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Abstract

A technique of local volume averaging is applied to obtain general equations which

depict mass and momentum transport of incompressible two-phase flow in porous me-

dia. Starting from coupled Stokes-Cahn-Hilliard equations for incompressible two-

phase fluid flow, the averaging is performed without oversimplifying either the porous

medium or the fluid mechanical relations. The resulting equations are Darcy’s law for

two-phase flow with medium parameters which could be evaluated by experiment.

Keywords: volume averaging, porous media, Stokes-Cahn-Hilliard equations,

Darcy’s law for two-phase flow

1. Introduction

The study of porous media flow is a delicate multiscale problem with many impor-

tant applications such as the petroleum industry, fuels cells and agriculture [15, 2, 32,

25, 22]. On one hand, a full problem without any approximations is not computational

tractable with the computational power so far. On the other hand, from an empirical

perspective the consideration of the full multiscale problem is very challenging due

to the difficulty of obtaining detailed information about the pore geometry and physi-

cal properties of the solid. These restrictions strongly call for systematic and reliable

approximations which capture the essential physics and elementary dynamic charac-

teristics of the full problem in an averaged sense. The widely used upscaling tech-

niques can be divided into two main categories. One is the multiple scale expansion

(or homogenization) technique [3, 8, 16], and the other is volume averaging method
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[18, 27, 28, 9]. The former method has a rigorous mathematical verification under

certain prerequisites. The latter one is more flexible and easy to implement.

Single phase flow in porous media is well understood in both Darcy’s and pore

scales. However, the modeling of two-phase flow in porous media are mainly based

on empirical approaches. As the research of transport processes for two-phase flow in

porous media advances to increasingly complex phenomena, the need becomes more

acute for a unified, rigorous, and general methodology for the development of macro-

scopic transport equations from accepted first principles. Very few works have been

done on this subject. In [20], Schmuck et al. derive a new effective macroscopic Cahn-

Hilliard equation in strongly heterogeneous domains and claim it is the first attempt of

upscaling the Cahn-Hilliard equation in such domains. And then they derive effective

macroscopic Stokes-Cahn-Hilliard equations for periodic immiscible two-phase flows

in porous media under the assumption of periodic flow and a sufficiently large Péclet

number in [21]. Daly and Roose [10] employ the multiple scale expansion technique

to upscale the coupled Stokes-Cahn-Hilliard system to the Richards’s equation. This

method can capture the hysteresis in the water release curve and link the macroscopic

properties of the porous media with the microscopic geometrical and material proper-

ties. Recently, Xu and Wang discuss the non-Darcy behavior of two-phase fluid flow

in a single channel in [31].

In this paper, we employ the volume averaging technique on the coupled Stokes-

Cahn-Hilliard system to obtain general equations for two-phase fluid flow in a deform-

ing porous medium, which is shown to reduce to Darcy’s law for two-phase flow in

the limit of slow flow. The rest of the paper is organized as follows. We introduce

the extended volume averaging technique that will be utilized in this work in section

2. In section 3, the general equations for two-phase fluid flow in a deforming porous

medium are derived from coupled Stokes-Cahn-Hilliard system by volume averaging

procedure. The derived model is discussed with some numerical studies in section 4.

Conclusions are put in section 5.

2. An Extended Volume Averaging Technique for a Three-Phase System

To develop averaged transport equations appropriate for incompressible two-phase

fluid flow in porous media, one must be very careful to define clearly all the quantities

that are being averaged and the volume over which the averaging is being performed.

For the present analysis a three-phase system (Figure 1) will be considered in which w
denotes the wetting fluid phase, o denotes the non-wetting fluid phase and β denotes

the solid phase. For the simplicity of illustration, the void volume occupied by fluid

flow is denoted by α.

