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HOMOLOGICAL ALGEBRA ON A COMPLETE INTERSECTION,
WITH AN APPLICATION TO GROUP REPRESENTATIONS

BY
DAVID EISENBUD1

Abstract. Let R be a regular local ring, and let A = R/(x), where x is any
nonunit of R. We prove that every minimal free resolution of a finitely generated
A -module becomes periodic of period 1 or 2 after at most dim A steps, and we
examine generalizations and extensions of this for complete intersections. Our
theorems follow from the properties of certain universally defined endomorphisms
of complexes over such rings.

Let A be a commutative ring, and let x G A be a nonzero divisor. How does
homological algebra over A/(x) = B differ from that over AI In this paper we will
study a certain natural endomorphism / of complexes of free A / (x)-modu\es which
seems to reflect some of the difference. For example, the (homotopic) triviality of t
is an obstruction (closely related to the usual one in Ext2,) to the lifting of a
complex of free 5-modules to a complex of free /I-modules. More generally, if
x,, . . . , xn is an A -sequence, we study « natural endomorphisms /,,..., tn of
complexes of free A/(xx, . . . , x„)-modules, and try to use them to explain the way
in which free resolutions over A/(xx, . . . , x„) differ from free resolutions over A
(the construction and elementary properties of these endomorphisms is given in
§1).

In this paper, we will study the case in which A is a regular local ring and
B = A/(xx, . . . , x„) is not regular. (It would also be very interesting to understand
the case in which both A and A/(x) = B were regular-with, say, A of mixed
characteristic and B ramified or of characteristic p.) In this case, the homological
algebra over A is dominated, roughly speaking, by the fact that minimal /I-free
resolutions are finite; we seek to understand the eventual behavior of minimal
5-free resolutions in terms of the tt. For example, if « = 1, so that B = A/(x), we
prove that / is eventually an isomorphism, so that every minimal 5-free resolution
becomes periodic of period 2 after at most 1 + dim B steps (§6). We also show that
the 5-modules with periodic resolutions are the maximal Cohen-Macaulay modules
without free direct summands. Since the periodic part of a periodic resolution over
A/(x) (or more generally, over A/(xx, . . . , xn), if x,, . . . , x„ is an A -sequence) is
easy to describe explicitly (§5), this yields information on maximal Cohen-
Macaulay modules.
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We are further able to apply this theory, in §9, to deduce some properties of
modular representations of finite groups. (Although §9 is last, only the ideas of 1.7,
3.1, and 5.2 are used there.)

Our results on periodic resolutions, and the case « = 1, are contained in §§5 and
6. Because they are more elementary and complete than the rest of this paper, the
reader may wish to look at these sections first.

For « > 1 the situation is more complicated. To indicate the nature of our
results, we will discuss the contents of the paper by sections. We then mention
some of the open problems.

§1 is devoted to the construction and properties of the /,. They are endomor-
phisms of complexes, of degree -2. They are defined in terms of certain choices,
but are unique and natural up to homotopy, and behave well under change of
rings. §2 contains an example which is of theoretical importance to us. Here we see
that, on the minimal resolution F of the residue class field of B, the /, commute, so
that F is a B[tx, . . . , ij-module. In fact it is a sort of "relatively artinian"
module-for instance, if B is artinian, then F is an artinian B[tx, . . ., /J-module.
This fact, which should be taken as measuring the nontriviality of the /,, is in some
sense typical of what we find for minimal resolutions in general; in the next section
we use it to show that if the residue class field of B is infinite, then for any minimal
5-free resolution

F:... -* F, -» F*

there is a linear combination / of the t¡ which is eventually an epimorphism-that is,
/: Fi+2 -» F¡ is an epimorphism for large i. This is the result we will use for the
analysis of minimal fi-free resolutions.

One immediate consequence of this result, explored in §4, is that if the ranks of
the free modules F¡ are bounded, then in fact F becomes periodic, of period 2, after
finitely many steps; the map t is in this case the isomorphism which gives the
periodicity.

What can be said about periodic resolutions of period 2? All the examples of
which we are aware (over local rings), and, in particular, all examples over a ring
like B (a complete intersection) are constructed in a very simple way. This
construction and some of its properties are explored in §5. We also prove, there,
that in any resolution of period 2, all the ranks of the free modules in the resolution
are equal.

