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TP53 is the most frequently mutated gene in human cancer. While no TP53-targeting drugs have been approved in the USA or
Europe so far, preclinical and clinical studies are underway to investigate targeting of specific or all TP53 mutations, for example, by
restoration of the functionality of mutated TP53 (TP53mut) or protecting wildtype TP53 (TP53wt) from negative regulation. We
performed a comprehensive mRNA expression analysis in 24 cancer types of TCGA to extract (i) a consensus expression signature
shared across TP53 mutation types and cancer types, (ii) differential gene expression patterns between tumors harboring different
TP53 mutation types such as loss of function, gain of function or dominant-negative mutations, and (iii) cancer-type-specific
patterns of gene expression and immune infiltration. Analysis of mutational hotspots revealed both similarities across cancer types
and cancer type-specific hotspots. Underlying ubiquitous and cancer type-specific mutational processes with the associated
mutational signatures contributed to explaining this observation. Virtually no genes were differentially expressed between tumors
harboring different TP53mutation types, while hundreds of genes were over- and underexpressed in TP53mut compared to TP53wt
tumors. A consensus list included 178 genes that were overexpressed and 32 genes that were underexpressed in the TP53mut
tumors of at least 16 of the investigated 24 cancer types. In an association analysis of immune infiltration with TP53mutations in 32
cancer subtypes, decreased immune infiltration was observed in six subtypes, increased infiltration in two subtypes, a mixed
pattern of decreased and increased immune cell populations in four subtypes, while immune infiltration was not associated with
TP53 status in 20 subtypes. The analysis of a large cohort of human tumors complements results from experimental studies and
supports the view that TP53 mutations should be further evaluated as predictive markers for immunotherapy and targeted
therapies.

Cell Death Discovery           (2023) 9:126 ; https://doi.org/10.1038/s41420-023-01413-1

INTRODUCTION
The “guardian of the genome” TP53 is the most frequently
mutated gene in malignant tumors [1, 2]. While TP53 mutations
can be found in most cancer types, their prevalence varies
strongly between different entities [3, 4]. The vast majority of TP53
mutations are located in the DNA-binding domain (DBD), whereas
TP53 mutations in other regions are found at lower frequency
[5–10]. TP53 mutations accumulate in mutational hotspots,
including the most frequently mutated amino acids R175, R248,
and R273 [11, 12].
The diverse spectrum of TP53 mutations has motivated

numerous studies to uncover the effect of mutated p53 proteins
using cultured cells, animal models, and molecular profiling of
human tumors [10, 13–17]. Insights from these studies support
four different mechanisms of how TP53 mutations contribute to
malignant growth: (i) loss of function (LOF) mutations impairing
the tumor suppressor functions of p53, including its action as a
transcription factor [18, 19], (ii) gain of function mutations (GOF)
adding new oncogenic functions [20], (iii) impact of mutated p53

as a dominant-negative (DN) inhibitor of the wildtype p53 protein
[21], (iv) action through separation of functions that is loss of some
of the functions of the wildtype p53 protein, while other functions
are retained. These four possible mechanisms do not exclude each
other, e.g., oncogenic TP53 mutations are frequently accompanied
by at least partial LOF [22].
Among the four possibilities, the evidence for action of p53

through total or partial LOF is very high. Numerous studies have
demonstrated the connection of TP53 LOF mutations and failure
of the mutated p53 protein to induce its classical transcriptional
targets including the cell cycle regulator CDKN1A (p21) [23–26].
Examples of mutant TP53 acting through partial LOF include
mutations located in the acidic transactivation domains resulting
in a truncated protein that retains the ability to induce apoptosis
[27] and mutations in the DBD such as E180R and R181C/H/L
being defective only in the induction of apoptosis but still able to
induce cell cycle arrest [22].
Distinct hotspots in the distribution of TP53mutations suggest a

positive selection pressure on specific mutations driven by specific
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functional gains and corresponding growth advantages. TP53mut
GOF activity was first reported in the early 1990s by the
investigation of in vitro and in vivo models of ectopically
expressed TP53mut in TP53 null cells that allowed separation of
GOF from DN activity [28, 29]. Since then, GOF mutations have
been reported in many studies and associated with tumor growth,
invasion, metastasis, and poor prognosis [7, 30]. DN activity of
TP53 missense mutations without evidence of GOF capacity has
been observed analyzing in vitro and in vivo models of acute
myeloid leukemia (AML) [31]. Concordant mutational spectra were
observed comparing normal cells and carcinoma of the skin and
the esophagus, opposing the view of a selective advantage of
specific TP53 GOF mutations over others [32, 33].
Although TP53 mutations are highly prevalent in many cancer

types, TP53-targeting drugs have not yet been approved in the
USA or Europe. In this context, TP53 mutational diversity and
differently acting TP53 mutation types are a hurdle that could be
overcome by targeting specific TP53 alterations. For example, a
predominant LOF effect should be addressed by restoration of
wildtype p53 protein expression, while a predominant DN or GOF
effect should be addressed by inhibition of mutant p53 protein
levels [14]. Earlier this year, a phase I clinical study showed
promising results for targeting Y220C with a small molecule
structural corrector to restore the wildtype conformation [34]. As a
basis for such treatment approaches, further investigation of the
spectrum of TP53 mutations and the corresponding pathogenic
mechanisms are warranted.
To contribute to fill this gap, we analyzed the impact of TP53

mutations on tumor biology in 8331 tumors of 24 cancer types
from TCGA. Building on and expanding previous gene expression
studies [35, 36], our analysis focused on the following novel
aspects: (i) the influence of TP53 mutation types - either of specific
variants or variant classes including LOF, GOF, or DN mutations -
on gene expression patterns, (ii) separation of common TP53mut-
associated expression changes that are shared between many
cancer types and specific expression changes observed only in a
single or in a few cancer types, and (iii) changes in the immune
tumor microenvironment (TME) associated with TP53 mutations.

