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Abstract A three-dimensional (3D) homogenized limit

analysis model for the determination of collapse loads of

out-of-plane loaded FRP reinforced masonry walls is presen-

ted. Homogenization is performed on unreinforced masonry,

whereas strips are applied at a structural level on the already

homogenized material. Unreinforced masonry strength

domain is obtained by means of a compatible approach in

which bricks are supposed infinitely resistant and joints are

reduced to interfaces with frictional-cohesive behavior and

associated flow rule. A sub-class of elementary deformation

modes is a-priori chosen in the representative volume ele-

ment (RVE), mimicking typical failures due to joints cra-

cking and crushing. Masonry strength domains are obtained

equating power dissipated in the heterogeneous model with

power dissipated in a fictitious homogeneous macroscopic

plate. Afterwards, an upper bound FE limit analysis code

is implemented to study entire unreinforced and FRP rein-

forced walls out-of-plane loaded. For unreinforced masonry,

rigid infinitely resistant wedge-shaped 3D elements are used.

The utilization of 3D elements is necessary to simulate the

flexural strength increase induced by the introduction of FRP

strips with negligible thickness, which are modeled by means

of triangular rigid elements. FRP strips contribution is taken

into account assuming that masonry and FRP layers interact

by means of interfacial tangential actions. Internal power dis-

sipation is possible at the interfaces between wedge adjoining

elements (masonry failure), at the interfaces between trian-

gular FRP and wedge masonry elements (delamination) and

between triangular FRP adjoining elements (FRP failure).

Two different structural examples are presented to validate
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the numerical model, namely a FRP reinforced masonry wall

in cylindrical flexion and a set of masonry walls with ope-

nings in two-way bending. Results obtained with the model

proposed fit well both experimental and numerical data avai-

lable for all the cases analyzed, meaning that the procedure

proposed can be used in building practice.

Keywords Masonry · FRP strips · Limit analysis ·
Out-of-plane loads

1 Introduction

Unreinforced masonry structures comprise a significant

amount of the building stock in many countries worldwide,

but their behavior under out-of-plane loads shows a low capa-

city to withstand to horizontal actions. Out-of-plane failures

are mostly related to seismic and wind loads and the lack of

out-of-plane strength is a primary cause of failure in different

forms of masonry, particularly in the case of historical buil-

dings (see for instance [1]). Consequently, many historical

masonry structures require retrofitting to both comply with

existing codes and improve out-of-plane strength.

Conventional retrofitting techniques, such as external rein-

forcement with steel plates, surface concrete coating and

welded mesh, have proven to be impractical, time expen-

sive and add considerable mass to the structure (which may

increase earthquake-induced inertia forces). In this context,

the utilization of “Fiber Reinforced Polymer” (FRP) strips as

reinforcement instead of conventional methods is receiving

growing attention in the scientific community, for the low

invasiveness, durability and good performance at failure.

Despite the great importance and the increasing diffu-

sion of such innovative strengthening technique, few nume-

rical models devoted to the prediction of the ultimate load
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bearing capacity of FRP-reinforced masonry walls out-

of-plane loaded [2,3] are nowadays at disposal.

In fact, numerical tools, to be reliable, should take into

account several distinctive aspects related to both masonry

and FRP reinforcement behavior at failure, such as masonry

anisotropy [4,5], closely related to the constituent materials

(mortar and units) and to the bond pattern, masonry limi-

ted compressive strength, and the fragile delamination of

the FRP from the support [6], which depends on a number

of concurring factors, among the others the most important

being bricks strength (CNR-DT 200 [7]).

Furthermore, when dealing with out-of-plane actions, the

role of vertical loads on both ductility and out-of-plane ulti-

mate strength has not yet been sufficiently understood and

brings additional complexity to the structural analyses.

Laboratory tests conducted in the past (see for instance

[8,9] etc.) on brick masonry walls subjected to lateral loads,

have shown both that failure takes place along a well-defined

pattern of lines and that, in many cases, fractures occur at

the interface between bricks and mortar. This suggests the

utilization of the yield line theory to have a reliable prediction

of both collapse loads and failure mechanisms without an

excessive computational effort.

At present, the main problem in the development of accu-

rate stress analyses for masonry structures is the definition

and the use of suitable material constitutive laws. As a rule,

three different approaches are possible, usually known as

macro-modeling, micro-modeling and homogenization (see

for instance [5,10–17]). While in micro-modeling (e.g. [16,

17]) a separate discretization of bricks and mortar (usually

reduced to interfaces) is assumed, macro-models [18,19]

substitute the heterogeneous material with a fictitious ani-

sotropic homogeneous one, thus needing much less time to

be performed in complex non-linear analyses but requiring

a calibration of the model with expensive experimental data

fittings. Homogenization (e.g. [12,14,20]) may be regarded

as a compromise between micro- and macro-modeling, since

macroscopic masonry behavior is obtained solving suitable

boundary values problems on the unit cell, thus taking into

account constituent materials mechanical properties and geo-

metry only at the micro-scale.

As well known, limit analysis (a valuable alternative to

expensive non-linear FE simulations) has been widely used

for the analysis at failure of masonry structures [12–14],

because it requires only a reduced number of material para-

meters, providing limit multipliers of loads, failure mecha-

nisms and, at least on critical sections, the stress distribution

at collapse.

In this framework, with the aim of reproducing FRP-

strengthened masonry panels behavior when loaded out-of-

plane, a mesoscopic homogenization model is presented.

Masonry unreinforced strength domain is obtained by

means of a compatible kinematic approach [10,21] in which

joints are reduced to interfaces with a cohesive frictional

behavior and bricks are supposed infinitely resistant. Subse-

quently, FRP strips are applied on the already homogenized

material.

Masonry skeleton is represented by a three-dimensional

(3D) discrete system of blocks interacting through inter-

faces (the mortar joints). Bricks are supposed infinitely resis-

tant, whereas for joints a Mohr Coulomb failure criterion

with tension cut-off and compressive limited strength is

adopted.

A full description of the model can be given considering

a representative volume constituted by a generic brick with

its 6 neighbors. A sub-class of possible elementary defor-

mation modes acting in the unit cell is a priori chosen in

order to describe joints cracking under normal and tangen-

tial actions. Finally, power dissipated in the discrete model

is equated to that dissipated in a continuum macroscopic 2D

equivalent plate (identification). Since internal dissipation

can take place only at the interface between bricks, a simple

constrained minimization problem in few variables is obtai-

ned. Macroscopic masonry failure surfaces are numerically

evaluated as a function of the macroscopic in-plane actions

(shear and normal actions) and out-of-plane shear.

Macroscopic strength domains so obtained are then imple-

mented in a novel upper bound FE limit analysis code for

the analysis at collapse of entire FRP reinforced walls out-

of-plane loaded. Rigid infinitely resistant wedge-shaped 3D

elements are used to model masonry at structural level. The

utilization of 3D elements is necessary to simulate the flexu-

ral strength increase obtained by the introduction of FRP

strips with negligible thickness. On the other hand, wedge-

shaped elements are utilized with the aim of reproducing

possible diagonal failure occurring on masonry plates, due

to the development of cracks (caused by bending and torsion)

which zigzag between contiguous bricks.

FRP strips are modeled by means of triangular rigid

elements. Masonry and FRP layers interact by means of

interfacial tangential actions between triangles (FRP) and

wedges (masonry). Furthermore, a possible limited tensile

strength for the FRP reinforcement is considered at the

interfaces between adjoining triangular elements. In this way,

both delamination phenomenon at the FRP/masonry interface

and FRP tensile failure may be taken into account. Despite

the fact that delamination is a typical fragile phenomenon,

an equivalent ultimate shear strength for FRP/masonry inter-

face is assumed in the framework of limit analysis, follo-

wing formulas provided by the recent Italian norm

CNR-DT 200 [7] for the peak delamination strength. Further-

more, it has to be emphasized that the limit analysis approach

here proposed is based on the use a perfectly-plastic mate-

rial response for masonry and for the FRP/masonry inter-

face, i.e. softening effect and limited ductility cannot be

considered.
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Fig. 1 Equivalent

homogeneous model used for

the analysis of FRP reinforced

masonry. a micro-scale.

b macro-scale
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Fig. 2 Unreinforced masonry

kinematic model. Two adjacent

bricks (A, centroid CA and B,

centroid CB) connected by

means of a mortar interface I

where plastic dissipation occurs.

