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Bone tissue is a complex multilevel composite which has 
the ability to sense and respond to its mechanical envi- 
ronment. It is believed that bone cells called osteocytes 
within the bone matrix sense the mechanical environ- 
ment and determine whether structural alterations are 
needed. At present it is not known, however, how loads 
are transferred from the whole bone level to cells. A 
computational procedure combining representative vol- 
ume element W E )  based homogenization theory with 
digital imaging is proposed to estimate strains at various 
levels of bone structure. Bone tissue structural organi- 
zation and RVE based analysis are briefly reviewed. 
The digital image based computational procedure was 
applied to estimate strains in individual trabeculae 
(first-level microstructure). Homogenization analysis of 
an idealized model was used to estimate strains 
at  one level of bone structure around osteocyte 
lacunae (second-level trabecular microstructure). The 
results showed that strain at one level of bone 
structure is amplified to a broad range at the next 
microstructural level. In one case, a zero-level tensile 
principal strain of 495 pE engendered strains ranging 
between -1000 and 7000 pE in individual trabeculae 
(first-level microstructure). Subsequently, a first-level 
tensile principal strain of 1325 p E  within an individual 
trabecula engendered strains ranging between 782 and 
2530 p E  around osteocyte lacunae. Lacunar orientation 
was found to influence strains around osteocyte lacunae 
much more than lacunar ellipticity. In conclusion, the 
computational procedure combining homogenization 
theory with digital imaging can provide estimates of cell 
level strains within whole bones. Such results may be 
used to bridge experimental studies of bone adaptation 
at  the whole bone and cell culture level. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1994 John Wiley 
& Sons, Inc. 
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INTRODUCTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Bone is a complex multiple tiered structure that has the 
ability to sense and adapt to its mechanical environment. 
Bone adaptation in response to mechanical stimuli plays 
a significant role in the outcome of many orthopaedic 

* To zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwhom all correspondence should be addressed. 

and dental procedures, most notably artificial joint and 
tooth replacement. As early as 1867 Von Meyer (cited in 
ref. 47) suggested that trabecular bone was oriented along 
principal stress directions. W0lff5~ expanded these observa- 
tions suggesting that the internal structure of bone reflected 
its functional demands. Roux, in 1895 (cited in ref. 47), 
hypothesized that bone cells could sense and respond to 
mechanical stimuli. More recently, Brand6 hypothesized 
that bone adaptation was a feedback process in which bone 
cells monitor mechanical signals that have been filtered 
through the surrounding bone matrix. If the relevant me- 
chanical signal is within an acceptable homeostatic range, 
the bone cells will not act on the signal. However, if the 
mechanical input signal is out of the homeostatic range, 
bone cells would alter the surrounding matrix filter such 
that the mechanical input signal was again brought within 
an acceptable range. 

Testing hypotheses concerning bone adaptation has 
proved difficult because it is not known how mechanical 
loads are transferred from the whole bone level to bone 
cells. Experimental studies have therefore focused on the 
extremes of whole bone or isolated cell culture studies. At 
the whole bone level, researchers have measured strains 
on the outer surface of long bones under normal usage and 
after surgically induced overload. lot1 1,48 The results of these 
studies suggested that strains under normal usage ranged 
between 500 and 3200 microstrain (pE). On the basis of 
these results, Frost” hypothesized that strains less than 
200 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApE would lead to bone resorption, strains between 200 
and 2500 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApE would maintain bone, and strains greater than 
2500 p E  would lead to bone apposition. 

Whole bone studies provide insight into global responses 
to mechanical load but do not indicate levels of me- 
chanical strain upon which cells sense and subsequently 
act. Studies stretching cultured bone cells and measuring 
their subsequent response have attempted to address the 
issue of how cells respond to direct mechanical strain. 
Hare11 et a123 applied 10,000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApE to rat calvaria osteoblasts 
and found an increase in both prostaglandin (PGE2) and 
cyclic adenosine monophosphate (CAMP) production. Yeh 
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and Rodans6 applied between 50,000 and 100,000 p E  to 
rat osteoblasts by stretching the cells on a collagen sheet 
and also noted an increase in PGE2 production. Hasegawa 
et al.24 found an increase in cell proliferation when applying 
20,000 p E  to mouse osteoblasts in culture. Murray and 
R ~ s h t o n ~ ~  noted a biphasic response when applying be- 
tween zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3000 and 28,000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApE to mouse osteoblasts. Between 
3000 and 7000 p E  no increase in PGE2 production or cell 
proliferation was noted. At 7000 p E  there was a jump 
in PGE2 production which leveled off until 28,000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApE 
where another jump occurred. These and other cell cul- 
ture studies have been recently reviewed by Burger and 
Veldhuijzen.’ 

