
Homography Based Parallel Volume Intersection:

Toward Real-Time Volume Reconstruction Using Active Cameras

Toshikazu Wada, Xiaojun Wu, Shogo Tokai, Takashi Matsuyama

Department of Intelligence Science and Technology,

Graduate School of Informatics,

Kyoto University

Yoshida Hon-machi, Sakyo-ku, Kyoto, 606-8501, JAPAN

twada@i.kyoto-u.ac.jp, wxj@kuee.kyoto-u.ac.jp, tokai@kuee.kyoto-u.ac.jp, tm@i.kyoto-u.ac.jp

Abstract

Silhouette volume intersection is one of the most popu-

lar ideas for reconstructing the 3D volume of an object from

multi-viewpoint silhouette images. This paper presents a

novel parallel volume intersection method based on plane-

to-plane homography for real-time 3D volume reconstruc-

tion using active cameras. This paper mainly focuses on

the acceleration of back-projection from silhouette images

to 3D space without using any sophisticated software tech-

nique, such as octree volume representation, or look-up ta-

ble based projection acceleration. Also this paper presents

a parallel intersection method of projected silhouette im-

ages. From the preliminary experimental results we esti-

mate near frame-rate volume reconstruction for a life-sized

mannequin can be achieved at 3cm spatial resolution on our

PC cluster system.

1. Introduction

Motion data of the human body is often used to create re-

alistic 3D CG animations. As well, human motion data can

be utilized for telerobotics, ergonomics, biomechanics and

sport performance analysis. Usually, motions are captured

by commercial motion capture equipments, which are de-

signed to track key points of the articulated object, such as

joints. This tracking is realized by either magnetic or opti-

cal point measurements. Since magnetic point measurement

uses bulky sensors on key points and the magnetic field can

be affected by steel, optical tracking is widely used. Opti-

cal tracking uses radiational or reflective optical markers on

key points. Their lights are observed by surrounding cam-

eras and their 3-D positions are computed from these ob-

servation results. The limitations of current optical motion

capture systems can be summarized as:

�
Optical markers may be occluded by the object

(self occlusion): Most of the systems employ 3D joint

model matching which compensates for the marker oc-

clusions on some observed images. But, if a marker

disappears from all observed images, the position of

the point cannot be obtained.�
3D shape information cannot be obtained: Current

motion capture systems only provide the positions of

sparse points without 3D shape information which is

essential to measure deformable objects.� The working space is limited to a small area. This is

because each camera has limited spatial resolution and

fixed camera parameters.

These limitations are removed by introducing the following

techniques:

1. 3D volume reconstruction: By matching a 3D ob-

ject volume model with the obtained 3D volume, we

can avoid the self-occlusion problem. As well, we can

measure the object deformation from the volume infor-

mation.

2. Active camera control : By changing the view direc-

tion of the camera, we can keep capturing the mov-

ing object without reducing the spatial resolution of

the cameras. As well, by changing the zoom, spatial

resolution can be maximized for a particular moving

object.

In the case of using multiple cameras surrounding an object,

silhouette volume intersection [1] [2] [6] [7] [9] [10] is the

most popular idea for computing 3D volume of the object

(Figure 1). This idea is based on silhouette constraints that

each 2D silhouette of an object constrains the object inside

the volume (frustum) produced by back-projecting the sil-

houette from the corresponding viewpoint. Therefore, by

331

Silhouette

on Image Plane
Camera A

Camera B

Intersection

Reconstructing space

Object

Figure 1. Silhouette Volume Intersection.

intersecting the frusta for all silhouettes, an approximation

of the object volume is obtained. This is called visual hull

[5] which constrains the object its inside. Recently, this idea

is further extended using photometric information to recon-

struct more accurate shapes [4].

From an algorithmic viewpoint, volume reconstruction

methods based on this idea can be classified into two cate-

gories:

1. Space carving method (SCM) which cuts off those

3D points projected to the outside of at least one sil-

houette.

2. Volume intersection method (VIM) which computes

intersections of all back-projected frusta of silhouettes.

SCM can be regarded as a verification based method using

silhouette constraints, and VIM is the straightforward real-

ization of the basic idea. Since SCM requires less memory

than VIM, most of the previous methods are classified into

SCM.

As for the camera control suitable for the volume recon-

struction, it requires 3D object information. This is because

the moving object must be covered by the common observ-

ing area of all cameras. That is, like a moving cage, the

common observing area must follow and always cover the

entire body of the moving object. For this coordinated cam-

era control, the 3D location and shape of the object are

required. Therefore, the volume reconstruction speed is a

crucial problem for the camera control. Ideally, it should

be done in real-time, i.e., short latency, and near frame-rate

volume reconstruction.

The reconstruction speed is ruled by the computation

scheme as follows.

