weakly. 

(H4) #~ E [W-L~(/2)]  u. 

(H5) For each sequence v~, for each v such that 

v~ ~ v in [Hi(/2)] N weakly, v~ = 0 on the holes T~, 

and for each 4~ E D(/2) we have 

(Vq~ -- Aw;, 4,v,) n 1 HOI(O ) -% (/Z k (~'P)H--1,HoI(D). 

[ Re E L([H~(X2)]N; [H~(~)]w), 

I u E [Hol(~)] N implies that R~u = u in /2~, 

(H6) / V . u  = 0 in /2 implies that V . ( R ~ u ) =  0 in /2~, 

t lIR~UIIH~(~j <~ C HUllHI(~2) and C does not  depend on e. 

Combining Theorem 1.1.8 and Propositions 2.1.2, 2.1.4, and 2.1.6, we obtain 

Theorem 3.2.1. Let the hole size be critical, i.e., let 

lim a~ = a > 0 and ~ < + oo. (3.2.1) 
e --->-0 

Let (u,, p~) be the unique solution of(3.1.2). Let ~t~ be the extension by 0 in the holes 

(T~) of  the velocity u~. Let P~(p~) be the extension of  the pressure p, defined by 

1 
f p~ in each hole T T, P~(p~) --p~ in /2~ and P~(p~) -- I C~[ c7 

where C~ is a "control" volume around the hole T7 defined as the part outside TT. 
o f  the ball of  radius ~ with same center as T~. Then (~,,, P~(p~)) converges weakly to 
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(U, p) in [Hol(~'~)]Nx [L2(~r~)/IR], where (u, p) is' the unique solution o f  the following 

Brinkman equations: 

Find (u, p) E [Hlo(s215 [LZ(O)/g] such that 

1 
Vp --  Au + ~5- Mou = f in ~Q, (3.2.2) 

V . u = 0  i n D .  

I f  N = 2, then Mo = ~ Id, whatever the shape o f  the model hole T; i f  N >= 3, 

1 
then t eiMoe k - -  2N FcNfT~TWk_ : VWi where w~ is the solution o f  the following problem 

Stokes  equations: 

Vq~ --  ~ w  k = O i n ' N - - T ,  

V " wk = O in ]I~N-- T, 

wl, = 0 on ST, 

wk = ek at infinity. 

(3.2.3) 

Remark  3.2.2. We point out a slight change in our notation. In the first part of 

this paper we defined the critical size of the holes by (2.1.1), i.e., 

a e  
lim Co for N>-- 3, lim _e2 log(as) = Co for N = 2, 
~-+0 ~ N / ( N - -  2) - -  - -  e--~O 

where Co is a strictly positive constant (0 < Co < + oo). Actually (2.1.1) is 

exactly equivalent to definition (3.2.1) if the constants Co and o are related by 

- - 2  

C o = O N - 2  for N ~ 3 ,  C o = o 2  for N = 2 .  (3.2.4) 

Furthermore, we change the name of the matrix appearing in Brinkman's law. 

In order to make explicit how this matrix depends on the rescaled size of the holes 

(namely Co or {r) we use a new notation Mo. The matrix Mo does not depend on 
Co or o, and is related to notation M used in the first part by 

1 
M = ~ -  Mo. (3.2.5) 

That allows us to greatly simplify the presentation of this section, and to emphasize 

the continuous transition from one limit regime to another. 

Remark  3.2.3. Other results, including correctors and error estimates, are proved 

in Part I. Let us mention that, when the space dimension is N = 2 or 3, Theorem 
3.2.1 can be easily generalized to the Navier-Stokese quations (see Remark 1.1.10). 
In our framework the non-linear convective term in the Navier-Stokes equations 
turns out to be a compact perturbation of the Stokes equations, so the correspond- 
ing homogenized system is simply a Brinkman-type problem including a non-linear 

convective term, without any change in the matrix Mo. 
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3.3. Smaller holes: Stokes equations 

We now assume that the size of the holes is smaller than the critical size, i.e., 

lima~ = + cx~. (3.3.1) 
e-->-0 

In other words, 

N 1 

ae ~.~ 6N--2" for N >= 3, a~ = eC~- and C, ~ e 2 for N : 2. 

Then, using the abstract framework of Part I, we prove 

Theorem 3.3.1. Let the hole size satisfy (3.3.1). Let (u~, p,) be the unique solution 

of the Stokes problem (3.1.2). Let h, be the extension by 0 in the holes (T~) of the 

velocity us. Let P~(p,) be the extension of the pressure p~ defined by 

1 
f p, in each hole T~, P~(p~) = p~ in zQ~ and P~(P~) -- [C~] c~ 

where C~ is a "control" volume around the hole Ti ~ defined as the part outside T.~ 

of the bail of radius e with same center as TT. Then (h,, P,(p~)) converges strongly 

to (u, p) in [Hol(~Q)]N• [LZ(K2)/R], where (u, p) is the unique solution of the follow- 

ing Stokes problem 

Find (u, p) E [HI(f2)]N• [L2(g2)/R] such that 

V p -  Au = f in Q, (3.3.2) 

V . u : 0  in D, 

Remark 3.3.2. Theorem 3.3.1 expresses the fact that obstacles that are too small 

cannot significantly slow down the fluid flow. Thus, nothing happens in the 

limit: the Stokes flow is unperturbed. When the space dimension is N = 2 or 3, 
Theorem 3.3.1 can be generalized to the Navier-Stokes equations, as previously 

done in Remark 3.2.3. 

Proof. This proof follows the pattern of Part I of this paper. In particular, we 

use the abstract framework introduced in the first section. For this purpose, we 
first have to check Hypotheses (H1)-(H6). Next we show that, in the present 

situation, the matrix M is equal to zero. (In light of (3.2.5), this result is not 
surprising because a = + cx~.) Finally we show that the weak convergence of 
the solutions (?t,, P~(p~)), ensured by Theorem 1.1.8, is indeed strong. 

We construct a linear map R, and functions (w~, q~)l ~ N e x a c t l y  as we did in 
subsections 2.2 and 2.3, replacing everywhere the critical hole size by the current 
smaller one. Then, it easy to see that they fulfill Hypotheses (H1)-(H6). More- 
over, an easy but tedious computation accounting for (3.3.1) yields 

w; -+  0 in [HI(.Q)] N strongly, q~-+ 0 in L2(ff2)/JR strongly. (3.3.3) 



Homogenization of the Navier-Stokes Equations II 269 

Because Hypotheses (H1)-(H6) are satisfied, all the results of the abstract frame- 
work hold. But from (3.3.3) and Remark 1.1.3 we deduce that M ~ -  0 in the pre- 
sent situation. Thus the homogenized equations are Stokes equations. 

Furthermore, Theorem 1.1.8 yields the convergence of the energy 

flvh~l 2--  f f . ? r  f f . u =  f l V u l : + < m u ,  u>i~-~@~). (3.3.4) 
.q 0 ~Q s 

Because M is identically equal to zero, (3.3.4) is equivalent to 

f Iv ,! + f [Vul 
12 t2 

This means that h~ converges strongly to u in [H0~(,q)] N. Now it remains to prove 
the strong convergence of the pressure. For any sequence r~ that converges weakly 
to r in [H10(f2)] N we recall Definition (1.1.8) of the extension P~(p,): 

<V[P,(p,)] v, )H-lU~(o) = (Vp~, R,v,)n-a,nol(O~). 

Introducing Stokes equations (3.1.2) into this equation and integrating the result 
by parts give 

<V[P,(p,)], v~)n-~n~(z) = f f .  R~v, -- f Vu,. V(R~v,). (3.3.5) 
D e De 

According to the explicit construction of the operator R, (see Section 2.2) it turns 
out that both the sequences r, and Ry~ converge weakly to the same limit ~, in 
[HI0(-Q)] N. Then, because of the strong convergence of h, in [H~(-c2)] u, we deduce 
from (3.3.5) that 

!km0 <V[P~(p~)], "k'e)//--1,H01(O ) : f f "  f - -  ( V H "  V~'. .(3.3.6) 

Introducing the homogenized Stokes equation (3.3.2) into (3.3.6) leads to 

V[P~(p,)] -+ Vp in [H-X(O)] u. 

Thanks to Lemma 1.1.5, we obtain the desired result, i.e., P~(p~) converges strong- 
ly to p in L2(s Q.E.D. 

3.4. Larger holes: Darcy's law 

We now assume that the size of the holes exceeds the critical size, i.e., 

lim ~ ---- 0. 
~-+0 

In other words, 

N --1 
eN-2~<a e for N ~  3, a~=eC--i- 

(3.4.1) 

and 82 << C~ for N = 2. 

However, the size a~ is still smaller than the inter-hole distance e, so that (3.4.1) 
yields 

e << ~ << 1. (3.4.2) 



270 G. ALLAIRE 

This case is somewhat more complicated than the former one, and some modifi- 
cations of Hypotheses (H1)-(H6) are required in order to carry out the pattern 

of Part 1. The structure of this subsection is the following. First we establish a 

Poincar6 inequality in ~Q, with a sharp constant (Lemma 3.4.1). Second, we 

introduce the modified Hypotheses (H1 *)-(H6*). Third, in this abstract frame- 

work of hypotheses we establish the convergence of the homogenization process 

(Theorem 3.4.4, Propositions 3.4.3 and 3.4.6). Fourth, we check that Hypotheses 

(HI*)-(H6*)  hold in the present geometrical situation (Propositions 3.4.8, 3.4.9, 

3.4.10). The reader should be aware that the present subsection includes both the 
abstract framework, and its verification. Two distinct sections were used for this 

purpose in Part I. 