The averaging process will lead to meaningful results provided the following length

scale constraints are satisfied [27, 28, 9, 19, 24].

lα << r0 << L,

where lα is a microscopic characteristic length over which significant variations in the

point quantities occur, r0 is a characteristic length of the averaging volume, and L is a

macroscopic characteristic length.
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In this work it is assumed that the averaging volume is independent of time and of

location in porous medium and has the proper characteristic length; the averaged equa-

tions obtained are independent of geometry of the averaging volume. The averaging

volume is composed of both the α (void volume) and the β phase such that

V = Vα(t) + Vβ(t),

where Vi(t) is the volume of the i phase in V and is a function of time as well as space.

Since the saturated porous medium are considered, the void volume are fully occupied

by wetting and non-wetting fluid phases, i.e.

Vα(t) = Vw(t) + Vo(t).

A volume average of some quantity ω in the averaging volume is called superficial

average and is defined by

⟨ωα⟩ =
1

V

∫

V

ωα dV, (2.1)

where ωα refers to the value of ω in the α phase and is defined to be zero in the β
phase. An average formed by integration over a specific phase is called an intrinsic

phase average and is defined by

⟨ωα⟩α =
1

Vα

∫

Vα

ωα dV. (2.2)

Note that with ωα equals to zero in the β phase, the equality given in (2.2) can be

written as

⟨ωα⟩α =
1

Vα

∫

V

ωα dV. (2.3)

If the fraction of the total volume occupied by the fluid phases (the α phase) is denoted

by εα = Vα(t)/V , then

⟨ωα⟩ = εα⟨ωα⟩α (2.4)

Analogous definitions apply to an intrinsic phase average taken over the w, o, β phases

respectively.

When a differential equation is averaged over a volume, terms arise which are av-

erages of derivatives. These terms are related to the derivatives of averages by the

following transport and averaging theorem:

Theorem 2.1. Transport theorem [29]

⟨∂ωα

∂t
⟩ = ∂

∂t
⟨ωα⟩ −

1

V

∫

Aαβ

ωαvα · nα dS. (2.5)
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Averaging theorem [30]

⟨∇ωα⟩ = ∇⟨ωα⟩+
1

V

∫

Aαβ

ωαnα dS. (2.6)

Modified averaging theorem [11]

⟨∇ωα⟩ = εα∇⟨ωα⟩α +
1

V

∫

Aαβ

ω̂αnα dS. (2.7)

Here Aαβ is the area of the α-β interface in V , vα is the velocity of the α-β interfacial

surface in V , nα is a unit normal vector along the α-β interface pointing outward from

the α phase, and ω̂α is the deviation of ωα from its intrinsic phase average defined by

ω̂α = ωα − ⟨ωα⟩α (2.8)

at a point in the α phase.

The above theorem and definitions form a framework within which the equations

describing transport in porous media can be derived. In the following sections, the cou-

pled Stokes-Cahn-Hilliard equations will be averaged, and the conditions under which

the averaged form reduces to Darcy’s law for two-phase fluid flow will be enumerated.

3. Equation Development

3.1. Coupled Stokes-Cahn-Hilliard equations

The coupled Stokes-Cahn-Hilliard system for two-phase fluid flow reads as follow-

ing:

∇ · σ + µ∇ϕ+ ρgext = ∇p, (3.1)

∂ϕ

∂t
+ u · ∇ϕ = M∆µ, (3.2)

∇ · u = 0, (3.3)

where p is the pressure, σ = ν(∇u + ∇u
T ) denotes the viscous part of the stress

tensor, ρ, ν are the fluid mass density and viscosity. ρgext is the external body force

density, and M is the phenomenological mobility coefficient; µ = −N∆ϕ− rϕ+uϕ3

is the chemical potential, and µ∇ϕ is the capillary force; N, r, u are the parameters

that are related to the interface profile thickness ξ =
√

N/r, the interfacial tension

γ = 2
√
2r2ξ/3u, and the two homogeneous equilibrium phases ϕ± = ±

√

r/u.