As shown in Figure2 (a), if a high-speed computer

achieves frame-rate volume reconstruction for a certain

number of cameras, this speed will slow down as the num-

ber of cameras increases. That is, single process 3D volume

reconstruction does not have scalability. On the other hand,

(a) single processing (b) parallel processing

Figure 2. Computation Schemes for volume
Reconstruction

foreach ✁✄✂✆☎✝✁✟✞✡✠☞☛✡✌✎✍ begin✁✄✏✒✑✔✓✕✞✗✖✘✖✘✙✛✚☞✜✢☛✡✣✤✓
foreach ✖✔✂✆☎✥✖✘✦✤✧★☛✥✩✡✦☞✍ begin

project ✁ to image plane of ✖
if projected point isn’t in the silhouette then✁✄✏✪✑✔✓✫☛✝✧✬✚✫✭✎✮✯✓

goto ENDINNERLOOP

endif

end
ENDINNERLOOP:

end

Figure 3. Basic Algorithm for SCM. ✰✲✱✴✳✶✵✸✷✲✹✻✺ : set

of all voxels, ✰✶✼✾✽✴✿❀✷✲❁❂✽✡✺ : set of all cameras, ❃❄✳❂✼✾✼✎❅✝❆✗❇❈✷✲❉❊❃ : value of

occupied voxel, ❃❋✷✲✿●❆✗❍❈■✝❃ : value of non-occupied voxel.

network connected computers, each of which has an active

camera(Figure2 (b)), can sustain its volume reconstruction

speed for numbers of cameras, because both of the image

capture and silhouette image generation are done by indi-

vidual computers in parallel, and the volume reconstruction

can also be parallelized1. That is, parallel processing is the

most promising approach to achieve a scalable real-time 3D

volume reconstruction.

In this paper, we propose a parallel volume reconstruc-

tion method based on silhouette volume intersection. In the

following sections, we describe basic method for parallel

volume reconstruction, acceleration of back-projection, par-

allelization of intersection, and experimental results.

2. Basic algorithm

To realize high-speed parallel volume reconstruction, we

first have to select the basic algorithm, i.e., SCM or VIM.

1Although the latency grows up as the number of images increases.

332

☎✝✁✟✞✡✠☞☛✡✌✎✍❏✏✒✑❑☎✥✓❋✞✗✖✘✖❊✙✤✚✫✜✎☛✡✣✤✓❈✍
foreach ✖❀✂▲☎✥✖✴✦✛✧★☛✥✩✗✦✫✍ begin☎✥▼❖◆P✖✴◗❂✍❏✏✒✑❘☎✡✓❄☛✥✧✬✚✫✭✎✮✯✓❈✍

foreach ✚❙✂▲☎✡❚✝✜✎✌P❯☞✞✡✙❱☛✥✭✎✭✾☛✟◆❲✖✴◗❊✍ begin
project ✚ to 3D space and generate a ray ❳✗◆❨✚❬❩✶✖✴◗☎✡▼❖◆❲✖✴◗❊✍❭✏✪✑❘☎✥▼❖◆P✖✴◗❂✍❫❪❴✩✯◆✒✚❵❩✲✖✴◗

end☎✝✁✟✞✡✠☞☛✡✌✾✍❛✏✒✑❜☎✝✁✟✞✡✠☞☛✡✌✎✍❫❝❖☎✥▼❖◆P✖✴◗❂✍
end

Figure 4. Basic Algorithm for VIM:✰✲✱✝✳✲✵✸✷✶✹❋✺ : set of voxels, ✰❂❞✾❇❈✹❨❡❢✳✲❅✛✷❣❍❈❍❤✷✴✐❋✼❣❥❦✺ : set of silhouette pixels

observed by camera ✼ , ❆ : silhouette pixel, ✰✶✼✾✽✴✿❀✷✲❁❊✽✥✺ : set of all

cameras, ✰✶❧♠✐✻✼❣❥P✺ : frustum generated by back projection from sil-

houette observed by camera ✼ , ♥✶✐ ❆✟♦❦✼✲❥ : a 3D ray passing both ❆ and

the optical center of ✼ .
The basic algorithms of SCM and VIM are shown in

Figure3 and 4, respectively. In SCM, the outermost loop

parameter is voxel, but in VIM, it is camera, i.e., computer

in our computation scheme. This means VIM is suitable

for parallel processing, because the back-projection process

can be divided into small

processes back-projecting each silhouette to 3D space

which run on each computer without referring to other sil-

houettes. Also in VIM, an intersection process can be de-

composed into pairwise intersections. These properties are

suitable for parallel processing.

The drawback of basic VIM algorithm is the large mem-

ory required to represent the frustum ☎✥▼❖◆P✖✴◗❂✍ . There are two

types of solutions for this problem:

1. Employ octree volume representation of frusta.

2. Divide a frustum into small subsets and compute VIM

for these subsets sequentially.

The former is one of the most effective approach, because

it reduces the size of 3D volume representation, as well

as accelerates intersection operation for ordinary objects.

Furthermore, there is an accelerated octree generation al-

gorithm [10]. However, since it is optimized for binary sil-

houettes, there is no room left to extend the binary silhou-

ette images to gray scale or color images[4]. Also, for some

sparse objects such as a skeleton, the octree representation

may not be compact. Because of these reasons, we employ

the latter approach in this paper.