Lemma 3.4.1. There ex&ts a constant C that does not depend on e such that 

Ilulk.u~> < c ~  IIVUIIL,<~> 

for any u6  Hlo(O,), where at is defined in (3.1.4). 

Proof. (This lemma has also been proved by H. KACIMI [14].) Let u 6 D(O,). 
We extend u continuously by 0 in each hole T~. Denoting by B~ ~ the ball circum- 

scribed in the cube PT, we have 

N(e) 

IlullL(o.) < Y, IlullL(8;.~) ~ (2N -k- 1)llulj~,<o~. 
i = l  

Let r be the distance between the center of B~ ~ and a point x E B~ ~. As the model 
hole Tcontains a small ball B~ (see Section 3.1), each hole T7 also contains a small 

ball B7 a~ of radius 0r Thus u(r = o~a,) = 0, and 

�9 ' au 
/ 

u(x) = _ J ~r (x q- (t --  r) er) dt. 
oca 8 

Then 
~2 

"[ f r'-'dr. 
_-< c ...f l-4 

But the Schwarz inequality gives 

[,.,u 7 
. f - ~ 7 ( x + ( t - - r )  e ,)dt  <= ~ ' a t  / j T = 5 _  q. 

Thus 

�9 L8 r (x @ (t - r) e,) t N - '  dt  I f dr 

c~a~ c~ k~ae j 

< ceNIlVuJI2.(~;~> ~ < c~ 2 IlVuIIL<Q>. 
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Summing the above estimates from i =  1 to N(e) leads to the desired result. 

Q.E.D. 

Modified hypotheses (HI *)-(H6*) We assume that the holes T~ are such that there 
exist functions (w~, q~, tZk)l~_k~S and a linear map R, such that 

(HI*) w~ E [Hi(if2)] N, q~ E L2($2). 

�9 = ~ == 0 on the holes T~. 0 in ,(2 and wg (H2*) V w k 

(H3*) w~ ~ ek in [LZ(~2)] N weakly, a~ [IVw~liL2(m ~< C, a~ IIqZ[IL=w) _--< C 

where the constant C does not depend on e. 

(H4*) /z k E [L~(f2)] N. 

(H5*) For each sequence ~, E [Hi(D)] N, for each r E [L2(/2)] u such that 

v,--'-~ in [L2(O)] ~ weakly, 

IIV~]]L~(~) ~ C/a~ where C does not depend on e, 

~----0 on the holes T~, 

and for each ff E D(~2) the following limit helds 
2 e 

D 

R, C L([H~o(s ; [H~(I2~)]N), 

u E [H~(/2~)] N implies that Rfi  = u in D,, 

( H 6 * )  V �9 u = 0 in  s implies that V �9 (R,u) = 0 in  s 

,[V(R,u)lfL,(O,)<~C[llVUilL,(m +l l [u , [L , (m}  and 

C does not depend on e. 

Remark 3.4.2. The modified hypotheses (HI*)-(H6*) are very close to those in- 
troduced in Part I, and have the same physical and mathematical meaning (i.e., 
as viscous layers in the vicinity of the holes, and test functions in the energy 
method). Moreover, for a given family of holes (T~) 1 ~i~N(,) the functions (w~,, 
q~,lZk)l~k<N that satisfy Hypotheses (HI*)-(H5*) are "quasi-unique" (see 
Section IV.1 in [1] for more details). 

Proposition 3.4.3. Let (w~, q~,, ttk)l~_k<U be functions that satisfy the modified 
hypotheses (HI*)-(H5*). Let Mo be the matrix with columns (l~k)l<~<N and 

entries (IZ~)l<=k,i<=U defined by tz~ = I~k �9 e i. Then for each ~b E D(D), 

(/z~,, 4~)o,,o(e~) = lim a~ f Ww~,: VwT. (3.4.3) 
~--~0 

X2 

In particular, Mo is a symmetric and positive-definite matrix in the following 
s e n s e :  

( M o ~ ,  q))D',o(o) >= C -1 Ilq~lk=w) > 0 for each ~ E  [D(O)] N (3.4.4) 

where C is the constant in Poincar~'s inequality (see Lemma 3.4.1). 
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Proof. Taking v~ = w~ 
limit by parts gives 

2 e e 

G .  A L L A I R E  

and r = ei in Hypothesis (H5*), and integrating the 

2 f ~ ~ 2 fVw~:  ~V4, = --a~ qkwi �9 Vr + a~ wi 
1"2 12 

+ a~ f 4, Vw;: Vw; ~ f r . e ~. (3.4.5) 
17 12 

From (H3*) it follows that 

lima~ f Vw;: w;. V4, = o, 
e--~- 0 O 

lim az~ f q~w~" V4~ = O. 
8--+0 

X2 

Thus (3.4.3) is deduced from (3.4.5). Moreover Mo is a symmetric matrix, since 
it is the limit of a sequence of symmetric matrices (Vw~: VWT)I_~;.k_~N. On the other 

N 

hand, for each ~b E [D(D)] N one has ~ cbkw~ E [H01(~Qe)] N. The Poincar6 inequa- 
k = l  

lity implies that 

From (H3*) we deduce that 

e-+0 = -  

T h e n ,  using (3.4.3) we obtain 

Jlr f' lim a 2 4~ Vw~ 
e--+0 

We pass to the limit in (3.4.6) and obtain (3.4.4). 

+ k=~VrbkW~ 2L,(a~) ] .  (3.4.6) 

k~l Wk 2L2(Oe) lim a~ Vr k ~ = 0. 
e-+0 

= (Mo@ ~)D',D(~). 

Q.E.D. 

Now, we are able to prove the main theorem of this section, which corresponds 
to Proposition 1.1.4 and Theorem 1.1.8, established in the case of a critical size 
of the holes. 

Theorem 3.4.4. Let the hole size satisfy (3.4. I), and let Hypotheses (H1 *)-(H6*) 
hold. Denote by Mo the matrix defined in Proposition 3.4.3. Let (u,, p,) be the unique 
solution o f  the Stokes system (3.1.2). Let h~ be the extension of  the velocity by 0 
in .(2 -- Y2,. Let P~(p~) be a function defined by 

~VP~(p~), ~)Ir = (Vp~, R~r)H-I,H~(OO for each ~ C [Hlo(s N. 

Then P~(p,) is an extension of  the the pressure (i.e., P,(p~) =~ p, in D~) such that 

---s in [LZ(,Q)] N weakly, P~(p~)--> p in L2(y2)/R strongly 
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where (u, p) is the unique solution of  Darcy's law: 

Find (u, p) E [LZ(,-Q)]Nx [H~(Y2)/P~] such that 

u = M o l ( f  - Vp) in ~,  

V . u = O  in $-2, 

u . n = O  on O.Q. 

(3.4.7) 

Remark3.4.5. Note the that matrix M o  ~, which appears in Darcy's law 
(3.4.7), is the same for all values of the hole size. On the other hand, it is totally 
different from that usually obtained by the two-scale method (see, e.g., [25]), 
when the holes have a size e of the same order of magnitude as the period. 

Proof. This proof is divided into two steps. First, we obtain a priori estimates for 
the solution of the Stokes equations (3.1.2). Then, we pass to the limit in those 
equations with the help of the energy method introduced by L. TARTAR [29]. 
Step 1. Multiplying the momentum equation in (3.1.2) by u e and integrating 
the product by parts give 

f [Vu~l 2 - -  f f ' u e .  
m e m e 

The Poincar6 inequality furnished by Lemma 3.4.1 yields 

IlVuel~(me/ ~ CaD ]]f]Ic~(eO, llh~lIL2(m <= C~  Ilf!iL~(m. 

There exists some u E [L2(~)] N and a subsequence of he, still denoted by he, 
he 

such that ~ converges weakly to u in [L2(s N. Now, using Hypothesis (H6*), 
O" e 

we construct an extension of the pressure (following an idea of L. TARTAR [28]). 
Let F~ E [H-I(D)] ~ be defined by 

(Fe, v )n -~ ,4 (e  ) = (Vpe, Rev)H-~,~(me ) for each vE [H~(D)I N (3.4.8) 

where Re is the linear operator 
by f - ?  Aue in (3.4.8) leads to 

involved in Hypothesis (H6*). Replacing Vpe 

f f "  Re~, -- f Vue :V(R ~). (3.4.9) 
me e 

Thanks to the estimate of R~ in (H6*), and to the Poincar6 inequality, we deduce 
from (3.4.9) that 

Ilfe]lH-l(m ~ C IlfllL=(m" (3.4.10) 

Then, arguing as in Proposition 1.1.4, we conclude that F~ is the gradient of a 
function Pe(P~) E L2(~) that is equal to Pe in s Moreover, from estimate (3.4.10) 
we obtain 

II P~(p~)/lL=(mm G c Ilflk=(m. 
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Let r, be a sequence that converges weakly to 0 in [H01(~Q)] N. In order to prove the 

strong convergence of P~(p~) in Lz(D)]R, we take v = ~ in formula (3.4.9), 
and we obtain the estimate 

[(Ve~(p3, n>H-',Hg(O) ~ C [lfllL=(O) [r II V(R,r~)IIL=(O~) -4- It R~w, IlL=(ea )] 

<= C [lfl[L=(O)[a~ IlVr, llL=(o ) + l ] r ,  llL~(O)] (3.4.11) 

because of (H6*) and the Poincar6 inequality. According to the Rellich Theorem 
we have 

On the other hand, the scaling (3.4.2) of the holes implies that a~ converges to 0. 
Thus (3.4.11) leads to 

(VP,(p,),  "Pe>H--1,HI(f2) ~ O.  