§6 is devoted to the case n = 1, where B = A/(x). In this situation every
resolution becomes periodic, and periodic resolutions correspond to maximal
Cohen-Macaulay 5-modules. By virtue of the theory developed in §5, both these
things correspond to factorizations, in a matrix ring over A, of x times the identity
matrix.

In §7 we return to the general case « > 1; we show how to construct a fi-free
resolution of a 5-module M from an A -free resolution (even without the hypothesis
that A is regular).
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In general, the 5-free resolution obtained by the method of §7 is not minimal.
However, using the "eventually epimorphic" map / of §3, we show in §8 that some
truncation of any minimal 5-free resolution is obtained, by the process of §7, from
a resolution over a ring of the form Bx = A/(x2, . . . , x„); that is, a ring which is in
some sense closer to being regular. Thus the maps /, lead to a fairly good
"relative-codimension 1" structure theory for minimal 5-free resolutions.

A number of interesting problems are raised by the foregoing ideas. One is: Why
period 2? There are plenty of periodic resolutions with large periods over noncom-
mutative rings. (For instance, if G is a group with Sylow /»-subgroup S, where p is
an odd prime, and if Z/(p) is the ring of integers modulo p, then the Z/(p)[G]
free resolution of Z/(p) (as a trivial module) is periodic if and only if S is cyclic, in
which case its period is 2|Normalizerc S|/|CentralizerG S\. Note that the dif-
ference of this number from 2 is a sort of measure of the noncommutativity of
Z/p[G].) But we know of no similar examples for commutative rings. In fact, we
do not even know any bounded free resolution which does not become periodic of
period 2.

Conjecture. Let B be a local commutative ring. If F: . . . —> Fx —* F0 is a minimal
5-free resolution such that the ranks of the free modules F¡ are bounded, then F is
eventually periodic of period 2.

Let us return to the case of a ring B = A/(xx, . . . , x„), where A is regular local,
and x,, . . ., x„ is an A -sequence. We define a standard B-free resolution to be one
which is constructed, by the method of §7, from an A -free resolution. For standard
resolutions there is a natural choice of the maps /,, and these standard /, commute
with one another.

Conjecture. The minimal free resolution of any B-module is a subcomplex of a
standard resolution, in such a way that the maps t¡ may be chosen to be induced by
the standard tt. In particular, the maps t¡ may be chosen to commute.

In the spirit of this paper, it would be interesting to prove this conjecture just for
some truncation of any minimal free resolution.

Since the fi-duals of standard resolutions are free B[tx, . . ., ij-modules, one
consequence of this conjecture, even in the weakened form above, would be the
"finite determination" of any minimal ß-free resolution.

I am glad to acknowledge the great debt that this paper owes to the important
work [G2] of Gulliksen. Suppose A is a local ring, x,, . . ., xn is an A -sequence, and
B = A/(xx, . . ., xn). Gulliksen defines, for example, a B[tx, . . ., fn]-module struc-
ture on TorB(M, N) for any S-modules M and N, and proves that if Tor^A/, N) is
artinian over A, then Tor^M, N) is artinian over B[tx, . . . , tn]. Now consider a
5-free resolution F of M; the endomorphisms t¡ of F that we define are unique and
commutative up to homotopy, so they too define a. B[tx, . . . , ij-module structure
on TorA(M, N). These structures are the same [M]. Given this fact, our Lemma 3.2
becomes a special case of Gulliksen's result (the general case could be deduced in
much the same way). Since our construction of the t¡ is somewhat more straightfor-
ward than Gulliksen's, our methods offer a simplified approach to Gulliksen's
work.
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38 DAVID EISENBUD

It should also be noted that some part of our results on hypersurfaces were
proved first, in a slightly different form, by Shamash in [Sh], who relied, in turn,
partly on results of Nagata [Nag].

I am grateful to M. Höchster for a simplified proof of Theorem 6.1. I also
profited from discussions with the members of the "ad hoc seminar on periodic
phenomena"-Jon Alperin, Harvey Margolis, and Mark Ramras-and with Graham
Evans.

0. Some preliminaries. Here we collect various definitions, and one general
lemma, that we will use repeatedly.

In this paper, all rings are supposed to be commutative and noetherian, and
modules (except graded ones) are finitely generated.