By decomposing the 3D space ☎✥✁✤✞✡✠❱☛✡✌✎✍ into smaller dis-

joint sub-spaces ☎❢☎✝✁☞✍❢✍ , e.g., planes, boxes, etc., we obtain

an algorithm as shown in Figure 5. In this modified algo-

rithm of VIM, the outermost loop parameter becomes the

subset ☎✥✁✫✍ of voxels. However, back projection can still be

parallelized.

☎✝✁✟✞✡✠☞☛✡✌✎✍❏✏✒✑❘☎✡✓❨☛✥✧✬✚✫✭✎✮✯✓❤✍
foreach ☎✝✁☞✍❏✂▲☎✛☎✝✁☞✍❢✍ begin☎✥✁✫✍❏✏✒✑❘☎✡✓❄✞✗✖✘✖✘✙✛✚☞✜✢☛✡✣✤✓❈✍

foreach ✖✔✂✆☎✥✖✘✦✤✧★☛✥✩✡✦☞✍ begin☎✥▼❖◆❲✖✝◗❂✍✥♣q✏✪✑❜☎✥✓❋☛✥✧r✚☞✭✎✮✯✓❈✍
foreach ✚★✂▲☎✗❚✝✜✢✌❦❯✫✞✡✙s☛✥✭✎✭✾☛✟◆❲✖✴◗❊✍ begin

compute projection ❳❊♣✟◆✒✚❵❩✲✖✴◗ from ✚ to ☎✝✁☞✍☎✡▼❖◆❲✖✴◗❊✍ ♣ ✏✒✑❑☎✡▼❖◆❲✖✴◗❊✍ ♣ ❪t❳ ♣ ◆❨✚❬❩✶✖✴◗
end☎✝✁☞✍❭✏✪✑❘☎✝✁☞✍ ❝ ☎✥▼ ♣ ◆P✖✴◗❂✍

end☎✥✁✤✞✡✠❱☛✥✌✾✍❏✏✪✑❜☎✝✁✟✞✡✠☞☛✡✌✎✍ ❪ ☎✥✁✫✍
end

Figure 5. Modified Algorithm for VIM: ✰❊✰✲✱✡✺❊✺ :

disjoint decomposition of ✰✲✱✴✳✶✵✸✷✲✹✻✺ , ✰✲✱✥✺ : subset of voxels,✰✶❧♠✐❋✼❣❥❦✺✶✉♠✈❙✰✶❧♠✐❋✼✲❥P✺✕✇①✰✲✱✥✺ , ♥✎✉✸✐ ❆✟♦❦✼❣❥✫✈②♥✶✐ ❆✯♦❦✼❣❥✡✇③✰✲✱✥✺ .

From this algorithm, the basic operations for VIM can

be classified into two categories:

1. Back-projection

2. Intersection of back-projected silhouettes

In the following sections, detailed acceleration methods for

these operations are discussed.

3. Back-projection accelerations

Back-projection is the most expensive computation in

VIM, because it requires a considerable arithmetic opera-

tions. There may be three approaches for the acceleration:

1. Use a lookup table embedded in voxel space represent-

ing the projection points on 2D image plane.

2. Use special hardware for projection.

3. Use accelerated algorithms for perspective projection.

In our problem, the first approach cannot be employed, be-

cause the camera action changes the relationship between

voxels and pixels. The second is a promising way to achieve

a certain acceleration, but to design the hardware we first fix

the algorithm. Then, we take the last approach in this paper.

As for the disjoint decomposition of 3D space ☎❢☎✥✁✫✍✛✍ in

the modified VIM algorithm, we employ parallel plane de-

composition as shown in Figure6. This is because plane-to-

plane perspective projection (homography) [8] is computa-

tionally less expensive than general perspective projection:

333

④❢⑤ ⑥✴⑦⑧❢⑨ ⑩
❶

❷
❸

(a)

❹❢❺ ❻✴❼❽❢❾ ❿
➀

➁
➂

(b)

Figure 6. 3D space representations: (a) 3D voxel

space, (b) Disjoint decomposition into parallel planes.

� General perspective projection from 3D point◆❤➃➄❩✶➅➆❩❊➇➈◗ to 2D point ◆❤✠➊➉✝➋✗✠☞➌❢❩❴✠☞➍✗➋✡✠❱➌✝◗ can be

represented by the following equation:➎➏ ✠ ➉✠ ➍✠❱➌
➐➑ ✑ ➎➏ ✚ ➉✶➉ ✚ ➉❣➍ ✚ ➉❣➌ ✚ ➉✾➒✚ ➍❊➉ ✚ ➍✶➍ ✚ ➍✶➌ ✚ ➍✲➒✚☞➌❊➉➓✚☞➌✶➍➔✚☞➌✶➌➔✚☞➌✲➒

➐➑ ➎→→➏ ➃ ➅ ➇ ➣
➐❨↔↔➑➄↕

(1)

This transformation requires 9 additions, 9 multiplica-

tions, and 2 divisions.� In the case of homography, i.e. the source 3D point is

constrained on a 2D plane, the projection equation is

simplified to the following equation:➎➏ ✠s➉✠☞➍✠☞➌
➐➑ ✑ ➎➏ ❯❱➉✶➉➙❯s➉✾➍➛❯s➉❣➌❯✫➍❊➉➙❯☞➍✲➍➛❯☞➍✶➌❯✫➌❊➉➙❯☞➌✲➍➛❯☞➌✶➌

➐➑➜➎➏ ➃ ➅ ➣ ➐➑ ↕ (2)

This requires 6 additions, 6 multiplications, and 2 di-

visions per point.