For each brick three velocities

unknowns and three rotation

rates must be introduced in the

optimization problem at a cell

level (infinite strength of bricks

hypothesis)

t
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In order to validate the numerical model proposed, two

different structural examples are analyzed, namely a FRP

reinforced masonry wall in cylindrical flexion already

studied experimentally and theoretically in [22] and a set

of masonry walls with openings in two-way bending, experi-

mentally tested by Chong et al. [23] in absence of FRP streng-

thening. Results obtained with the model proposed fit well

both experimental (where available) and literature numerical

data, meaning that the procedure proposed can be used by

practitioners for an inexpensive evaluation of ultimate loads

in presence of FRP strips.

2 The mesoscopic model

In what follows, the introduction of FRP strips on masonry

surface (Fig. 1) is treated by means of a simplified two steps

approach.

In the first step, here denoted as micro-scale (Fig. 1a),

masonry is supposed unreinforced and homogenization is

used to obtain brickwork macroscopic strength domain.

In the second step, denoted as macro-scale (Fig. 1b), FRP

reinforcement strips are introduced on the already homoge-

nized masonry material obtained from the first step and full

FE structural analyses are performed on entire walls.

2.1 Micro-scale: unreinforced masonry

In the model, bricks are supposed infinitely resistant, whereas

for joints a Mohr Coulomb failure criterion with tension cut-

off and compressive limited strength is adopted. In this way,

a full description of the model can be given at the micro-scale

(see Fig. 2) considering a representative volume constituted

by a generic brick interacting with its six neighbors. A sub-

class of possible elementary deformation modes acting in the

unit cell is a priori chosen with the aim of describing joints

cracking. Then, a numerical procedure of identification bet-

ween the 3D discrete system and a continuum 2D equivalent

model is proposed, equating internal dissipation of the two

models.

The two-steps procedure presented results particularly

efficient from a numerical point of view, permitting to ana-

lyze entire masonry walls without a distinct discretization

of joints and bricks, thus (a) requiring a very limited num-

ber of optimization variables to be performed in comparison

with standard heterogeneous approaches and (b) permitting

in principle the analysis of entire retrofitted buildings.

Finally, it is worth noting that the homogenization

approach proposed results somewhat different with respect

to the original formulation presented in [10] for unreinfor-

ced masonry, because rigid 3D wedge elements are used at

123



620 Comput Mech (2009) 43:617–639

Fig. 3 Jump of velocities and

stress field acting on an interface

I between contiguous bricks A

and B

P=[ ; ]
221

B
v (P)

vA (P)

Brick A

Brick B 

Interface I 

[v  ( )]

B
t ( )

13

23

33

2

t  ( )
A

1
1

a structural level for brickwork. Such a choice (a) requires

to have at disposal only in-plane and shear homogenized

masonry failure surfaces, thus limiting the computational

effort both at a cell and structural level, (b) allows to well

reproduce failures induced by inclined yield lines and (c) per-

mits a simple evaluation (otherwise impossible) of the effec-

tive strengthening effect induced by a thin (highly resistant)

strip placed at a distance equal to masonry semi-thickness

with respect to brickwork middle plane.

2.1.1 Heterogeneous model

The motion of a generic brick A, see Fig. 2, is described as

a function of its centroid (C A) velocity vC A
(components

vC A

xx , vC A

yy and vC A

zz ) and of rotation rates vector �A (com-

ponents �A
xx ,�

A
yy and �A

zz).

When two contiguous bricks A and B are considered,

the velocity of a generic point P in a position ξ ∈ I belonging

respectively to A and B (where I indicates the common

interface between the two bricks, Fig. 3) is:

vA(ξ) = vC A + M(�A)(ξ − CA)

vB(ξ) = vC B + M(�B)(ξ − CB) (1)

where M(�) is the following 3 × 3 skew matrix:

M(�) =

⎡

⎣

0 −�zz �yy

�zz 0 −�xx

−�yy �xx 0

⎤

⎦ (2)

In Eq. (1) the position ξ of point P is evaluated referring

to a local frame (ξ1 ξ2) with origin on the centroid on the

interface, see Fig. 3. Jump of velocity [v(ξ)] between bricks

A and B in a point ξ ∈ I is expressed by:

⌊v(ξ)⌋ = vB(ξ) − vA(ξ) = vC A − vC B

+ M(�A)(ξ − CA) − M(�B)(ξ − CB). (3)

Power dissipated at the interface I can be written as:

π =
∫

I

[

tA(ξ) · vA(ξ) + tB(ξ) · vB(ξ)
]

d S

=
∫

I

tA (ξ) ·
[

v(ξ)
]

d S (4)

where tA(ξ) =
[

τ13(ξ) τ23(ξ) σ33(ξ)
]T

(tB(ξ)) is the stress

vector acting at ξ on brick A(B), see Fig. 3, with

tA(ξ) = −tB(ξ).

2.1.2 Continuous model

A standard 2D Cauchy continuum, identified by its middle

plane S of normal e3 (Fig. 1), is assumed as plate homoge-

nized model.

The velocity field of a point P(coordinates
[

x P
1 x P

2 x P
3

]

)

belonging to the equivalent continuum plate is given by fields

w(x) (components w1, w2 and w3) and �(x) (compo-

nents �1 and �2), representing respectively the velocity

and rotations rates of the plate in correspondence of the point

x =
[

x P
1 x P

2 0
]

laying in the middle plane of the plate.

Power dissipated by the equivalent plate model is:

π =
[

N11 N12 N22

]

⎡

⎣

Ė11

Ė12 + Ė21

Ė22

⎤

⎦ +
[

T13 T23

]

[

γ̇13

γ̇23

]

+
[

M11 M12 M22

]

⎡

⎣

χ̇11

χ̇12 + χ̇21

χ̇22

⎤

⎦ (5)

where:

Ė =

⎡

⎣

Ė11

Ė12 + Ė21

Ė22

⎤

⎦

= 1

t

t/2
∫

−t/2

⎡

⎣

∂w1/∂x1 − x3∂�1/∂x1

∂w2/∂x1 + ∂w1/∂x2 − x3 (∂�1/∂x2 + ∂�2/∂x1)

∂w2/∂x2 − x3∂�2/∂x2

⎤

⎦ dx3

(in-plane strain rate vector, assuming with t masonry thick-

ness);
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γ̇ =
[

γ̇13

γ̇23

]

= 1

t

t/2
∫

−t/2

[

∂w3/∂x1 + ∂w1/∂x3

∂w3/∂x2 + ∂w2/∂x3

]

dx3

(shear strain rate);

χ̇ =

⎡

⎣

χ̇11

χ̇12 + χ̇21

χ̇22

⎤

⎦ = 1

t

t/2
∫

−t/2

⎡

⎣

∂�1/∂x1

∂�2/∂x1 + ∂�1/∂x2

∂�2/∂x2

⎤

⎦ dx3

(strain rate vector);
M =

[

M11 M12 M22

]T
, with M11 and M22

indicating bending and M12 torsion;
T =

[

T13 T23

]T ;

N =
[

N11 N12 N22

]T
.

Ė =

⎡

⎣

Ė11

Ė12 + Ė21

Ė22

⎤

⎦

= 1

t

t/2
∫

−t/2

⎡

⎢

⎢

⎣

∂w1/∂x1 − x3∂�1/∂x1

∂w2/∂x1 + ∂w1/∂x2

−x3 (∂�1/∂x2 + ∂�2/∂x1)

∂w2/∂x2 − x3∂�2/∂x2

⎤

⎥

⎥

⎦

dx3

γ̇ =
[

γ̇13

γ̇23

]

= 1

t

t/2
∫

−t/2

[

∂w3/∂x1 + ∂w1/∂x3

∂w3/∂x2 + ∂w2/∂x3

]

dx3

χ̇ =

⎡

⎣

χ̇11

χ̇12 + χ̇21

χ̇22

⎤

⎦

= 1

t

t/2
∫

−t/2

⎡

⎣

∂�1/∂x1

∂�2/∂x1 + ∂�1/∂x2

∂�2/∂x2

⎤

⎦ dx3 (6)

2.1.3 Simplified homogenization

In order to substitute the heterogeneous material with the

homogeneous equivalent 2D model, a simple compatible

identification model is proposed, assuming that power dis-

sipated by blocks [Eq. (4)] equates power dissipated by the

equivalent model, Eq. (5).