Let A be a ring. The sequence of maps of free A -modules
3 3 3

F:... +F2-*Ft-+T9
is said to be a complex if 32 = 0. If A is local with maximal ideal M, then F is
minimal if A/M ® 9= 0. A complex F is a resolution if it is exact except (possibly)
at the right-hand end-in this case at F0. Any resolution over a local ring is the
direct sum of a minimal resolution and various trivial resolutions of the form

.. . ^O^F^F^O-... ..
(see for example [S, Appendix I to Chapter IV]).

If F is as above, we write F(l/) for the truncation

F<d>:...^Fd+x^Fd

of F at the dth step.
If M is an A -module, then a sequence of elements x„ . . . , x„ G A is an

M-sequence if
(a) x,+, is a nonzero divisor on M/(xx, . . ., x¡)M,
(b) (x„ . . . , xn)M ¥• M.

(If M is finitely generated, as we have supposed, and if A is local, then condition
(b) only serves to exclude the possibilities M = 0 and (x,, . . ., x„) = A.)

Lemma 0.1. Let B be a local ring, and suppose that
<Pd+ I <t>d <Pl

F: . .. -» Fd+l -+ Fd-+ Fd_x->- ■ • -> F0
is a B-free resolution. Then

(i) If ax, . . . , ad is a B-sequence, then ax, . . . , ad is a regular sequence on image <pk
for k > d.

(ii) // F is minimal, then image tpk has no free summands for k > 1 + depth B.

Remark. At least part (i) is well known. Part (ii) is a strengthening of the
statement that a 5-module of finite projective dimension has projective dimension
<d.

Proof of Lemma 0.1. Set Bm = B/(ax, . . . , am).
To prove part (i), let k > d; by induction we may suppose that ax, . . . , ad_x is a

regular sequence on image <pk, and it suffices to prove that ad is a nonzero divisor
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on Bd_x <8> image q>k. However, projective dimension B Bd_x = a"- 1, so

Tord(Bd_x, coker <p,) = 0,

and thus the sequence 0 -» Bd_, ® image <pk —> Bd_, <8> Fk_, is exact; since ad is a
nonzero divisor on Bd_x, this concludes the proof.

For part (ii), suppose that 9H is the maximal ideal of B and that ax, . . . , ad is a
maximal 5-sequence, so d = depth 5.

For k > d + 1 we have as before an exact sequence 0 —> Bd <8) image <pk^> Bd <8)
Ek-v By me minimality of F, 5d <8> image <p¿ is actually contained in
y\i(Bd<8> Fk_x); since 5d has depth 0, 9111(5,, ® Fk_x) is annihilated by some
nonzero element of Bd. However, if im <p¿ had a free summand, then Bd ® im <pk
would contain a copy of Bd, which would be a contradiction.

Finally, we will say that a local ring B is a complete intersection (of codimension
< «) if it can be written in the form B = A/(xx, . . ., x„), where A is regular and
x,, . . . , x„ form an /1-sequence. If « = 1, B is said to be a hypersurface. If 5 is a
complete intersection, then it is Gorenstein [B]; in particular, if dim B = 0, then B
is self-injective.

1. The construction and its naturality. In this section we will construct the
endomorphisms of free complexes over a complete intersection which are the
fundamental objects of study in this paper.

Let A be a commutative ring, and let / = (x,,..., x„) be an ideal of A. Set
B = A/1, and suppose that I/I2 is a free 5-module on the images of xx, . . ., xn.
(This condition will, for example, be satisfied if x,,..., x„ form an A -sequence;
this is the case of primary interest. In fact if the projective dimension of /, as an
A -module, is finite, then I/I2 is free over B if and only if / is generated by an
A -sequence [L-V].)

3 3
Let F: ... Fi+i—+ Ft+l-*Fj —* ... be a complex of free 5-modules.
(a) Choose a sequence of free A -modules Fi and maps 3 between them:

3    ~ 3    _
¥:.:.Fl+3-*Fl+i^F,-*r..

so that F = B <8> F. (To do this, one can think of the maps 3 as being given by
matrices over B, and define the maps 3 by lifting these matrices to A. Of course, in
general, 32 ¥= 0.)

(b) Since 32 = 0 modulo (x„ . . . , x„), we may write 32 = 2 x.tj where ty.
F¡^> F¡_2 (for every ;'). When necessary, we will write /, = tj(A, {x,}, F).