As described above, homography is faster than general per-

spective projection. In the following sections, we show fur-

ther acceleration methods for this homography based VIM.

3.1. Linear­wise homography

To reduce the number of arithmetic operations for ho-

mography, we can exploit the following property (Figure

7):

Property 1 For any combination of two planes ➝ and ➞ , there

exists at least one set of planes ➟✝➠➢➡ whose every member ➠ satis-

fies that two intersection lines ➝✄➤➥➠ and ➞➄➤▲➠ are parallel and➠ involves a fixed line ➦ passing a point ➧ .
Proof

B

A

C

o

o

P

P

C

A B

B C

CA

A C B C

Figure 7. Basic idea of linear­wise
homography.

➨ Planes ➝ and ➞ are not parallel, there exists a intersection

line ➝ ➤ ➞ . The planes ➝ and ➞ can be decomposed into

two disjoint sets of parallel lines ➟✴➩❬➫❵➡ and ➟✴➩❵➭❫➡ , both of

them are parallel to ➝➯➤➄➞ . Let a line ➦ passing the point ➧
be parallel to ➝➯➤❙➞ . A plane ➠ involving line ➦ makes two

intersection lines ➝ ➤ ➠ and ➞ ➤ ➠ .

Since, plane ➠ involves ➦ , and ➦ is parallel to ➝✄➤➄➞ ,

the plane ➠ is also parallel to ➝➯➤➥➞ . Then, the plane ➠
can also be decomposed into disjoint set of parallel lines➟✴➩❵➲❵➡ , whose members are parallel to ➝ ➤ ➞ . Hence, all

parallel line decompositions ➟✴➩❬➫❵➡ , ➟✘➩➳➭➵➡ , and ➟✘➩➳➲❵➡ con-

sist of lines parallel to ➝➯➤➄➞ . Any two different lines

picked up from ➟✴➩ ➫ ➡➊➸❏➟✘➩ ➭ ➡➊➸❏➟✴➩ ➲ ➡ never intersect, be-

cause all these lines are parallel. That is, ➝ ➤ ➠ ➺➟✴➩ ➫ ➡➊➤❏➟✴➩ ➲ ➡➻➺➼➩ ➫✫➲ ,and ➞➄➤➥➠➽➺➼➟✘➩ ➭ ➡❬➤❛➟✴➩ ➲ ➡➾➺➩ ➭❱➲ . Since ➩ ➫✫➲➵➚ ➩ ➭❱➲❑➪ ➟✘➩ ➲ ➡ , ➝✄➤➥➠ and ➞❙➤➥➠ are

parallel.➨
Planes ➝ and ➞ are parallel, any plane ➠ which is not par-

allel to these planes makes two intersection lines ➝ ➤ ➠ and➞➄➤➄➠ , both of them are obviously parallel. Hence, ➟✝➠➢➡
can be defined for any line ➦ passing the point ➧ .

Q.E.D.

The homography between two planes ➝ and ➞ can be decom-

posed into homographies between 1D lines ➝ ➤ ➠ and ➞ ➤ ➠ (➠ ➪ ➟✝➠➢➡) by regarding the point ➧ as the center of perspective

projection. Property 1 guarantees that these two lines can be par-

allel, if we select the line ➦ properly. Homography between two

parallel lines can be represented as 1D scaling. This can be done

by linear scanning: starting from two corresponding points ➶➹➘✯➴ and➶ ➹➷ ➴ , subsequent corresponding points on these lines are computed

by adding constant 2D vectors ➶➹ ➬ and ➶➹ ➮ to these points:➶❊➶ ➹➘✯➱❄✃➊❐ ➺ ➶➹ ➘✯➱✫❒ ➶➹ ➬ ➚ ➶❋➶❢➶ ➹➷ ➱❄✃s❐ ➺ ➶ ➹➷ ➱✯❒ ➶➹ ➮❰❮ (3)

This means 4 additions are enough to compute the homography of

a point. But, there are initialization overheads to compute (1) start-

ing point pair ➶➹➘✯➴ and ➶ ➹➷ ➴ , and (2) scaling coefficients. These over-

heads are equivalent to computing two homographies, two vector

subtractions, two scalar divisions per each line pair. In the case of

334

Translation
 +

Scaling

Base Plane

CCD Plane
o

hom
ography

Figure 8. Plane­wise homography: Homography

between parallel planes can be done by scaling and translation of a

2D image on source plane.

homography to a plane consists of Ï✫ÐsÑ❬Ï☞Ò elements, the overheads

per point are estimated as: Ó❊Ô✥Õ✡Ö Ï✫Ð✥Ï✫Ò additions, Ó✘×✥Õ✥Ö Ï✫Ð✥Ï✫Ò mul-

tiplications, and Ô✡Õ Ö Ï Ð Ï Ò divisions, where Ö Ï Ð Ï Ò represents the

estimated number of lines on the plane.