RESULTS
A total of 8331 tumors and 24 cancer types from TCGA were
included in the study. The cohort was divided into tumors
harboring non-synonymous TP53 mutations in the coding
sequence or at splice sites (TP53mut tumors, n= 3447) and
tumors without such mutations (TP53wt tumors, n= 4884).

Analysis of TP53 mutation hotspots
We detected 4021 individual TP53 mutations in the study cohort,
corresponding to 926 different variants (Fig. 1A). The most
frequent mutation types were: missense mutations (65%),
truncating mutations (26%), and splice site mutations (7%). The
most frequently affected mutation hotspots p.R273 (n= 250),
p.R248 (n= 201), p.R175 (n= 165), p.R213 (n= 96), and p.R282
(n= 90) were all located in the DBD. In codon 273 the mutations
p.R273C (46%) and p.R273H (37%) were most prevalent, in codon
248 the mutations p.R248Q (54%) and p.R248W (39%), while in
codon 175 the mutation p.R175H (89%) was by far most prevalent.
Next, we compiled a list of TP53 hotspots that were recurrent

with an incidence of at least 1% in at least one of the cancer types
(Fig. 1B). Altogether, there were 59 mutations, including 40
missense mutations, 11 truncating mutations, and eight splice site
mutations. Most of the recurrent mutations were detected in
many cancer types: 45% of the hotpot mutations were detected in
at least ten cancer types, while 88% of the hotspot mutations were
detected in at least five cancer types. The seven most prevalent
hotspot mutations (top of the heatmap) were all transitions of the
type CG > TG. These represent the footprint of mutational

signature SBS1 and the clock-like mutational process that is
driven by spontaneous deamination of 5-methylcytosine and
active in all cancer types [37]. The high prevalence of the top
mutational hotspots in most of the cancer types is in line with the
ubiquitous activity of this mutational process.
The prevalence of 31 mutations (53%) was significantly different

between TP53mut tumors of different cancer types (bold in Fig. 1
and Suppl. Table S2). The following mutations showed the
strongest enrichments in specific cancer types: R175H contributed
to TP53 mutations with 10% (95% CI: 6–15%) in COAD and 11%
(5–18%) in READ compared to 3.7% (3.1–4.4%) in the pan-cancer
cohort. R273C contributed with 21% (16–27%) in LGG compared
to 3.3% (2.7–3.9%) in the pan-cancer cohort. R249S contributed
with 10% (5.2–17%) in LIHC compared to 0.6% (0.4–1%) in the
pan-cancer cohort. These cancer-specific differences in the
prevalence of TP53 mutations can be explained, at least in part,
by the differential activity of mutational signatures in different
cancer types. For example, the mutations R249S with a GCC > CGC
transversion that was highly prevalent in LIHC is a characteristic of
the mutational signature SBS24 that has been linked to exposure
to liver toxic aflatoxins [38]. Furthermore, the mutations V157F
and R158L were highly prevalent in smoking-associated cancer
types LUAD and LUSC. Both mutations are generated by an A > C
transversion, characteristic of the tobacco smoking-associated
mutational signature SBS4.

Gene expression patterns associated with TP53 mutation
types
We investigated the hypothesis that functionally different TP53
mutations may produce distinct gene expression patterns. To this
end, we grouped the tumors according to TP53 mutation type
resulting in 2050 (59%) tumors with LOF, 1208 (35%) with GOF,
1470 (43%) tumors with DN, and 1788 (52%) tumors with non-DN
mutations (Suppl. Fig. S1 and Suppl. Table S3). The two
classification systems had a large overlap: 1086 (90%) of the
tumors in the class GOF were also in the class DN, and 1666 (81%)
of the tumors in the class LOF were also in the class non-DN.
We analyzed differential gene expression between (i) tumors

with mutations in codons 175, 248, and 273, (ii) tumors with
mutations in codon 175 and LOF mutations, (iii) tumors with
mutations in codon 248 and LOF mutations, (iv) tumors with
mutations in codon 237 and LOF mutations, (v) tumors with top
hotspot mutations (pool of the 10 most abundant missense
mutations) and LOF mutations, (vi) tumors with LOF and GOF
mutations, and (vii) tumors with DN and non-DN mutations (Fig. 2
and Suppl. Fig. S2). These analyses were contrasted by differential
expression analyses comparing tumors with different types of
TP53 mutations to TP53wt tumors. To ensure comparability of the
gene expression analyses, we always compared groups of 15
tumors to groups of 15 tumors using random subsampling. For
the first type of analysis (analyses i-vii comparing TP53mut
subtypes), we almost never observed more than one differentially
expressed gene and not a single differentially expressed gene in
the majority (92%) of the analyses. For the second type of analysis
(TP53mut tumors vs. TP53wt tumors), we detected more than ten
differentially expressed genes in 48 (48%) of the analyses, 2 to 10
differentially expressed genes in seven (7%) of the analyses, and
only one or none differentially expressed gene in the remaining 45
(45%) analyses. When summarizing significances over the 24
analyzed cancer types (column “pan-cancer”), not a single
differentially expressed gene except TP53 was detected for the
analyses of the first type, while more than 100 differentially
expressed genes were detected for each of the analyses of the
second type. Similar results were observed when we subsampled
to larger (n= 20) or smaller (n= 10) groups of tumors (Suppl. Fig.
S2).
In summary, we detected many differentially expressed genes

between TP53mut and TP53wt tumors. However, we did not find
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Fig. 1 Hotspots of TP53 mutations. A Lollipop diagram showing the prevalence of TP53 mutations in the TCGA cohort across cancer types.
B Heatmap showing the prevalence of TP53 mutations in specific cancer types of the TCGA cohort. All mutations that are prevalent with a
frequency of at least 1% in at least one cancer type and are mutated in at least two tumors of at least one cancer type are included. Hotspot
mutations with significantly different prevalences in different cancer types are in bold.
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gene expression patterns characteristic for the subclasses of LOF,
GOF, and DN mutations in any of the cancer types.