There exists p E L=(f2) such that a subsequence P~(p,) converges strongly to p 
in Lz(f2)/R. 
Step 2. Now we apply the energy method: For any ~b E D(f2), we introduce in 
the variational formulation (1.1.2) the test functions (ffw~,)E [H~(K2~)] s and 
(r E L2(f2~)/R. We obtain 

f Vu~ : g(,f,w~) -- f p ,  g .  (q,w~) = f f .  Obw~), 
f2e "Qe $2e 

(3.4.12) 
f (4JqT,) V .  u, = 0. 

Oe 

The proof is very similar to that of Theorem 1.1.8. From (3.4.12) we arrive at 

2 ~Vq~ Aw~, q$ ~ \  "- f ~, V~: Vw/~ O'e - -  0.2 / lz/--1,Ha(O) + a f qku, " V~b -- o 

+ f v ~ :  w~ v4~ - f p~(p,) w~. Vcb = f r w~. 
Q t2 ~2 

(3.4.13) 

Because -2Y fulfills the assumptions of Hypothesis (H5*), we have 

Using (H3*) and the a priori estimates of the solution (u~, p~), we pass to the 
limit in the other terms of (3.4.13): 

fg'tzk'U-- fpek'g4'= ff'e~,. 
s .Q F2 

From Proposition 3.4.3 we know that the matrix M0 is invertible, so that 

u = M o l ( f  - Vp) in O. (3.4.14) 
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On the other hand, 

u~ C [H~0(s N, --i-~ u in [L2(.Q)] N weakly, V. h~ = 0 in Y2. (3.4.15) 

We deduce from (3.4.15) (see, e.g., [25]) that 

V - u = 0  in f2, u . n = 0  on 6(2. (3.4.16) 

A regrouping of (3.4.14) and (3.4.16) leads to Darcy's law, which has a unique 
solution because of (H4*). More precisely, 

(H4*) implies that Mo E [L~176 N2, which implies that tSM o 1~ ~ H Mo ]IL~<12) ]~ [2. 

Because of uniqueness, all the subsequences of (fit, P~(u~)) converge to the same 
limit. Thus the entire sequence converges. Q.E.D. 

Now, we give some corrector results which improve the convergence of the 
velocity in Theorem 3.3.4. 

Proposition 3.4.6. Let  the hole size satisfy (3.4.1) and let Hypotheses (H1 *)-(H5*) 
be satisfied. For each sequence z~ such that 

z, ~ z in [LZ(f2)] N weakly, ( ~  Vz , )  is bounded in [L2(,Q)] m, (3.4.17) 

~ V �9 z ,  converges strongly in L2(Q), z~ = 0 on the holes T~ 

it .follows that 

limi0nfo2 f ]Vz~] z >= f tzMoz. (3.4.18) 
12 12 

The proof is identical to that of Proposition 1.2.1, and is therefore omitted. 

Proposition 3.4.7. Let  the hole size satisfy (3.4.1) and let Hypotheses (HI *)-(H5*) 
be satisfied. Le t  the sequence w~ be bounded in [L~(f2)] N and converge strongly 

to e k in [L2(~)] N. Then, for  each sequence z~ such that 

z, ~ z in [L2(s N weakly, (as Vz,) is bounded in [L2(f2)] N2, 

~ V �9 z~ converges strongly in L2(Q), z~ = 0 on the holes T~, 

liminf~ 2 f lVz l = f ~ z M o z  
e--+0 

12 12 

it fol lows that 

z~ -+ z in [L2(~Q)] N strongly. 

Proof. We follow the lines of the proof of Proposition 1.2.2. For any # E 
[D(f2)] N, we obtain 

2 l iminf  f ~  ]V(z~ -- WgS) ]z = f ' ( z  - -  4 ) M o ( z  - -  4 ) .  (3.4.19) 
~-~0  

D 12 
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Then, the Poincar6 inequality yields 

l iminf  f / z ,  - Wfl~l ~ < c IIMollLoO(~)IIz -- ~lj2,(~). 
e-+0 

s 

(3.4.20) 

Without any further assumptions, we can merely deduce from (3.4.20) that 
(z, -- W,z) converges strongly to 0 in ILl(D)] N. If  we assume that the sequence 
w~ is bounded in [L~176 N, then we get 

(z~ -- W,z) -+ 0 in [L2(D)] N. (3.4.21) 

Moreover, the strong convergence of w~ in [L2(12)] N and the Lebesgue Domi- 
nated Convergence Theorem yield the strong convergence of W~z to z in [L2(~Q)] u. 
Thus, from (3.4.21) we obtain 

z, ~ z strongly in [L2(O)] N. Q.E.D. 

Proposition 3.4.8. Let the hole size satisfy (3.4.1) and let Hypotheses (H1 *)-(H6*) 
be satisfied. Let the sequence w~ be bounded in [L~176 N and converge strongly 

to ek in [L2(D)] N. Then the convergence of the velocity given by Theorem 3.4.4 

can be improved: 

h, 
a---{-+ u in [L2(O)] N strongly. 

Proof. We easily check assumptions (3.4.17) for the sequence fija~, and we remark 
that 

-- " _--Z -+ " u = f (Mou + Vp)" u = 0t e 

Hence the result follows from Proposition 3.4.7. Q.E.D. 

Remark3.4.9. Theorem 3.4.4 and Proposition 3.4.8 can be generalized to the 
Navier-Stokes equations, when the space dimension N is equal to 2 or 3. In this 
case we obtain the same homogenized system (3.4.7), because the non-linear 

term disappears when e tends to zero (i.e., o f ( ~ ' ' V h ' ) "  +w;-+0). 
Now it remains to verify Hypotheses (HI*)-(H6*). Roughly speaking, we 

proceed as in the first part of this paper. 

Proposition 3.4.10. Let the hole size satisfy (3.4.1) so that it is larger than the criti- 

cal size. Then there exists a linear map R~ that satisfies Hypothesis (H6*) such that 

the associated extension of the pressure is constant inside each hole, specifically 

1 
f p, in each hole 7~, P~(p~)----p~ in f2, and P~(P~)-- ] C~] c~. 

where C~ is a control volume defined as the part outside T~. of the ball of  radius e 

and same center as T~.. 
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Proof. We construct Re as in Section 2.2. First, we recall the following decomposi- 
tion of each cube P7 entirely included in s 

P~ = T~ ~5 ~ ~J/~" with K7 = P~ -- J~ (3.4.22) 

where T/~ is the hole, C7 is the control volume, and K~ is the remainder, i.e., the 
corners of PT (see Figure 2). Let u E [H01(O)] N. For each cube P~ entirely included 
in D, we know (cf. Lemma 2.2.1) that the following Stokes problem has a unique 
solution, which depends linearly on u: 

Find (rT, q~) E [HI(C~)]N• [L2(C~)tR] such that 

Vq~ - -  / ~ .  = --Au in 

1 
V.~=V.u+-~/~rfV.u 

c~, 

in C~, 

o n  a G  - -  6Ti ~, 

~r onaTf. 
Then we define R~u by: 

For each cube P~ entirely included in s 

R~u = u in K~ ~ P~ -- BT, R~u = ~i in C~, R~u = 0 in T;. 

For each cube P~ that meets 8f2, 

R~u = u in P7/h 42. 

a~ 

with ~ = - - ,  
8 

the cubes P~, we obtain the desired result: 

IlV(e~u)lk~(~) < C [llVullL2~m 1 + ~ I[ullL=(~)] �9 

As in Proposition 2.2.2 we easily check that Hypothesis (H6*) hotds for such an 
operator Re. The only difficulty is to obtain the estimate of R,u. Lemmas 2.2.3 and 
2.2.4 lead to the following estimate of ~-: 

, VC 2,.L2(@ --<C[][Vul]~(c~wrf ) @ ~K~[Iul[~(c~L:r~) ] , (3.4.23) 

which implies Kz 1 -- 2 �9 Then, summing estimates (3.4.23) for all 
,8 2 G e 

Q.E.D. 

Proposition 3.4.11. For N = 2. Let the hole size exceed the critical size, so that 

l ime log(  a ~ ] ' / 2 =  0. 
~-o \ e/1 

Then there exist functions (w~, q~, #k)lKks that satisfy Hypotheses (HI*)-(H5*) 
(and also the assumptions of  Proposition 3.4.8, so that w~ is bounded in [L~(~Q)] N 
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and compact in [L2(f2)]N). Furthermore, for any shape or s&e of  the model hole T, 

the matrix Mo defined in Proposition 3.4.3 is given by Mo = ~ I d. 

Before stating an equivalent proposition for N ~ 3, we recall the so-called 
local problem (2.1.5), introduced in the first part of this paper. Let N ~ 3. For 
k E ~1 . . . . .  N}, the local problem is 

Find (q~, w~) such that 

llqkJlL~(~N__r) < q-- <X~ and ]]VWklIL~(~N T) < + 0% 

Vqk -- Aw~ = 0 in ~ N  __ T ,  

V . w ~ = 0  i n R  N - T ,  

w k = 0 on ~T, 

we = ek at infinity. 