At this aim, fields w(x) and �(x) are a priori chosen as

a combination of elementary deformations in the unit cell,

corresponding to actual failure mechanisms occurring, accor-

ding to experimental evidences, in presence of running bond

brickwork with weak joints reduced to interfaces. From a

practical point of view, fields w(x) and �(x) corresponding

to each sub-class of regular motions are obtained assuming

alternatively one component of vector Ė, γ̇ or χ̇ unitary and

setting all the other components equal to zero, subsequently

choosing the most simple polynomial expressions for w(x)

and �(x) which comply Eq. (6). Once that fields w(x) and

�(x) are known from the procedure described, rotations rates

and velocities of each bricks belonging to the REV in the

heterogeneous model are determined assuming as point x

the centroid of the brick under consideration.

For instance, when only χ̇11 �= 0 is applied on the REV,

a choice for w(x) and �(x) fields is:

�1 = χ̇11x1

w1 = χ̇11x1x3

w2 = 0

w3 = −χ̇11x2
1/2 (7)

Equation (7) allows to directly determine velocities and rota-

tions of each block, provided that coordinated of the respec-

tive centroid are introduced in Eq. (7).

Since the aim of this paper is to model the strengthening

effect induced by FRP in bending, at the macro-scale homo-

genized three-dimensional wedge-shaped elements are used

for masonry (see following sections). Consequently, unrein-

forced brickwork behavior in flexion is obtained by integra-

tion of in plane actions at a structural level (step two).

Therefore, at the micro-scale, it is possible to limit the

study to in-plane and out-of-plane shear actions (Ė and γ̇ res-

pectively). The error introduced by this simplified approach

is negligible in almost all the cases of technical interest,

since it is well known that only tensile regime is active in

bending, i.e. only 2 plastic multipliers on the thickness are

needed. Figure 4a–c shows the effect on the elementary cell

of homogeneous in-plane deformations Ė (respectively stret-

ching along horizontal axis, vertical axis and shear).

Finally, Fig. 5 refers to the application of γ̇ out-of-plane

shear deformation rate. In particular, Fig. 5a shows the γ̇13

component, while Fig. 5b shows the γ̇23 component. It is

particularly evident that, when a γ̇13 �= 0 is applied, both head

and bed joints contribute to the internal power dissipation.

2.1.4 Unreinforced masonry failure surfaces

In this section, following the original formulation by Suquet

[24], a general numerical procedure for obtaining macrosco-

pic in- and out-of-plane unreinforced masonry failure sur-

faces is presented.

One of the basic assumptions of this approach is the utili-

zation of associated flow rules for the constituent materials.

Nevertheless, it is worth mentioning that sliding occurs in

mortar joints with almost zero dilatancy, with typical non-

associativity. The violation of one of the hypotheses of clas-

sic limit analysis ([25,26] etc.), implies that the uniqueness

of the ultimate load may be lost and a multiplicity of solu-

tions can exist for limit analysis problems, see Begg and

Fishwick [27].

On the contrary, the assumption of associated flow rules

assure the uniqueness of the ultimate load factor and lead to
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11E
·

12E
·

22E
·

a

b

c

Fig. 4 Elementary in plane homogeneous deformations applied to the

representative volume element. a Ė11. b Ė12. c Ė22

13
g
·

23
g
·

a

b

Fig. 5 Elementary homogeneous shear deformations applied to the

representative volume element. a γ̇13. b γ̇23

simple optimization problems which can be handled easily

with LP packages. In any case, it has been demonstrated that

associated limit analysis gives reliable results when failure

mechanisms are mainly due to joints tensile cracking (see for

instance [8,10,19]). As well known, out-of-plane masonry

failure occurs almost only with joints tensile regime active,

therefore associated limit analysis seems particularly suited

for numerical analyses at failure.

Horizontal Interface

f

13

c

f
t

2

c

f   : compression strength

: friction angle

: compression linearized cap

f   : tensile strength

c  : cohesion
t

c

2

33

3 axis

1 axis

2 axis

2 axis

1 axis

3 axis

Vertical Interface

23

Fig. 6 Piecewise linear approximation of the failure criterion adopted

for joints. Mohr-Coulomb failure criterion with tension cut-off and

linearized compression cap

Any non-linear failure criterion φ = φ(σ ) for joints can

be assumed for the model at hand. In any case, basic failure

modes for masonry walls with weak mortar are a mixing of

sliding along the joints (a), direct tensile splitting of the joints

(b) and compressive crushing at the interface between mortar

and bricks (c). These modes can be well reproduced adop-

ting a Mohr-Coulomb failure criterion combined with tension

cut-off and cap in compression, see Fig. 6, as suggested by

Lourenço and Rots [17].

Aiming at treating the problem in the framework of linear

programming, within each interface I of area AI , a piece-

wise linear approximation of the failure surface φ = φ(σ )

is adopted, constituted by nlin planes of equation AI T
i σ = cI

i

1 ≤ i ≤ nlin , where σ = [σ33 τ13 τ23] , σ33 is the

normal stress on the interface and τ13 and τ23 are tan-

gential stresses along two assigned perpendicular directions

(A1I
i σ33 + A2I

i τ13 + A3I
i τ23 = cI

i is the i th linearization

plane of the interface I , with AI T
i =

[

A1I
i A2I

i A3I
i

]

), Figs. 3

and 6.

Jump of velocity on interfaces varies linearly in the dis-

crete model, Eq. (3). Thus, for each interface, only 3 × nlin

independent plastic multiplier rates have to be introduced as

optimization variables.

Furthermore, for each interface I between contiguous

bricks, the following equality constraints between plastic

multiplier rates λ̇I
i (ξ1, ξ2) and jump of velocity [v(ξ1, ξ2)]

on the interface must be imposed:
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[v(ξ1, ξ2)] =
nlin
∑

i=1

λ̇I
i (ξ1, ξ2)

∂φ

∂σ
(8)

where:

– ξ = (ξ1, ξ2) is a local frame of reference laying on the

interface plane and with axis ξ3 orthogonal to the interface

plane, Figs. 3 and 6;

– [v(ξ1, ξ2)] =
[

�v33 �v13 �v23

]T
is the jump of velo-

city field (linear in (ξ1, ξ2)) on the I-th interface and �vi j

corresponds to the jump along the direction j .

– λ̇I
i (ξ1, ξ2) is the i-th plastic multiplier rate field (linear

in (ξ1, ξ2)) of the interface I, associated to the i-th linea-

rization plane of the failure surface.

It is worth noting that, in order to satisfy Eq. (8) for each point

of the interface I , nine equality constraints for each interface

have to be imposed, that corresponds to evaluate (8) in three

different positions Pk = (ξ
Pk

1 , ξ
Pk

2 ) on the interface I as

follows:

[

v
(

ξ
Pk

1 , ξ
Pk

2

)]

=
nlin
∑

i=1

λ̇I
i

(

ξ
Pk

1 , ξ
Pk

2

) ∂φ

∂σ
k = 1, 2, 3 (9)

where λ̇I
i (ξ

Pk

1 , ξ
Pk

2 ) is the is i-th plastic multiplier rate of the

interface I corresponding to Pk = (ξ
Pk

1 , ξ
Pk

2 ).

From previous equations, internal power dissipated on the

I -th interface can be written as:

π I
int =

∫

AI

[v]T σd AI =
∫

AI

nlin
∑

i=1

λ̇I
i (ξ1, ξ2)

[

∂φ

∂σ

]T

σd AI

= 1

4

nlin
∑

i=1

cI
i

4
∑

k=1

λ̇I
i

(

ξ
Pk

1 , ξ
Pk

2

)

AI (10)

where k = 4 depends linearly on k = 1, 2, 3.

External power dissipated can be written as πext =
(

�T
0 + λ�T

1

)

D, where �0 is the vector of permanent loads,

λ is the load multiplier, �T
1 is the unitary vector of loads

dependent on the load multiplier (i.e. the optimization direc-

tion in the space of macroscopic stresses) and D is the vec-

tor of macroscopic kinematic descriptors. D collects in-plane

deformation rates (Ė11 Ė12 Ė22) and shear deformation rates

( γ̇13 γ̇23 ).

As the amplitude of the failure mechanism is arbitrary, a

further normalization condition �T
1 D = 1 is usually intro-

duced. Hence, the external power becomes linear in D and λ

and can be written as follows πext = �T
0 D + λ.

From Eqs. (3) and (7), a further set of linear equality

constraints has to be imposed at each interface I , involving

vector D and jump of displacements field [v(ξ1, ξ2)]:

[v (ξ1, ξ2)] = GI (ξ1, ξ2) D (11)

where GI (ξ1, ξ2) is a 3×5 matrix which depends only on the

geometry of the interface under consideration (see Fig. 6).