Pan-cancer consensus gene expression pattern of TP53mut
tumors
A consensus list of 210 differentially expressed genes included all
genes that were differentially expressed (raw p < 0.05) between
TP53mut and TP53wt tumors in at least two-thirds (n= 16) of the
cancer types (Suppl. Table S4). We summarized the p-values of
each gene across the cancer types resulting in p < 1.0E-28 for the
genes in the consensus list, which was far below the Bonferroni
threshold. Overall, 178 (85%) genes were overexpressed in
TP53mut tumors in the majority of cancer types, while the
remaining 32 genes (15%) were underexpressed in the majority of
cancer types. We analyzed the lists of over- and underexpressed
genes for enrichment in a catalog of 186 KEGG pathways and six
TP53-related gene lists provided by Fischer et al. [39]. We found
11 significantly enriched categories for overexpressed genes and
eight significantly enriched categories for underexpressed genes
(Table 1). Of the overexpressed genes, 66% were the targets of
dimerization partner, RB-like, E2F and multi-vulval class B (DREAM)
complex (enrichment FC= 14.8), 29% were annotated to the G2/M
phase of the cell cycle (enrichment FC= 24.4), and 7% were
annotated to the G1/S phase of the cell cycle (enrichment
FC= 7.8). Of the underexpressed genes, 53% were direct p53
targets (enrichment FC= 34.4), 28% were annotated to the KEGG
p53 signaling pathway (enrichment FC= 79.1), and 9% were
annotated to the KEGG apoptosis pathway (enrichment FC= 19.9).
A heatmap of FCs of the 210 genes in the 24 cancer types

showed a high degree of consistency in the direction of
expression changes across the cancer types (Fig. 3). Gene
clustering resulted in the following six clusters: genes with strong
(O1), moderate (O2), and weak overexpression in TP53mut tumors
(O3), as well as one cluster with weak (U1) and two clusters with
strong underexpression in TP53mut tumors (U2). We annotated
the genes of the consensus list to the following categories of the
MSigDB: Targets of the DREAM complex, direct targets of TP53, cell
cycle, and apoptosis. Many of the overexpressed genes (clusters
O1, O2, and O3) were targets of the DREAM complex (66% of the

genes) and related to the GO category cell cycle progression
(57%). Many of the underexpressed genes (cluster U1 and U2)
were direct p53 targets (53%) and related to the GO category
apoptosis (34%). CDKN1A (p21), SPATA18, EDA2R, PHLDA3, and
C6orf138 in cluster U2 showed a strongly diminished gene
expression in the TP53mut tumors for most of the cancer types.
In line with this observation, CDKN1A, SPATA18, EDA2R, and
PHLDA3 are known as direct p53 targets regulated by the binding
of p53 to the promoter sequence [40, 41].
Cancer types were grouped into a cluster of five cancer types

showing strong overexpression of gene clusters O1/O2/O3 in
TP53mut tumors (T1: ACC, BRCA, LUAD, LIHC, and KIRC), a cluster
of ten cancer types showing moderate overexpression (T2: UCEC,
ESCA, SKCM, GBM, BLCA, PRAD, SARC, STAD, PAAD, and LUSC), and
a cluster of nine cancer types showing very low or no
overexpression of these genes (T3: KIRP, LGG, HNSC, CESC, COAD,
READ, KICH, MESO, and OV). Overexpression of the gene clusters
O1/O2/O3 that were enriched for indirect, p21-mediated targets
corresponded to underexpression of the gene clusters U1/U2 that
were enriched for direct p53 targets. Clusters T1, T2, and T3 were
not associated with different prevalence of TP53 mutations in
cancer types (p= 0.33). In some instances, different patterns of
differential expression were observed in tumors of the same organ
site. For example, TP53mut LUAD (cluster T1) showed strong
overexpression of O1/O2/O3, while TP53mut LUSC (cluster T2)
showed only moderate overexpression. TP53mut KIRC (cluster T1)
showed moderate overexpression, while TP53mut KICH and KIRP
(cluster T3) did not show any overexpression of the gene clusters
O1/O2/O3.
We analyzed the prognostic relevance of the genes in the

consensus list and compared the hazard ratios (HRs) associated
with differential gene expression (above median vs. below
median) with the ones associated with TP53 status (mut vs. wt,
Suppl. Fig. S3). For many cancer types (ACC, KICH, KIRC, LGG, LIHC,
LUAD, MESO, PAAD, PARD, SARC, and UCEC), patients with
TP53mut tumors, tumors with high expression of cell cycle genes,
as well as tumors with low expression of direct p53 targets, had
poorer prognosis. By contrast, for some cancer types, including
CESC, COAD, GBM, READ, and STAD, patients with TP53mut

Fig. 2 Gene expression patterns associated with GOF, LOF, DN, and non-DN TP53 mutations. For each analysis in a specific cancer type,
15 samples of a TP53 mutation class were compared to 15 samples of another mutation class. For the pan-cancer analysis, the results for
specific cancer type were summarized using Fisher’s method. None= no significantly expressed genes detected, N.A.= analysis not possible
(insufficient number of samples). Hotspots= pool of the 10 most abundant TP53 missense mutations in the study cohort (R175H, R273C/H,
R248Q/W, R282W, Y220C, G45S, H179R, and V157F).
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tumors and tumors with high expression of cell cycle genes had
better prognosis. Of note, altogether the expression levels of the
genes in the consensus list were prognostic for more cancer types
than the TP53mut status.