According to [17], the velocity along the solid boundary satifies the generalized

Navier boundary condition (GNBC),

βuτ = −ν(∂nuτ + ∂τun) + L(ϕ)∂τϕ, (3.4)

where L(ϕ) = N∂nϕ + ∂γωf (ϕ)/∂ϕ, γωf (ϕ) = − 1

2
γ cos θs sin(

π
2
ϕ), θs is the static

contact angle, un and uτ are the normal velocity and tangent velocity respectively,
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where n and τ are the unit normal and tangent vector of the slip boundary. In addition,

a dynamic boundary condition is imposed on the phase field variable ϕ at the slip

boundary,

∂ϕ

∂t
+ uτ∂τϕ = −Π(L(ϕ)), (3.5)

where Π is a phenomenological parameter and should be positive. And also, the fol-

lowing non-penetration boundary conditions are used on solid boundaries.

un = u · n = 0, ∂nµ = 0. (3.6)

Following [17], we scale length by a reference length L, velocity by the reference

velocity V , time by L/V and pressure by V/L, and the following dimensionless equa-

tions are obtained.

ν∆u+ Bµ∇ϕ = ∇p, (3.7)

∂ϕ

∂t
+ u · ∇ϕ = Ld∆µ, (3.8)

∇ · u = 0. (3.9)

Here p is the pressure, u is the velocity, ν is the viscosity, t is the time, ϕ is the phase

field variable. Ld is the phenomenological mobility coefficient; µ is the chemical po-

tential and has the expression that µ = −ϵ∆ϕ−ϕ/ϵ+ϕ3/ϵ; µ∇ϕ is the capillary force;

ϵ is the ratio between dynamic interface thickness ξ and characteristic length L. Notice

that we have neglected external body force here, which can be easily incorporated into

the above equations. The boundary conditions at solid walls are,

uslip
τ

Ls

= −ν(∂nuτ + ∂τun) + BL(ϕ)∂τϕ, (3.10)

ϕt + uτ∂τϕ = −VsL(ϕ), (3.11)

un = 0, (3.12)

∂nµ = 0, (3.13)

where L(ϕ) = ϵ∂nϕ −
√
2

6
π cos θs cos(

π
2
ϕ). Five dimensionless parameters appear in

the above equations. They are (1) Ld = 3Mγ/2
√
2V L2, (2) B = 3γ/2

√
2V, (3) Vs =

3γΠL/2
√
2V, (4) Ls = 1/β(ϕ)L, which is the ratio of the slip length ls(ϕ) = 1/β(ϕ)

to L. (5) ϵ, which is the ration between interface thickness ξ and characteristic length

L.

Since the fluid flow in porous media usually transport slowly, a stationary Stokes

equation (3.7) is used to couple with the Cahn-Hilliard equation (3.8) to depict the two-

phase flow in porous media. The incompressible flows are considered in this work,

so the continuity equation reduces to (3.9). The GNBC (3.10–3.13) are used on the

fluid-solid interface. The boundary condition (3.10) means the slip velocity on the

fluid-solid interface is proportional to the tangential force acting on fluids. The first

term on the righthand side of (3.10) is the tangential component of stress tensor and

5



the second term is uncompensated Young stress [17]. Boundary condition (3.11) is the

evolution equation of the phase function ϕ on the fluid-solid interface . (3.12) means

the solid phase is impermeable. (3.13) means the diffusion along the normal direction

on the fluid-solid interface is neglected, which ensures that the mass of wetting and

non-wetting phases are conserved throughout the simulation.

Before we start the averaging process, the macroscopical variables are defined as

follows:

Definition 3.1. The superficial average velocity for wetting fluid (w) phase and non-

wetting fluid (o) phase are defined as

uw = ⟨u1 + ϕ

2
⟩, uo = ⟨u1− ϕ

2
⟩.

The intrinsic average pressure for wetting fluid (w) phase and non-wetting fluid (o)

phase are defined as

pw = ⟨p1 + ϕ

2
⟩α, po = ⟨p1− ϕ

2
⟩α.

The saturation of wetting fluid (w) phase and non-wetting fluid (o) phase are defined

as

Sw = ⟨1 + ϕ

2
⟩α, So = ⟨1− ϕ

2
⟩α.