(3.2.3) 

We proved in the appendix of Part I that system (3.2.3) is well posed. We still 
denote by F~ the drag force applied on T by the above Stokes flow, i.e., F k = 

\ ~n -- q~n . It turns out that the system (3.2.3) is also the local problem for the 

present case of holes having a size larger than the critical size. 

Proposition 3.4.12. For N >= 3, let the hole size be larger than the critical s&e, 

so that 
6N 

lim -- 0. 
e-+0 

Then there are functions (w~, q~, tZk)IZ~ZN, constructed from the solutions (w~, 

qk)l <kZN of  the local problem (3.2.3) that satisfy Hypotheses (HI *)-(H5*)) and 

also the assumptions of  Propositions 3.4.8, i.e., w~ is bounded in [L~(,Q)] u and 

compact in [L2(,Q)]N). 

Furthermore, the matrix Mo defined in Proposition 3.4.3 is given by the following 

formulae 

1 
Moe ~ = l~k = ~-~ F k for each k E {1, 2 , . . . ,  N} 

or, equivalently 

1 

with 

E = (w E [Hiloe(Ru)]U/w = 0 in T, V .  w = 0 in R N - -  T, w = ~ at infinity}. 

Remark 3.4.13. We emphasize that the matrix Mo is the same for all the sizes of 
the holes that satisfy (3.4.1), and is equal to the one appearing in Brinkman's 
law (3.2.2). From Propositions 3.4.10-3.4.12, we now know that Hypotheses 
(H1 *)-(H6*) are satisfied by some functions (w~, q~, #k)l ~k~U and some map R~; 
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for any value N ~ 2. Of course, because of that, the Convergence Theorem 3.3.4, 
and the Corrector Theorem 3.4.8 hold true. 

As in Part I, we give error estimates for the velocity and the pressure. The 
main difference with Theorem 2.1.9 is the absence of correctors (recall that the 
velocity and the pressure converges strongly without correctors). 

Theorem 3.4.14. Let  the hole size be larger than the critical size, so that (3.4.2) 
holds. Then, the following bounds hold for  the errors 

~2 U L2(~ ) < C ( ~---:- a,s ) - = + I l u l l w 2 , ~ ( ~ ,  

(3.4.32) 

Proof of Proposition 3.4.11 (N = 2). As in Subsection 2.3, for k = 1, 2 we 
define functions (w~,q~)E [HI(P~)]2• with f q~ = 0, by 

P i  

For each cube P7 which meets ~Q: 

Wk ek, q~ = 0 in P~ f~ ~Q. 

For each cube P7 entirely included in ~Q: 

Wk=ek,  q~,=O in K~, 

Vq~, -- Aw~ = 0, V �9 w~ = 0 in C~, (3.4.24) 

w~.=0,  q ~ = 0  in T 7. 

We compare these functions with the same ones obtained when the model hole T 
is the unit ball. As T Q B1, let us define for each cube P7 a ball B~, of radius a, 
that strictly contains the hole T~ (see Figure 2). Now, for k = 1, 2 we define 
functions (w6k, q6k) by (3.4.24) in which T~ is replaced by BT~. Denoting by r i 
and eri the radial co-ordinate and unit vector in each Ci~ -- B a~ , we can compute 

(w~k, q6k)l_~k~_2 by 

W~)k = x~rif(ri) e~ § g(ri) ek, qok : Xkh(ri) for r i E [G; e] 

with 

f (r i)  = .-=r A + § C, 
r i 

B 
g(ri) = - - A  log r i 3 Cr 2 § D,  

2r 2 2 

2A 
h(ri) =- r---~i - 4C, 

82  2 2 
_ _  8 a e 

A = -- a~ [1 § o(1)1, B = ~ [1 § o(1)1, 

1 e z log e 
C=-:2G [1 § D =  1 - -  a2 [1 §  
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An easy but tedious computation gives 

C C 
IlqgkllL=(m ~ - - ,  IIVWgkIIL=(m ~ ~-, 

82 ( CqW~)g e i) a 2~:2 

II wag -- egllL~(O) =< C ~{, \ 8r, qokG @ = a,a-----~ [1 + o(1)1 eg dT" 

(3.4.25) 

They satisfy 

gqg --  Awg \ 8r i qoge, 

J I 

J 
{w;, = 00 } N(~) q~ elsewhere in - (2-  i=, ~-j C~. 

Now, arguing as in Lemma 2.3.1, we show that the difference functions (w2", q~) 
are "negligible". Thus, as far as the verification of Hypotheses (HI*)-(H5*) 
is concerned, there are almost no differences between the case of spherical holes 
and the general case of arbitrary holes. 

From (3.4.26) we deduce that 

flvw l f{OwSg o , )  ,, 2e 2 f ,, '" = �9 -- + o(1)] ek 'Wk  (3.4.27) 
B~e ae(T e O Bae 

c~ a . \ 8ri qoker Wg 2 [1 

in each C7. Recall the trace estimate (2.3.11) obtained in Lemma 2.3.I: 

B{, Wk 'e eg " '~ <--_ Ca,  IlVwg IIL=(BT, -r~)" 

Thus from (3.4.27) we deduce that 

8 Z 

IlVw'dllL~(c~) < C ~ .  

With the help of Lemma 2.2.4 we obtain an equivalent inequality for q~L Hence 

82 
__ te 2 ~ 

I]q;~J[~=(o) ('2~ ~ [1 -r o(1)] ][qk ]]L=(Cr) C-~-4 

(3.4.28) 
,8.. 2 

I~[ [1 + o(1)lllVw2"Ll~=<cg) < C ~ .  IIVw;'lI~2(.c,) - (2~)~ 

in each control volume C~. (3.4.26) 

where da, is the measure defined as the unit mass concentrated on the sphere 
OB],, i.e., 

(~ae, ~)D,,D(RN) = f I~(S) ds for any ~ E D(~:lY). 
~B ae 

Then, for k = 1, 2 we define the "difference" functions (w'k', q~) by 

W;" e __  e ,e = wk wok C [Ho~(~)] 2, qk = G -- q;k e L2(~). 
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t e  e 
Moreover, because w~ ~ [H~(Cf)] z, the Poincar6 inequality in Ci leads to 

I1 w;:llL~(c~.) < r e  ]1 V wL ~ ]lL=(cT)" 

Thus 

8~ 2 

l[ w2~IlL~(m <= C - ~ .  (3.4.29) 

Finally, as the functions (w~, q~) are equal to the sums of (W~k, q;k) and (w~ ~, q~), 

we check that Hypotheses (HI*)-(H3*)  are satisfied, by regrouping (3.4.25), 
(3.4.28), and (3.4.29). 

In order to verify that (H4*)and (H5*) also hold, we decompose (Vq~ -- ~w~,) 
thus : 

with 

V G - / ~ w ~ = # 0 ~ §  --Y~, 

#ok i~=l \ cgri qo~e, c~i, #k --  q'k ~ei 6i, 

) Y; = i=l \ ~ni --  q;ni 6Ti~' 

where d~. and dr.~ are the unit masses concentrated on the sphere OB~ and on the 

hole boundary ~7~, and where n~ is the unit exterior normal to 7~. Now, for any 

r C D(s9), any sequence ~,~ C [Hi(f2)] N, and any function ~, E [Lz(-C2)ff such that 

~ ~ ~ in [L2($"2~)] N weakly, 

C 
I[V~]]L~(m ~ - -  where C does not depend on e, (3.4.30) 

O" e 

r~ = 0 on the holes TT, 

we seek the limit of z ~ ~ G (Vq~ --  Awk, qo~)H-1,Hd~2 ) as e tends to zero. First, because 

is equal to 0 on the holes, we have 

2 ,e 
a~(Tk, ~ ) , ~ - -  LH0k.~) = 0. 

Second, arguing as in Lemma 2.3.3, we introduce the map R~, defined in Proposi- 
N(~) 

tion 3.4.7, which satisfies (H6*), not in ~2~, but in ~2 -- k j B~'~ ; using it we 
obtain i= 

2 /  /8  2 /  p8 

= - f v .  + f Vw;:. 0. 
n n 

Third, in each cell Pf, we compute 

) 2 s i 
- -  = - e~ )  e~] [1 + o ( 1 ) 1  0,-, G \ c~ri qokG (5i 2e[--ek + 4(ek i i 
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where o(1) is a sequence of real numbers (not depending on x) that tends to zero 
as e does. To verify (H5*), we must prove that 

z ~ �9 . (3.4.32) 0"e<#0k' 4)~e>H--1,H01(-Q) -->" fr 

By Lemma 2.3.4 we know that 

N(0 
2 ~ = ' e ad~ok ~ 2e[--ek + 4(ek" er e~] [1 + o(1)1 3 i -+ ~e k in [H-1GQ)] 2 strongly. 

i=l  

But this result is inadequate here, since the sequence ~'e satisfying (3.4.30) does not 

converge weakly in [Ha(~2)] 2. Nevertheless, we are still able to pass to the limit in 

(3.4.32) by using the full power of the proof  of Lemma 2.3.4. 
Let us define a P~-periodic function z e 6 [HI(~Q)] u by 

(_~__ ) i in each ball B~, z , =  0 elsewhere. z e = - - ( r  2 - e  2) e k + 8 x g r i  - -  1 e r 

Then 

2 ~ (3.4.33) ad~0~ = --hze + m~ 

where me is a P~-periodic function such that 

ri ) ri 
: --  " G)e~ in each ball Bi ,  m~ : 0 elsewhere. me 4 4 T- 5 e k ~- 40--ff- (ek i i e 

An easy computation shows that 

IlVz llzo ( ) __< o ,  [lme]]Lcr =< C, f m~ : 4~e2ek. 
p~ 

Thus, me converges to its average z~ek in [L~(Y2)] N in the weak star topology. 