Cell culture studies have clearly demonstrated that 
bone cells can respond to direct mechanical stimulation. 
However, the strains applied in culture are much higher 
than those measured on whole bones. Strains of 20,000 pE 
and higher, which have been applied in many cell culture 
studies, are high enough to fracture bone (ref. 19, p. 286). 
The strains applied in culture may be high enough to elicit 
a wound healing response from bone cells. It currently is 
not known, however, what strain levels bone cells see in 
vivo within the bone matrix. Strains on bone surfaces are 
measured at a scale much larger than and are far removed 
from bone cells surrounded by matrix. It is therefore 
difficult to extrapolate cell culture work to in vivo whole 
bone studies. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A n  intermediate step between cell culture and in vivo 
whole bone studies is the use of bone organ cultures. In a 
series of elegant experiments, El Haj et a1.I6 and Rawlinson 
et a1?6 applied 5000 p E  of overall compressive strain to 
canine trabecular bone cores. El Haj et a1.16 found an 
increase in serum PGE2 production 15 min after applying 
strain. Using immunolocalization techniques, Rawlinson 
et al.46 found a breakdown product of prostacyclin PGI2 
(6-keto-PCF,,) in osteocytes and both PGI2 and PGE in 
bone lining cells within trabecular bone cores subject to 
5000 p E  overall strain. While these organ culture studies 
verified that cells within matrix produced PGE in response 
to strain as seen previously in cell culture, the cell level 
strains were not quantified. 

The three experimental approaches for studying bone 
adaptation to mechanical stimuli (whole bone, organ cul- 
ture, and cell culture) offer their own unique advantages and 
disadvantages. Whole bone studies offer the ability to study 
the global effects of bone cells on bone matrix but suffer 
from the disadvantage that the direct mechanical stimuli 
seen by cells cannot be quantified. Organ cultures offer 
the ability to directly load bone along with measuring cell 
response, but the mechanical stimuli seen by an individual 
cell again has not been quantified. Also, the modification of 
bone matrix by bone cells cannot be reproduced in culture. 
Cell culture studies offer the ability to directly control the 
mechanical stimuli applied to cells along with measuring 
cell response but suffer from the lack of normal bone matrix 
surrounding bone cells. Furthermore, it is not known how 
mechanical strains applied to bone cells in vitro compare to 

strains which bone cells experience in vivo under normal 
loading. 

To better understand bone adaptation to mechanical stim- 
uli, it is necessary to link whole bone, organ culture, 
and cell culture experiments. Knowing strains on bone 
cells within bone matrix would allow this linkage. For 
example, if it were known that bone cells subject to a 
given amount of strain in vivo caused a certain change 
in bone matrix, this same amount of strain could be 
applied to both organ and cell cultures to study the cellular 
biochemical response. Measuring cell level strains within 
bone matrix has proved impossible to date since strains 
can only be measured on the surface of structures using 
strain gauges or optical techniques. The natural structures 
surrounding the cell would have to be destroyed to measure 
the cell strain. Perhaps the most feasible approach for 
estimating cell level strains is computational modeling of 
the multiple level bone structures. In this article, we present 
one multilevel composite modeling approach to estimate 
cell strains for whole bones. First, bone tissue structure and 
composite material theories used to model this structure 
are reviewed. Second, the homogenization approach we 
currently use along with estimates of cell lacunae level 
strains is presented. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
BACKGROUND 

Bone Tissue Structural Organization 

Bone tissue is classified into two broad types based on 
its macroscopic porosity. Cortical bone, also called com- 
pact bone, contains about 10% pore volume and accounts 
for 80% of all skeletal mass.35 Cortical bone forms the 
outer shell of all long bones. Trabecular bone, also called 
cancellous bone, is much more porous than cortical bone. 
Trabecular bone porosity is about 75% on average but may 
range between 50% and Trabecular bone fills the 
end of long bone and is contained within cortical bone. 
Each type of bone tissue contains at least three definable 
levels of microstructure. 

The first microstructural level of cortical bone contains 
tubular structures called osteons or haversian systems sitting 
within a matrix of interstitial lamellae (Fig. 1). A blood ves- 
sel runs through the center of the osteon. Osteon diameters 
are typically between 200 and 300 p m  with the interior 
haversian canal diameter ranging from 50 to 90 
The inner blood vessel diameter is typically 15 The 
second microstructural level (Fig. 2) contains ellipsoidal 
shaped voids called lacunae typically 10 p m  in radius 
which house bone cells called osteocytes. The lacunae are 
within 150 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApm radius4’ of the inner blood vessel because of 
nutrition diffusion requirements. The osteonal wall consists 
of concentric sheets called lamellae which are between 
7 and 10 p m  thick. Osteons are bonded to surrounding 
interstitial bone by cement lines which are about 1 to 
50 p m  thick.’l The third microstructural layer consists of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABackscattered scanning electron micrograph of first-level cor- 
tical bone microstructure. This first-level microstructure consists of osteons 
(irregular shaped ovals of differing darkness) and interstitial bone (bone 
between the osteons). The dark circles of about 100 p m  in diameter are 
the haversian canals containing blood vessels. (Photograph courtesy of 
Karl Jepsen.) 