Remark 3.2. The physical meaning of saturation is the portion of phase volume in the

void volume. For example, Sw = Vw/Vα, so the above definition is natural. The use

of the intrinsic average pressure results from the fact that pw and po are the pressures

that one might measure with a typical probe, or that one might be able to specify at a

boundary. The use of the superficial average velocity follows from the convenient form

of the continuity equation for incompressible flow.

3.2. Upscale the continuity equation

The superficial average of the continuity equation (3.9) for the α or fluid phase is

⟨∇ · u⟩ = 0.

Applying (2.6), the averaging theorem, to the right-hand side term of the above equa-

tion yields

⟨∇ · u⟩ = ∇ · ⟨u⟩+ 1

V

∫

Aαβ

u · nα dS.

Applying the non-penetration boundary conditions (3.12) on the fluid-solid interface,

we can get the averaged divergence free condition.

∇ · ⟨u⟩ = 0. (3.14)
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3.3. Homogenization of the Cahn-Hilliard equation

For Cahn-Hilliard equation, instead of using (3.8) directly, we average the follow-

ing origin form of (3.8).

⟨∂ϕ
∂t

⟩+ ⟨∇ · uϕ⟩ = ⟨Ld∆µ⟩. (3.15)

Application of the transport theorem (2.5) to the first term in this expression we get

⟨∂ϕ
∂t

⟩

=
∂

∂t
⟨ϕ⟩ − 1

V

∫

Aαβ

ϕvα · nα dS

=
∂

∂t
⟨ϕ⟩,

(3.16)

where vα = 0, since the fluid-solid interface is static. Using the averaging theorem

(2.6) to average the third term in equation (3.15), we have

⟨M∆µ⟩
=M⟨∇ · ∇µ⟩

=M∇ · ⟨∇µ⟩+ M

V

∫

Aαβ

∇µ · nα dS

=M∇ · ∇⟨µ⟩+ M

V
∇ ·

∫

Aαβ

µnα dS +
M

V

∫

Aαβ

∇µ · nα dS

=M∇ · ∇⟨µ⟩,

(3.17)

where the assumption ϕ is sufficiently smooth (at least fourth order continuous), thus

µ is sufficiently smooth, is used and the boundary condition (3.13) is applied on the

fluid-solid interface.

For the wetting phase, the expression (3.16) can be rewritten as

∂

∂t
⟨ϕ⟩

=2εα
∂

∂t
⟨1 + ϕ

2
⟩α

=2εα
∂

∂t
Sw.

(3.18)
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The second term in (3.15) can be expressed as

⟨∇ · (uϕ)⟩
=∇ · ⟨uϕ⟩
=∇ · ⟨u+ uϕ⟩

=2∇ · ⟨u1 + ϕ

2
⟩

=2∇ · uw,

(3.19)

where the macroscopic divergence free condition (3.14) is used.

Thus substituting expressions (3.17), (3.18) and (3.19) into equation (3.15), the

macroscopic transport equation for wetting fluid phase is expressed as

εα
∂Sw

∂t
+∇ · uw =

Ld

2
∆⟨µ⟩. (3.20)

Analogously, the macroscopic transport equation for non-wetting fluid phase has the

following expression:

εα
∂So

∂t
+∇ · uo = −Ld

2
∆⟨µ⟩. (3.21)

3.4. Homogenization of the Stokes equation

The phase average of Stokes equation (3.7) for the fluid phase is

⟨ν∆u⟩+ ⟨Bµ∇ϕ⟩ = ⟨∇p⟩. (3.22)

Application of the averaging theorem (2.6) to the first term in (3.22) yields

⟨ν∆u⟩

=ν∇ · ⟨∇u⟩+ ν

V

∫

Aαβ

∇u · nα dS

=ν∇ · (∇⟨u⟩+ 1

V

∫

Aαβ

unα dS) +
ν

V

∫

Aαβ

∇u · nα dS

=
ν

V

∫

Aαβ

∇u · nα dS,

(3.23)

where the divergence free equation (3.9) has been used and in [23], Slattery has shown

analytically and numerous experimental investigations confirm that the term ν∆⟨u⟩
can be considered negligible in slow flow.