Define, for./ = 1, ...,«, the map tj = tj(A, {x,}, F): F -* F by /, = B <8> t~.
When there is no danger of confusion, we will write tj(F) in place of

tj(A, {x,}, F). We will preserve the above hypothesis and notation throughout this
section.

Note. (1) One should perhaps write í = t¡(A, (x}, F, 3), since / depends not
only on F but also on the liftings F¡, 3 chosen. We have chosen to write
tj(A, {x,}, F}), because /, is in fact determined up to homotopy by these data
(Corollary 1.4).
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Example. The following is very typical of the case « = 1; see §§2 and 7 for
examples of what happens when « is larger.

Let A = Z, the ring of integers, and let x = x, = 8, so that B = Z/(8). Let F be
the minimal free fi-resolution of the fi-module Z/(4):

F: . . . Í Z/8 A Z/8 i Z/8 A Z/8.

Ä. 2 4 2 4F:... -+Z-^>Z^>Z^>Z.

For F, we may choose

Then clearly 32 = 8 = x • 1, so / = 1, and

t = tx(Z, 8, F) = 1: Z/8 = Fi+2 -* F, = Z/8.
Thus the evident periodicity of F is given by /.

tjd-ttj
Proposition 1.1. The map tj is a homomorphism of complexes of degree -2; that is
= *,

Proof. We have

2 *(#) = ( 2 y;)a = a3 = 3Í 2 **) = 2 Ä
7 V   j' ' X  j ' j

Since the elements Xj form a free 5-basis of I/I2 we obtain tfi = dtj modulo /, or
ty= *tj.

Proposition 1.2. The map tj is independent of the choice made in (b).

Proof. If, for j = 1, . . ., «, tj is another choice, then 2, xd¡ = 32 = 2y Xjtj.
Thus Sy xy(/, — tj) = 0. As in Proposition 1.1 this implies

tj - tj = 0 modulo /,       tj = B® tj = B (8» /}.

Proposition 1.3 (Naturality). Let
3' 3'

G: . . . Gi+2 -^ Gi+, -♦ G¡:^> . . .
be another complex of free B-modules, and set Sj = tj(A, {x,}, G). ///: F-»G is a
homomorphism of complexes, then for each j = 1, . . . , «, ftj is homotopic to Sjf.

Proof. Suppose/is of degree k, so that/is given by maps/: F¡ —* Gi+k, for each
i. Let (F, 3) and (G, 3') be the sequences of maps of free A -modules used in
constructing tj and Sj, and let sj = tj(A, {x,}, G). Since /3= 3'/, we may choose
maps hy. F¡ -> G,+A._,, such that/3-3'/= 2 xA. We have

2 xAflj) = /92 = 973 + 2 Xjhß
= 9'2/ + 2 xjl'hj + E x,«;.3

= 2 W + 2 ^,9'^ + 2 xjhy
or,

2^(A-^) = 2^(^ + ¥)-
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If we write h¡ = B ® h¿, then by the same reasoning as in Proposition 1.1,

ftj - sj - 3'A, + «,3,
as required.

Corollary 1.4. The maps ty. F—*F are determined uniquely up to homotopy by
the data (A, {x,}, F). In particular, if M is any B-module, they induce well-defined
maps

ty Hi+2(¥ ® M) ^ Ht(¥ ® M)   and   ty. /Y'(Hom(F, A/)) -» ¿/'+2(Hom(F, M))

on the homology and cohomology of F with coefficients in M.

Proof. Apply Proposition 1.3 to the identity map 1 : F -> F.

Corollary 1.5. The maps tj (j = 1, . . . , «) commute up to homotopy.

Proof. Apply Proposition 1.3 to the map tk: F -» F.
Problem. Can the maps t, be chosen to commute?

Proposition 1.6. Let M and TV be finitely generated B-modules, and let F -» M
and G —» TV be B-free resolutions. Then tj(¥) and i,(G) induce the same map on

H,(F ® TV) = Torf(M, TV) = H*(M ® G).

TTimj Tor^(TV/, TV) is unambiguously a graded module over the ring B[tx, . . . , tn]
(with degree t¡ — — 2).

Remark. By Proposition 1.3, Torf(M, TV) is functorial (as a B[tx, . . . , tn]-mod-
ule) in M and TV.