the collagen fibers bonded to plate-like hydroxyapatite min- 
eral crystals53 within a single lamella. The orientation of the 
collagen-mineral composite within and between successive 
lamellae is currently the focus of much debate.',2,22,40,53 
Some authors believe that collagen fibers have a predomi- 
nant orientation which gradually changes between lamellae. 
Marotti and M~g l ia ,~ '  however, suggested that lamellae 
consisted of either loosely or densely packed collagen fibers 
with no preferred orientation. It should be noted that all 
dimensions reported here are for human bone and that 
dimensions of osteons, lamellae, and lacunae may differ 
for bone from other species. 

The first microstructural level of trabecular bone con- 
sists of a network of plate- and rod-like structures called 

trabeculae (Fig. 3). Unlike osteons, trabeculae rarely con- 
tain blood vessels and are thereby generally less than 
200 p m  thick because of diffusion  requirement^.^^ At the 
second level of microstructure trabeculae contain lamellae 
which are not concentric-like osteonal lamellae but rather 
are aligned the length of the trabeculae. These lamellae 
are grouped together in trabeculae packets.35 Lacunae in 
trabeculae are slightly larger and more densely packed 
than in osteons.* As with cortical bone, the third level of 
microstructure in trabecular bone consists of collagen fibers 
bonded to mineral crystals. A summary of structural orga- 
nizations for both cortical and trabecular bone is shown in 
Table I. 

A nonstructural but critical component of bone tissue is 
the bone cells themselves. There are three basic types of 
bone cells called osteoblasts, osteocytes, and osteoclasts. 
Of these osteoblasts and osteoclasts reside on bone surfaces 
while osteocytes reside internally within the bone matrix. 
Osteoblasts deposit both collagen and mineral to form bone 
structure. During bone formation osteoblasts are plump 
cuboidal cells. Following bone formation, osteoblasts be- 
come flat and elongated, covering the bone surfaces. Osteo- 
cytes evolve from osteoblasts which are entrapped in bone 
matrix during the process of bone deposition. These cells 
are believed by many to sense the mechanical environment 
within the bone tissue. Osteoclasts resorb bone mineral and 
collagen. Osteoclasts and osteoblasts act together to main- 
tain bone structure through a process called rem~del ing. '~ 
Osteoclasts first resorb bone from the bone surface, leaving 
a resorption pit. This pit is then filled by bone deposited 
by osteoblasts. In special cases, such as growth or repair 
of damaged tissue, osteoblasts may deposit bone and osteo- 
clasts may resorb bone on separate surfaces. This process 
is called modeling." 

Figure 2. Backscattered scanning electron micrograph of second-level 
cortical bone microstructure. The smaller ellipsoidal shapes about 10 p m  
long are lacunae. White lines separate osteons. Small dark striations are 
canaliculi. (Photograph courtesy of Karl Jepsen.) 

Figure 3. Backscattered scanning electron micrograph of first-level tra- 
becular bone microstructure. At this level trabecular bone consists of a 
network of rods and plates, approximately 100 to 200 p m  thick and over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1000 p m  long. (Photograph courtesy of Karl Jepsen.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Table I. 

Level Cortical structure Trabecular structure Size range (pm) 

Trabecular and cortical bone structural organization along with approximate physical scales. 

7 

solid material zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA>3000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 solid material 
1 osteons, interstitial bone individual trabeculae 100 - 300 50.1 
2 lamallae, lacunae, cement lines lamellae, lacunae, cement lines 3-20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 0.1 
3 collagen-mineral composite collagen-mineral composite 0.06-0.4 50.1 

The parameter 7 is a ratio between the level i and the next most macroscopic level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi - 1.  This parameter is found implicitly in homogenization 
RVE analysis. Decreasing 7 will produce decreasing error. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Representative Volume Element Analysis 
for Composite Materials 

Due to its complex geometry, bone tissue is generally 
analyzed using numerical techniques, of which the most 
widely used is the finite element method (FEM). However, 
standard finite element analysis codes running even on 
modern large capacity supercomputers cannot analyze each 
structural entity from the whole bone to the bone cell level. 
Therefore, each structural level must be analyzed sepa- 
rately. This approach is known in the engineering composite 
material literature as representative volume element (RVE) 
a n a l y ~ i s . ~ " ~ ~  In RVE analysis, representative sections of 
a structural level are analyzed under assumed boundary 
conditions to calculate the average or effective properties 
of that section. This is known as the local analysis. The 
local analysis provides a matrix relating local strains { E ~ }  

to global strains {ei-l}: 

{Ei} = [Mil i~i- 1 1  (1) 

where the subscript i denotes the current structural level 
being analyzed, i - 1 denotes the next most macroscopic 
level, and [Mi] is denoted as the local structure matrix.30 
The average or effective stiffness may then be calculated 
from the local structure matrix: 

where [Ci-l] is the stiffness of the i - 1 structural level, 
[Ci] is the stiffness of the ith structural level, V R ~  is the 
RVE volume, and [Mi] is the ith level local structure matrix. 
The next most macroscopic level can then be analyzed 
using the previously calculated effective properties. This 
is known as the global analysis and provides the global 
strains to calculate the local strains using Eq. (2). The entire 
procedure is illustrated in Figure 4. 