The integrand of the dominant term

ν

V

∫

Aαβ

∇u · nα dS

is the viscous stress of the solid on the fluid phase at a point on the surface, and the
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expression as a whole is the phase average viscous drag of the solid on the fluid. It

is reasonable to assume that for a Newtonian fluid this drag depends on the difference

between solid and fluid phase average velocities and that if macroscopically there is no

relative motion, the net drag will be zero. Mathematically, this is expressed as

ν

V

∫

Aαβ

∇u · nα dS = νT (⟨uβ⟩ − ⟨u⟩) (3.24)

and

T (0) = 0, (3.25)

where ⟨uβ⟩ is averaged velocity in the solid phase, thus ⟨uβ⟩ = 0. By analogy with a

procedure used by [30] for the evaluation of the mass transfer tortuosity function, the

integral T can be expanded in a Taylor series about the point ⟨uβ⟩ − ⟨u⟩ = 0 to obtain

T = a1(⟨uβ⟩ − ⟨u⟩) + a2 : (⟨uβ⟩ − ⟨u⟩)(⟨uβ⟩ − ⟨u⟩) + · · · (3.26)

where ai are the coefficients in the Taylor expansion with ai being i + 1th rank ten-

sors. If the higher-order terms in this series are neglected and the expression for T is

substituted back into (3.24), the integral becomes

ν

V

∫

Aαβ

∇u · nα dS = νa1(⟨uβ⟩ − ⟨u⟩) (3.27)

In the coupled Stokes-Cahn-Hilliard system, µ∇ϕ is the capillary force density.

Strictly speaking, it should be the gradient of capillary force. It has nonzero values

only in the diffuse interface region and it always equals to zero in the bulk of phase.

The interface thickness ξ is a small quantity and in the sharp interface limit, i.e. ξ → 0,

the limit of the gradient function is a delta function. This explains why we usually

call µ∇ϕ capillary force in the coupled Stokes-Cahn-Hilliard system. Anyway, it is

reasonable to assume the second term in (3.22) to be

⟨µ∇ϕ⟩ = ∇pc, (3.28)

where pc is the capillary pressure which equals to the pressure difference of two fluid

phases, i.e., pc = po − pw.

Applying the modified averaging theorem (2.7) to the third term in (3.22), we get

⟨∇p⟩ = εα∇⟨p⟩α +
1

V

∫

Aαβ

p̂nα dS. (3.29)

To complete the analysis, a constitutive relation for the remaining surface integral in

(3.29) must be developed. If the function p is independent of space, ⟨p⟩α will be

independent of space, and therefore ∇⟨p⟩α as well as p̂ will be zero. Alternatively one

could say that if p̂ is zero, ∇⟨p⟩α is zero. For this case, the integral in (3.29) will be

zero. Similarly p̂ may be nonzero perturbations around values of ⟨p⟩α such that ∇⟨p⟩α
still equals zero and p̂ is also zero. These observations suggest that the surface integral
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is nonzero only to the extent that ∇⟨p⟩α is nonzero. Thus one may express the integral

as

1

V

∫

Aαβ

p̂nα dS = r(∇⟨p⟩α) (3.30)

and

r(0) = 0, (3.31)

where r depends also on medium characteristics and possibly temperature.

A Taylor series expansion for r around the point r(0) yields

1

V

∫

Aαβ

p̂nα dS = b1∇⟨p⟩α + b2 : ∇⟨p⟩α∇⟨p⟩α + · · · (3.32)

where bi are the coefficients in the Taylor expansion with bi being i+1th rank tensors.