From Eqs. (9)–(11) and from the kinematic formulation of

limit analysis, the following constrained minimization pro-

blem has to be solved to obtain masonry failure surfaces:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

λ = min
x̂=[D,λI

i (Pk )]

∑n I

I=1 π I
∫ − T

0 D

T
1 D = 1

GI (Pk)D=[v(Pk)] =
∑nlin

i=1 λ̇I
i

(

ξ
Pk

1 , ξ
Pk

2

)

∂φ
∂σ

Pk ∈ I

(12)

where n I is the total number of interfaces considered and x̂

is the vector of total optimization unknowns. Linear pro-

gramming problem (12) involves a relatively small num-

ber of optimization variables and therefore can be solved

both by means of simplex and interior point methods (vec-

tor x̂ of global unknowns collects only 3 · nlin · n I plas-

tic multiplier rates and 5 macroscopic kinematic variables

D). When it is required to investigate also masonry homo-

genized flexural behavior, D is a vector of length 8 with

�̂ = �̂(N11, N12, N22, M11, M12, M22, T13, T23).

Obviously, optimal value λ obtained from Eq. (12) repre-

sents only a point on �̂, i.e. the intersection between surface

�̂ and the direction unit vector �1 in the eight-dimensional

space =(N11, N12, N22, M11, M12, M22, T13, T23). Conse-

quently, in order to obtain a reliable linear approximation of

�̂ by means of Delaunay tessellations, linear programming

problem (12) has to be solved several times, each problem

corresponding to a different �1 direction.

As already discussed, for the problem at hand, out-of-

plane masonry behavior under M11, M22 and M12 actions is

modeled only at a structural level by integration of in-plane

actions. Therefore, here only �̂=�̂(N11, N12, N22, T13, T23)

masonry strength domain projections in the space of mem-

brane and out-of-plane shear actions are considered.

2.1.5 A meaningful application at a cell level

The masonry material considered by Chong et al. [23] for the

experimental evaluation of collapse loads of walls in two-

way bending is here analyzed. The same example will be

also analyzed at a structural level in the following section.

Bricks with dimensions 215 × 65 × 102.5 mm3 with joint

thickness equal to 10 mm were used in the experimentation.

Mechanical properties at failure adopted for the constituent

materials are summarized in Table 1. For mortar joints, a

linerized Lourenço and Rots [17] failure criterion is adopted,

whereas bricks are assumed infinitely resistant.

Masonry mechanical properties at failure in flexion were

measured by Chong et al. [23] through experimentation on

several wallettes out-of-plane loaded. Experimental values

for vertical ft x and horizontal fty flexural strengths were

2.28 and 0.97 N/mm2 respectively.
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Table 1 Chong et al. [23] experimental tests

Mortar joints mechanical properties

ft 0.32 MPa

c ft MPa

� 36◦ –

�2 45◦ –

fc 8 MPa

Mechanical properties assumed for mortar joints reduced to interfaces

(a linearized Lourenço and Rots failure criterion is used; ft is mor-

tar tensile strength; c is mortar cohesion, � is the friction angle, �2

is the angle of the linearized compressive cap and fc is mortar com-

pressive strength). Mortar joints reduced to interfaces with linearized

Lourenço-Rots failure criterion

Table 1 numerical values do not correspond to Chong

et al. [23] data, due to the fact that ft x and fty are indirect

quantities obtained from experimental collapse moments M ,

assuming a linear elastic stress distribution along the thick-

ness t of the wall (i.e. M = ft t
2/6). Contrarily to Chong et al.

[23] elastic assumption, Table 1 values for ft correspond to

an elastic-plastic stress distribution along the thickness (see

[13]), hence they are equal to Chong et al. [23] data divided

by three.

In Fig. 7, Nh − Nv masonry in-plane strength domains

recovered with the model proposed are reported for three

different orientations of bed joint with respect to horizontal

homogenized membrane action Nh (Nv in Fig. 7 represents

vertical homogenized membrane action).

Results show that the model is capable of reproducing the

typical anisotropic behavior of masonry along the material

axes. Since a reliable evaluation of masonry ultimate strength

is crucial at a structural level (especially when inclined yield

lines with respect to bed joint orientation are considered),

the model proposed seems particularly suited for a fast and

accurate analysis at collapse of brickwork panels in flexure.

2.2 Structural level: collapse loads evaluation by means

of an upper bound approach

A 3D FE kinematic limit analysis model for masonry walls

reinforced with FRP strips and subjected to combined in- and

out-of-plane actions is presented in this section.

The introduction of FRP strips is treated in what follows

making use of the mesoscopic model previously presented.

A reinforced masonry wall� strengthened with FRP strips

of width l
(k)
w , length l

(k)
s and direction ϑ (k), see Fig. 8, is

considered. We indicate with � f the reinforced part of the

wall, with (k) the kth strip and with �m the unreinforced

part of �(� f ∪ �m = �). Unitary vectors s(k), r(k) and t(k)

represent respectively the directions parallel and orthogonal

to the ϑ (k) direction of the kth strip (r(k) belongs to strips

plane). As already discussed, �m is discretized with rigid
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Fig. 7 Chong et al. masonry in-plane failure surfaces (a) at different

angles between Nh and mortar joint direction (b) and detail of the tensile

region (c)

wedges with possible jump of velocities at the interfaces,

whereas masonry is substituted with a homogeneous ficti-

tious material obtained from homogenization [Eq. (12)]. � f

is modeled by means of a combination of wedges (masonry)

and triangles (FRP), mutually interacting by means of nor-

mal and tangential stresses at the common interface, Figs. 8

and 9. Discretization is obtained automatically by means of

a commercial preprocessor (namely Strand 7.2 [28]).

2.2.1 Masonry elements (wedges)

A six-noded rigid masonry wedge, Fig. 9, is considered.

For each element, three centroid velocity unknowns uM
xx ,
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Fig. 8 Geometry of a generic

reinforced masonry wall, FE

discretization by means of

wedges (masonry) and

triangular elements (FRP) and

geometrical properties of FRP

strips
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Fig. 9 Multi-layer approach for

masonry reinforced with FRP

(� f ) and kinematic variables

involved. FRP is modeled by

means of infinitely resistant

triangular elements, whereas

masonry is modeled with

infinitely resistant wedges.

A possible jump of displacement
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uM
yy and uM

zz (two horizontal and one vertical velocity

collected in the vector uM =
[

uM
xx uM

yy uM
zz

]T
) and three

rotation rates �M
xx ,�

M
yy and �M

zz (corresponding to rotation

rates along coordinate axes and collected in the vector �M =
[

�M
xx �M

yy �M
zz

]T
) are necessary to completely describe

velocity field inside the element.

Differently from a well known elastic FE discretization,

several nodes may share the same coordinate, being each

node associated with only one element. In this way, at each

interface between adjacent wedges, possible jumps of velo-

cities can occur. Since velocities interpolation inside each

wedge is linear, jumps of velocities field on interfaces vary

linearly. Hence, for each interface, nine unknowns (three per

node) are introduced and collected in the following vector:

�uI =
[

�u1 �v1
1 �v1

2 �u2 �v2
1 �v2

2 �u3 �v3
1 �v3

2

]T

(13)

representing the normal (�ui ) and tangential (�vi
1 �vi

2 )

jumps of velocities (with respect to a suitable local interface

frame of reference) calculated on nodes 1, 2 and 3 of the

interface (Fig. 10). Obviously, being velocity interpolation

linear on the interface, node 4 jump of velocities (�u4,�v4
1

and �v4
2) turns out to be linearly dependent on �uI .

With reference to Fig. 10, we choose a local interface

frame of reference with axis x I
1 connecting nodes 1 and 2, x I

2
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Fig. 10 Jump of velocities field

in correspondence of a masonry

interface between contiguous

wedge-shaped elements
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lying on the interface plane but perpendicular to x I
1 and x I

3

perpendicular to the interface.