Proof. The isomorphism H^(¥ ® TV) = Ht(M ® G) is the composition of iso-
morphisms on homology induced by the projections of complexes

F®TV^-F<S)G^A/ <g>G.

We will prove the proposition by constructing tj(¥ ® G) in such a way that
irxtj(F ® G) = (tj(F) ® N)irx and ir2tj(F ® G) = (M ® <,(G))w2.

If (F, 3) and (G, 3) are the sequences of maps of free v4-modules used in the
construction of i,(F) and //G), then (F ® G, 3 ® 1 + 1 ® 3) is a lifting of F ® G.
Note that there is a sign convention for tensor products of graded modules: if
/ G F¡ and g G G, then 1 ® 3(/ ® g) = (-1)/ ® 9g. Because of this sign conven-
tion, 1 ® 3 and 3 ® 1 anticommute. Thus

(3 ® 1 + 1 ® 3)2 = 32 ® 1 + 1 ® 32 = 2 *;(';(*") ® 1 + 1 ® /~(G)).

Consequently, we may take /,(F ® G) = i,-(F) ® 1 + 1 ® r/G). This choice has the
desired property.

Proposition 1.7 (change of rings). Let a: A —» A' be a ring homomorphism, and
let x\, . . . , x'm = I' be an ideal of A'. Set B' = A'/I', and suppose that I'/I'2 is
B'-free on the images of x\, . . . , x'n.
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Suppose a(I) c /', with
m

a(xi) — 2 c¡jxj   for some elements c¡j G A'.
7=1

Then tj(A', {x/}, B' ® F) is homotopic to 2"_, c0(B' ® t¡(A, {x,}, F)).

Proof. Write i, = tj(A, {x,}, F). In view of Corollary 1.4, it is enough to show
that with suitable choices in the construction of tj = t¡(A', {x'¡}, B' ® F), we will
have tj = 2"=1 Cy(B' ® t¡). Let (F, 3) be the sequence of maps of free A -modules
used in the construction of t, with 32 = 2 x¡tt. Take

(B' ® F)-= A' ® F,       (B' ® 3)-= A' ® 3.
Defining tj = 2"=1 cJ(A' ® i~), we have

2xjtj = 22 ctfx;(^' ® t) = 2 a(jc,)(^' ® t,) = a'®P,
j j        i •

so we may take tj = t/A', {xj}, B' ® F) = 5' ® /] = 5' ® /,, as claimed.
The following remarks are due to V. Mehta [M]:
(1) Consider the case in which F is the free resolution of a 5-module M. The

maps tj induce (uniquely defined) natural transformations t,: Tor)+2(M, -) —»
Tor,(TV/, -) for each /". Any such natural transformation comes from an element
ij G Ext2(TV/, Af). These "natural" elements of Ext2(A/, M) are the obstructions to
lifting M modulo (x„ . . . , x„)2 studied by Nastold [Nas], Grothendieck, and
others.

(2) The natural transformations ty. Tor,+2(Af, -)—>Tor,(M, -) in (1) coincide,
in the case where x,, . . . , xn are an A -sequence, with the ones defined by Gulliksen
in [G2].

(3) The results of this section may be summarized by saying that if I/I2 is
B = A/I-free, then the symmetric algebra SymB(HomB(I /12, B)) acts, functorially
in the pair (A, I), on the category of complexes of free 5-modules modulo
homotopy. Mehta has shown that a similar result holds for arbitrary ideals /.

2. Example. The resolution of the residue class field. Let A be a regular local ring
with maximal ideal 9H and residue class field K = /1/9H. Let x,, . . . , x„ G 9T12
be an yl-sequence, and set B = A/(xx, . . . , xn). We are going to compute the
minimal Ä-free resolution F of Tí (following [Täte]) and the maps t¡(A, {x,}, F) of
F. In particular, we will see that each t¡ is an epimorphism. In §7, we will generalize
the construction to obtain a (nonminimal) 5-free resolution of any 5-module,
starting from an A -free resolution of that module (Theorem 7.2). Also, given any
minimal Ä-free resolution, we will show that after a sufficiently general choice of
generators x, for the ideal (x„ . . ., x„), tx is an epimorphism on some truncation of
the resolution (Theorem 3.1).

We begin by describing F; see [G-L] for further details.
Let yx, . . . ,ym be a minimal set of generators for the maximal ideal 91L of A.