From (3.4.33) we get 

lim 2 e--+00"e <~U0k' ~)'k'e>H-l'Hl(f2) = [<n~ <me, ~e>H--I,HI(f2). 

By applying Lemma 3.4.15 below we complete the verification of (H5*). By the 

way, we obtain /~k : zrek, so that (H4*) also holds true. Q.E.D. 

L e m m a  3.4.15. Let  me be a PT-perioc~c sequence in L~(s that converges to its 

average m in L~(s in the weak star topology. Then 

<me, ~e>H--I,H~(.Q) "--->" f m4) : m f 4) 
t2 f2 

f o r  each sequence 4)~6 H1(s and for  each 4)EL2(-Q) such that 

q), ~ 4) in L2(O) weakly,  

C 
llVGllL=tw) - -<-  where C does not depend on e. (re 

The proof of this lemma requires only elementary arguments, and is left to 
the reader (see Lemma ]V.2.3 in [1] if necessary). 
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Proof of Proposition 3.4.12 (N > 3). As in Part I we use a decomposition of P~ 
into smaller subdomains which differs from the one used in the two-dimensional 
case. We set 

: ~ C~ ~ D ;  U Ki ~ (3.4.34) 

where C; ~ is the open ball of radius e/2 centered in P7 and perforated by T 7, D~. 

is equal to B~ perforated by Cff W T~, and K7 is the remainder, i.e., the corners 
of P~ (see Figure 3). As in Section 2.3, we define functions (w~, q~)i~_<uE 
[H~(P~.)]N• .) with f q ~  = 0 by 

8 
D i 

e e 
w~ = el,, qk = 0 in P~ /5 f2 

for each cube P~ which meets 8/2, and by 

{w;=;q in,;, 
q~ 

W k = W k 

d 

q~ = G q~ 

{ Vq~ -- Gw~ = 01 
V . w ~ , = 0 j  in Di, 

in C~ ", wg = in TT, 
q; 

for each cube P; entirely included in X2, where (w~, qk) are the solutions of the local 
problem (3.2.3). Then, with the help of Lemma 2.3.5 (which furnishes asymptotic 
expansions of wk and qk), we readily obtain 

IIVw~ [IL=<~) G 

IlwZ - ekllL~(m G C 

C C 
- - ,  llq~ll/~2(o) G - - ,  
O" e ( 7  e 

o'~ / 

for N = 3 ,  

for N = 4, (3.4.35) 

for N ~ 5. 

Obviously Hypotheses (HI*)-(H3*) are satisfied. In order to verify that (H4*) 
and (H5*) also hold, we decompose (Vq~ -- zSw~) thus: 

N-(e) [ a W e k  e i~ ee l2  e e 
Vq~ - Aw~ = i ~  I-~ri -- q'~er] Oi + V " (z,(qk I d -  Vwk) ) 

--i=1 ~ \ Sni -- q;ni Ov~, 
(3.4.36) 
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where ~./2 and 6v~ are the unit masses concentrated on the sphere OC~'fh c~D~. 

and on the hole boundary T~, and where Z, is the characteristic function of 
N(e) 

~j D~. (which equals to 1 on this set, and 0 elsewhere). 
i--I  

Now, for any dpE D(-Q), and any sequence v,C [HI(~)] y and function 

vC [L2(-Q)] N satisfying (3.4.30), we seek the limit of a~(Vq~k - -  AW~k, $v , )H-~n~(~) ,  

as e tends to zero. First, because v, is equal to zero on the holes, we have 

\ ~ n  i - -  qt~ni 62" 7, / n _ l , n ~ ( o ) -  O. 

Second, it is easy to compute 

~.2 

I1V. (Z,(Q~ I d -  Vw~))II~-,(~) ~ f z~(q~) z + f z, IVw~ [z <= C ~ .  

Using this estimate yields 

a2< V" (z,(q~ ld  - -  Vw~)), 4w,>n-J,n~(o ) ~ 0. 

Third, we also compute 

2N_2 
2 (  ~Wek e i 

a e \ r  - -  qke~ (r i = e/2) = - ~ U  [Fg + N(F~"  e~) e~'] e -1- O(a~), 

where O(a~) is a function of x. Consequently, as in the proof  of Lemma 2.3.7, 

we have to use the Comparison Lemma 2.3.8 (due to D. C~ORANESCU & F. MURAT 
[9]). Moreover, as for N = 2, we also need Lemma 3.4.12, because the sequence 

r ,  is not bounded in [Hl(f2)ff. Combining these two ingredients is a little technical, 

although not difficult. Finally we can stilt pass to the limit, and from (3.4.36) we 

obtain 

l ima~(Vq; -- z~w~, 4~)~-1,no1(~ ) = , , 2 / X  ~ _ ~ i ~ \ ~ \-~ri qke~ 6~/2, 4~'~ _ 1Hlo( m 
e-+O \ i =  1 

Fk 
= f4~'2~. 

D 

fk 
Hypothesis (H5*) is verified with #k = 2-W, which is a constant vector, so that 

(H4*) also holds. Q.E.D. 

Proof of Theorem 3.4.14. We only give a very brief sketch of the proof, which 
follows the pattern of Proposition 1.2.5 and Theorem 2.1.9. The same arguments 

give inequalities similar to (1.2.38) and (1.2.42), namely 

[ I[a:M~ -- MH~-,(o)] 
lip --P,!]L,(o~)/~ ~ C~r~ [1Vr, J]L,(o) + C [lU]lwZ,~(o) at + -a( A ' 

(3.4.37) 
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II~,,aoM~ - -  MIIH ~(~) + Illd- W~ i]L=(O)/q 
ge _1 

[ ll ~ff M~ MII~-I~o)] 
+ ilZd - -  W~I]L~(m [a~ - /  j 

L 

(3.4.38) 

with the usual notations of Part I: r, : h,/a 2 - -  W # ,  and M~e k =/~; .  From 

(3.4.25) and (3.4.29) for N = 2, and (3.4.35) for N ~ 3, we obtain 

I I I d -  W~I[L~(O) ~ C - - .  (3.4.39) 
'fie 

Furthermore, using Lemma 2.4.3 for 2 ~ a~#k (instead of/~k) leads to 

[]aZM~ --  MIIH-~(~) <<_ Ce. (3.4.40) 

Using these estimates and the Poincar6 inequality for r~, we deduce from (3.4.38) 

that 

< C  ( e ~ )  

Again using (3.4.39) leads to the desired result for h da  2 - -  u, which we substitute 

into (3.4.37) to complete the argument. Q.E.D. 

4. Periodically Distributed Holes on a Surface 

This fourth section is devoted to the verification of Hypotheses (H1)-(H6) 

(introduced in the first section) for a domain containing many tiny holes that are 

periodically distributed on a surface (repesented mathematically by a smooth 
( N -  1)-dimensional manifold). For the sake of simplicity we assume that this 

surface is an hyperplane. More precisely, let ~ be a bounded connected open set 

in R u (N ~ 2), with Lipschitz boundary 9~,  .(2 being locally located on one side 

of its boundary. We assume that ~Q has a non-empty intersection with the hyper- 

plane H - =  {x E 1t~N/XN = 0}. We define the open set H~ to be a slice of .Q of 

thickness 2e near H by H~ = { x E  ,.Q/[XN] " ~  •}. The set H~ is covered with a 
regular mesh of size 2e, each cell being a cube P~, identical to (--e, +e)  N. At the 

center of each cube P~ included in H~ there is a hole TT, each of which is similar 

to the same closed set T rescaled to size as. We assume that T is strictly included 

in the unit open ball B1 and that B1 -- T is a connected open set, locally located 
on one side of its Lipschitz boundary. Moreover, we assume that the size of the 

holes a~ is critical for the surface distribution, i.e., 

lim-N-:-i- = Co for N ~ 3, lim -- e log (a~) = Co for N = 2 (4.1.1) 
e-+0 ~ e-+0 

E:N--2 

where Co is a strictly positive constant (0 < Co < + oc). Assumption (4.1.1) 
gives a unique and explicit scaling of the holes size for N ~ 3, but not for the two- 
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dimensional case. Actually, when N = 2, many different sizes of the holes satisfy 

(4.1.1) with the same constant Co (e.g., a, =ePexp(--Co/~) for any p E R ) .  
In any case, assumption (4. I. 1) is enough for the sequel, so we do not make more 

precise the scaling of the holes in two dimensions. 
Elementary geometrical considerations give the number of holes N(e)= 

IH A 
(2e)N_ 1 [1 @ O(1)], where ] H A  .Q[ is a measure in ~:~N--1 Compared with the 

case of a volume distribution, the critical size is larger, but the number of holes 

i s smaller. 
In each cell P~ we define B~ as the open ball of radius e included in P~. We also 

define a control volume C~ = B ~ -  T, -~ around each hole (see Figure 2). The 
N(e) 

open set tg~ = ~ -- ~_] T, ~ is obtained by removing from -(2 all the holes (T~) 1 <i< N(~), 
i=1 

and because we perforate only the cells entirely included in f2, we are sure that 

no hole meets the boundary ~Y2. Then D~ is also a bounded connected open set, 

locally located on one side of its Lipschitz boundary OD~ (see Figure 4). Note 
that the centers of the holes are located on the hyperplane H although the holes 

7'7 are closed subsets of H~, not necessarily included in H. 

t 
De 

Fig. 4 

As usual we consider the Stokes problem in ~ ,  : 

Find (u~ p,)E [Hol(~2~)]Jv• [L2(-Qe)/R] such that 

Vp~ -- Au~ = f  in ~2~, (4.1.2) 

V.u~-=0 in ~ .  