Hence, for any pair of nodes of the interface belonging to

elements M − N , the tangential and normal velocity jumps

can be written in terms of the Cartesian nodal velocities of

M − N as:

�v
f

1 = r11

(

u
Mp
xx − uNs

xx

)

+ r12

(

u
Mp
yy − uNs

yy

)

+ r13

(

u
Mp
zz − uNs

zz

)

�v
f

2 = r21

(

u
Mp
xx − uNs

xx

)

+ r22

(

u
Mp
yy − uNs

yy

)

+ r23

(

u
Mp
zz − uNs

zz

)

�u f = r31

(

u
Mp
xx − uNs

xx

)

+ r32

(

u
Mp
yy − uNs

yy

)

+ r33

(

u
Mp
zz − uNs

zz

)

(14)

where

– f = 1, 2, 3 indicates the interface node;

– ri j = (�vi/ ‖�vi‖)T e j ; (�vi/ ‖�vi‖) is the versor of

the i th axis of the local frame of reference, whereas e j

indicates the versor of the j th axis of the local frame of

reference.

After elementary assemblage operations on (14), it is pos-

sible to show that, for each interface, the following equations

can be written:

A
eq
11uMp + A

eq
12uNs + I

eq
13�uI = 0 (15)

where uMp and uNs are the 6×1 vectors that collect velocities

of elements M and N respectively, A
eq
11, A

eq
12 and I

eq
13 are 9×6,

9 × 6 and 9 × 9 (identity) matrices respectively (depending

only on the geometry of the interface).

It is worth noting that, to be kinematically admissible,

ad thus provide an upper bound of the collapse load, the

velocity field must satisfy the set of constraints imposed by

an associated flow rule at each interface. In order to eva-

luate power dissipation π M on masonry interfaces, for each

interface I a linearization of masonry strength domain with

N
pl
I planes (in the form σnn AI

nn−i + τ1t AI
1t−i + τ2t AI

2t−i =
B I

i i = 1, . . . , N
pl
I ) is provided. Such a linearization for

each interface (and, in principle, for each point of the

interface) can be obtained from the homogenization tech-

nique described in the previously section and exploiting the

procedure recommended by Krabbenhoft et al. [29] to obtain

interfaces strength domains from the corresponding failure

surfaces in continuum. σnn, τ1t and τ2t represent the stress

components acting perpendicularly to the interface plane

(σnn), along x I
1 (τ1t ) and x I

2 (τ2t ).

Being jump of velocities linear on masonry interfaces,

plastic flow constraints only on three vertices f of the rec-

tangular interface must be imposed:

�u f =
N

pl
I

∑

i=1

λ̇
I, f

i AI
nn−i �v

f
1 =

N
pl
I

∑

i=1

λ̇
I, f

i AI
1t−i

�v
f

2 =
N

pl
I

∑

i=1

λ̇
I, f

i AI
2t−i f (16)

where:

– f = 1, 2, 3;

– �u f represents the jump of displacements normal to the

interface;

– �v
f

1 and �v
f

2 are jumps of displacement along perpen-

dicular axes 1 and 2 on the interface plane, see Fig. 10;

– λ̇
I, f
i is the plastic multiplier rate of the i th linearization

plane (vertex f , interface I ).

From Eq. (16), within each interface I of area AM , the

power dissipated is:

π M = AM

4

4
∑

f =1

N
pl
I

∑

i=1

λ̇
I, f
i B I

i (17)

where index f = 4 is a linear combination of previous

indices.

Further equality constraints must be imposed on masonry

elements, corresponding to boundary conditions on velo-

cities (representing external constraints). Boundary condi-

tions are imposed in a similar way with respect to classic
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Fig. 11 Possible jump of

displacements along FRP

direction occurring at the

interface between two FRP
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elastic finite elements. As a rule, for an element B to which

prescribed velocities ū are assumed on some vertices, the

following equality constraints are imposed:

A
eq
21

[

uB

�B

]

= ū (18)

where A
eq
21 is a m × 6 matrix of coefficients and all the other

symbols have been already introduced.

2.2.2 FRP elements (triangles)

Triangular rigid and infinitely resistant elements are used

to model FRP strips. Plastic dissipation is allowed only at

the interfaces between contiguous elements due to stresses

acting on the fibers direction (Fig. 11). Therefore, continuity

of the velocity field is imposed at each interface between

contiguous FRP triangular elements only along directions

r(k) and t(k) (see Fig. 11) whereas a possible jump of veloci-

ties is supposed to occur along direction s(k).

Let two contiguous FRP elements M and N be conside-

red, see Fig. 11. Their centroid velocities and rotation rates

are uM =
[

uM
xx uM

yy uM
zz

]T
, uN =

[

uN
xx uN

yy uN
zz

]T
,�M =

[

�M
xx �M

yy �M
zz

]T
and �N =

[

�N
xx �N

yy �N
zz

]T
. Jump

of velocities on the common M and N interface (I −FRP)

is linear: therefore, it is necessary to evaluate jump of velo-

cities only on the interface extremes A and B (Fig. 11), as

difference between velocities of nodes 1–3 and 2–4 respec-

tively. In particular, if we denote with
[

xA yA z A

]

point A

coordinates, node 1 velocity is given by:

⎡

⎢

⎣

u1
xx

u1
yy

u1
zz

⎤

⎥

⎦
=

⎡

⎢

⎣

uM
xx/(xA − xM ) −�M

zz �M
yy

�M
zz uM

yy/(yA − yM ) −�M
xx

−�M
yy �M

xx uM
zz /(z A − zM )

⎤

⎥

⎦

×

⎡

⎣

xA − xM

yA − yM

z A − zM

⎤

⎦ = RM

(

A − G M
)

(19)

where G M = [xM yM zM ] denotes the centroid coordinates

of element M .

Node 1 velocity can be easily re-written in the s(k)−t(k)−
r(k) local interface frame of reference by means of the rota-

tion matrix T
(

ϑ (k)
)

, where ϑ (k) is the strip direction with

respect to x-axis (Fig. 11):

[

u1
s u1

r u1
t

]T

= T
(

ϑ (k)
)

RM

(

A − G M
)

(20)

No difference occurs for node 2, provided that element N

velocities and centroid are used instead of quantities related

to M .

Consequently, A jump of velocities is evaluated as:

[uA] = T
(

ϑ (k)
) [

RM

(

A − G M
)

− RN

(

A − G N
)]

(21)

where [uA] = [�u A
s �u A

r �u A
t ]T = [u1

s − u2
s u1

r − u2
r

u1
t − u2

t ]T .

Analogous considerations can be repeated for node B, i.e.

[uB] = T
(

ϑ (k)
) [

RM

(

B − G M
)

− RN

(

B − G N
)]

(22)

As already discussed, plastic dissipation is supposed to

occur at the interfaces only, due to stresses acting parallel to

fibers direction ϑk . It is worth noting that such a model is par-

ticularly suitable for unidirectional (0◦) strips, which may be
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modelled with truss-like elements (also looking at the Italian

code specifications). Nevertheless, no conceptual differences

occur introducing a 2D (for instance elliptic) failure criterion

for strips.

As a rule, low compressive stresses induce buckling of the

strips, due to the FRP negligible thickness. In order to take

into account this effect (at least in an approximate way), dif-

ferent limit stresses are assumed in tension and compression,

namely f +
FRP (assumed equal to f fdd or f fdd,rid in agreement

with CNR-DT200 [7], see the following section for details)

for tensile failure and f −
FRP ≈ 0 for compression buckling

respectively.

To be kinematically admissible, velocity jump at the inter-

faces [Eqs. (21) and (22)] must comply to the following equa-

lity constraints (associated flow rule):

[ui ] =

⎡

⎣

�ui
s

�ui
r

�ui
t

⎤

⎦ =

⎡

⎣

λ̇I−FRP+
i − λ̇I−FRP−

i

0

0

⎤

⎦ (23)

where i = A or B and λ̇I−FRP+
i and λ̇I−FRP−

i are plastic

multiplier rates of point i (interface I − FRP) corresponding

to f +
FRP and f −

FRP respectively.

On the other hand, from Eqs. (21)–(23), within each inter-

face I − FRP of length L I−FRP (thickness s), the power

dissipated may be easily evaluated as:

π F = L I−FRP

2

(

�u A
s σA + �u B

s σB

)

= L I−FRP

2

(

f +
FRP

(

λ̇I−FRP+
A + λ̇I−FRP+

B

)

+ f −
FRP

(

λ̇I−FRP−
A + λ̇I−FRP−

B

))

(24)

where σA and σB represent stress action along s(k) on nodes

A and B respectively and all the other symbols have been

already introduced.

2.2.3 FRP/masonry interfaces (delamination)

One of the most important aspects in the application of com-

posite materials for strengthening structural elements is the

adhesion between the reinforcing and reinforced materials.

