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Abstract—A monocular camera-based vision system attached
to a mobile robot (i.e., the camera-in-hand configuration) is
considered in this paper. By comparing corresponding target
points of an object from two different camera images, geometric
relationships are exploited to derive a transformation that relates
the actual position and orientation of the mobile robot to a
reference position and orientation. This transformation is used
to synthesize a rotation and translation error system from the
current position and orientation to the fixed reference position
and orientation. Lyapunov-based techniques are used to construct
an adaptive estimate to compensate for a constant, unmeasurable
depth parameter, and to prove asymptotic regulation of the mobile
robot. The contribution of this paper is that Lyapunov techniques
are exploited to craft an adaptive controller that enables mobile
robot position and orientation regulation despite the lack of an
object model and the lack of depth information. Experimental
results are provided to illustrate the performance of the controller.

Index Terms—Adaptive control, homography, Lyapunov tech-
niques, visual servo.

I. INTRODUCTION

BASED on the success of image extraction/interpretation
technology and advances in control theory, research has

focused on the use of monocular camera-based vision systems
for navigating a mobile robot [18], [33], [34], [36]. A signifi-
cant issue with monocular camera-based vision systems is the
lack of depth information. From a review of literature, various
approaches have been developed to address the lack of depth in-
formation inherent in monocular vision systems. For example,
using consecutive image frames and an object database, Kim
et al. [20] recently proposed a mobile robot tracking controller
based on a monocular visual feedback strategy. To achieve
their result, they linearized the system equations using a Taylor
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series approximation, and then applied extended Kalman fil-
tering (EKF) techniques to compensate for the lack of depth
information [20]. Also using EKF techniques on the linearized
kinematic model, Das et al. [10] used feedback from a monoc-
ular omnidirectional camera system (similar to [1]) to enable
wall following, follow-the-leader, and position regulation tasks.
Jung et al. [19] exploited an object model and Kalman filtering
techniques to estimate the unknown depth information and
achieve a tracking result for a monocular mobile robot system.
Unfortunately, a clear drawback of using EKF techniques to
estimate depth information is the requirement for linearization.
Song and Huang [30] use spatiotemporal apparent velocities
obtained from an optical flow of successive images to estimate
the depth information for a monocular “guide robot.” An optical
flow estimation technique was also developed in [22]. However,
typical drawbacks of optical flow techniques include the need
for temporal smoothing and excessive image processing to de-
termine the image flow; resulting in an intensive computational
burden for real-time robotics control.

Dixon et al. [12] used feedback from an uncalibrated, fixed
(ceiling-mounted) camera to develop an adaptive tracking con-
troller for a mobile robot that compensated for the parametric
uncertainty in the camera and the mobile robot dynamics. Dixon
et al. exploit Lyapunov-based adaptive techniques to compen-
sate for the unknown depth information [12]. However, to em-
ploy these techniques, they require the depth from the camera
to the mobile robot plane of motion to remain constant (i.e.,
the camera plane and the mobile robot plane must be parallel).
This assumption reduces the nonlinear pinhole camera model
to a decoupled linear transformation; however, it also restricts
the applicability of the controller. Recently, Chen et al. [6] de-
veloped a mobile robot visual servo tracking controller when
the camera is onboard. An advantage of the result in [6] is that
the mobile robot is not constrained to a planar application and
an adaptive estimate is provided to compensate for unknown
time-varying depth information. However, the development in
[6] and [12] cannot be applied to solve the mobile robot regu-
lation problem due to restrictions on the mobile robot reference
velocity (i.e., the reference linear velocity cannot converge to
zero). Wang et al. [35] also exploit a Lyapunov-based adaptive
technique to compensate for a constant unknown depth param-
eter for a monocular mobile robot tracking problem. While the
approach in [35] may be well suited for tracking applications,
the stability analysis requires the same restrictions on the refer-
ence trajectory of the mobile robot as in [12], and hence, cannot
be applied to solve the regulation problem. Hager et al. [17] used
a monocular vision system mounted on a pan-tilt-unit to gen-
erate image-Jacobian and geometry-based controllers by using
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different snapshots of the target and an epipolar constraint. As
stated in [3], a drawback of the method developed in [17] is that
the system equations became numerically ill-conditioned for
large pan angles. Given this shortcoming, Burschka and Hager
[3] used a spherical image projection of a monocular vision
system to overcome the limitations of [17]. Specifically, offline
teaching and replay phases are used in [3] as a means to de-
velop a static estimation of a constant depth-related parameter.
A drawback of this offline learning technique is that the process
generates an estimate for a single mobile robot motion, and to
achieve better results, every system motion would need to be
taught requiring a least squares problem to be solved to gen-
erate the estimate.