Cancer-type-specific gene expression patterns of TP53mut
tumors
We analyzed differential expression separately in each of the 24
cancer types (FDR= 10%, Fig. 4A). Differentially expressed genes
were detected in 21 cancer types (all except KIRC, KIRP, and OV).
WE analyzed the lists of over- and underexpressed genes for
enrichment or depletion of the 50 hallmark gene sets of MSigDB
(Fig. 4B, C). The hallmarks ‘G2M_CHECKPOINT’, ‘E2F_TARGETS’, and
‘MYC_TARGETS_V1’ were enriched in the overexpressed genes of
17, 16, and 16 cancer types, in line with enhanced proliferation in
TP53mut tumors (Fig. 4B). At the same time, these categories were
depleted the underexpressed genes of 13, 13, and 12 cancer types
(Fig. 4C). Overexpressed genes were enriched for ‘MTORC1_-
SIGNALING’ in 14 cancer types and for ‘MITOTIC SPINDLE’ in 11
cancer types. Overexpressed genes in a minority of cancer types
were enriched for ‘DNA REPAIR’ (8 cancer types), ‘GLYCOLYSIS’ (6
cancer types: LIHC, LUAD, BRCA, PAAD, CESC, and HNSC), and
‘UNFOLDED PROTEIN RESPONSE (6 cancer types: COAD, GBM,
SKCM, LUAD, BLCA, and HNSC). The hallmarks ‘INTERFERON_AL-
PHA_RESPONSE’ and ‘INTERFERON_GAMMA_RESPONSE’ were
enriched in the overexpressed genes of five cancer types (UCEC,
LUAD, BLCA, BRCA, and PAAD), but depleted in respectively four
and seven cancer types. Underexpressed genes of 15 cancer types
were enriched for ‘P53_PATHWAY’ and of eight cancer types for
‘APOPTOSIS’ in line with a failure of mutated TP53 to bind to the

regulatory DNA sequences of its direct target genes that is
predicted for most of the TP53 mutations.
The enrichment of genes of the glycolysis pathway in the set of

overexpressed genes in six cancer types suggests a stronger
Warburg effect in the TP53mut tumors of these cancer types.
Among the 168 overexpressed genes in the glycolysis pathway, six
genes were direct targets of p53 (ABCB6, IER3, GPC1, GPR87,
NDUFV3, and VCAN).
Altogether, we observed similar patterns of enrichment and

depletion across many cancer types, but also activation and
deactivation of specific cancer hallmarks in individual cancer
types. For example, for PAAD the genes overexpressed in TP53mut
tumors were enriched for the gene sets ‘P53_PATHWAY’ and
‘APOPTOSIS’ in contrast to an enrichment of these gene sets in the
underexpressed genes for most other cancer types. For HNSC, the
overexpressed genes were depleted for the gene sets
‘G2M_CHECKPOINT’ and ‘E2F_TARGETS’ in contrast to the enrich-
ment of these gene sets for most other cancer types.

Pathways analysis of TP53mut-associated gene expression
patterns
KEGG pathway analysis (Table 1) revealed enrichment of the
underexpressed genes of the consensus list in the p53 signaling
pathway (9 genes, enrichment FC= 79.1), whereas the over-
expressed genes were enriched for cell cycle (20 genes,
enrichment FC= 17.6). In particular, the following genes of the
consensus list in the p53 signaling pathway were underexpressed
(Fig. 5A): (i) CDKN1A (p21) mediating cell cycle arrest, (ii) FAS (Fas),
TNFRSF10B (DR5), BAX (Bax), BBC3 (PUMA), and ZMAT3 (PAG608)
mediating apoptosis, (iii) DDB2 (P48) mediating DNA repair and

Table 1. Functional analysis of the pan-cancer consensus list of differentially expressed genes between TP53mut and TP53wt tumors.

A

Category Number of genes
in category

Overexpressed genes in
category (%)

Enrichment FC p value

FISCHER_DREAM_TARGETS 821 65.7 14.8 4.9e-119

FISCHER_G2_M_CELL_CYCLE 218 28.7 24.4 1.1e-57

KEGG_CELL_CYCLE 118 11.2 17.6 1.2e-19

KEGG_DNA_REPLICATION 36 5.1 26 4.2e-11

KEGG_OOCYTE_MEIOSIS 110 6.2 10.4 8.5e-09

FISCHER_G1_S_CELL_CYCLE 173 7.3 7.8 1.2e-08

KEGG_PROGESTERONE_MEDIATED_OOCYTE_MATURATION 85 4.5 9.8 1.6e-06

KEGG_P53_SIGNALING_PATHWAY 65 3.9 11.2 2.9e-06

RIEGE_DELTANP63_DIRECT_TARGETS_UP 128 3.9 5.7 0.00023

KEGG_HOMOLOGOUS_RECOMBINATION 24 1.7 13 0.0015

KEGG_BASE_EXCISION_REPAIR 33 1.7 9.5 0.0038

B

Category Number of genes
in category

Underexpressed genes in
category (%)

Enrichment FC p value

FISCHER_DIRECT_P53_TARGETS_META_ANALYSIS 282 53.1 34.4 2.3e-23

KEGG_P53_SIGNALING_PATHWAY 65 28.1 79.1 1.2e-15

KEGG_APOPTOSIS 86 9.4 19.9 0.00045

KEGG_RIBOSOME 87 9.4 19.7 0.00046

KEGG_BLADDER_CANCER 40 6.3 28.5 0.0022

KEGG_PATHWAYS_IN_CANCER 320 12.5 7.1 0.0022

KEGG_NUCLEOTIDE_EXCISION_REPAIR 44 6.3 26 0.0027

KEGG_HUNTINGTONS_DISEASE 160 9.4 10.7 0.0027

We performed a gene set enrichment analysis with respect to the KEGG pathways and categories published by Fischer et al. [39] A, Significantly enriched
categories in the set of overexpressed genes. B, Significantly enriched categories in the set of underexpressed genes.
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damage prevention, and (iv) MDM2 and CCNG1 (Cyclin G)
mediating negative p53 feedback. CHEK1 (checkpoint kinase 1),
which phosphorylates and activates p53, was overexpressed.
Similar gene expression patterns were observed for TP53mut
tumors in most of the cancer types, but in PAAD we observed
overexpression rather than underexpression of the apoptosis
pathway (Fig. 5B). The distinct gene expression profile observed in
PAAD could be due to the low tumor purity of the PAAD samples
(median: 18%, [42]) and a pronounced contribution of the TME to
the expression profile of the PAAD samples as a consequence.
Many of the overexpressed genes in the consensus list