The RVE concept may be applied to estimate strains 
on multiple structural levels. However, since the in situ 
RVE boundary conditions are not known, the assumed 
boundary conditions can only provide an estimate of both 
effective properties and local strains. The accuracy of these 
estimates depends significantly on the assumed boundary 
conditions. The most widely used RVE approach is to apply 
traction or displacement boundary conditions to the RVE. 
This approach, denoted here as the standard mechanics 
approach, has been used frequently for analyzing bone tis- 
sue zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm i c r ~ m e c h a n i c s . ~ , ' ~ ~ ~ ~ , ~ ~ , ~ ~ , ~ ~  It can be shown using the 

minimum potential energy and minimum complementary 
energy principles of mechanics that displacement bound- 
ary conditions will provide an upper bound on effective 
stiffness while traction boundary conditions will provide 
a lower bound.27 Bounds on local strain errors have not 
been derived. A modification of the standard mechanics 
approach using assumed stress of strain distributions based 
on variational methods26 have also been used to estimate 
cortical bone stiffness based on a fiber matrix idea l i~a t ion .~~ 

Homogenization Theory 

Homogenization theory is another RVE approach developed 
by applied mathematicians both in the West3,37,39,49,50 and in 
the former Soviet Union (see ref. 4 for a review). There are 
three basic assumptions in homogenization theory. First, it 
is assumed that the total displacement of a microstructured 
material may be represented by an asymptotic expansion: 

b T J  = b 0 1  + 71{u1) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7?2{u2} + ... (3) 

where { u ~ }  is the total displacement, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ u g }  is the most 
macroscopic level displacement, {ui} represents displace- 
ments for increasingly more microscopic levels, and 71 
is the relative scale size between two scalewise adjacent 
structural levels. It can clearly be seen that the multiple 
structural levels of bone can be fit into the asymptotic 
expansion framework. The second assumption is that the 
coordinates at each level are related through the parameter 
71, as illustrated in Figure 5. The coordinates in xi  on the 
microscopic level are much finer than the coordinates on 

RVE Analysis Procedure 

Use E~~CCIIVC Stiffness Ci-1 M =) 9 - 1  

Local Suucturc Matrix M * in body analysis IO calculate of macroscopic average 

\ swam €1-1 

Estimate local serain 
using M and Ei by: 

Ei = M C - 1  
L I 

Figure 4. Illustration of the RVE analysis procedure. Local analysis 
gives the local structure matrix M and the effective stiffness Ci-1. Global 
analysis yields the strains ~ i - 1 .  Postprocessing of M with ~ i - 1  yields the 
strains ei at the current microstructure level. 
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xi-1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe more macroscopic level. The coordinates xi  are 
thus related to the xi-1 coordinates by 

x ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Xi-1 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

17 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) 

Values of 17 for different levels of bone tissue are suggested 
in Table I. Although 7 does not appear explicitly in the final 
formulation, smaller values of 7 give a better approxima- 
tion for the RVE analysis. The total gradient of a function 
with respect to all structural levels may then be written as 
the sum of gradients at each separate level modified by the 
scale factor 7: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(5 )  + . . .  + -- + -- i a  i a  a - -  a - -  
a{x> a b o >  17 a i d  T 2  d b 2 )  

The third assumption made in homogenization theory is that 
the RVE boundary displacements are periodic, that is, the 
displacements on one RVE side are equal to those on the 
opposite side. Hollister and Kikuchi31 have shown that ho- 
mogenization theory gives more accurate estimates of both 
effective stiffness and local strain than standard mechanics 
approaches for composites with periodic microstructure. 