Recently, a monocular two-and-one-half-dimensional
(2.5-D) visual servo control methodology was developed
for unconstrained systems (e.g., robot manipulators) in a
series of papers by Malis and Chaumette (e.g., [4], [5],
[25]–[27]). Specifically, the 2.5-D visual servo control method
exploits a combination of reconstructed three-dimensional
(3-D) task-space information and two-dimensional (2-D)
image-space information. The 3-D information is reconstructed
by decoupling the interaction between translation and rotation
components of a Euclidean homography. As stated in [27],
some of the advantages of this methodology include: 1) an
accurate 3-D model of the environment (or target image) is
not required; 2) the control exploits pixel information which
increases the potential to force the target to remain in the
camera field-of-view; 3) local minima can be avoided; and
4) singularities only exist in the image-Jacobian in degenerate
cases. Based on the observation that interaction between the
translation and rotation of images can result in slower transient
performance due to inefficient camera motions, Deguchi pro-
posed two algorithms in [11] for a robot manipulator application
that decouple the rotation and translation components using a
homography and an epipolar condition. More recently, Corke
and Hutchinson [9] also developed a method for decoupling
the rotation and translation components from the remaining
degrees of freedom using a new hybrid image-based visual
servoing scheme. Motivated by the desire to compensate for the
aforementioned depth information, [8] developed an adaptive
kinematic controller for a robot manipulator application to en-
sure uniformly ultimately bounded (UUB) set-point regulation
of the image point errors while compensating for the unknown
depth information, provided conditions on the translational
velocity and the bounds on uncertain depth parameters are
satisfied. Unfortunately, these approaches typically assume that
a constant best guess estimate of a depth-related parameter can
be used in lieu of the actual parameter, but the effects of the
parameter mismatch are not included in the stability analysis.
Recently, Chen et al. [7] developed a homography-based visual
servo controller for robot manipulator systems that adaptively
compensates for the unknown time-varying depth parameter
for a monocular camera system mounted in the camera-in-hand
and fixed-camera configurations.

In this paper, asymptotic regulation of the position/orientation
of a mobile robot is achieved by exploiting homography-based
visual servo control strategies inspired by the work given in [4],
[5], [26], and [27]. By comparing the features of an object in the
reference image to features of the object in the current image,

Fig. 1. Mobile robot coordinate systems.

image-based geometric relationships are exploited to construct
a homography matrix despite the fact that a geometric model
of the object is not known. By decomposing the homography
into separate translation and rotation components, measurable
signals for the orientation and the scaled Euclidean position can
be obtained. Full Euclidean reconstruction is not possible due
to the lack of an object model and the lack of depth informa-
tion from the onboard camera to the target; hence, the resulting
translation error system is unmeasurable. To accommodate for
the lack of depth information, the unknown time-varying depth
information is related to a constant depth-related parameter. The
closed-loop error systems are then constructed using Lyapunov-
based methods including the development of an adaptive esti-
mate for the constant depth-related parameter. The contribution
of this paper is that Lyapunov techniques are exploited to craft
an adaptive controller that enables mobile robot position and
orientation regulation despite the lack of an object model and
the lack of depth information. Due to assumptions on the refer-
ence trajectory resulting from the nonholonomic constraint, the
aforementioned visual servo tracking control results cannot be
applied to solve the regulation problem considered in the cur-
rent result. For example, in comparison with our previous ef-
forts in [6], the current controller is completely redesigned to
overcome restrictions inherent to the controller in [6] to solve
the regulation result. See [14], [21], and [24] for a more tech-
nically detailed description of the issues and differences asso-
ciated with developing tracking and regulation controllers for
nonholonomic systems. The result in this paper is achieved with
a monocular vision system, and the adaptive control design ap-
proach incorporates the full nonlinear kinematic equations of
motion. Experimental results are provided to illustrate the per-
formance of the developed controller. A practical issue with
the presented research is that the feature points may leave the
camera’s field of view during task execution. To address this
problem, future efforts will target regulating the mobile robot
while ensuring the feature points remain visible.