contribute to the regulation of the four phases (G1, S, G2, and
M) of the cell cycle (Fig. 6A). In TP53mut tumors, we observed
underexpression of CDKN1A (p21), and overexpression of CCNE1
(CycE) and CDK2. Downstream of the cyclin-dependent kinases,
we observed overexpression of RBL1 (p107) and E2F1 (Fig. 6A). Our
results are consistent with a failure of TP53mut cells to arrest the
cell cycle in the G1 phase mediated by missing induction of
CDKN1A that does not inhibit the building of the CCNE1/CDK2
complex as a consequence. In turn, the highly expressed CCNE1/
CDK2 complex is able to phosphorylate and inactivate RB1 (Rb).
The absence of activation of RB1, the binding partner of E2F1, as
well as the observed overexpression of E2F1, are consistent with

action of unbound E2F as transcription factor for downstream
targets and transition to the S phase.
We observed overexpression of many genes regulating the S,

G2, and M phases of the cell cycle (Fig. 6A). Among them were 17
genes in the list of DREAM complex targets according to Fischer
et al. [39]: BUB1B (BubR1), CCNB1 and CCNB2 (CycB), CCNE1 (CycE),
CDC20 (Cdc20), CDC25C (Cdc25C), CDK1, CDK2, CHEK1 (Chk1), E2F1,
MAD2 (Mad2L1), MCM2, 4, 7 (Mcm2,4,7), PLK1 (Plk1), RBL1 (p107),
and TTK (Mps1). This observation is consistent with progression
through the cell cycle and higher proliferation of TP53mut tumors
compared to TP53wt tumors.
In contrast to almost all other cancer types, we observed

underexpression instead of overexpression of many cell cycle
genes in TP53-mutated HNSC (Fig. 6B). Human papillomavirus-
negative (HPV-) compared to HPV-induced (HPV+) HNSC are
known for distinct tumors biology, including a much higher
prevalence of TP53 mutations in HPV- HNSC [43]. In the study
cohort, 80% of the HPV- tumors were TP53mut compared to
only 26% of the HPV+ tumors. To investigate a potential
confounding role of the virus infection, we stratified the analysis
by HPV status (Suppl. Fig. S4). In the TP53mut tumors of HPV-
HNSC, we observed underexpression of CDKN1A and over-
expression of many cell cycle genes. By contrast, an expression

Fig. 3 Heatmap analysis of the consensus list of 210 differentially expressed genes. Genes that were significantly (raw p < 0.05)
differentially expressed between TP53mut and TP53wt tumors in at least 16 of the 24 cancer types were included in the consensus list.
Significant FCs (FDR= 10%) between TP53mut and TP53wt tumors are coded in red or green.
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pattern characterized by unchanged CDKN1A and underex-
pressed cell cycle genes was observed in the TP53mut tumors of
HPV+ HNSC. Comparing the absolute level of CDKN1A expres-
sion (median levels) between cancer types, we found that
TP53wt tumors of HPV- and HPV+ HNSC were among the cancer
types with the highest CDKN1A expression (Suppl. Fig. S5). While
the CDKN1A expression level was significantly lower in the
TP53mut tumors for 20 of 26 cancer subtypes, including HPV-
HNSC, it was numerically (non-significantly) higher in the
TP53mut tumors of HPV+ HNSC. An unusual TP53-associated
expression pattern of cell cycle genes in TP53mut tumors was
also observed in CESC (Suppl. Fig. S5). As in HNSC, the
prevalence of TP53mut was higher (53%) in HPV- CESC
compared to HPV+ CESC (5%). In a stratified analysis of CESC,
no significantly differentially expressed genes were observed,
most probably because of low sample sizes for three of the four
investigated groups (HPV- TP53wt: 9, HPV- TP53mut: 10, HPV
+ TP53mut: 12). Altogether, these observations suggest a
distinct role for TP53 mutations in HPV infection-associated
cancers.

Immune tumor microenvironment in TP53mut tumors
We analyzed the association of 14 specific immune cell popula-
tions in the TME with TP53 mutations (Fig. 7). Because HPV
+ tumors, tumors with microsatellite instability (MSI) as well as the
molecular subtypes of breast cancer are associated with distinct
characteristics of the immune TME, we stratified the analysis for 32
cancer subtypes. For 20 (63%) of these cancer subtypes, no
significantly altered immune cell populations were detected.
Among the remaining cancer subtypes, we noticed exclusively
decreased immune cell populations in the TP53mut tumors of six
subtypes, a mixed pattern of increased and decreased immune
cell populations in four subtypes (HR+/HER2- BRCA, HER2+ BRCA,
LGG, and LUAD), and exclusively increased immune cell popula-
tions in BLCA and PRAD. We observed a decrease of CD8+ T cell
population in the TP53mut tumors of five subtypes (HPV- HNSC,
HPV+ HNSC, LGG, MSI-L/MSS STAD, and MSI-L/MSS UCEC), while
this cell population was not significantly altered in the remaining
subtypes. Besides, we detected decreased regulatory T cells
(Tregs) in the TP53mut tumors of HPV+ HNSC, MSI-L/MSS STAD,
and LGG, while Tregs were increased in HR+ and HER2+ BRCA. In