Recent analysis of bone mechanics using homogeniza- 
tion theory has been done by two groups. Hollister and 
c o - w o r k e r ~ ~ ~ , ~ ~  analyzed trabecular bone using both ideal- 
ized models and models constructed directly from three- 
dimensional (3-D) digitized images of trabecular bone. 
They found that idealized models showed trends of how 
structural characteristics affected mechanical properties but 
that digital image based models produced much more ac- 
curate effective stiffness estimates. Crolet et al.14 modeled 
cortical bone at first two microstructural levels, including 
osteons and lamellae. They predicted macroscopic effective 
stiffness values which were similar to experimental values. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Generating Computer Models of 
Bone Tissue Structure 

Computational analysis of bone tissue microstructure us- 
ing any RVE approach requires construction of a finite 
element method (FEM). Most models of bone tissue struc- 
ture have been based on idealizations. For example, the 
first-level microstructure of trabecular bone is often ideal- 
ized as a porous cellular materia1.5,21,30,45 The first-level 
osteonal microstructure of cortical bone has been ideal- 
ized as a matrix containing an osteonal cylinder with 

“Macroscopic Scale” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 1 I I I FXi.1 
0 I 2 3 

“Microscopic Scale” 
10 Xi units = 1 X,. unit 

K =  & 
10 

Figure 5. Illustration of the relationship between different coordinate 
levels and definition of the parameter 7. Ten units on the microscopic scale 
Xi are equal to 1 unit on the macroscopic scale Xi-1. Thus, Xi = Xj-l/lO, 
which means that q = 1/10, or 0.1. 

an interior cylindrical hole? Idealized models are relatively 
straightforward to construct using modem solid modeling 
programs. These models can be used to parametrically 
test how different structural features may influence the 
mechanical behavior of bone tissue, thereby giving insight 
into how cells may organize structural components to best 
carry load. However, since bone tissue structure is very 
irregular and variable, idealized models do not give very 
accurate estimates for specific bone tissue structures. The 
use of idealized models for analyzing and interpreting 
experimental data on bone adaptation is limited. 

Recent developments of 3-D imaging techniques for 
trabecular bone microstructure either based on nondestruc- 
tive computed tomography17 or by sequential sectioning 
and two-dimensional (2-D) imaging43 have given rise 
to digital image based finite element analysis of bone 
m i c r o s t r u ~ t u r e . ~ ~ ~ ~ ~ , ~ ~ , ~ ~  Digital image based finite element 
analysis constructs 3-D finite element models by directly 
converting image voxels into 3-D brick finite elements. 
Mesh generation of complex microstructures can thus be 
done in minutes or hours instead of days or months. This is 
especially important when hundreds of finite element RVE 
models must be analyzed to interpret experimental data. 
The repeated regular geometry of elements within a digital 
image based mesh are well suited for element-by-element 
preconditioned conjugate gradient (EBE-PCG9,I8) iterative 
solution techniques. These techniques solve finite element 
equations locally on the element level without need for 
assembly of a global stiffness matrix, which means that 
meshes with hundreds of thousands of elements may be 
solved on engineering workstations. 

There are two major drawbacks to digital image based 
finite element analysis. First, the jagged edges at the bound- 
ary between dissimilar materials introduce artificial stress 
concentrations. These stress concentrations cause numerical 
oscillations which are not present in smooth finite ele- 
ment meshes. Hollister and Riemer,32 however, found that 
these numerical oscillations were present only in localized 
regions near material boundaries and that digitized finite 
element meshes produced solutions very similar to smooth 
finite element analysis. Digital image finite element meshes 
produce reliable solutions over most of the mesh except 
at material boundaries. In these regions, techniques for 
smoothing the solutions are needed. 

The second difficulty in digital image based finite ele- 
ment analysis is relating the voxel density from the digitized 
image to a material stiffness for the finite element analysis. 
Analysis of the first-level trabecular bone microstructure 
requires thresholding techniques which only need delineate 
between bone tissue and marrow. Each trabecula is treated 
as a homogeneous isotropic material which is assigned 
experimentally measured properties. Using this approach, 
Hollister et al.29 found good agreement between predicted 
and experimental effective stiffness values using individual 
trabecular stiffness results reported by Choi et a1.I’ When 
more than two material phases are present, more sophisti- 
cated image thresholding techniques are needed to delineate 
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between the phases. Furthermore, experimental data must 
be generated such that material stiffness values may be 
assigned to each threshold voxel density. The general pro- 
cedure of digital image based homogenization analysis is 
as follows: 

1. Threshold digital image voxels into separate materi- 
als. 

2. Convert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-D image voxels to 3-D solid finite ele- 
ments. 

3. Select element material identification based on thresh- 
olded voxel density. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4. Set element material property based on experimental 
measures relating stiffness to voxel density. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5. Perform homogenization analysis using EBE-PCG 
techniques. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

METHODS 

[Ci]. The right-hand side of Eq. (7) is a volume distributed 
stress over the RVE. In addition, opposite sides of the 
RVE are assumed to displace equally under the volume 
distributed stress in Eq. (7). The comer nodes of the RVE 
model are fixed to prevent rigid body motion. Note that 
Eq. (7) is solved for every structural level except the zero- 
or solid material level. The local structure matrix can then 
be calculated from six characteristic strain vectors as 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[MI is the local structure matrix, [I] is the iden- 
tity matrix, and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ E * ~ }  are the six 6 X 1 microscopic 
characteristic strain vectors forming a 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 6 matrix. Local 
structure matrices are calculated at every structural level 
except the zero level. The effective stiffness is calculated 
using Eq. (2). At the most macroscopic level, the governing 
equilibrium equation under applied boundary conditions is 