II. PROBLEM FORMULATION

The objective of this paper is to regulate the position/orienta-
tion of a mobile robot based on image-feedback of a fixed target.
As illustrated in Fig. 1, the origin of the orthogonal coordinate
system attached to the camera is coincident with the center
of mass of the mobile robot. As also illustrated in Fig. 1, the
axis of defines the mobile robot plane of motion where the
axis of is aligned with the front of the mobile robot, and the

axis is parallel to the wheel axis. The axis of is perpen-
dicular to the mobile robot plane of motion and is located at the
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center of the wheel axis. The linear velocity of the mobile robot
along the axis is denoted by , and the angular velocity

is about the axis. In addition to , another fixed orthog-
onal coordinate system, denoted by , is defined to represent
the desired fixed position and orientation of the camera relative
to a target. Hence, the goal is to develop a controller that will
regulate the position and orientation of to .

III. CAMERA MODEL

In this paper, the target is assumed to be distinguished by
three points , that compose a plane, denoted by .
The Euclidean position of point expressed in the coordinate
frames and is denoted by , , respectively,
and is defined as follows (see Fig. 2):

(1)

Since the 3-D Euclidean position of the point is observed
from the 2-D image-space of the camera, normalized position
vectors are defined as follows:

(2)

where the standard assumption is made that and are
positive [27] (i.e., the target is always in front of the camera).
In addition to the normalized Euclidean position, each point has
an image-space representation, denoted by ,

(3)

where , denote the pixel coordinates of the point
. The image-space coordinates given in (3) are related to the

normalized coordinates given in (2) by the following invertible
transformation (i.e., the pinhole camera model):

(4)

where denotes a constant, invertible matrix com-
posed of the intrinsic camera calibration parameters [27]. Since
the camera is assumed to be calibrated (i.e., the matrix is as-
sumed to be known), and can be calculated using (4)
from the known camera pixel-space vectors and .

The main idea behind the current visual servoing strategy
is to extract 2-D information from the environment using the
camera image and then determine 3-D information through
a Euclidean reconstruction. The Euclidean reconstruction is
performed by exploiting the geometry between the features
of the target (image points) in the camera’s current image to
the desired image. Based on the geometric relationships, a
homography matrix can be calculated to relate the projected
3-D position to the image-space position of the target [16],

Fig. 2. Geometric relationship of the mobile robot system.

[27], [37]. For example, the geometric relationships between
and can be determined from Fig. 2. In Fig. 2,

is the angle between the axes and , the unit vectors
, are normal to the plane expressed in and

, respectively, and , are the unknown, positive
distances from the origin of and to the plane along
and , respectively. Based on Fig. 2, the following relationship
can be determined:

(5)

In (5), denotes the following rotation matrix
from to :

(6)

and is the translation vector from to given by

(7)

Since is the projection of along , the following rela-
tionship can be determined:

(8)

Using (8), the expression given in (5) can be rewritten as

(9)

where the Euclidean homography is defined as
follows:

(10)

By using (6), (7), and (10), the Euclidean homography can be
rewritten as follows:

(11)
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where . By examining the terms in (11), it is
clear that contains signals that are not directly obtained
from the vision system (e.g., , , and are not directly
available from the camera image). However, the six unknown
elements of can be determined
indirectly from the image coordinates by solving a set of linear
equations. Specifically, by using the definition given in (2), the
expression given in (9) can be rewritten as follows:

(12)

where denotes a depth ratio. By expanding (12), the
following expressions can be obtained:

(13)

(14)

(15)

Given that (13)–(15) will be generated for each of the three
target points, a total of nine independent equations will result.
Given the nine independent equations, the nine unknown param-
eters (i.e., , 2, and )
can be determined. Based on the fact that the elements of the
homography matrix and the depth ratio can be determined, var-
ious techniques can now be applied [16], [37], [38] to decom-
pose to obtain , , and ; hence, and

can be calculated and used in the subsequent control de-
velopment. To compute from the following expression
can be utilized [31]:

where

Remark 1: The position and orientation of the mobile robot
is not required to be known; rather, only relative translation and
orientation information between two corresponding images is
required to be computed as previously described in this section.
The two required images consist of the current image and an a
priori acquired image (i.e., the desired image). The requirement
for an a priori desired image of a target is mild. For example, a
mobile robot could be guided (e.g., via a teach pendent) to a de-
sired relative position and orientation with respect to a (indoor
or outdoor) target where the desired image is then taken. For
future tasks, the mobile robot can compare the current image to
the previously acquired image to autonomously return to the de-
sired relative position and orientation, based on the subsequent
control development.

Remark 2: In practice, caution has to be given to determine
a unique solution for from the homography decomposi-
tion. To determine the unique solution for from the set of
possible solutions generated by the homography decomposition
(e.g., using the Faugeras decomposition algorithm), a best guess
estimate of the constant normal can be selected from the

physical relationship between the camera and the plane defined
by the object feature points. Of the possible solutions generated
for by the decomposition algorithm, the solution that yields
the minimum norm difference with the initial best guess can
be determined as the correct solution. The solution that most
closely matches the best guess estimate can then be used to
determine the correct solutions for . The robustness of the
system is not affected by the a priori best guess estimate of
since the estimate is only used to resolve the ambiguity in the
solutions generated by the decomposition algorithm.

IV. PROBLEM FORMULATION

The control objective is to ensure that the coordinate frame
attached to the mobile robot is regulated to the fixed coordinate
frame . This objective is naturally defined in terms of the
Euclidean position/orientation of the mobile robot. Specifically,
the translation error between and , denoted by ,
can be written for any target point , as follows:

(16)

where (5)–(7) have been utilized. The orientation error between
and , denoted by , can be written as follows:

(17)

where was defined in (6). Based on the definitions of (16) and
(17), the control objective is to regulate and to zero.
The open-loop error system for and can be deter-
mined by taking the time derivative of (16) and (17) and then
utilizing the fact that the time derivative of the Euclidean posi-
tion given in (1) can be determined as follows [11], [27]:

(18)

where , denote the linear and angular velocity of
the mobile robot expressed in as

(19)

respectively. From the expression given in (1), (18), and (19),
the Euclidean mobile robot velocity can be written in terms of
the linear and angular velocity as follows:

(20)

After utilizing (16), (19), and (20) the following open-loop error
system can be obtained:

(21)

where (16) was utilized.
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V. CONTROL DEVELOPMENT

The structure of the resulting open-loop error system devel-
oped in (21) has been extensively examined in mobile robot
control literature. However, unlike the typical mobile robot
control problem,1 the Euclidean translation error signals
and are unmeasurable, and hence, new analytical devel-
opment is required to overcome this conundrum. To address
this issue, an adaptive controller is developed in this section
that actively compensates for the unknown depth information
through a gradient-based adaptive update law.