Because the distribution of holes is not uniform in the domain -(2, we expect a 

singular behavior of the solutions (u~,p3 near the hyperplane H as e tends to zero. 
In other words, in each part of f2 away from H, the sequence of solutions should 
converge "nicely", but in the vicinity of H the convergence should get worse. 
Actually, it turns out that because of this effect, the overall convergence of the 

pressure is weaker than previously. To reflect this fact, Hypothesis (H6), and con- 
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sequenfly (H3), need slight changes. Thus, in the first subsection we give the modi- 
fications of the abstract framework, together with the main results. The second 
subsection is devoted to the verification of Hypotheses (H1) and (H6). 

4.1. Modified abstract framework and main results 

We assume that the holes Tf are such that there exist functions (w~, q~,/~k)l N k ~ N  

and a linear map R~ such that 

( n l )  Wg 6 [HI(.Q)] N, ~ 2 qg 6 L (~), 

(H2) V - w ~ = 0  in ~ and w~,=0 on the holes T~, 

(H3) w~ ~ e  k in [Hi(O)] s weakly, qT, ~ 0 in L2(zQ)/R weakly, 

w~--> e k in [Lq(~2)] N strongly, for some q > N, 

(H4) /z k 6 [ W - l ' ~ 1 7 6  N, 

( e e 
(HS) ,Vq~ -- Awk, ~ ) ~ - l ~ o , ( ~  ~ --> ( /~,  r ) 

for each sequence v~, for each v such that 

v~ ~ v in [Hi(f2)] N weakly, v~ = 0 on the holes T~ 

and for each (b 6 D(s 

R~ ~ L([H'o(~) A L~(~)]N; [g~(~3]~), 

If  u 6 [Hl(Ar~e)] N, then R~h = u in ~ ,  
(H6) 

I f V . u = 0 i n  Q, then V . ( R ~ u ) = O i n  D~, 

I!R~uJlu0,(~) ~ C[llull~o,(~ ) § llul!ko%m and C does not depend on e. 

Remark 4.1.1. This Hypothesis (H6) is somewhat weaker than that for a volume 
distribution of the holes, because R~ operates in [H~(~Q) A L~176 u, which 
contains smoother functions than [H01(-Q)] u. Hypothesis (H3) is stronger than 
that for a volume distribution, because the functions (W~)~g~_N should converge 
strongly to (e~)l<k< N in [Lq(D)] u for some q > N. Combining these two modifi- 
cations permits us still to prove the convergence of the homogenization process, 
with some slight changes in the proof of the convergence of the pressure, due to 
the weaker form of (H6). Roughly speaking, all the results of the abstract frame- 
work (introduced in Part I) hold, provided we change the L2(~)-estimate of the 
pressure by a Lq'(~)-estimate, with q' < N/(N -- 1) (see Chapter II[ in [l] for 
details). 

N 1 1 
Proposition 4.1.2. Let q > N and 1 ~ q' ~ N -----~ be such that - -  § ---7 = 1. 

q q 

I f  there exists a linear map R~ satisfying (H6), then the operator P~ defined by 

(V[P~(q~)], u ) w - ! , q , , w l , q ( ~  ) = (Vq~, R~u)n-~,H~(a~ ) for each u6  [Wo~'q(Q)] ~v 

(4.1.3) 
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is a linear continuous extension map from Lz(O,)/R into Lq'(D)/R such that 

(i) P,(q,) = q~ in L2(D3/R, 

(ii) II P~(q,)llLq'(o)lR ~ C II q~ ]lL=(oo)/a, 

(iii) IIV[P~(q~)] Itw-~,r < C II Vq~ IlH-~(o~) 

for each q, E LZ(~2,)/g where C is a constant which does not depend on q, or e. 

Proof. This proof is similar to that of Proposition 1.1.4; we only point out that 
Wlo,q(o) is continuously embedded in H~(~)/% L~176 because q > N. Thus for- 
mula (4.1.3) is meaningful since u belongs to the domain of R,. Note that the ex- 
tension operator P,, defined here, is weaker than that in Proposition 1.1.4, be- 
cause 1 < q' < 2 implies that L2(O) is strictly included in Lq'(D). Q.E.D. 

Theorem 4.1.3. Let Hypotheses (H1)-(H6) be satisfied, and let (u~, p~) be the 

unique solution of  the Stokes equations (4.1.2). Let h~ be the extension of  the velocity 

u~ by 0 in the holes TT. Let P, be the extension operator defined in Proposition 4.1.2. 
Then, for any value of  q' such that 1 < q' < N/ (N -- 1), (t~, P~(u~)) converges 

weakly to (u, p) in [HXo(O)]lv• [Lq'(.Q)/R], where (u, p) is the unique solution of  the 
following Brinkman law: 

Find (u, p) ~ [H~(O)]N• [L2(~Q)/R] such that 

Vp -- Au -k Mu = f  in f2, (4.1.4) 

V ' u = O  in Q 

where M is the matrix defined by its columns Me k = tZk. 

Proof. This proof is similar to that of Theorem 1.1.8: The only change comes from 
the weaker estimate on the pressure. Indeed, Proposition 4.1.2 yields 

N 
P,(p,) ~ p  in Lq'(.Q)/~:~ weakJy, with 1 < q' < N-----~-]-. 

In order topass  to the limit in the variational formulation (1.1.15) under Hypo- 
theses (H1)-(H6), we point out that (H3) implies that w~ converges strongly to 

1 1 
ek in [L~(f2)] N. Because we can choose q and q' such that - -  -k = 1, we have q ~-r 

f P,(p~) w~. Vr  -+ f p e k "  Vck. 

Therefore the proof can proceed exactly as for Theorem 1.1.8. Q.E.D. 

Now we give some results which make explicit *,he extension of the pressure 
and the matrix M. Their proofs may be found in Section 4.2. 

Proposition 4.1.4. Let the hole size satisfy (4.1.1). Then there exists a linear map 
R~ that satisfies Hypothesis (H6), such that the associated extension of  the pressure 
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is a constant inside each hole: 

1 
= - - [ C  ie fp, in each hole TT., (4.1.5) P,(p,) p, in (2~ and P*(P*) [ c~ 

where C7 is a control volume defined as the part outside 7~. of  the ball of  radius e 

and same center as 7~. 

Propos i t ion  4.1.5. For N = 2, let the hole size satisfy (4.1.1), i.e., 

lim - -  e l og  (as) ---- Co > 0 .  
e-+0 

Then there exist functions (w~, q~)l <~z2 that satisfy Hypotheses (H1)-(H5). More- 

over, 

2~ 
M ~- -~oId6H, (4.1.6) 

whatever the shape and size of  the model hole, where 6n denotes the measure defined 

as the unit mass concentrated on the hyperplane H, i.e., 

(f~It, ff))D',D(R N) = f f~(S) ds for any dp E Dff~N). 
H 

Before stating an equivalent proposition for N --> 3, we recall that (w~, q~)t ~ v  

are the solutions of the so-called local problem (3.2.3). 

Propos i t ion  4.1.6. For N >: 3, let the hole size satisfy (4.1.1): 

a~ 
l i m  N--1 - -  Co ~ 0.  
e-+0 

8N--2 

Then there are functions (w~, q~k)l<k<N, constructed from solution (wk, q~) of  the 

local problem, that satisfy Hypotheses (H1)-(H5). Moreover, the matrix M is 

given by 

) 'eiMek -- 2N 1 f_ Vw~ : Vwi d~r (4.1.7) 
2R N T 

where dn denotes the measure defined as the unit mass concentrated on the hyper- 
plane H. 

Remark 4.1.7. Up to a factor of 2, the value of the matrix M is the same for a 

volume or a surface distribution of the holes, but in the latter case we emphasize 
that the matrix M is concentrated on the hyperplane H, i.e., M --= 0 elsewhere in 
.(2 -- H. When N = 2 or 3, Theorem 4.1.3 and Propositions 4.1.4-4.1.6 can be 
generalized to the case of the Navier-Stokes equations, as previously done for 
Theorem 3.2.1 (the nonlinear term is still a compact perturbation, see Remark 

3.2.3), with the same functions satisfying Hypotheses (H1)-(H5), and therefore, 
with the same matrix M as for the Stokes equations. 
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Theorem 4.1.8. Let Hypotheses (Ht) - (H6)  hold and let the solution (u, p) o f  the 

homogenized system (4.1.4) be smooth, say 

UE [wI'N+B(D)] N for  ~1 > O. 

Then the solution (u,, p~) of  the Stokes system (4.1.2) satisfies 

( ~  -- W~u) -+ 0 in [H01(.Q)] N strongly, 

P~(p~ --  p --  u .  Q~) -~ 0 in Lq'(f2)/R strongly, with 1 < q' < - -  

(4.1.8) 

(4.1.9) 
N 

N - - I '  

where W, is the matrix defined by its columns W,e k = w~, and Qk is the vector 

defined by its entries Q~ . e k = qT,. 