Homogenization Analysis 

Using Eqs. (3) and (5) allows the total strain at the smallest 
microstructural level to be written as 

{ E l  = {Eel + {El}  + (82) + ... (6) 

where { E }  is the total strain at the smallest microstructural 
scale, { E O }  is the most global or average strain, { E I }  is 
a perturbation in strain due to microstructure at the first 
level, ( ~ 2 )  is a perturbation in strain due to microstructure 
at second level, and so on. Note that the total strain at 
any level results from the sum of the strain perturbation 
at that level and those above that level. For example, the 
total strain at the first level, individual trabeculae, is the 
sum of the solid material zero-level strain { E O }  and the first- 
level strain perturbation {&I}. Likewise, strain at the lacunar 
level is the sum of the solid material zero-level strain 
{EO} ,  the individual trabeculae first-level strain perturbation 
{&I}, and the lacunar second-level perturbation strain ( ~ 2 ) .  

Equation (6) is substituted into the standard weak form 
of the elasticity equations. This generates two equilibrium 
equations, one for the more microscopic level and one 
for the more macroscopic level (for details, see ref. 29 
or 30). For instance, when considering trabeculae to be 
homogeneous material, the trabecular architecture would 
be the more microscopic level and the representation of 
trabecular bone as a solid would be the more macroscopic 
level. The equilibrium equation on the more microscopic 
level is 

where the superscript T denotes the transpose of the vector 
{i.}, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[Ci] is the ith microscopic level material stiffness 
matrix, {i.} is the microscopic virtual strain vector, { E * ~ }  is 
the microscopic characteristic strain vector, and {C!} is the 
kth column of the ith microscopic material stiffness matrix. 
Equation (6) is solved six times, once for each column of 

where T denotes the transpose of a given vector, { E }  is again 
a virtual strain vector, [CO] is the most macroscopic effec- 
tive stiffness, { E O }  is the most macroscopic strain vector, {v} 
is the virtual displacement vector, A is a penalty parameter 
(see ref. 38), {u }  is the displacement vector, { g }  is a pre- 
scribed displacement, { t}  is an applied traction, fl is the 
global domain, Tr is the boundary along which tractions 
are prescribed, and r d  is the boundary along which dis- 
placements are prescribed. Solving Eq. (9) gives the solid 
material or zero-level strain {EO} .  Both Eqs. (7) and (9) are 
solved using the FEM. Strains are calculated at the first 
level or trabecular level by transformation of { E O }  with the 
first-level local structure matrix: 

{Etrab} = [MlI{EO} (10) 

Strains are calculated at the second level or lacunar level 
by transformation of the average trabecular strain in the 
lacunar region with the second-level structure matrix: 

{Elacunar} = [M21{~tr&l (11) 

Note that Eqs. (10) and (11) can be combined to directly 
calculate the second- or lacunar level strain from the zero- 
level strain by 

{Elacunarl = [M~I[MII{EO) (12) 

Computational Models for First- and 
Second-Level Trabecular Microstructure 

This study utilized both digital image based models and 
idealized models to analyze how load is transferred in 
trabecular bone from the whole bone level to the osteocyte 
lacunae. Trabecular bone subject to controlled implant loads 
from the study by Hollister and G ~ l d s t e i n ~ ~  was consid- 
ered since the global boundary conditions were known. 
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First-level trabecular bone microstructure in this case was 
analyzed using digital image based homogenization fi- 
nite element analysis. The models were constructed by 
converting digital voxels from 3-D micro-computerized 
tomography scans directly into linear brick finite elements. 
A total of 10 regions having a volume of 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 4 X 4 mm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 (64 mm3) were scanned within the femur. The RVE size 
was chosen to be 1 X 1 X 1 mm, giving a total of 640 
analyses involving 8000 solid elements per mesh. A typi- 
cal digitized finite element mesh for the homogenization 
analysis is shown in Figure 6. 