3.2. Plane­wise homography

As discussed above, linear-wise homography accelerates gen-

eral homography between non-parallel planes. Here we show the

homography can further be accelerated by using the special prop-

erty between parallel planes [3] .

As shown in Figure 8, homography between two parallel planes

is simplified to 2D isotropic scaling and translation:Ø ➘ ❐➘✕Ù➢Ú ➺❴Û Ø ➷ Ü Ú ❒ Ø❬Ý ÐÝ Ò Ú ➚ (4)

where Û represents the scaling and Þ Ý Ð✸➚ Ý Ò✥ß the translation vector.

Equation(4) shows that this transformation requires 2 additions

and 2 multiplications per point without any overhead. By using

linear scanning employed in linear-wise homography, the number

of arithmetic operations can be further reduced. In this case, since

every parallel line decomposition of silhouettes can be used for

homography, the raster scanning can also be used as:➶❊➶ ➹➘✯➱❋✃s❐ ➺ ➶➹ ➘✯➱✫❒ Þ❲Û✘Ð✥à á ß✲➚ ➶❋➶❢➶ ➹➷ ➱❄✃➊❐ ➺ ➶ ➹➷ ➱✟❒ Þ❲â✯ã ➚ á ß ❮ (5)

This requires only 2 additions with overheads: ×✝Õ Ö Ï Ð✸ä Ï Ò addi-

tions and ×✝Õ Ö Ï✫Ð✸ä✯Ï☞Ò multiplications per point.

This transformation is a pure 2D geometric transformation.

This means that 2D image processing hardware can be employed

to accelerate this process.

Since this acceleration method can be applied only to parallel

planes, our strategy is to 1) perform linear-wise homography from

the image plane to the base-plane placed at the bottom of the voxel

space, 2) then apply plane-wise homographies from the base-plane

silhouette to parallel planes.

3.3. Comparison

If the 3D voxel space consists of Ï✫✉➈➺➻Ï✫ÐqÑåÏ✫Ò❛ÑåÏ✫æ voxels,

the total arithmetic operations can be estimated as follows2:

2Because of the shape of frustum, the number of arithmetic operations

may be reduced for higher plane. But, it is ignored in this estimation,

Communication

Base Plane
Silhouette
Image

Local
3D Model

node 1 node 2 node 3

Silhouette
Image

Local
3D Models
(partition)

Captured
Image

Loop

Object area
on a slice

Final Result

SIG

PPP

SIG SIG

BPP BPP BPP

PPP PPP

INT INT INT

Figure 9. A process flow of the local

silhouette division method: SIG: silhouette image

generation, BPP: base plane projection, PPP:parallel plane

projection, INT: intersection.

➨
General Perspective Projection: ç✴Ï☞✉ additions,ç✝Ï✫✉ multiplications, and ×✘Ï✫✉ divisions.➨
Normal homography: Ô✝Ï✫✉ additions, Ô✝Ï✫✉ multiplications,

and ×✴Ï✫✉ divisions.➨
Linear-wise and Plane-wise homography:

Linear-wise homography: è✝Ï Ð Ï Ò ❒ Ó❊Ô Ö Ï Ð Ï Ò additions,Ó✘× Ö Ï Ð Ï Ò multiplications, and Ô Ö Ï Ð Ï Ò divisions.

Plane-wise homography: Þ❲×✴Ï✫Ð✡Ï✫Ò ❒ × Ö Ï✫Ð✥Ï✫Ò ß Ñ➄Þ❈Ï✫æ ➶ Ó ß
additions, and × Ö Ï Ð Ï Ò Þ❈Ï æ ➶ Ó ß multiplications.

In all total,×✴Ï ✉ ❒ ×✴Ï Ð Ï Ò ❒ Ö Ï Ð Ï Ò Þ❲×❢Þ❈Ï æ ➶ Ó ß ❒ Ó❊Ô ß additions,Ö Ï Ð Ï Ò Þ❲×✸Þ❈Ï æ ➶ Ó ß ❒ Ó❊× ß multiplications,

and Ô Ö Ï Ð Ï Ò divisions.

Some examples of arithmetic operations are listed in Table 1.

From these results, it is clear that the combination of linear-wise

and plane-wise homographies is the most effective method for

back-projection.

4. Parallel intersection

Another issue in parallelizing VIM is the intersection of binary

silhouette images projected on each plane, which requires commu-

nication among computers.