The minimal A-îree resolution of K is the Koszul complex K(yx, . . . ,ym). This
complex has the structure of a differential graded algebra, the underlying algebra
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being the exterior algebra AA m, with differential 3, say.
Because x,, . . . , x„ G 9llt2, there exist elements x¡ G K, such that 3x,' = x,. We

will write a, for the map K(yx, . . . ,ym) —> K(v,, . . . , ym) of graded modules given
by o¡(e) = e A *,. It is easy to check that a,3 + 3a, = x, • 1, so that a, is a homotopy
for multiplication by x,. Since o, is defined from the exterior product, we have
o¡Oj = -ova,, a2 = 0 for all i,j.

To construct the minimal 73-free resolution of K, we make use of the divided
power algebra D(A"). As a graded module, D(A") is defined as the dual of the
symmetric algebra:

D(A") = Hom^^J^fi,, . . . , t„], A).
(The algebra structure of D(A ") will not concern us.)

For our purposes, we want to grade D(A ") in such a way that it is nonzero only
in even degrees, so we set degree t¡ = 2 for all i. D(A ") is, from its definition,
clearly a module over A[tx, . . . , t„], with each t¡ acting in degree — 2. If t,, . . . , t„
is a basis of DX(A") dual to the basis /„..., tn, and if a = (a,, . . ., a„) is a
multi-index, we may write t(g,) = T^a,) • • • t^) for the basis element dual to
ta = tx> ■ ■ ■ t? G A[tx, . . . , Q. With this notation,

rííy«>) - Tj«.>... Tj«r«>. • .T<a->,

so that /,: D2k+2(A ") -» /?2jfe(/l ") is an epimorphism. We now consider the graded
A -module F = D(A") ® AAm, and we define F, as a graded 5-module, to be
B ® F = D(B") ® ABm. We define 3F: F -^ F by

3F= 1 ® 3+ 2', ® o-,: D(A") ® AAm ̂ > D(An) ® AAm.
i

An easy calculation shows that

9F2 = 2(',.®iK, (•)

so that (B ® 3F)2 = 0.
Thus with the differential 3F = B ® 3F, F is a minimal T3-free complex; in fact F

is the minimal 5-free resolution of K. From (*), we see at once that t¡(A, {x,}, F) =
B ® (t¡ ® 1); we will drop all the ® signs, and simply write r,: F -+ F for this map.
We see that t,tj = tjt¡, so F becomes a module over B[tx, . . . , /„].

The following consequence of the form of F will be useful to us later:

Proposition 2.1. Suppose that A is a regular local ring, and that x,, . . . , x„ are a
maximal A-sequence, so that B = A/(xx, . . . , xn) is artinian. Let F be the minimal
B-free resolution of the residue class field of B. Then the maps t¡ = t¡(A, {x,}, F):
F —» F can be chosen to commute with each other in such a way that F becomes an
artinian B[tx, . . ., tn]-module.

Proof. Suppose first that x,,..., xn are in the square of the maximal ideal 9H,
and let yx, . . . , yn be minimal generators for 9H. From the above construction, we
see that F = D(B")®B ABm as a graded 5-module, the action of i, G
B[tx, ...,/„] being the natural action on the first factor. But
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D(B») = HomgradedÄ.modules (B[tx, ..., t„], B)a

is artinian because it is the dual of a noetherian B[tx, . . . , ij-module. Since ABm
is a finitely generated 5-module, F is an artinian B[tx, . . . , rn]-module, as claimed.

Now if not all the x, are contained in 91t2, we may rearrange the x, so that
A' = A/(xx, . . ., xr) is a regular local ring with maximal ideal 9It', say, and the
images x/ of x, satisfy x'r+x, . . . , x'n G 9H'2. By the change of rings formula
(Proposition 1.7), we may choose

ti(A,{xi),F)=ti(A',{x;),F)   iori<r,

reducing the proposition to the case just treated.

3. The main theorem. In this section we will prove the result which makes the
maps tj useful in the analysis of free resolutions.

Theorem 3.1. Let A be a regular local ring whose residue class field is infinite, and
let I be an ideal of A which can be generated by an A-sequence. Set B = A/1. If
F: . . . —» Fx —* F0 is the minimal B-free resolution of a finitely generated B-module
then there exists an A-sequence xx, . . . ,xn generating I such that

tx(A, {x,},F):F,.+2-^F,.

is an epimorphism for sufficiently large i.