Insertion of the above relation together with (3.27), (3.28) and (3.29) into (3.22) yields

νa1(⟨uβ⟩ − ⟨u⟩) + B∇pc = εα∇⟨p⟩α + b1∇⟨p⟩α. (3.33)

Using the facts that ⟨u⟩ = uw + uo, ⟨p⟩α = pw + po and pc = po − pw, the above

equation can be rewritten as

−νa1(uw + uo) = (εαI+ b1 + BI)∇pw + (εαI+ b1 − BI)∇po, (3.34)

where I is the identity matrix. In porous media, it is natural to assume the flow of

wetting/non-wetting phase is driven by the pressure difference of wetting/non-wetting

phase. Thus we can split above equation into the following two equations

uw = − (εαI+ b1 + BI)(a1)−1

ν
∇pw,

uo = − (εαI+ b1 − BI)(a1)−1

ν
∇po.

(3.35)

Define the permeability as

K = (εαI+ b1)(a1)
−1, (3.36)

and define the relative permeability as

Krw = (εαI+ b1 + BI)(εαI+ b1)
−1,

Kro = (εαI+ b1 − BI)(εαI+ b1)
−1.

(3.37)
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Then equations (3.35) can be rewritten as

uw = −Krw

ν
K∇pw,

uo = −Kro

ν
K∇po,

(3.38)

which are the Darcy’s law for two-phase incompressible fluid flow in porous media.

4. Discussion on Derived Model for Two-phase Flow in Porous media

Summarize the equations derived in section 3, we get the following system for

two-phase incompressible flow in porous media.

εα
∂Sw

∂t
+∇ · uw =

Ld

2
∆⟨µ⟩, (4.1)

εα
∂So

∂t
+∇ · uo = −Ld

2
∆⟨µ⟩, (4.2)

uγ = −Krγ

ν
K∇pγ , γ = w, o (4.3)

Sw + So = 1, (4.4)

pc = po − pw. (4.5)

(4.1) and (4.2) are the mass balance equations for each of the fluid phases. The volu-

metric velocity uα is governed by the Darcy’s law (4.3). The constraint for the satu-

rations is (4.4) and the two pressures are related by a given capillary pressure function

(4.5).

Comparing to the empirical model of two-phase flow adopted in oil industry [7],

εα
∂Sγ

∂t
+∇ · uγ = 0, γ = w, o,

uγ = −Krγ

ν
K∇pγ , γ = w, o,

Sw + So = 1,

pc(Sw) = po − pw,

(4.6)

the differences lie on two aspects. First, the diffusion term ±Ld

2
∆⟨µ⟩ in mass balance

equations (4.1) and (4.2) are omitted by the traditional model. Second, (3.28) is as-

sumed by us from the physical concept, where pc is a function of Sw in (4.6). We will

discuss these two aspects with numerical examples in the following.

4.1. Deducing Richards’ equation from the derived model

In this subsection, the Richards’s equation which governs the flow of liquids in

unsaturated porous mediums will be deduced from the homogenized equations we have

derived.
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We choose the saturation of wetting phase and the pressure of non-wetting phase

as main variables. Then we introduce the phase mobility functions

λγ(x, Sw) =
Krγ

ν
, γ = w, o, (4.7)

and the total mobility

λ(x, Sw) = λw + λo.

The fractional flow functions are defined by

fγ(x, Sw) =
λγ

λ
, γ = w, o. (4.8)

Notice the fact

⟨u⟩ = uw + uo, (4.9)

where ⟨u⟩ is the total velocity. From equation (3.34), we have

uw + uo = −Krw

ν
K∇pw − Kro

ν
K∇po. (4.10)

Equation (4.10) can be reformulated as

⟨u⟩ = −K(λ(Sw)∇po − λw(Sw)∇pc). (4.11)

Apply (4.5) and (4.11) to (4.3) with γ = w to have the expression of wetting phase

velocity

uw = −Kλw∇pw

= Kλw∇pc −Kλfw∇po

= K(λw + λo)fw∇pc −Kλfw∇po

= fw⟨u⟩+Kλofw∇pc.

(4.12)

Substituting (4.12) into (4.1), we have

εα
∂Sw

∂t
+∇ · {Kλofw∇pc + fw⟨u⟩} =

Ld

2
∆⟨µ⟩. (4.13)

So far, in the models used for simulating two-phase flows in porous mediums, the

capillary pressure is usually a function of saturation. For instance, in Brooks-Corey

model [4, 12],

pc = pd

(

Sw − Srw

1− Sro − Srw

)
1

ζ

, (4.14)

where pd is a threshold pressure; ζ is the parameter associated with pore size distribu-

12



tion; Srw and Sro are residual saturation of wetting and non-wetting phase respectively.