Idealized 3-D models of osteocyte lacunae constituting 
second-level trabecular microstructure were created to 
estimate strains surrounding osteocytes within trabeculae 
tissue. The osteocyte lacunae were modeled as ellipsoidal 
voids within an isotropic bone matrix using the solid 
modeling program PATRAN (PDA Engineering, Costa 
Mesa, CA). Although microstructure at this level also 
contains canaliculi, our interest was to estimate how 
lacunae could affect strain distributions within the 
bone matrix. Therefore, canaliculi were not included 
in the idealized model. The total RVE volume was 
50 X 50 X 50 p m  or .000125 mm3. Two ellipsoidal 
voids having major to minor radius ratios of 1.5:l 
(Fig. 7) and 2:l were analyzed. The voids occupied 
approximately 5% (1S:l ratio) and 7% (2:l ratio) of the 
total RVE volume, respectively. These lacunae volumes 
were chosen to approximately match results by Can6 
et a1.’ who found that osteocyte lacunae occupied about 
4% of the bone matrix volume in trabecular bone of 
canine proximal femurs. The bone matrix surrounding 
the lacunae were assumed to be isotropic with Young’s 
modulus E = 3.9 gigapascals (GPa) and Poisson’s ratio 
v = 0.3. Although bone matrix is most likely anisotropic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA representative digital image based finite element mesh of 
first-level trabecular bone microstructure. The region is 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmm on a side 
with voxel/element lengths of 50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp m .  

e 
Figure 7. Finite element mesh of an idealized osteocyte lacunae sitting 
within an isotropic bone matrix. Only half of the total RVE mesh is shown 
to illustrate the ellipsoidal geometry of the lacunae. 

due to its microstructure, nothing is known about the 
bone lamellar stiffness for trabecular bone. Therefore, the 
simplest isotropic model was used as an approximation 
for this preliminary study. The canine bone lamellar 
tissue stiffness magnitude was assumed to be similar 
to the canine tissue stiffness magnitude measured by 
Choi and G01dstein.l~ Homogenization analysis of the 
lacunar models yielded both the effective stiffness 
matrix and local structure matrix. The lacunar level 
strains were calculated by postprocessing the first-level 
microstructure strains with the local structure matrix from 
the lacunar model. Strains within one 50 X 50 X 

50-pm region from a trabecula were chosen to calculate 
the lacunar level strains. Lacunar orientations aligned with 
the first-level microstructure principal strain directions and 
at an arbitrary angle were analyzed. 

RESULTS 

First-Level Trabecular Microstructure 

The first-level trabecular microstructure leads to a com- 
pletely anisotropic zero-effective stiffness for the region 
analyzed: 

[Col = 

397.0 62.2 101.2 -2.6 2.4 -11.4 
246.1 67.2 -1.5 -0.4 -7.8 

478.8 -5.9 2.9 -3.5 
78.6 -7.1 0.9 

SYM 141.8 -3.8 
70.4 

where all stiffness values are given in megapascals (MPa). 
Under the uniaxial implant loads on the canine distal femur 
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as reported by Hollister and Gold~tein?~ the zero-level 
(whole bone level) principal strains for the region analyzed 
were zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

{ E O }  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [ -192 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp E }  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApE denotes microstrain. These zero-level strains 
engendered first-level maximum principal strains ranging 
from -1000 pE to over 7000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApE. Although maximum 
principal tissue level strains most frequently centered 
around the zero-level strain of 495 p E ,  a significant 
portion were over 1000 pE (Fig. 8). First-level minimum 
principal strains ranged between -7500 pE in compression 
to 2500 p E  in tension. 

-765 p E  

495 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Second-Level Trabecular Microstructure 

The architecture of the second-level microstructure had a 
very small influence on the first-level effective stiffness. 
Due to the ellipsoidal void, the effective stiffness was 
orthotropic. However, the effective stiffness constants for 
the bone matrix containing the lacunae were only 5% less 
than the assumed stiffness of the bone matrix itself. 

The first-level principal strains from the region used to 
calculate the lacunar level strains were 

The first-level principal strains in this case were all tensile. 
The strains engendered from the first level microstructure 
depended significantly on the lacunar orientation relative to 
first-level principal strain directions. Lacunae at an arbitrary 
orientation were subject to a nonuniform strain distribution 
while lacunae oriented along the principal strain directions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.3 i 

-0.001 0.001 0.003 0.005 0.007 

Maximum Principal Strain I 
0th Level Maximum 
Principal Strain 

Figure 8. Histogram of frequency at which a given level of strain occurs 
within a 4 X 4 X 4 m m  of first-level trabecular bone microstructure. The 
zero-level maximum principal strain of 495 pE led to strains ranging 
between -1000 and over +7000 pE in the trabecular tissue. 

exhibited a much more uniform maximum principal strain 
distribution (Fig. 9). In each case, the maximum principal 
level strains ranged between 782 and 2530 pE in tension. 
Lacunar orientation along principal strain directions also led 
to more uniform distributions of minimum principal strains 
(Fig. 10). Strains immediately around the lacunae rim were 
approximately double the average strain within the bone 
matrix. Note that since the idealized lacunae were modeled 
using smooth finite elements, the strain concentrations at 
the lacunae rim do not suffer from the digital image based 
mesh numerical oscillations. 