A. Control Design

To facilitate the subsequent control design,2 a composite
translation and rotation error signal, denoted by , is
defined as follows:

(22)

By utilizing the relationship introduced in (16), the following
expressions can be developed for and :

(23)

(24)

From the expressions given in (22)–(24), it is clear that ,
, and can be computed from (13)–(15) and the decom-

position of the homography matrix. After taking the time deriva-
tive of (22) and utilizing (21), the resulting simplified open-loop
dynamics for can be determined as follows:

(25)

where (22) has been utilized, and denotes the following
positive constant:

(26)

To further facilitate the subsequent control design and analysis,
an auxiliary signal is designed as

(27)

where the following open-loop dynamics for can be deter-
mined by using (25):

(28)

1See the results in [15] for an example of how a classic control strategy
motivated by [28] can be proven to yield asymptotic stability using a monocular
camera systems as feedback. Specifically, Lyapunov-based analysis techniques
are used to prove the asymptotic result despite the fact that controller does
not compensate for the effects of an unknown depth parameter.

2The proposed controller is inspired by the development presented in [32].

Based on the open-loop dynamics of (25) and (28), and the
subsequently stability analysis, an adaptive kinematic controller
can be designed as follows:

(29)

(30)

where , denote positive control gains, and
is an auxiliary signal defined as follows:

(31)

In (29), denotes a dynamic estimate of generated by
the following differential expression:

(32)

where denotes a positive adaptation gain. After substi-
tuting the control inputs given in (29) and (30) into (25) and (28),
respectively, the following closed-loop error system is obtained:

(33)

where denotes the following parameter estimation
error:

(34)

B. Stability Analysis

Theorem 1: The control law given in (29) and (30) ensures
that the position and orientation of the mobile robot coordi-
nate frame is regulated to the desired position/orientation de-
scribed by in the sense that

(35)

Proof: To prove (35), we define the following nonnegative
function :

(36)

After taking the time derivative of (36) and substituting for
the closed-loop system of (33), the following expression is
obtained:

(37)

After substituting (32) into (37) and cancelling common terms,
we have

(38)

where (27) and (31) have been utilized. From (36) and (38),
, , , and , .

Based on the previous facts, (27)–(31), (33), and (34) can be
used to determine that , , , , , ,
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, . Based on the facts that , ,
and that is a positive constant, (22) can be used to prove

that , , . The expressions in (32) and (34)
can be used to prove that , . Since and

, then , are uniformly continuous (UC).
After taking the time derivative of (31), the following expres-
sion can be obtained:

(39)

From the previous facts and (39), . Based on the facts
that , , , and that ,

, Barbalat’s lemma [29] can be employed to
conclude that

(40)

The result in (40) can be used in conjunction with the closed-
loop dynamics for and given in (33) and the control
input of (30), to determine that

(41)

By utilizing (30), the second equation of (33) can be rewritten
as follows:

(42)

The results in (40) and (41) can be used to determine that the
bracketed term of (42) goes to zero as ; therefore, since

, are UC and has a finite limit as , the
extended Barbalat’s lemma (see the Appendix) can be invoked
to prove that

(43)

After taking the time derivative of , substituting
(33) and (39) for and , respectively, the following re-
sulting expression can be obtained:

(44)

where the auxiliary signal is defined as follows:

(45)

Based on (40), (41), and (43), we have

(46)

From (40) and (46), the bracketed term of (44) also goes to zero
as . Since is UC and has a finite limit
as , the extended Barbalat’s lemma (see the Appendix)
can be utilized to conclude that

(47)

Fig. 3. Mobile robot testbed.