The proof  is exactly the same as that of Theorems 1.2.3 and 1.2.4, provided 

we take into account the weaker estimate of the pressure. Note that (4.1.9) holds 

in the entire domain .Q. It turns out that on each part of X2, below and above H 
(let us call them ~Q+ and X)-), the convergence of (u,, p,) to its limit (u, p) is strong 
in [HI(ff2+/-)]NxL2(~Q+/-)/R. This means that in D+ and .Q- the correctors are 

equal to zero (i.e., W ,  = Id and Q~ = 0), and that the weak convergence of the 

solutions is concentrated on H, as is the matrix M. 

Theorem 4.1.9. Let the solution (U, p) of  5rinkman's law (4.1.4) be smooth, say 

N 
u E [WI'~(-Q)] N. Let q' be a real number such that 1 ~ q' < N ~ I "  Then there 

exists a positive constant C that depends only on D, T, and q' such that 

- wNI.g( ) < cd /2  Ilullwi, ooc ), 
(4.1.t0) 

]lP~ -- P --  u " Q~IILq'(.%)/~ ~= Cel/z [[UllWa,e~ 

Remark 4.1.10, It is worth noticing that the error estimates (4.1.10) are weaker 
than those (2.1.9) obtained for a volume distribution of the holes. This is partly 
due to the weaker assumption on the smoothness of the homogenized solution u. 

Actually we can prove with standard regularity theorems that u belongs to 
[WI'~(D)] N if the boundary ~f2 is smooth enough. But, because the term Mu in 

Brinkman's law is a measure concentrated in the hyperplane H (see (4.1.6) 

and (4.1.7)), the first derivatives of u are discontinuous across H i f  the foreef i s  
smooth. Therefore u cannot be smoother, and the present estimates (4.1.10), 
although weaker than (2.1.9), are optimal. 

Remark 4.1.11. We assume that the holes T~ ~ are identical, but this condition can 
be weakened, as previously observed in Remark 2.1.10. In two dimensions, the 

holes may be entirely different from one another; provided that they have the 

required size, we still have the same results (in particular M = 2~/Co Id 6~r). 

In other dimensions, the hole shape may vary smoothly without interfering with 
the convergence of the homogenization process (of course the matrix M is no longer 

constant in H). 
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4.2. Verification of Hypotheses (H1)--(H6) 

This subsection is devoted to the proofs of the results stated in the previous 
subsection. Basically, we proceed exactly as in the case of a volume distribution 
of the holes, giving details only for the differences between the two cases. 

Proof of Proposition 4.1.4. Let u E [HI(~Q)] N. For each cube P7 entirely included 
in H~, we know (cf  Lemma 2.2.1) that the following Stokes problem has a unique 
solution which depends linearly on u. 

Find 0'7, q~)E [H~(C~)]N• [L2(C~)/R] such that 

Vq~ -- {Xv~. = --Au in C~, 

1 
V - ~ , ~ . = V . u §  T f V . u  in C;, 

r~ 

~'~- = u 

~; = 0 

Then we define R~u by 

R~u= u in K~= PT--  B~, 

on oc~ - ~ir;, 

o n  ~ir~. 

in C~, R,u = 0 in 7,. R~u = ~i 

for each cube P~ entirely included in H,, 
N(e) 

R,u = u elsewhere in ,Q -- / J  pT. 
i = l  

As in the proof of Proposition 2.2.2 we easily check that Hypothesis (H6) holds 
for such an operator R~. The only difference comes from the estimate of R~u. 

Recall estimate (3.4.23): 

/~ '  '~ 1 (4.2.1) 

Using the definition of K~ and recalling that ~ / :  a~/e, where the size a~ is given 
by (4.1.1), we get 

K~ c 

/32 - -  /? 

Then, summing the estimates (4.2.1) for all the cubes PT, and recalling that R~u = u 

in f 2 -  H ,  we obtain 

[ 1 []u[[22(H~ ) ] 
IIV(R~u)II~2(~) < C IIVull~2(m + -2- 

But Ilu1122(/~) < Ce llulf~(m. Thus we obtain the desired result 

rl V(i~u)[IL=r < C[llVu IIL2(~) + I[UlIL~<~)]. 

For the proof of (4.1.5), we refer to Proposition 2.1.1. Q.E.D. 
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Proof of  Proposition 4.1.5. In order to verify Hypotheses (H1)-(H5), we construct 
functions (w~, q~)l~k~2 exactly as we did in the case of a volume distribution. 
See (3.4.22) for the definitions of CT and K~. For k = 1, 2 we define functions 

(w~, q~:)~ [H~(P~.)]2• with f q~: = 0, by 

e~ 

w~ k in K~, IV �9 w~ = 0 in C~, in 11 , q~ " [q~= 
(4.2.2) 

with 

f ( r i ) =  r-Ti A +  + C, 

, i 4 _  gfri) ek ' Wok = x k r i f ( r i )  er , q;k = xkh(ri) for r i ~ [a , ,  ; e ] ,  

2A 
h ( r i ) -  rE 4C, 

e e 2Co 
A -- Co [1 -+- o(1)1, B=~o-oe----U[1 + o(1)1, 

1 e log e 
C =  [1 + o(1)l, O = 1 - -  [1 + o(1)]. 

,Co Co 

B 3 2 
g(ri) = --A log ri 2r~ ~Cri + D, 

[ H A O [  [1 + o(1)], Taking into account the smaller number of holes N(e) -- (2e)U_ 1 

we carry out a computation similar to that which gives (3.4.25) to obtain 

IIw~k - ekllLq(O) ~ C e~/qe Ilog el for 1 ~ q < + oc, (4.2.3) 

aw;k " ')0~', = 2e 
Or i qoke~ Coa~ [1 + o(1)] ek 67" 

where ~', is the measure defined as the unit mass concentrated on the sphere ~B~,. 

Then we define the "difference" functions (w'k', q'k~)l~_k~2 by 

l e  e - -  e t e w~ = wk wo~ C [H~(O)] 2, q~ = q~, -- qok E Lz(f2) 

for each cube P7 entirely included in He, and by 

N(~) 

[wg= e~l elsewhere in s  ~,J P; .  
|q~, = 0 J i=~ 

We compare these functions with the same ones obtained when the model hole 

T is the unit ball. As T ( B1 let us define for each cube P~ a ball B~, of radius a, 

that strictly contains the hole T7 (see Figure 2 in Part I). Now, we define func- 

tions (Wrk, qrk)l ZK~_2 by (4.2.2) in which T 7 is replaced by B~'~. Denoting by ri and 
e / the radial coordinate and unit vector in each C ~ -  BT", we can compute 

(Wok, q0k)l ~k~2- 
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which satisfy 

Vq'k~-- /~W'k ~= ('~w~k ) [ 
\ ~r i - -  q~ke~ 6~ 

' ~ - - 0  ] V �9 W k 

in each control volume C~, 

q~ elsewhere in s  ~ C~. 
i=1 

From (4.2.3) and (4.2.4), as in Lemma 2.3.1, we obtain 
r e 

IlVwk ilL~(~) < c~, '~ [[qk IIL~(m < C~, '~ = = ]l Wk [[Lq(O)G Ce 

(4.2.4) 

for 1 ~ q <  + o o .  

(4.2.5) 

Regrouping (4.2.3) and (4.2.5) we check that Hypotheses (H1)-(H3) are satisfied 
by the functions (w~, q~,)l~k~2 defined in (4.2.2). 

In order to verify (H4) and (H5), we decompose (Vq~ -- Aw~) thus: 

a i e t e  

- -- qokG Oi, /2k = i=l ~ \ ~ri -- q'k~e Oi' 

N(O (OW~_ q;ni) or;,  

with 

~Ok = \ ~ri 

where 0~- and 6r~ are the unit masses concentrated on the sphere ~B~ and on the 

hole boundary ~T 7, and where ni is the unit exterior normal to T 7. It is easy to see 
that 7; ~ 0 in [H-1(~2~)] 2, and that #~ converges strongly to 0 in [H-I(Y2)] 2. 
On the other hand, we have 

( ~W~k ~ ~ ) ~ 2 
~r, qokG 0~ = ~o [--ek + 4(ek " e~) e~] [1 + o(1)] 6~.. 

Then arguing as in Lemma 2.3.3 and using Lemma 4.2.1 below, we prove that 
2z 

/~k converges strongly to /~k = ~00 ek OH in [H-I(~)]  2. Finally, as is well known, 

the measure O H belongs to W-l'~176 so that Hypotheses (H4) and (H5) hold. 
Q.E.D. 

Lemma 4.2.1. Let d be a fixed real number in(0; 1]. Let Off be the unit masscon- 
centrated on the sphere OBff . Let SN denote the area of  the unit sphere inR N. (Recall 

that the centers of  the cubes P~ are periodically distributed only on the hyperplane 
H.) For N >~ 2 the following convergences hold: 

N(s) S N d r -  1 

Z O/& ---> 2N--1 OH #/ H-a(.Q) s t r o n g l y ,  
i=l 

N(e) 

~. (e k ei) i a~ " er  ~ i  --~ 
i=1 

S N  d N -  I 

N 2N_ 1 ek 6H in [H-1(.Q)] N strongly. 
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The proof of Lemma 4.2.1 is very similar to that of Lemma 2.3.4 and is left 
to the reader (see [1], if necessary). 