The effect of osteocyte lacunar ellipsoidal geometry on 
both effective stiffness and local strains was much less 
significant than osteocyte lacunar orientation. Increasing 
the ellipticity from 1.5/1 to 2/1 slightly increased the 
ratio between material stiffness matrix elements C22/C11 

from 1.01 to 1.04. Increasing the ellipticity increased the 
strain concentration effect slightly. The largest maximum 
principal strains increased from 2530 to 2690 p E  in tension 
when the axes ratio of the ellipsoid increase from 1.5/1 
to 2/1. Orienting the lacunae along the principal strain 
directions produced a more uniform strain distribution 
around the lacuna similar to the 1.5/1 ellipticity ratio. 

DISCUSSION 

This study has demonstrated the large strain variations 
going from the whole bone level down to the osteocyte 
lacunar level. Whole bone maximum principal strains of 
495 pE engendered osteocyte lacunar maximum principal 
strains ranging between 782 and 2530 pE. Each level of 
microstructure amplified the strain range from the next most 
macroscopic level. The more inhomogeneous the structure, 
the broader the amplification. The osteocyte lacunar level 
analysis suggests that strains will be highest around lacunae, 
or other holes such as canaliculi, within the bone matrix. 
Since large strain gradients exist around lacunae, osteocytes 
within lacunae would likely be more sensitive to changes 
in mechanical environment than cells on the bone surface. 
This fact would lend some credence to the hypothesis that 
osteocytes are strain sensors within the bone matrix. 

An intriguing finding was the fact that lacunae oriented 
along principal strain directions within the tissue produced 
a uniform strain distribution compared with other lacunar 
orientations. It has been hypothesized that different levels of 
bone structure are oriented along the next most macroscopic 
level principal strain or stress directions. Both van Meyer in 
1867 and Wolff in 1869, (reported in ref. 47), hypothesized 
that trabeculae were aligned along the zero-level principal 
stress directions within the whole bone. Martin and Burr4' 
hypothesized that osteons in cortical bone were formed 
along compressive principal strain directions. Martin and 
Burr suggested that strain gradients produced around newly 
forming osteons regulate the activity of osteoclasts and 
osteoblasts remodeling bone. Principal strain directions 
within the surrounding bone matrix may serve as a guide 
to direct bone deposition if the osteoblasts forming bone 
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Figure 9. 
along principal strain directions (right). Strains range between 782 and 2530 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApE for a first-level principal strain of 1325 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApE. 

Maximum principal strain distributions around idealized osteocyte lacunae for arbitrary lacunar orientation (left) and for lacunae oriented zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
seek to exist within the most uniform strain environment 
possible. It is interesting to note that Pedersen@ determined 
that orienting composite material microstructure along 
principal stress directions yields the most optimal structure. 
Principal strain directions may possibly provide a feedback 
mechanism directing bone cells to lay down bone matrix 
in an optimal manner. 

The accuracy of homogenization RVE analyses will be 
limited by a number of factors including RVE bound- 
ary condition assumptions, lack of experimental stiffness 
data on bone microstructural components, inaccuracies in 
thresholding digital images of bone microstructure, and 
numerical artifacts resulting from nonsmooth finite ele- 
ment meshes made from digital images. Displacement 
boundary condition assumptions will theoretically lead to 
an underprediction of both effective stiffness and local zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L 

strain. Hollister et al.29 found that digital image based ho- 
mogenization analysis of trabecular bone tended to under- 
estimate trabecular bone effective stiffness. Numerical 
artifacts have a limited effect at the boundary between 
dissimilar materials32 and may possibly be smoothed 
numerically a posteriori. Perhaps the biggest limiting factor 
encountered when analyzing bone microstructure is the 
uncertain relationship between measured stiffness and dig- 
ital image voxel density. Whereas theoretical assumptions 
may lead to inaccuracies on the order of 50% to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA70%,34 

uncertainties concerning experimental stiffness values may 
lead to inaccuracies well over 100% to 200%. Although 
definitive accuracy of less than 10% is out of the reach at 
present, digital image based homogenization analysis has 
been shown to give consistent predictions which can be 
used to test hypotheses concerning bone a d a p t a t i ~ n . ~ ~  

Figure 10. 
along principal strain directions (right). Strains range between -1410 and +218 p E .  

Minimum principal strain distributions around idealized osteocyte lacunae for arbitrary lacunar orientation (left) and for lacunae oriented 
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In conclusion, homogenization theory provides a system- 
atic mathematical framework which can be fit to analyze the 
multiple level structure of bone. When combined with digi- 
tal imaging of bone microstructure, homogenization theory 
can provide strain estimates for large numbers of specimens 
from experimental studies. Multiple level homogenization 
RVE based analysis can provide a bridge between whole 
bone and cell culture studies of adaptation by simulating 
load transfer from the whole bone level to the cell level. 
Cell level strain estimates from whole bone studies can then 
be used as input for cell culture experiments studying the 
biochemical pathways by which cells sense and respond to 
mechanical stimulus. 
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