The improved VIM algorithm shown in Figure 5 has the fol-

lowing two problems:

1. If the image is passed to all computers sequentially while in-

tersecting local silhouette images, it will produce idle com-

puters waiting for the data arrival.

because it depends on the camera location.

335

Table 1. Number of arithmetic operations in the case of éê♣❛✑ëé ➌ .
Perspective Projection Homography Linear-wise & Plane-wise Homographyé add mul div add mul div add mul div

100 9.0E6 9.0E6 2.0E6 6.0E6 6.0E6 2.0E6 2.0E6 2.1E4 600

1000 9.0E9 9.0E9 2.0E9 6.0E9 6.0E9 2.0E9 2.0E9 2.0E6 6000

Communication

Silhouette
Image

Base Plane
Silhouette
Image

Final Result

node1 node2 node3

Captured
Image

Silhouette
on a slice

Loop Loop Loop

Object Area
on a slice

SIP

PPP

BPP

INT

SIP SIP

BPPBPP

PPP PPP

INT INT

Figure 10. A process flow of the base­plane
duplication method.

2. In this algorithm, the volume reconstruction is performed

for each plane. This requires the synchronization of back-

projection processes running on different computers. Since

the elapsed time for homography may vary depending on the

camera location, the synchronization will also cause idling

time.

As for the first problem, by dividing the projected silhouette into

small fragments and exchanging these fragments among the com-

puters, the intersection process of divided planes can be done by

all computers in parallel. We call this method local silhouette di-

vision. The process flow of this method is illustrated in Figure

9.

However, local silhouette division cannot solve the second

problem. To solve this problem, we employ another parallelization

method to share the result of base-plane projection computed by

all computers. If all base-plane silhouettes are copied once by all

computers, volume slices at any height can be computed on inde-

pendent computers without any communication. This can be done

by plane-wise homography and intersection processes. By assign-

ing volume slice reconstructions at different heights to different

computers, the synchronization problem can almost be solved. We

call this parallelization base-plane duplication. The process flow

is illustrated in Figure 10.

Figure 11. External view of the PC­cluster sys­
tem.

5. Experiments

In this section, the prototype system for homography based

VIM and some experimental results are shown.

5.1. PC cluster system

We are implementing the homography based VIM on the fol-

lowing PC cluster (Figure 11):ì
The cluster consists of 9 node PCs and 1 host PC. Each PC

has two Pentium III 600MHz CPUs and 256MB memories

with the Linux operating system.ì
These PCs are mutually connected by a high speed network

(Myrinet by myricom) which provides full-duplex 1.28G bps

336

#1

#2
#3

#4

#5

#6

#7

#8

#
9

400cm

450cm250cm

Figure 12. The camera settings.

bandwidth. The effective communication speed between 2

PCs is measured over 100M Bytes/second.

Each node PC has one pan-tilt-zoom camera (SONY EVI-G20).

The camera parameters are controlled via RS-232C and its video

output is captured by corresponding node PC. This camera can be

regarded as a Fixed Viewpoint Camera (FVC): the optical center

does not move while rotating the camera. In this case, by back pro-

jecting the observed images of many view directions onto a virtual

plane using correct internal camera parameters, a seamless wide

image can be generated. By using this property, internal camera

parameters, such as radial-distortion coefficient, focal length, etc.,

can be obtained.

Camera settings and camera calibration

9 node PCs have 9 active cameras (FVC); these are mounted

near the ceiling as shown in Figure 12. In this setting, the plane

floor is commonly observed from every camera. This means the

projection between image plane and the floor can also be repre-

sented by a homography. From the homography matrices í ❐ andí Ù from the floor to image planes of two cameras, we can obtain a

collineation matrix î ➺ í Ù í②ï ❐❐ . Matrix î can be estimated by

giving four corresponding points of the floor on two image planes.

By decomposing the matrix î , we can obtain relative rotationð
and translation ñ components between two cameras, as well

as the surface normal vector of the floor ➶➹ Ï . Based on this prop-

erty, external camera parameters are obtained. That is, the external

camera calibration is also done based on homography.

5.2. System implementation

The implemented VIM is based on base-plane duplication. The

system has some additional functions to the original algorithm:

1. Each 2D silhouette image is cropped by its circumscribing

rectangle by the corresponding node PC.

2. Back-projection and intersection are performed within the

intersecting area of all frusta back-projected from circum-

scribing rectangles3.

3. Plane-wise homography and intersection are not performed

at those points where the previous intersection result is

’empty’.

IC

SIG

BPP

BPD

PPPI

Frame1Frame2Frame3Frame4Frame5

Frame1Frame2Frame3Frame4

Frame1Frame2Frame3

Frame1Frame2

Frame1

Frame5

Frame4

Frame3

Frame2

Frame6

t0 t1 t2 t3 t4 t5process

time

Figure 13. Pipeline processing on node PC.(IC:

Image capture, SIG: silhouette image generation, BPP: base-plane

projection, BPD: base-plane duplication, PPPI: parallel-plane pro-

jection and intersection)

IC SIG BPP BPD PPPI

IC SIG BPP BPD PPPI

Even Frame

Odd Frame

Even-Frame Trigger

Odd-Frame Trigger

Volume

Data

Figure 14. Multi­thread implementation of
pipeline processing.(IC: Image capture, SIG: silhouette

image generation, BPP: base-plane projection, BPD: base-plane

duplication, PPPI: parallel-plane projection and intersection)

These functions reduce the size of the transmitted data, the

number of back-projecting points, and the number of intersecting

points.