Proof of Proposition 4.1.6. As in the case of a volume distribution we use the 
decomposition (3.4.34) of each cube P7 included in H,, and we define functions 

(wL q~),~k~N~ [H~(P~)IN• with fq~ = 0 by 

wk = in K~, in D~, 
q~ V.  ~ W k ~- 

I (x)! Iw : l 

for each cube P7 entirely included in H~, 

ok } N(s) t wl : elsewhere in -(-2 -- ~ PT- 
[ q~ i=1 

where (Wk, qO are the solutions of the local Stokes problem (3.2.3). Then, with the 
help of Lemma 2.3.5 (which furnishes asymptotic expansions of w k and qk), we 
readily obtain 

e 2 IlVwkllv(c,~) ~ a N-2  IlVwkI',~(~N_~.) ~ C E  N - 1  , 

* 2 : aN-2  Ilqx llL~(c,~ < H qk [!~:(~N-T) < c '~N-I ,  

(_~L) q(u-~) N (4.2.7) 
llw~k - -  ek]lqLq(C~) ~ Ce N "~ C~, N+q for q > N-----~--~, 

w~ = O(e) and Vw~ = 0(1) on ~C;'& ~DT. 

Then 

2(N-- 1) N (4.2.8) 
l1 w~ - e~ Hzq(a) ~ C eq(u-2) for q >  N~--2" 

Obviously Hypotheses (H1)-(H3) are satisfied, and for the remaining (H4) and 
(H5) we decompose (Vq~ -- Aw~,) by 

NA.~) /~w~ ) 
Vq~ - -  Awk : - -  qke~ + 7 " ( z e ( q k  I d -  VWk) ) 

i 

N(,) OW~ 

where d~/2 and dr7 are the unit masses concentrated on the sphere ~C~A ~D~ 

and on the hole boundary T~, and ~here )C~ is the characteristic function of 
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N(e) 

~J D~.. It is easy to see that 7~ ~-~ 0 in [H-l(/2e)] N and that V - (ze(q~ Id -- Vw~)) 
i= l  
converges strongly to 0 in [H-1(/2)] N. On the other hand, 

{Sw~ ~ i [Fk § N(F~" e~) e~] § O e ~zT (4.2.10) 
\ 8ri -- qgG 6~i/2 -- SN 

where O(e 1/(N-2)) is a function of x. Consequently, as in Lemma 2.3.7, we have to 

use the Comparison Lemma 2.3.8 (of D. CIORANESCU & F. MURAT [9]). Neverthe- 
less, with the help of Lemma 4.2.1, we deduce from (4.2.10) that 

N(e) ( ~ W k  ~ i 
\-'~r~ -- q : r  ~/2 _+ #k -- 2N--~ F~ On in [H-a(/2)] N strongly. 

i=I  

Thus Hypothesis (H5) holds. So does (H4), because the measure O H belongs to 

W-~'~(/2). Q.E.D. 

Proof of Theorem 4.1.9. Because we assume that u E [ w l ' ~ ( f ~ ) ]  N, instead of 
u ~ [W2'~(O)] N, we cannot use the results of Proposition 1.2.5. However, recall 

equalities (1.2.34) and (1.2.41), which are established in the proof  of Proposition 
1.2.5. Define oq : p~ -- p --  u �9 Q, and r,  : ue -- Weu. Let ~e be any bounded 

sequence in [W0Uq(/2)] N, with q > N. Then 

(V[Pe(oce)], ~e)H-1,H~(~) : f (Id -- W~) Vu : V(Rev~) -- f Vre : V(Reve) 
Q 

+ f V u :  (R:e .VW,) -- fQ~  Vu "R~ve + ( ( M  -- M,) u, RY,)H--~,H~(a), (4.2.11) 
t2 

( - -~G,  G)H-I,H~(o) = ( ( M  -- M,) u, G)H-',,~(o) -- (Vu Qe, re)u-',,~(o) 

- - 2  f ( W , - - I d ) V u : V r , - -  f(W~--ld) Au're§ fo,,V're. (4.2.12) 
~2 D Q 

On the one hand, taking into account the weaker smoothness of u, and the fact that 

Qe and V We are equal to zero in /2 -- He, we bound (4.2.11): 

](V [P,(~)], r~) [ ~ l l /d - We IlL,W) IIVullL~w) IIV(R:O ]lL~(.o) 

§ II Vr~ IIL~(~) IfV(R:O IIL~w) 

+ !IVuIIL~w)IlVW, IIL,m~)lie:rilL=me) (4.2.13) 

+ II Vu Ik~(a) 11 Qe IIL2(H,) II R:,, I!L~(H) 

+ IlUllw~,~ M~l]n-~(a)IIR:~L]H~W). 

But, adapting Lemma 3.4.1, which furnishes an optimal Poincar6 inequality, 
we easily prove that for each (h~ E HI(H~), which is equal to zero on the boundaries 
of the holes T~, we have 

11~ IIL.me) < cd/Z I!VG [!L,me) (4.2.14) 
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where the constant C does not depend on e. Then, recalling that q' is defined by 
1 1 

- - §  = l, and applying (4.2.14) for Rye, we convert (4.2.13) to 
q q 

[[0~e]]Lq'(s~,)/:~ ~ C [lVr~llL,(m § C Ilullwl.~(m [tIM~ - M]]s-s-,(o) § l l l d -  W~llL,(m 

§ e 1/z IIVW~/k,(m § e 1/2 Ira, rlL,,o)]. (4.2.15) 

On the other hand, recalling that V �9 r~ = -- W~ : Vu = (Id -- W,) : Vu is equal 

to 0 in the holes I f ,  we can bound the last term of (4.2.12) by 

f o~.V.rJ= ~f~ CliVullLo~(mlild-W~IILq(~)IIO~.IILq'(~,iR 

1 1 
with - - §  1. 

q q 

An integration by parts yields 

f ( W , - - I d ) A u r ,  = -  f(rv~--Id)VuVr~- f r ,  VW,  Vu. 
D g2 D 

Then, recalling that VW * = 0 in D -- H,, we bound (4.2.12) by 

IIVr, ll~,(m ~ Ilu~wi.~(m IlVr~lk,(o)fig, - MIIH-,(m 

§ IIVullz~(o) Ilr, I1L,(~,) IlQ, IIL,(m) 

+ C llVullr ~o(mrllVr~ IIL,(m llld -- W~ IlL,(m 

§ C I1Vullz~(m 11 r, Ilc,(m) IIV W, Ik,(m) 

§ C llullw~.oo(~)Illd - W~IILq(o,)II~,ll~r �9 (4.2.16) 

Applying that Poincar6 inequality (4.2.14) for r~, we obtain 

IIVr./12.(m ~ C Ilullw~.~(m IIVr.HL.cm [llg~ -- glln-.(~) § [ l i d -  W~ll,..(o) 

§ ellZ IIV W, Ik,(o) + e ~/= IIQ, IIc,(o)] § C Ilullwl.~(o)llld- m, IILq(~ )11~, I JLq ' ( tT ) lg  �9 

(4.2.17) 

Adding (4.2.3) and (4.2.5) for N =  2, and adding the estimates (4.2.7) for 
N ~ 3 (note that these estimates holds in O, and are different from (4.2.8), which 
hold in /2), we obtain 

q+l  

I[Id-- W~Jl/,q(op ~ Ce q for q > N => 3, 
(4.2.18) 

I I I d -  W~lILq(m ~ Ce for q ~ 1 and N = 2. 

Previous computations in this subsection give 

l l #d -  W~lk,(m < Ce, IIVWAH-:(m =< Ce, 
(4.2.19) 

IlVW~llz,(~) <= c. I1Q~IIL,(O) <= C. 
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In order to bound IIM, -- Ml[n-~(~), we apply Lemma 2.4.2 in the set Q -- H~ 
and take h~ = / ~  --/~k to obtain 

_final? z= 
Hh~l[n-,(~,) <: ~ ~--~-} ]l~7vllL=(P~. (4.2.20) 

Here v is the unique solution of the problem 

Find v 6 Hip(P) such that 

- - A v : h  in P : ( - - 1 ; + I )  u 

with h formally defined by h ( X ) : h ~ ( x ) ,  i.e., for yE  P, 

1 1 2  2~ ] 
h(y) = -~- ~o (--ek -~ 4(ek" e,) e,) [1 @ o(1)1 010 -- ~oo ek0/~o 

1 
h(y) = ~ [ -~N [Fk + N(Fg " e,) e,] 01o/z --  - -  

for N = 2 ,  

] 2N_ 1 F k OHo -~- o(1) 001/2 

for N_-->_3 

and with O~ro defined by 

(On,, rb) = e N 0~/o, qS(x) for each 4 E D(RN). 

C 
Then we easily check that II V~ I]L2(e) <= - - .  Because l H~ I =< Ce, we merely de- 

duce from (4.2.20) that II#~ -- #k 11/t-1(~/,) ~ Ce 1/z. Recalling that /z~ --/z k ~- 0 

in D - - H e ,  we obtain 

]IM, -- MIIH-~(o) ~ Ce x/z. (4.2.21) 

Now, introducing the estimates (4.2.18), (4.2.19), and (4.2.21)in both inequalities 
(4.2.15) and (4.2.17) yields the desired result (4.1.10): 

N 
]]O~e][Lq'(t2e)/I~ ~ Ce 1/2 HUl[wl,eo(t?) with 1 < q' < N----~" 

Q.E.D. 
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