Remarks. (1) If t, t': F-»F are homotopic maps, of degree —2, say, and if /:
Fi+2—>Fi is onto, then so is t'\ F)+2—»F,, because F is minimal. Thus the
statement of the theorem makes sense even though tx(A, {x-}, F) is only defined up
to homotopy.

(2) Theorem 3.1 is closely related to the main theorem (Theorem 3.1) of [G2]; in
fact, given that the maps on Tor defined by Gulliksen are the same as those
induced by the t,, our Lemma 3.2 becomes a special case of Gulliksen's result. On
the other hand, the direct way in which the <• are defined allows our proof to be
somewhat simpler than that of [G2]. Theorem 3.1 of [G2] itself can be proved in the
same style as our Lemma 3.2, using the construction of §7 in place of that of §2.

Problem. Is the restriction to the case of an infinite residue class field necessary?
The next example shows that no bound can be given for the values of / for which

h- Ei+2 ~* Ei *s not an epimorphism (but see Theorems 4.1 and 6.1).
Example. Let A be a regular local ring, and let x,, . . ., xn be a maximal

A -sequence in the square of the maximal ideal of A, so that B = A/(xx, . . . , x„) is
artinian. Suppose « > 2. Let F: . . . —» F2 —» F, —» F0 be the minimal fi-free resolu-
tion of the residue class field K, as desribed in §2. It is known [B] that B is
self-injective, so that

Hom(F, S): #J -*■ Ff -» ...
is a minimal injective resolution of Hom(AT, B). Moreover, B has a unique minimal
ideal, called the socle, which is principal; say socle B = (s). The condition on
x,, . . . , x„ implies that 5 is contained in the maximal ideal of B. We see that
Hom(.rv, B) s (s) a K. Identifying F0 = R = F£, we get a doubly infinite minimal
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resolution

FTate:   ...F2^>Fx^R^>R-*F*^>F2t^>_

Since rank F¡ < rank F¡+2, the maps

tj = tj{A, {xj), FTa"): Ff -» F*+2,       i > 0,

can never be epimorphisms.
Furthermore, the natural choice of the i-(F) makes

tj(F0) c sF*    and   tj(Fx) c sR = sF$,

so that at this point, in the "middle" of FTate, the maps tj are not even split. Thus if
TV is any integer, then

pK-^). _. p*        . p*

is a minimal free resolution for which the "sufficiently large" of Theorem 3.1
means "larger than TV".

Proof of Theorem 3.1. Let v,, . . . ,yn be any A -sequence generating /, and set
tj = tj(A, {yy, F). We will show that there exist elements a, G A such that the map

M

t = tx + 2 a// Fi+2 -> F,.
y = 2

is an epimorphism for large /'.
Once this is done, we set

*i = v„    Xj = Yj - ayyx,       2 < / < «.

Clearly x,, . . ., x, generate /. From Proposition 1.7 (applied with A = A'), we see
that

tx(A, {x,}, F) = /, + 2 <*,'„
completing the proof.

Before choosing the a, we prove two lemmas. Recall that since the f ■ commute up
to homotopy, they induce commutative maps on homology. In particular, if M is
the 5-module resolved by F, and K is the residue class field of B, the graded
5-module Torf(Af, K) becomes a B[tx, . . . , ij-module. The nontriviality of the r,
is expressed by the next lemma:

Lemma 3.2. Torf(Af, K) is an artinian B[tx, . . ., tn]-module.

Proof. Note that if G is the minimal fi-free resolution of K, then by Proposition
1.6, the map induced on Torf(M, K) by tj(A, {vy}, F) is the same as that induced
bytj(A,{yj),G).

To prove Lemma 3.2, we will reduce to the case dim 5=0, and then apply
Proposition 2.1.