The result in (47) implies that

(48)

Based on the previous facts, (31) and (40) can now be

(49)

By utilizing (40), (48), (49), and the definitions introduced in
(22) and (27), the result in (35) can be obtained. Specifically,
given that

then it can be determined that

VI. EXPERIMENTAL VERIFICATION

A. Testbed

The testbed depicted in Fig. 3 was constructed to imple-
ment the adaptive regulation controller given by (29), (30),
and (32). The mobile robot testbed consists of the following
components: a modified K2A mobile robot [with an inclusive
Pentium 133-MHz personal computer (PC)] manufactured by
Cybermotion Inc., a Dalsa CAD-6 camera that captures 955
frames per second with eight-bit grayscale at a 260 260
resolution, a Road Runner Model 24 video capture board,
and two Pentium-based PCs. In addition to the mobile robot
modifications described in detail in [14], additional modifica-
tions particular to this experiment included mounting a camera
and the associated image processing Pentium IV 800-MHz
PC (operating under QNX, a real-time micro-kernel based
operating system) on the top of the mobile robot as depicted
in Fig. 3. The internal mobile robot computer (also operating
under QNX) hosts the control algorithm that was written in
C/C++ and implemented using Qmotor 3.0 [23]. In addition
to the image processing PC, a second PC (operating under the
MS Windows 2000 operating system) was used to remotely
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login to the internal mobile robot PC via the QNX Phindows
application. The remote PC was used to access the graphical
user interface of Qmotor for execution of the control program,
gain adjustment, and data management, plotting, and storage.
Light-emitting diodes (LEDs) were rigidly attached to a rigid
structure that was used as the target, where the intensity of
the LEDs contrasted sharply with the background. Due to the
contrast in intensity, a simple thresholding algorithm was used
to determine the coordinates of each LED.

The mobile robot is controlled by a torque input applied
to the drive and steer motors. As subsequently described,
to facilitate a torque controller the actual linear and angular
velocity of the mobile robot is required. To acquire these sig-
nals a backward difference algorithm was applied to the drive
and steering motor encoders. Encoder data acquisition and
the control implementation were performed at a frequency of
1.0 kHz using the Quanser MultiQ I/O board. For simplicity
the electrical and mechanical dynamics of the system were not
incorporated in the control design (i.e., the emphasis of this
experiment is to illustrate the visual servo controller). How-
ever, since the developed kinematic controller is differentiable,
standard backstepping techniques could be used to incorporate
the mechanical and electrical dynamics. See [13] and [14] for
several examples that incorporate the mechanical dynamics.
Permanent magnet dc motors provide steering and drive actu-
ation through a 106 : 1 and a 96 : 1 gear coupling, respectively.
The modified K2A mobile robot has an approximate mass of
165 [kg], an inertia of approximately 4.643 kg m , and a
wheel radius of m . Using the Camera Calibration
Toolbox for Matlab (Zhengyou Zhang’s data) [2] the intrinsic
calibration parameters of the camera were determined. The
pixel coordinates of the principal point (i.e., the image center
that is defined as the frame buffer coordinates of the intersec-
tion of the optical axis with the image plane) were determined
to be pixels , the focal length and camera
scaling factors were determined to be pixels
and pixels .

B. Results

Based on (22)–(24), (27), (29), (30), and (32) the signals re-
quired to implement the controller include , , ,
and .3 As previously described, to obtain these signals
an image is required to be obtained at the desired relative po-
sition and orientation of the camera with respect to a target.
The mobile robot was driven by a joystick to a desired posi-
tion and orientation relative to the target, the desired image was
acquired, and the coordinates of the target features were saved
on the image processing PC. From the coordinates of the target
features and knowledge of the intrinsic calibration parameters,
(4) was used to determine . The constant value for was
included in the control code hosted by the internal mobile robot
PC. After obtaining the desired image, the mobile robot was
driven away from the target by joystick approximately 6 [m]
along the axis, with some small offset along the axis, and

3The subscript i = 1, is used to indicate that the signal corresponds to the
first target point (without loss of generality).

with approximately 34 [deg] of orientation error. Before the con-
trol program was executed, the image processing PC was set to
acquire the live camera images at 955 frames/s,4 to determine the
pixel coordinates of the target points, to construct and decom-
pose the homography, and to transmit the signals , , and

that are computed from the homography decomposition
via a server program over a dedicated 100 Mb/s network con-
nection to the internal mobile robot computer. A client program
was executed on the internal mobile robot computer to receive

, , and from the server program and write the
information into a shared memory location. When the control
program was executed, the values for , , and
were acquired from the shared memory location (rather than di-
rectly from the network connection to maintain a near determin-
istic response and for program stability). The values for ,

, , and were utilized to determine and
as described by (22)–(24) and (27), and to compute the control
signals.