In such case, using uw = Kλw∇pc −Kλfw∇po, equation (4.13) can be rewritten as

εα
∂Sw

∂t
+∇ · {Kλw

dpc
dSw

∇Sw −Kλw∇po} =
Ld

2
∆⟨µ⟩. (4.15)

We have reached the mixed form of Richards’ equation (4.15). The only difference is

there is a term Ld

2
∆⟨µ⟩ on the righthand side of equation (4.15) and it will be discussed

with numerical examples in next subsection.

4.2. Numerical examples

4.2.1. Example 1: coalescence of two interacting bubbles

Here we simulate the coalescence of two interacting bubbles. The computation-

al domain is [x, y] = [0, 1.0] × [0, 1.0] and the mesh size of the triangular mesh is

h = 0.02. The time step is dt = 0.1h = 0.002. The coupled Stokes-Cahn-Hilliard e-

quations (3.7–3.9) are simulated with finite element methods [1, 5, 6, 13, 14]. In detail,

The Stokes equation (3.7) is solved by P2-P1 finite elements and the Cahn-Hilliard

equation (3.8) is solved by a convex splitting technique. The boundary conditions

(3.10–3.13) are assigned on upper and lower boundaries and periodic boundary con-

ditions are used on left and right boundaries, so that the computational domain can

be considered as a representative elementary volume (REV) in a channel with infinite

length in porous media. In Figure 2, the snapshots of phase variable ϕ are shown at

eight different times.

We then calculate the averaged chemical potential ⟨µ⟩ and averaged gradient of

capillary force ⟨µ∇ϕ⟩ in this REV, which are shown in Figure 3 and 4, respectively.

When the system approaches the equilibrium state, ⟨µ⟩ remains a constant and ⟨µ∇ϕ⟩
converges to zero. In the field of fluid mechanics in porous medium, a quasi-static

assumption is usually used, which means the system is considered as in the equilibrium

state at every time step. In macro-scale, this REV can be seen as a single element. In

this example, since ⟨µ⟩ remains a constant, thus ±Ld

2
∆⟨µ⟩ reduce to zero in macro-

scale. By definition, Sw remains a constant in this REV. In the traditional model, pc is

a function of Sw, so pc is a constant and ∇pc is zero. This coincides with the numerical

results shown in Figure 4 when a quasi-static assumption is made.

4.2.2. Example 2: a droplet on the solid surface

Example 2 simulates a droplet on the solid surface. The computational domain is

[x, y] = [0, 1.0] × [0, 1.0] and the mesh size of the triangular mesh is h = 0.02. The

time step is dt = 0.1h = 0.002. The boundary conditions (3.10–3.13) are assigned on

upper and lower boundaries and periodic boundary conditions are used on left and right

boundaries. In Figure 5, the snapshots of phase variable ϕ are shown at eight different

times. Since the static contact angle is set to be 2π
3

, the droplet is deformed under the

surface tension until the contact angle reaches the static contact angle.

Due to the boundary conditions, the computational domain can be considered as a

REV in a channel with infinite length in porous media. We then calculate the averaged

chemical potential ⟨µ⟩ and averaged gradient of capillary force ⟨µ∇ϕ⟩ in this REV,

which are shown in Figure 6 and 7, respectively. ⟨µ⟩ approaches a constant when the
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system approaches the equilibrium state. However, ⟨µ∇ϕ⟩ doesn’t converges to zero

in this case. That is to say ∇pc is not zero although Sw is a constant. When there

a contact line (contact point in 2D), the traditional capillary pressure model such as

(4.14) is no longer strictly valid. This illustrates that the capillary pressure is a function

of not only saturation of wetting phase but also other factors. As a consequence, we

recommend Equation (4.13) to be the general governing equation for two-phase flow

in porous media instead of the traditional Richards’ equation (4.15).