Since each PC has 2 CPUs, each process on a single PC can

also be parallelized. In our system, a pipeline processing is em-

ployed: VIM process on each PC is divided into chained subpro-

cesses running in parallel. These subprocesses are: image cap-

turing (IC), silhouette image generation(SIG), base-plane projec-

tion (BPP), base-plane duplication(BPD), and parallel plane pro-

jection/intersection(PPPI). They process different data sampled at

different time simultaneously, e.g., when IC is capturing ò -th input

image, SIG is computing silhouette for Þ❈ò ➶ Ó ß -th input, BPP is

computing base-plane silhouette image for Þ❈ò ➶ × ß -th input, BPD

is exchanging base-plane image generated from Þ❈ò ➶➄ó ß -th input,

and PPPI is computing sliced volume for Þ❈ò ➶ è ß -th input (see Fig-

ure 13). These subprocesses are implemented by threads as shown

in Figure 14. To avoid overwriting input and output buffers, two

series of threads are generated for even and odd frames, i.e., one

series of threads are activated for even frames and another is for

odd frames.

Of course, since each node PC doesn’t have 5 CPUs, only 2 of

them are executed at once. However, the operating system sched-

ules these threads so as to maximize the CPU utilization and this

pipeline processing is effective for the system throughput.

3Cropping is also applied to back-projected images.

337

Figure 15. Examples of captured images by
nine node PCs: From left-top to right-down, images cap-

tured by cameras No. 1, 5, 2, 8, 9, 6, 4, 7, 3.

5.3. Experimental results

The first experiment is on the accuracy of volume reconstruc-

tion. We first capture the background images of the scene, then put

a mannequin in the scene and capture its images by using 9 cam-

eras. Each image size is Ô✴è✡á❵Ñ➆è✡ô✝á pixels. The object (mannequin)

is circumscribed by õ✝á➵Ñ➈õ✴áöÑ❛Ó❂ô✥á✴÷✶øåù rectangular parallelepiped,

and the voxel resolution is Ó❂÷✶ø ù . Examples of captured images

are shown in Figure 15. The silhouette images are generated by

background subtraction and projected onto the base-plane corre-

sponding to the floor. The base-plane silhouette images projected

by node PCs are shown in Figure 16. The volume reconstruction

result is shown in Figure 17. Note that 1) some gaps are caused by

misdetection of silhouettes, but 2) small parts of the object, such

as fingers, are reconstructed in this experiment.

The second result is the elapsed time. We measured elapsed

time in subprocesses for some voxel sizes (Figure 18) and pro-

cessing speed (Table 2).

From Figure 18, we can notice that➨
Elapsed time in Image Capturing(IC) and Silhouette Image

Generation (SIG) doesn’t depend on the voxel size,➨
Elapsed time in Base-plane Projection(BPP), Base-plane Du-

plication(BPD), and Parallel Plane Projection and Intersec-

tion(PPPI) depends on voxel size.

Especially, the elapsed time in PPPI is almost in inverse propor-

tion to the voxel volume (cube of voxel size) and it decreases dras-

tically while the voxel size increases. The elapsed time in BPP is

almost in inverse proportion to the square of the voxel size. The

elapsed time in BPD should be in inverse proportion to the square

515x505 510x457

300x811

731x379 116x168 753x320

596x572

192x404

667x532

Figure 16. Examples of base­plane im­
ages:From left-top to right-down, images generated by node PCs

No. 1, 5, 2, 8, 9, 6, 4, 7, 3.

Figure 17. The reconstructed volume of the
object. (viewed from different viewpoints).

338

0

100

200

300

400

500

600

700

800

900

1000

0

[ms]

CA&IC SIG BPP BPD PPPI

Figure 18. Averaged elapsed time in subpro­
cesses for 50 frames. (IC: Image capture, SIG: silhou-

ette image generation, BPP: base-plane projection, PPPI: parallel-

plane projection and intersection, BPD: base-plane duplication)

of the voxel size, however, it gradually decreases while the voxel

size increases.

Table 2 shows total elapsed time in all subprocesses and

throughput time of the system. Since we employ pipeline pro-

cessing, throughput time is shorter than total elapsed time. This

pipeline effect is shown as “Pipeline Factor” and the average vol-

ume reconstruction rate “Volume/sec.” in this table. In spite of

the pipeline factor can be regarded as constant, the volume recon-

struction rate increases gradually and it seems saturating while the

voxel size increases. This is because subprocesses IC and SIG

have constant elapsed time which dominates the total elapsed time

at bigger voxel size.