To execute a torque level controller, a feedback loop was im-
plemented as follows:

(50)

where denotes a vector of the drive
and steering motor torques, respectively, is a diag-
onal scaling term, and is a velocity mismatch signal
defined as

(51)

where and denote the linear and angular velocity
inputs computed in (29) and (30), and and denote
actual linear and angular velocity of the mobile robot computed
from the time derivative of the motor encoders.

The control and adaptation gains were adjusted to reduce the
position/orientation error with the initial adaptive estimate set
to zero.5 The final feedback and adaptation gain values were
recorded as follows:

(52)
The resulting orientation error is provided in Fig. 4, and the unit-
less planar position regulation errors and , are de-
picted in Fig. 5. Fig. 6 illustrates that the adaptive estimate for
the depth parameter approaches a constant. From Figs. 4 and
5, it is clear that some steady state errors exist in the orientation
and the translation along the lateral mobile robot axis, previ-
ously defined as and , respectively. The steady-state
error in is due, in large part, to the fact that as the mobile
robot approaches the target, changes in the image-space orien-
tation are magnified (i.e., a one-pixel difference from a far dis-
tance has less orientation error than a one-pixel difference at a
close distance). The steady-state error in is propagated in

4A camera with an image capture rate of 955 frames/s is not required for the
experiment. The high-speed camera was utilized to enable a higher closed-loop
control frequency.

5In practice, the adaptive estimate would be initialized to a best guess value.
In this experiment, the adaptive estimate was initialized to zero to illustrate the
ability of the estimate to converge in the presence of a large initial error.
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Fig. 4. Orientation error, e (t) = r (t).

Fig. 5. Position error, r (t) and r (t).

Fig. 6. Adaptive estimate.

Fig. 7. Computed depth ratio.

Fig. 8. Computed torque inputs.

. That is, the lateral position of the mobile robot is directly
influenced by the orientation error. The computed unitless depth
ratio is provided in Fig. 7. The control torque inputs at the
wheels of the mobile robot (i.e., after the 106 : 1 and 96 : 1 gear
coupling) that is applied by the steer and drive motors is depicted
in Fig. 8.

VII. CONCLUSION

In this paper, asymptotic regulation of the position/orientation
of a mobile robot is achieved with a monocular vision system.
By comparing the features of an object from an initial snapshot
to features of the object in the current image, geometric relation-
ships are exploited to determine a Euclidean homography. The
Euclidean homography relates the image-space feedback to the
actual Euclidean position/orientation of the camera (and hence
the mobile robot) in a local coordinate system. By decomposing
the homography into separate translation and rotation compo-
nents, we were able to exploit reconstructed 3-D task-space in-
formation to construct a kinematic controller. The performance
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of the developed controller was demonstrated through experi-
mental results. The impact of these results are that a new ana-
lytical approach has been developed using homography-based
concepts to enable a mobile robot to be regulated to a desired
position/orientation based on a desired image, despite the lack
of depth measurements. A practical issue with the presented re-
search is that the feature points may leave the camera’s field
of view during task execution. To address this problem, future
efforts will target regulating the mobile robot while ensuring
the feature points remain visible. Our future efforts will also
target the development of Lyapunov-based analytical methods
that enable adaptive/robust techniques to be employed to com-
pensate for the uncertainty associated with the camera calibra-
tion parameters.

APPENDIX

The extended Barbalat’s lemma was utilized in the stability
analysis for Theorem 1. This lemma is stated as follows, and a
proof for the lemma can be found in [14].

Lemma 2: If a differentiable function has a finite
limit as , and its time derivative can be written as follows:

(53)

where is a uniformly continuous function and

(54)

then

(55)
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