Fig. 4 Differential gene expression and functional analysis in specific cancer types. A Numbers of significantly (FDR= 10%) differentially
expressed genes between TP53mut and TP53wt tumors for 24 specific cancer types. B Significantly enriched categories of the hallmark
catalog in the set of overexpressed genes. C Same as B, but for the set of underexpressed genes. Significantly enriched or depleted gene sets
are shown in red or green. Multiple testing correction (FDR= 10%) was performed, including both cancer types and analyzed categories
(20 ×50 hypotheses). Enrichment FC= proportion of the genes in the gene set annotated to the hallmark / proportion of the genes in the
genome annotated to the hallmark.
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15 (47%) of the cancer subtypes, we observed an increased TMB in
TP53mut tumors, whereas in five (16%) cancer subtypes, we
observed decreased TMB. In summary, we detected increased TMB
in the TP53mut tumors of about the half of the cancer subtypes,
but this sincreased TMB was not systematically associated with
increase of immune cell infiltrations. A systematic influence of
TP53 mutations on the immune TME was observed only in a
minority of cancer types.

DISCUSSION
We performed a comprehensive analysis of TP53 mutations and
the associated gene expression pattern in 8331 tumors of 24
major cancer types. In line with other studies [35, 44–46], we
detected pronounced TP53 mutation hotspots, most of them
located in the DBD. The mutational hotspots showed a strong
tendency to be shared across different cancer types. However, at
the same time 53% of the hotspots showed significantly different

Fig. 5 Significant gene expression changes between TP53mut and TP53wt tumors in the p53 signaling pathway. A pan-cancer consensus
list. B pancreatic adenocarcinoma (PAAD). Red= overexpressed in TP53mut tumors. Green= underexpressed in TP53mut tumors.
Yellow= over- and underexpressed genes.
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Fig. 6 Significant gene expression changes between TP53mut and TP53wt tumors in the cell cycle pathway. A Pan-cancer consensus list.
B Head and neck squamous cell carcinoma (HNSC). Red= overexpressed in TP53mut tumors. Green= underexpressed in TP53mut tumors.
Yellow= over- and underexpressed genes.
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prevalence between cancer types. For example, the prevalence of
hotspot mutations was different in adeno- and squamous cell
carcinoma of lung compared to cancers of the gastrointestinal
tract. Recently investigated models including both mutational
signatures and phenotype selection performed well in the
prediction of mutation prevalence, while models including only
one of these factors did not, suggesting that the pattern of TP53
mutational hotspots is a consequence of both mutagenesis and
selective forces that are active during tumor development [10]. In
line with this result, the mutational processes operative in specific
cancer types contributed to explaining the observed mixture of
shared and individual hotspots. Examples included the ubiqui-
tously operational clock-like process behind SBS1 and mutational
processes active in specific cancer types, such as SBS4 and SBS24,
associated with tobacco smoke and aflatoxin exposure.
We defined TP53 hotspot mutations by a minimun prevalence

of of least 1% and presence in at least two tumors in at least one
of the 24 investigated cancer types. For each of the investigated
cancer types, less than 50% of all TP53 mutations were hotspot
mutations. For 14 of the 24 cancer types, <20% of all TP53
mutations were hotspot mutations. The prevalence of a specific
hotspot in a specific cancer type among all TP53-mutated cases
was always less than 10%. These numbers indicate a low to
medium prevalence of specific TP53 mutations and advocate
pooling of mutations to gain sufficient numbers of samples for
statistical analysis.
Numerous experimental studies including systematic screens of

synthetically generated variant libraries [9] reported distinct
functional impact of different TP53 mutation types including
LOF, DN impact, and GOF [47]. Furthermore, studies of TP53
germline mutations in animal models and cohorts of Li-Fraumeni
syndrome patients revealed earlier cancer onset for specific TP53
mutations [47–50]. By contrast, in the current study in a large pan-
cancer cohort of human tumors, virtually no significant gene
expression changes between different TP53 mutation types were
detected. This discrepancy could be explained as follows:

1. Some of the experimental studies of TP53 mutation types
are conducted models of tumor initiation, e.g., [48].
Potentially, the variability of cancer onset in these model
systems and cohorts of Li-Fraumeni patients is due to
differences in signaling during tumor initiation and the early

phase of tumor development, but dissipate once the tumors
are clinically detectable. Supporting this scenario, the
second TP53 allele was inactivated due to loss of hetero-
zygosity or a second TP53 mutation in more that 90% of the
TCGA tumors [35]. Thus, while a DN effect of TP53 mutations
can be relevant during tumorigenesis, it is irrelevant for vast
majority of tumors detected. Thus, the discrepancy between
the reported functional impact of mutation type and the
absence of differential expression in the TCGA cohort could
be explained by a model in which the mutation type is only
relevant in the early phase of tumor development before it
becomes clinically apparent.

2. Analyzing specific types of TP53 mutations drastically
reduced the sample sizes. To enable comparability between
different cancer types and between teh analysis of different
TP53 mutations types, we performed differential expression
analyses for a fixed number of 10, 15, and 20 samples in
each of the analyzed groups. Because of the limited number
of samples, it is possible that the expression FCs between
mutation types (compared to the variance of gene
expression) were too low to reach statistical significance.
However, many differentially expressed genes were
detected in the analyses comparing TP53mut and TP53wt
tumors. Thus, while we can not rule out that there are gene
expression changes between different types of TP53
mutations, the analyses show that - if they do exist - they
are much weaker than the gene expression changes
between TP53mut and TP53wt tumors. Furthermore, as an
approach to enhance the statistical power, summary of
significances across all cancer types did not also lead to
significant results for differential expression between
different mutation types.