4.2.3. Example 3: Two-phase fluid flows passing through the Taylor brush configura-

tion

Example 3 simulates two-phase fluid flows pass through the Taylor Brush Config-

uration [26]. The computational domain is shown in Figure 8. The mesh size of the

triangular mesh is h = 0.02. The time step is dt = 0.1h = 0.002. The static contact

angle is 2π
3

. A parabolic velocity is imposed on the left boundary and the natural out-

flow boundary condition is imposed on the right boundary. The boundary conditions

(3.10–3.13) are assigned on all the other boundaries, i.e. GNBC is imposed on all the

fluid-solid interface. The computational domain is divided into 32 elementary volumes

which is also shown in Figure 8. This example can be consider as two-phase fluid flows

passing through a coupled free flow region and porous media region. Similar cases can

be found in fractured or shale reservoirs, industry filters and so on.

Different from the previous two examples, there is no equilibrium state of this

example. The snapshots of phase variable ϕ at eight different times are shown in Figure

9. We calculate the averaged chemical potential ⟨µ⟩ on every elementary volume and

averaged chemical potential ⟨µ⟩ on elementary volume 7, 15, 19, 27 are shown in

Figure 10. We can see that ⟨µ⟩ varies a lot near the fluid-fluid interface. Then ∆⟨µ⟩ on

elementary volume i is calculated by a central difference scheme

∆⟨µ⟩i =
⟨µ⟩i−4 − 2⟨µ⟩i + ⟨µ⟩i+4

(δx)2
+

⟨µ⟩i−1 − 2⟨µ⟩i + ⟨µ⟩i+1

(δy)2
,

i = 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27,

where δx = δy = 0.25. ∆⟨µ⟩ on elementary volume 7, 15, 19, 27 are shown in Figure

11. It is obvious that when two-phase fluid flows pass through the interface between

the free flow region and the porous media region, the term ∆⟨µ⟩ can’t be omitted.

5. Conclusions

We derive a model for two-phase incompressible flow in porous media by upscaling

the Stokes-Cahn-Hilliard system with local volume averaging technique. A comparison

between the derived model and the commonly used empirical model is made and the

differences are discussed with a numerical example. The derived model reduces to the

traditional model under the quasi-static assumption. However, there are some situations

that the diffusion term ±Ld

2
∆⟨µ⟩ in mass balance equations are not negligible, such as

two-phase flow passing through the interface between matrix and fracture in a fractured

or shale reservoir.
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Figure 1: A schematic averaging volume comprising a w phase, an o phase and a β phase
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Figure 2: Snapshots of φ calculated in the computational domain [0, 1.0]× [0, 1.0] by time step dt = 0.1h
at time t = 0.0040, 0.0200, 0.0400, 0.0600, 0.0800, 0.1000, 0.1400, 1.0000.
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Figure 3: Averaged chemical potential
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Figure 4: Averaged partial derivatives of capillary force
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Figure 5: Snapshots of φ calculated in the computational domain [0, 1.0]× [0, 1.0] by time step dt = 0.1h
at time t = 0.0040, 0.0200, 0.0400, 0.0600, 0.0800, 0.1000, 0.1400, 1.0000.
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Figure 6: Averaged chemical potential

Figure 7: Averaged partial derivatives of capillary force
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Figure 8: The computational domain of example 3: Taylor brush configuration. The triangular mesh is

illustrated in green color. The whole computational domain is divided into 32 elementary volumes and

labelled with red numbers.
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Figure 9: Snapshots of φ calculated in the Taylor brush configuration by time step dt = 0.1h at time

t = 0.0040, 0.2000, 0.3000, 0.4000, 0.5000, 0.6000, 0.7000, 0.8000.
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Figure 10: Averaged chemical potential on elementary volume 7 (up left), 15 (up right), 19 (down left), 27

(down right).

Figure 11: ∆⟨µ⟩ on elementary volume 7 (up left), 15 (up right), 19 (down left), 27 (down right).
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