In particular, when delamination from the support occurs, the

effectiveness of the reinforcement vanishes. This phenome-

non is very complex to model, especially in the framework

of limit analysis, because it involves materials with different

properties (masonry, FRP and glue layer) and depends on

several parameters. Experimental studies demonstrated that

the decohesion occurs due to masonry failure: the delami-

nated FRP, in fact, presents a consistent layer of masonry

material on the debonded surface.

A rigorous methodology to directly take into account in a

numerical model the behavior of the layer between masonry

and FRP is the use of the interface model concept. According

to this model, forces acting on the interface are related to the

relative displacement of the two sides (masonry and FRP),

thus requiring the utilization of interface elements.

In the Italian technical norm CNR-DT200 [7], a simpli-

fied approach is proposed to evaluate the delamination phe-

nomenon, suitably limiting force action on the FRP strip. In

particular, the f fdd design tensile strength of FRP elements

is:

f fdd = 1

γ fd
√

γM

√

2 · EFRP · ŴFk

tFRP

(25)

if the so called bond length lb is greater than the optimal bond

length le or:

f fdd,rid = f fdd

lb

le

(

2 − lb

le

)

(26)

if lb ≤ le.

In Eqs. (25) and (26) the following symbols have been

used:

– f fdd,rid , the reduced value of the design bond strength;

– f fdd , the design bond strength;

– EFRP , the FRP Young modulus;

– tFRP , the FRP thickness;

– γ fd , safety factor (it is assumed equal to 1.20 if the reinfor-

cement is applied according to the indications contained

in chapter 2 of CNR-DT200 [7], 1.5 otherwise);

– γ M , partial safety factor for masonry (see Italian D.M.

1987 [30]), assumed in the following equal to 1.0 in order

to obtain characteristic values of bond strength;

– lb, the bond length of FRP elements;

– le =
√

EFRP ·tFRP

2· fmtm
, the optimal bond length of FRP cor-

responding to the minimal bond length able to carry the

maximum anchorage force ( fmtm indicates masonry ave-

rage tensile strength).

Finally, the term ŴFk in Eq. (25) represents the characteris-

tic value of the specific fracture energy of the FRP strengthe-

ned masonry under a delamination test. In particular, when

the debonding involves the first masonry layers, the CNR-

DT200 [7] proposes the following relation:

ŴFd = c1

√

fmk · fmtm [ f in N/mm2] (27)

where c1 is an experimentally determined coefficient, that

typically may range between 0.015/0.030 and fmk is the

characteristic value of masonry compressive strength.

The τb-slip constitutive law proposed by the document

CNR-DT200 [7], see Fig. 12, permits an indirect evaluation

of shear limit stress (here denoted with the symbol fb) to use

for masonry/FRP interface elements (and thus avoiding a

discretization of FRP strips by means of truss elements with

limited strength f f dd), once that the ultimate slip (usually
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Fig. 12 Delamination test on

masonry specimens (a) and

bi-linear constitutive relation of

the interface FRP-masonry in

terms of shear stress (τb) and

mutual sliding s̄ (b)
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Fig. 13 Masonry-FRP interface jump of displacements

fixed at 0.2 mm) is known (area under the τb-slip constitutive

law of Fig. 12 is ŴFd).

Let us consider a triangular FRP-masonry interface I M−F

between elements F (FRP) and M (masonry), as depicted in

Fig. 13.

uF =
[

uF
xx uF

yy uF
zz

]T
and uM =

[

uM
xx uM

yy uM
zz

]T
indi-

cate F and M centroids velocities respectively, whereas

�F =
[

�F
xx �F

yy �F
zz

]T
and �M =

[

�M
xx �M

yy �M
zz

]T
F

and M rotation rates vectors.

Jump of velocities on the common I M−F interface is linear

and may be evaluated on nodes A, Band C of the interface

(Fig. 13) as difference between velocities of nodes 1–4 and

2–5 and 3–6 respectively. In particular, if [xA yA z A] repre-

sents point A coordinates, velocity of node 1 is given by:

⎡

⎢

⎢

⎣

u1
xx

u1
yy

u1
zz

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

uM
xx/(xA − xM ) −�M

zz �M
yy

�M
zz uM

yy/(yA − yM ) −�M
xx

−�M
yy �M

xx uM
zz /(z A − zM )

⎤

⎥

⎥

⎦

×

⎡

⎣

xA − xM

yA − yM

z A − zM

⎤

⎦ = RM (A − G M ) (28)

where G M = [xM yM zM ] is the centroid of masonry

element M .

s
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Fig. 14 Masonry-FRP interface linearized failure surface

As already discussed in the previous section, node 1

velocity in the local s(k) − t(k) − r(k) frame of reference

is:

[

u1
s u1

r u1
t

]

= T
(

ϑ (k)
)

RM

(

A − G M
)

(29)

Equation (29) can be re-written for node 4, substituting M

quantities with F quantitites.

Thus, jump of velocity on A can be evaluated as:

[uA] = T
(

ϑ (k)
) [

RM

(

A − G M
)

− RF

(

A − G F
)]

(30)

where [uA] = [�u A
s �u A

r �u A
t ]T = [u1

s − u4
s u1

r − u4
r u1

t −
u4

t ]T indicates the jump of velocities on A in the local coor-

dinate system.

No conceptual differences occur for nodes B and C , the-

refore Eq. (30) can be utilized for all the vertices of the tri-

angular interface.

To be kinematically admissible, jump of displacement

field at the F − M interfaces must obey an associated flow

rule. A linearization of F − M failure surface in the form

Akτsi + Bkτri + Ckσi = Dk, k = 1, . . . , N M−F
P L (N M−F

P L

is the number of planes used in the linearization of the fai-

lure surface, σi , τsi and τri aredefined in Fig. 14) is assumed.
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Fig. 15 Mosallam [22]

masonry wall in cylindrical

flexion. Deformed shapes at

collapse. a un-strengthened.

b FRP strengthened

Fig. 16 Mosallam [22] masonry wall in cylindrical flexion.

FRP-masonry interface normalized dissipation patch

In the framework of associated limit analysis, the following

equality constraints must be imposed:

[ui ] =

⎡

⎢

⎢

⎣

�ui
s

�ui
r

�ui
t

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

∑N M−F
P L

k=1 Ak λ̇
M−F,k
i

∑N M−F
P L

k=1 Bk λ̇
M−F,k
i

∑N M−F
P L

k=1 Ck λ̇
M−F,k
i

⎤

⎥

⎥

⎥

⎥

⎦

(31)
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Fig. 17 Basic assumptions adopted for the LB 1D limit analysis model

where i = A, B or C, λ̇
M−F,k
i is the kth plastic multiplier

rate corresponding to the kth plane. The Italian CNR-DT200

[7] provides σ − τs − τr failure surfaces for masonry/FRP

interfaces, see Fig. 14, where fmt represents masonry tensile

strength and fb is the interface shear strength.

From Eqs. (29)–(31), within each interface F − M of area

AI , the power dissipated may be easily evaluated as:

π F−M = AI

3

(

C
∑

i=A

(

�ui
tσi + �ui

sτsi + �ui
rτri

)

)

= AI

3

3
∑

i=1

N M−N
P L
∑

k=1

λ̇
M−F,k
i Dk (32)

2.2.4 The linear programming problem at a structural level

External power can be written as Pex = (PT
0 + λPT

1 )U,

where P0 is the vector of (equivalent lumped) permanent

loads, λ is the load multiplier, PT
1 is the vector of (lumped)

123



Comput Mech (2009) 43:617–639 631

0 0.5 1 1.5 2 2.5

-12000

-10000

-8000

-6000

-4000

-2000

0

panel length [m]

b
e

n
d

in
g

 m
o

m
e

n
t 
[N

*m
]

1D LB approach

2D UB approach

0 0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

1

 τ
 t
a

n
g

e
n

ti
a

l 
a

c
ti
o

n
 a

t 
m

a
s
o

n
ry

/F
R

P
 i
n

te
rf

a
c
e

 [
M

P
a

]

1D LB approach

2D UB approach

a b

Fig. 18 Comparison between 1D LB approach and 2D UB dual approach a Bending moment (in masonry sections) evaluation along wall length.

b FRP-masonry interface tangential actions

Fig. 19 Geometry of masonry

slabs analyzed
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Fig. 20 FRP strips disposition

variable loads and U is the vector of assembled nodal

velocities. As the amplitude of the failure mechanism is arbi-

trary, a further normalization condition PT
1 U = 1 is usually

introduced to solve the limit analysis problem within LP. In

this way, the external power becomes linear in w and λ, i.e.