3. TP53 predominantly acts as a transcription factor that binds
to specific DNA response elements and exerts its functions
via transcriptional regulation [51, 52]. Although the most
prevalent DBD mutations largely abrogate the regulation of
canonical p53 wildtype target genes, mutant p53 proteins
can exert transcriptional activities by interacting with other
transcription factors or chromatin-modifying complexes
[53]. In turn, these effects strongly depend on the factors
expressed, therefore differ between cell and tissue types
and genetic context, and may be too diverse to be

Fig. 7 Immune cell population in the tumor microenvironment. Significant changes in immune cell abundance (FDR= 10%) between
TP53mut and TP53wt tumors are coded in colors. Red= higher abundance in TP53mut tumors. Green= lower abundance in TP53mut tumors.
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detectable with the available number of tumors per
mutation. Moreover, many pro-metastatic properties of
mutant p53 proteins operate at a non-transcriptional level,
for example, by modulating protein biosynthesis and
secretion [54, 55], so the biological differences observed in
experimental systems and during the initiation of human
tumors might be hidden when analyzing mRNA expression
profiles.

In the current study, we observed shared TP53mut-associated
gene expression patterns across many cancer types and carved
out a consensus list of 210 genes that were differentially
expressed in at least 16 of 24 cancer types. The overexpressed
genes of the list were strongly enriched for G2/M cell cycle genes,
while the underexpressed genes were strongly enriched for direct
targets of p53 and apoptosis genes in accordance with the
literature [40, 56]. Enrichment for G2/M cell cycle genes was found
for all investigated cancer types with the only exception of CESC
and HNSC cohorts, which included a substantial proportion of
HPV-positive tumors (93% and 18%). The HPV E6 and E7 proteins
bind TP53 and RB1, respectively, and inactivate the functions of
these tumor suppressor genes [57, 58]. Both RB1 and TP53 act as
negative cell cycle regulators, explaining the anomalous TP53-
associated expression patterns observed in cohorts that include
HPV-induced tumors. When restricting to HPV- HNSC, the typical
TP53-associated expression pattern was observed.
The role of TP53 mutations in response to immune checkpoint

blockade (ICB) is controversial. In a recent meta-analysis combin-
ing six whole exome sequencing (WES) data sets across cancer
types, TP53 mutations were a negative predictor of ICB response
[59]. By contrast, TP53/KRAS co-mutated non-small cell lung cancer
patients benefited from PD-L1 blockage in comparison to
docetaxel, while KRAS-mutant patients without additional TP53
mutation did not [60]. A distinct immunoregulatory program was
uncovered in TP53/KRAS co-mutated pancreatic ductal adenocar-
cinoma [61]. In models of TP53mut triple-negative breast cancer
restoration of TP53 activity sensitized for blockade of the PD-L1/
PD1 axis [62]. While it could be expected that inactivation of TP53
that acts as guardian of the genome would increase TMB and the
number of neoantigens, the current study showed that the
immune TME was unaltered in TP53mut tumors of the majority of
cancer types. Upregulated immune cell populations were
detected only in very few cancer types and never included
CD8+ T cells. Decreased CD8+ T cell populations were detected in
the TP53mut tumors of HNSC, LGG, MSI-L/MSS STAD, and MSI-L/
MSS UCEC. Altogether, our study suggests that the immune TME is
modified in a TP53 status-dependent manner in specific cancer
types. Further studies are warranted to investigate the implica-
tions for the guidance of immune therapies.
Many of the genes of the consensus list (52%) were related to

the cell cycle. In line with the observation that the expression
levels of these genes were prognostic in several cancer types, the
cell cycle machinery represents a target for established drugs and
agents under development [63, 64]. Among these, CDK4/6
inhibitors are approved to treat certain types of hormone
receptor-positive, HER2-negative breast cancer in combination
with endocrine therapy. CDK4 and CDK6 were not included in the
consensus list, but overexpressed in the TP53mut tumors of
respectively 14 and 10 cancer types (just below the threshold 16
for inclusion in the consensus list). CDK1 and CDK2 were included
in the consensus list and corresponding inhibitors and are
currently tested in phase I, II and III trials. CCNE1 (clinical studies),
as well as ADAM17 and CDC20 (preclinical), are additional
examples of genes on the consensus list currently being
considered for therapeutic invention [65–67]. Correlation of the
expression level of many of the currently investigated target
genes with TP53 mutation status supports the view that TP53

mutations should by further investigated as a predictive marker to
select patients for cell cycle targeting therapies.
Although we analyzed one of the largest comprehensively

molecular characterized cancer cohorts available, small sample
sizes in the analysis of specific TP53 mutations in specific cancer
types represent the main limitation of the current study. As gene
expression patterns differ strongly between cancer types, pooling
of cancer types would lead to a drastic increase in variance and
would be ineffective to overcome this limitation. As further
limitation, the study was focused on operable, early-stage tumors
(TCGA) and on the molecular layer of gene expression. As several
studies support a distinct role of different TP53 mutations in
metastatic dissemination [68–70], analysis of further cohorts of
advanced-stage tumors is warranted. Furthermore, inclusion of
additional molecular layers, in particular of the phosphoproteome,
would be beneficial.
This is the first study to comprehensively analyze the effect of

specific TP53 mutation types on mRNA expression patterns across
cancer types. Because we detected virtually no mutation type
associated alterations, we pooled TP53 mutation types for
comparison to TP53wt tumors. We extracted list of 210 genes
that were differentially expressed between TP53mut and TP53wt
tumors in two-thirds or more of the 24 cancer types. We also
performed differential gene expression analysis for each cancer
type followed by gene set enrichment analyses and uncovered
impaired biological processes in TP53mut tumors of each entity.
Analysis of specific immune cell populations showed an influence
of TP53 mutations on the composition of the immune TME for 12
of the 32 investigated cancer subtypes. The analysis of a large
cohort of human tumors complements results from experimental
studies and supports the view that TP53 mutations should be
further evaluated as predictive markers for cell cycle targeting
therapies, immunotherapies, and others.