Since our current system don’t use MMX instructions, SIG pro-

cess can be accelerated. Also, the image size Ô✝è✥á❀Ñ❭è✡ô✝á is too big

for volume reconstruction, because a pixel corresponds to aboutú ø✬ø Ù
area on the base plane. By reducing the image size toó ×✝á❫Ñ➢×✘è✡á , image capturing can be accelerated. If the elapsed time

in IC and SIG can be negligible, the volume reconstruction rate

becomes 1.9, 13.6, 26.6, and 87.6 [volume/sec.], at 1cm ù , 2cm ù ,

3cm ù , and 5cm ù voxels, respectively. As well, since our current

system dynamically allocates and releases memory area for each

input image, BPP, BPD, and PPPI can also be accelerated.

The third experiment is the continuous volume reconstruction

of a moving object. Figure19 shows an example of continuous

human body reconstruction. In this figure, each surface geometry

is generated from the volume which is reconstructed by applying

our method to stored images, and the surface texture is computed

from the observed images. The reconstructed moving object can

be observed from any viewpoint, view direction, and zoom. In this

case, these images are generated by changing the viewpoint from

left above to front of the object with constant zoom.

6. Conclusion

This paper presents a homography based parallel 3D volume

reconstruction method. In this paper, we didn’t employ table look-

Voxel

Size

Total

Elapsed time

Throughput

Time

Volume

/sec.

Pipeline

Factor➣ ✖❊✧ ➌
651.019ms 564.413ms 1.77 1.15û ✖❊✧ ➌
145.127ms 114.065ms 8.77 1.27ü ✖❊✧ ➌
107.031ms 80.873ms 12.37 1.32ý ✖❊✧ ➌
80.484ms 64.013ms 15.62 1.25

Table 2. Processing speed. (Total Elapsed Time: sum

of the elapsed time in all subprocesses, Throughput Time: time interval be-

tween the outputs, Volume/sec.: number of volumes reconstructed per 1 sec-

ond, Pipeline Factor=(Total Elapsed Time)/(Throughput Time).)

up projection acceleration, because we are planning to realize ac-

tive camera control to enlarge the working space of objects and

the camera action will change the relationship between the image

plane and 3D scene. We also didn’t use octree volume representa-

tion so as to retain the possibility of extending the binary silhou-

ette images to gray scale or color images[4]. We have shown that

the life-sized mannequin can be reconstructed precisely using 1cm

spatial resolution, and the system performance at different voxel

size is analyzed.

The major contributions of this paper are summarized as:

1. It is shown that plane-to-plane homography is computation-

ally effective for VIM.

2. Two types of acceleration method of homography computa-

tion are shown, one is our proposed linear-wise homogra-

phy, and the other is plane-wise homography known as dila-

tion4[3] .

3. Parallel intersection method named base-plane duplication

is proposed, which enables synchronization free parallel vol-

ume reconstruction on independent computers.

Based on this work, it is possible to capture the geometric informa-

tion of a moving object as well as its photometric information. The

captured object data can be observed from any viewpoint as shown

in Figure 19. In other word, the extension of the motion capture

system mentioned in Introduction means “total object capture sys-

tem”.

However, since our current system is still under construction, the

frame-rate volume reconstruction and camera action have not been

realized. These are the objectives of our current implementa-

tion effort, and we expect the current system can be improved to

achieve the real-time volume reconstruction.

References

[1] H. Baker. Three-dimensional modelling. In Fifth Interna-

tional Joint Conference on Artificial Intelligenc, pages 649–

655, 1977.
[2] B. G. Baumgart. Geometric modeling for computer vision.

Technical Report AIM-249, Artificial Intelligence Labora-

tory, Stanford University, October 1974.

4This is unrelated to the morphological dilation operator.

339

þ❴ÿ✁�✄✂✆☎

Figure 19. Example of continuous human body reconstruction.

[3] R. T. Collins. A space-sweep approach to true multi-image

matching. In IEEE Computer Vision and Pattern Recogni-

tion, pages 358–363, 1996.
[4] K. N. Kutulakos and S. M. Seitz. A theory of shape by space

carving. In IEEE International Conference on Computer Vi-

sion, pages 307–314, 1999.
[5] A. Laurentini. How far 3d shapes can be understood from

2d silhouettes. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 17(2):188–195, 1995.
[6] W. N. Martin and J. K. Aggarwal. Volumetric description of

objects from multiple views. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 5(2):150–158, 1987.
[7] M. Potmesil. Generating octree models of 3d objects from

their silhouettes in a sequence of images. Computer Vi-

sion,Graphics, and Image Processing, 40:1–29, 1987.
[8] J. Semple and G. Kneebone. Algebraic Projective Geometry.

Oxford Science Publication, 1952.
[9] P. Srivasan, P. Liang, and S. Hackwood. Computational geo-

metric methods in volumetric intersections for 3d reconstruc-

tion. Pattern Recognition, 23(8):843–857, 1990.
[10] R. Szeliski. Rapid octree construction from image se-

quences. CVGIP: Image Understanding, 58(1):23–32, 1993.

340