Pex = PT
0 w + λ.

After some elementary assemblage operations, a simple

linear programming problem is obtained (analogous to that

reported in [31]), where the objective function to minimize

is the total internal dissipation minus external power of loads

independent from λ:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
{

π M,ass
(

λ̇M,ass
)

+ π F,ass
(

λ̇F,ass
)

+π M−F,ass
(

λ̇M−F,ass
)

− PT
0 U

}

such that

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

AeqU = beq

PT
1 U = 1

λ̇M,ass ≥ 0

λ̇F,ass ≥ 0

λ̇M−F,ass ≥ 0

(33)
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Fig. 21 Chong et al.

experimental tests. Comparison

between experimental and

numerical results (no
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Fig. 22 Chong et al.

experimental tests. Increase of
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where:

– π M,ass, π F,ass and π M−F,ass are respectively the

internal dissipation on masonry interfaces (M), on FRP

interfaces (F) and on masonry/FRP interfaces (M − F).

– U = [uM,ass �M,ass λ̇
M,ass

uF,ass �F,ass λ̇
F,ass

λ̇
M−F,ass]T is the vector of global unknowns, collecting

the vector of assembled centroids masonry elements

velocities (uM,ass) and rotation rates (�M,ass), the

vector of assembled masonry interfaces multipliers rates
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Fig. 23 Chong et al. experimental tests, panel SB01. Deformed shape

at collapse for three different values of strips tangential adhesion (a

fb = 3 MPa; b fb = 0.3 MPa; c unreinforced case)

(λ̇
M,ass

), the vector of assembled centroids FRP elements

velocities (uF,ass) and rotation rates (�F,ass), the vector

of assembled FRP interfaces multipliers rates (λ̇
F,ass

) and

the vector of assembled FRP/masonry interfaces multi-

pliers rates (λ̇
M−F,ass

)

– Aeq is the overall equality constraints matrix and cosllects

velocity boundary conditions [Eq. (18)], relations bet-

ween jump of velocities on interfaces and elements velo-

cities and associated plastic flow constraints on

discontinuities [i.e. Eqs. (15), (16), (21)–(23), (30) and

(31)].

It is worth noting that recent trends in limit analysis have

demonstrated that the linearization of the strength domain

can be circumvented using conic/semidefinite programming

(e.g. [32–34]). However, since the aim of this paper is mainly

devoted to structural aspects of the problem, classic interior

point LP routines available in Matlab are used for the sake

of simplicity.

Fig. 24 Chong et al. experimental tests, panel SB01. Strips normalized

delamination patch (a: fb = 3 MPa; b fb = 0.3 MPa)

3 Structural examples

The first numerical simulations set refers to a simply

supported FRP reinforced masonry panel in cylindrical flex-

ion experimentally and theoretically analyzed by Mosallam

[22]. Both for the unreinforced and FRP-reinforced case,

results obtained with the present model fit well experimental

data presented by Mosallam [22]. Finally, numerical data are

compared with those resulting from a simple one-dimensional

static limit analysis procedure.

The second example focuses on four masonry walls in

two-way bending with and without openings and differently

constrained at the edges. Such walls have been already ana-

lyzed experimentally and numerically by Chong et al. [23],

Lourenço [18] and Milani et al. [13] in absence of FRP rein-

forcement. On the other hand, it is worth noting that, at

present, there is still a lack both of experimental data and

numerical models concerning strengthened masonry walls

in two-way bending. In the numerical simulations, strips are

123



634 Comput Mech (2009) 43:617–639

Fig. 25 Chong et al. experimental tests, panel SB02, reinforcement

with horizontal strips. Deformed shape at collapse for three different

values of strips tangential adhesion (a fb = 3 MPa; b fb = 0.3 MPa;

c unreinforced case)

disposed in such a way to preclude the formation of typi-

cal vertical and inclined cylindrical hinges, forming the fai-

lure mechanism in the unreinforced case. Due to the fact

that no reference results are available from the literature for

the strengthened panels, only the increase of the ultimate

out-of-plane strength is estimated.

3.1 Simply supported reinforced panels in cylindrical

flexion

A FRP reinforced red brick masonry wall in cylindrical

flexion experimentally tested by Mosallam [22] is here ana-

lyzed with the numerical model proposed. The wall is square

with an edge length equal to 2.64 m, thickness t = 10.16 cm.

The specimen is simply supported on two edges parallel to

bed joints. The panel is also retrofitted at the extrados by

means of discontinuous contiguous carbon/epoxy strips. All

specimens were tested by Mosallam [22] in a water-bag struc-

tural frame in order to apply a uniform hydraulic pressure

Fig. 26 Chong et al. experimental tests, panel SB02, reinforcement

with horizontal strips. Strips normalized delamination patch (a fb =
3 MPa; b fb = 0.3 MPa)

on the wall until ultimate failure occurred. Common red clay

bricks of dimensions 20.3210.16×5.72 cm3 were used. Only

compression tests on single bricks and masonry pillars were

conducted by Mosallam [22] for the mechanical characteriza-

tion of masonry, providing respectively an ultimate strength

equal to 16 and 25 MPa.

No experimental information is given on the tensile

masonry behavior in flexion. In order to suitably calibrate

input mechanical properties of the constituent materials, for

mortar joints a typical value of ft tensile strength equal to

1/15 fc is assumed. Furthermore, a Lourenço and Rots [17]

failure criterion is adopted with cohesion c = ft , friction

angle � = 30◦, �2 = 90◦ (shape of the linearized compres-

sive cap) and compressive strength fc equal to 16 MPa (see

also Fig. 6). It is interesting to notice that mortar compressive

strength is kept equal to masonry one, since the model pro-

posed is unable to reproduce the typical three-dimensional

failure of bricks, which are assumed as infinitely resistant.
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Fig. 27 Chong et al.

experimental tests, panel SB02,

heterogeneous approach.

Deformed shape at collapse for

a fb = 0.3 MPa and b

unreinforced case

fb bond shear strength is assumed equal to 1.5 MPa. It is

worth underling that, in order to obtain a continuous reinfor-

cement on the whole extrados, contiguous strips with uns-

pecified width were used by Mosallam [22]. Three different

strengthening technologies were analyzed in [22], corres-

ponding to (I) unidirectional (0◦)2 carbon/epoxy, (II)

bi-directional (0◦ − 90◦)1 and unidirectional (0◦)3 E-glass/

epoxy strips. In the present paper, only configuration (I) is

analyzed. In order to suitable take into account that conti-

guous strips are not physically connected, in the model a

mesh with small offsets of the nodes belonging to strips edges

is utilized (see Fig. 15).

In Fig. 15, the deformed shapes at collapse of the

un-strengthened (a) and strengthened (b) panels are com-

pared. Furthermore, in Fig. 16 normalized power dissipation

at the FRP/masonry bond obtained in presence of FRP is

depicted. As expected, for the un-strengthened wall, failure

occurs for the formation of a central plastic hinge on the bed

joint (Fig. 15a). On the contrary, the FRP reinforced panel

collapses with the formation of two plastic hinges in cor-

respondence of the maximum bending moment and with a

diffused delamination of the strips near the extremes. It is

worth underling that, contrarily to the unreinforced case,

masonry maximum bending moment is not reached in the

symmetry section of the wall, due to tangential stresses acting

at the interfaces between masonry and FRP.

Collapse failure loads numerically obtained are 5.93 and

79.51 kPa respectively for the un-reinforced and the

FRP-reinforced panel. Numerical results are in good agree-

ment with Mosallam experimental data (5.98 and 74.4 kPa

results).

In order to compare numerical results with alternative

approaches, a 1D lower bound limit analysis model have been

also developed. In a one-dimensional framework, masonry is

modeled by means of Timoshenko beam elements with finite

bending/out-of-plane shear resistance, whereas FRP strips
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are meshed with truss elements (see Fig. 17). Each masonry

element i M connects nodes (i) and (i + 1). For each node,

optimization variables M (i), T (i), N (i) and F (i)are introdu-

ced, corresponding respectively to masonry bending moment,

masonry out of plane shear, masonry axial load and FRP nor-

mal action. FRP and masonry interact by means of tangential

stresses τ i M
at the common interfaces.