MATERIAL AND METHODS
Study cohort
We included 8331 tumors and 24 cancer types from the TCGA for which
mutation calls, mRNA expression data were available, and at least seven
TP53mut tumors per entity were available (Suppl. Table S1). Mutation calls
(mc3.v0.2.8.PUBLIC.maf.gz) and expression data (EBPlusPlusAdjustPANCA-
N_IlluminaHiSeq_RNASeqV2.geneExp.tsv) were downloaded from the
Genomics Data Commons (GDC) webpage [71]. Tumor mutational burden
(TMB) was calculated as the total of missense mutations.

Classification of mutations
In the first step, tumors were classified as TP53-mutated (TP53mut) or TP53-
wildtype (TP53wt). Tumors harboring missense, nonsense, splice site,
translation site, or non-stop mutations or frameshift or in-frame indels
were classified as TP53mut. Tumors without mutations, with synonymous
mutations, or with mutations in the gene flanks, introns, UTRs, splice
regions, or intergenic regions were classified as TP53wt.
In the second step, TP53 mutations were classified as GOF, LOF, DN, and

not DN mutations (Suppl. Fig. S1 and Suppl. Table S3). First, mutations were
annotated using The TP53 Database (version R20) [72], with mutations
annotated as both GOF and LOF being classified as GOF. Second,
mutations not present in the TP53 Database were either classified as LOF, if
there was evidence for truncation (nonsense mutations, frameshift indel,
splice site mutations, transcription start site mutations, or non-stop
mutations) or as a variant of unknown significance (VUS), if not.

Statistical analysis and visualization
Statistical analyses and graphics generation were performed by using R
(version 4.1.2) and RStudio Desktop (version 2.0.443) [73].

Analysis of mutational hotspots
A lollipop diagram of the distribution of the detected TP53 variants was
created with the MutationMapper at the cBioPortal [74, 75]. The prevalence
of the recurrent variants (detected in at least two tumors and with at least
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1% prevalence in at least one cancer type) was visualized in a heatmap
using the R package heatmaply [76]. The recurrent mutations were tested
for differential prevalence in the cancer types using the functions prop.test
of the R package binom [77] and the p-values were corrected for multiple
testing using the Benjamini-Hochberg (BH) method. A set of hotspots with
different prevalences of TP53 mutations in different cancer types was
compiled controlling the false discovery rate (FDR) at 10%. The prevalence
of mutational hotspots was reported together with 95%-confidence
intervals calculated with the Clopper-Pearson method.

Differential gene expression analysis
Sample-normalized gene expression data (upper quartile normalization)
were transformed to the log2 scale. The significance of differential gene
expression was assessed using the Wilcoxon rank-sum test. Exact p-values
were corrected for multiple testing using the BH method. Lists of
differentially expressed genes were extracted, controlling the FDR at 10%.
We sought to compare gene expression patterns between tumors with

different types of TP53 mutations as well as TP53wt tumors. To ensure
comparability, differential gene expression analyses were performed with a
fixed sample size (n= 10, 15, and 20), and tumors of each cancer type and
mutation type were randomly selected for the corresponding analyses. First,
we performed comparisons between different TP53 mutation classes (R175,
R248, R273, Hotspots, LOF, GOF, DN, and non-DN). The TP53 mutation class
“Hotspots” included the top ten most frequent missense mutations: R175H,
R273C/H, R248Q/W, R282W, Y220C, G45S, H179R, and V157F. Second, we
compared the different TP53 mutation classes to TP53wt tumors.
Because we did not detect characteristic gene expression patterns

associated with specific TP53 mutations, we analyzed the differential gene
expression between TP53mut and TP53 tumors irrespective of the
mutation type. The p-values of the 24 cancer types were summarized to
pan-cancer p-values using Fisher’s method [78]. A 210-gene consensus list
was created including all genes with significant expression changes (raw
p < 0.05) in at least 16 cancer types. Fold changes (FCs) of the significantly
differentially expressed genes were visualized as heatmap with hierarchical
clustering using the Manhattan metric to measure the distance between
cancer types and between genes and the average linkage method to
measure the distance between clusters. Clusters of cancer types were
tested for different TP53 mutation prevalence using the Kruskal-Wallis rank
sum test.

Survival analysis
Analysis of progression-free interval (PFI) and overall survival (OS) was
performed using the TCGA-Clinical Data Resource (CDR) Outcome (TCGA-
CDR-SupplementalTableS1.xlsx) [71]. First, we compared the survival of
TP53mut and TP53wt tumors of each cancer type. Second, we analyzed the
association of the expression level (cutpoint: median) of each gene in the
consensus list with survival using Cox regression.

Functional analysis
The Molecular Signatures Database (MSigDB v7.5.1) was downloaded from
the GSEA web page [79] and imported using the R package XML [80]. We
analyzed the following MSigDB catalogs: H (Hallmarks, n= 50), C2 (Curated
Gene Sets: Martin Fischer and Kyoto Encyclopedia of Genes and Genomes
(KEGG), n= 192), and C5 (Gene Ontology (GO), n= 2). The significance of
the enrichment of functional categories in the catalogs was assessed using
the Fisher test and corrected for multiple testing using the BH method at
FDR of 10%. The strength of enrichment or depletion of a functional
category in the consensus gene list was quantified by the enrichment fold
change,

FC ¼ k=K
n=N

with k being the number of genes in the gene list annotated for the
functional category, K the total number of genes in the gene list, n the total
number of genes in the functional category and N the total number of the
genes in the functional catalog. Significant over- or underexpression of
genes in signaling pathways was visualized using KEGG Tools [81].
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