Equilibrium equations for each element can be summari-

zed as follows:

(a) M (i+1) − M (i) − T (i+1)�L i M

−τ i M
�L i M

t/2 − λ
(

�L i M
)2

/2 = 0

(b1) T (i) − T (i+1) − λ�L i M = 0

(b2) N (i+1) − N (i) − τ i M
�L i M = 0

(c) F (i+1) − F (i) + τ i M
�L i ;M = 0

(34)

Equation (a) represents rotation equilibrium of masonry

elements, equations (b) translation equilibrium of masonry

elements on perpendicular directions and equation (ct) trans-

lation equilibrium of FRP.

In addition, inequality constraints have to be introduced

for each node of the mesh on masonry, FRP and masonry/FRP

interface elements, in order to ensure admissibility of internal

actions.

It is worth underlining that a linearization of masonry fai-

lure surface for each node (i) in the form Ak M (i) + Bk T (i) +
Ck N (i) = 1 is required, where k indicates the kth lineariza-

tion plane. Such a linearization is at disposal from the homo-

genization procedure described in the previous sections.

Equilibrium equations and admissibility of internal actions

lead, after suitable assemblage operations, to the following

standard lower bound linear programming problem:

max {λ} such that

{

AeqX = beq

AinX ≤ bin (35)

where assembled vector X collects masonry bending

moments M (i), masonry out-of-plane shears T (i), masonry

axial actions N (i), interface tangential actions τ i M
, FRP nor-

mal actions F (i) and collapse external load λ.

In order to compare results obtained via the 2D upper

bound approach proposed in this paper with results from

Eq. (35), we exploit the duality theorem of limit analysis,

which allows to have an estimation of static internal actions

corresponding to the UB solution, i.e.:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

min
{

−PT
0 U + πass λ̇ass

}

such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

HT U + AinT
λ̇ass = 0

PT
1 U = 1

λ̇ass ≥ 0

primal

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

max
{

λ̂
}

such that

⎧

⎨

⎩

H + Rλ̂ − P0 =0

Ain ≤ πassT

dual

(36)

where  at the solution point collects masonry, FRP and

masonry/FRP internal actions at collapse.

Fig. 28 Chong et al. experimental tests, panel SB03, reinforcement

with horizontal strips. Deformed shape at collapse for three different

values of strips tangential adhesion (a fb = 3 MPa; b fb = 0.3 MPa;

c unreinforced case)

In Fig. 18, bending moment distribution (a) and bond

tangential actions (b) at collapse obtained via both models

proposed [Eqs. (35) and (36)] are depicted. The slight dif-

ferences between models depend only on the mesh utilized,

which is coarser for the bi-dimensional case (see Fig. 15).

For the one-dimension approach, a subdivision with 100 ele-

ments is utilized. The good agreement between results shows

that reliable predictions can be obtained, also in the mono-

dimensional case, with the 2D homogenization model pro-

posed.

3.2 Reinforced panels in two way bending

Experimental tests on five unreinforced solid clay panels

(labeled from SB01 to SB05) with and without openings

were carried out by Chong et al. [23], (see also [18]). Panels

SB01 and SB05 are replicates and, therefore, only four dif-

ferent configurations are tested. Each panel, with dimensions

123



Comput Mech (2009) 43:617–639 637

Fig. 29 Chong et al. experimental tests, panel SB03, reinforcement

with horizontal strips. Strips normalized delamination patch (a fb =
3 MPa; b fb = 0.3 MPa)

5600 × 2475 × 102.5 mm3, was built in stretcher bond bet-

ween two stiff abutments with the vertical edges simply sup-

ported (allowance for in-plane displacements was provided)

and the top edge free. A completely restrained support was

provided at the base. All opening sizes and dimensions used

in the tests are sketched in Fig. 19.

No experimental data are available from the literature

concerning such panels in presence of FRP reinforcement.

In this section, both the unreinfoced and the FRP strengthe-

ned case are considered. When dealing with the reinforced

case, two horizontal strips with width 100 mm are disposed

on the extrados of the walls in correspondence of the top

and at the base, with the aim of precluding the formation of

vertical and inclined yield lines observed both experimentally

and numerically on the URM panels. In Fig. 20, a sketch the

FRP strips dimensions and disposition assumed in the nume-

rical simulations is reported.

Fig. 30 Chong et al. experimental tests, panel SB04, reinforcement

with horizontal strips. Deformed shape at collapse for three different

values of strips tangential adhesion (a fb = 3 MPa; b fb = 0.3 MPa;

c unreinforced case)

The ultimate strength increase and the changes in the

failure mechanisms obtained are evaluated in what follows.

The panels were loaded by air-bags until failure with

increasing out-of-plane uniform pressure p. The air pressure

and the displacement d for the middle point of the free edge

were monitored during testing. Mechanical properties assu-

med for mortar joints are reported in Table 1. The reader is

also referred to the previous section, where masonry homo-

genized failure surface obtained with the micro-mechanical

approach proposed is reported.

In Fig. 21, collapse loads obtained with the present model

for all the unreinforced walls are represented. Experimen-

tal pressure-displacement curves by Chong et al. [23], and

numerical curves obtained by means of an orthotropic elasto-

plastic macro-model by Lourenço [18] are also depicted. As

it is possible to notice, a comparison among all the results

shows that the limit analysis approach proposed is able to

provide ultimate loads in good agreement both with experi-

mental data and with alternative elasto-plastic models.
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Fig. 31 Chong et al. experimental tests, panel SB04, reinforcement

with horizontal strips. Strips normalized delamination patch (a fb =
3 MPa; b fb = 0.3 MPa)

In Fig. 22, the increase of ultimate loads in presence of

FRP and varying fb masonry/FRP interface strength in a

wide range (from 0 to 3 MPa) is represented. As it is possible

to notice, collapse load reaches asymptotically a maximum

for high fb values for all the panels analyzed, meaning that

the optimal benefit that can be obtained from a strengthening

intervention is limited to a specific fb range (namely between

0.3 and 0.8 MPa). Nevertheless, as already discussed, it is

worth noting that the correct evaluation of fb remains an

open issue: therefore, a sensitivity analysis should be always

performed to evaluate strengthening efficiency.

In Fig. 23, panel SB01 deformed shapes at collapse with

and without FRP reinforcement are represented. Three dif-

ferent deformed shapes are depicted, corresponding to a fb

masonry/FRP bond strength respectively equal to 3 MPa (a),

0.3 MPa (b) and 0 MPa (c, i.e. unreinforced case). In Fig. 24,

the normalized power dissipation patch at the masonry/FRP

interface for fb equal to 3 MPa (a) and 0.3 MPa (b) is depicted.

As can be deduced from the figure, a diffused delamination

of the strips occurs in correspondence of the extremes, in

agreement both with experimental evidences and Italian norm

specifications. Furthermore, deformed shapes at collapse

reported in Fig. 23 clearly show that failure mechanism

remains essentially unchanged passing from fb = 0.3 to

fb = 3 MPa, hence confirming the negligible increase of the

ultimate pressure. On the other hand, from Fig. 23 an evident

change in the failure mechanism can be observed between the

reinforced and the unreinforced case (compare for instance

Fig. 23a, c), confirming that strips act as ties which tend to

preclude the formation of cylindrical hinges on masonry.

Analogously to the previous case, in Figs. 25 and 26

homogenized results for panel SB02 are reported. In order

to show the capabilities of the numerical model proposed, in

Fig. 27 deformed shapes at collapse obtained using a hetero-

geneous approach (i.e. meshing separately bricks and mortar

joints reduced to interfaces, assuming bricks infinitely resis-

tant) in the unreinforced case and with fb = 0.3 MPa are

reported. Corresponding failure loads are represented with

red dots in Fig. 22. While failure mechanisms and failure

loads are very similar to those provided by the homogeni-

zed model, time required for the simulations on a PC Intel

Celeron 1.40 GHz equipped with 1Gb RAM exceeded 2

hours, a processing effort around 10ˆ2 times grater with

respect to that required by homogenized models. Finally,

homogenization allows to sensibly reduce pre-processing

time, especially in the general case of strips inclined with

respect to bed joints.

The same results reported for panel SB01 and SB02 are

replicated in Figs. 28, 29, 30 and 31 for panels SB03 (Figs. 28,

29) and SB04 (Figs. 30, 31). Analogously to panel SB01

and SB02 data, for all the other walls analyzed, numeri-

cal results confirm the important role played by fb parame-

ter on the evaluation of walls ultimate out-of-plane strength

(Fig. 22b–d). Delamination occurs in any case at the extremes

of the strips and failure mechanisms of the wall change consi-

derably when a horizontal strengthening with adequate fb is

introduced.
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