To make the reduction, we wish to choose d = dim B elements a,, . . . , ad G A
such that a,, . . ., ad is a 5-sequence and A/(ax, . . . , ad) is a regular local ring. By
an easy inductive argument, it is enough to show the existence of an element a, in
the maximal ideal 911 of A such that a, is a nonzero divisor on B and A/(ax) is
regular, supposing d > 1. For the first of these conditions, it suffices that a, not be
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contained in Px u . . . U Pr where Px, . . . , Pr are the associated prime ideals of the
ideal I a A. For the second, it suffices that a, G 91t2. However, since / can be
generated by an A -sequence, depth B = dim B > 1, so 91t =£ P¡ for all /'. By a
standard argument [Mat, Proposition l.B], 91t <£ 91t2 U P, U . . . UPr. Thus we
can choose a, G 91t - (91t2 u f, U . . . U Pr)-_

Having chosen ax, . . . , ad, we set A = A/(ax, . . . , ad) and B =
B/(ax, . . ., ad)B. Let TV = £ld(M) = image Fd -» Fd_x. Since TV is a dth syzygy,
a,, . . . , ad is an TV-sequence. Since K is annihilated by a,,..., ad, we have

Torf+d(M, K) = Torf (TV, K) = Torf (B ® TV, Tí)
for all / > 1. Since each Tor,(M, K) is a finite-dimensional /T-vectorspace, we see
that it is enough to prove that Tor^(ß ® TV, K) is an artinian B[tx, . . ., /J-module,
where i, acts via the action of B ® tj(A, { v,}, F) on B ® F, the 5-free resolution of
B® TV.

By Proposition 1.7 (with A' = A), we see that this action is the same as the
action of tj(A, {yy), B ® F) (where we have writteny¡ for the image of y^ in B). We
thus see that it is enough to prove the lemma in the case d = dim 5 = 0.

We now consider Tor#(M, K) = H^(M ® G) as a subquotient of the
B[tx, . . . , /„]-module M ®B G. Since Af is a finitely generated 5-module, and since
G is an artinian B[tx, . . . , ij-module by Proposition 2.1, we see that Tor„,(M, K) is
artinian.

Note that since Tor^(TVf, K) is annihilated by the maximal ideal 91t of B, it is
even a K[tx, . . . , i„]-module.

Before finishing the proof of Theorem 3.1, we need another lemma, which is in
effect the dual of the standard result expressing the existence of "superficial"
elements.

Lemma 3.3. Let K be an infinite field, and let K[tx, . . . , tn] be a graded polynomial
ring, where the t¡ all have the same (negative) degree —e. If T = 21>0 T¡ is a graded
artinian K[tx, . . . , tn]-module, then there exist elements Oj G K such that multiplica-
tion by the element t = tx + 2"_2 a¡tj induces a surjective map Ti+e —* T¡ for all
large i.

Proof. Let Tv = 21>0 Hom(7;, K) = Homgraded K.modules(T, K). Each /, induces
an operator on Tv with degree e > 0.

Since T" is the dual of an artinian module, Tv is noetherian. In particular, the
largest artinian submodule of T° has finite length, so that for a sufficiently large
integer TV, the truncation

Tv(N) =  2 Hom(7;., K)
i>N

contains no nonzero element annihilated by (tx, . . ., tn).
Let Px, . . ., Pr be the associated primes of 0 G T*N\ so that P, u . . . U Pr is

the set of zero divisors on r0<;v) [Mat, 7.B Corollary 2]. Since each P,. annihilates
some element of Tv<-N\ no P, can contain the set f, + 2"_2 Kt¡, which generates
(tx, . . . , tn). But since K is infinite, and since tx + 2"=2 Kt¡ is the translation of a
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subspace of K[tx, . . . , tn], this implies that
n

tx + 2 xi,. $ P, u • • ■ U P„
i-2

so there exists a linear form
n

t = /, + 2   «A        («, G tf)
;=2

which is a nonzero divisor on T0<-N). Dualizing again, we see that t satisfies the
conditions of the lemma.

Returning to the proof of the theorem, we apply Lemma 3.3 to the
K[tx, . . . , ij-module TorB(M, K), obtaining a linear combination

n

t = 'l + 2   «,{, («, G K)
j = 2

of the /, such that / = Tor,+2(M, K) —» Tor,(A/, K) is an epimorphism for all large
i. Choose elements a}; G A such that the image of a, in K is a,-. Set t = tx +
2"_2 Ojtj. We claim that t: F¡+2^> F¡ is an epimorphism for all large i, which
suffices to prove Theorem 3.1. By Nakayama's Lemma, it is enough to show that

t® K: Fi + 1® K-* F¡® K

is an epimorphism for large i.
But t ® K = f, + 2"_2 Ojtj, and because F is minimal, F ® K = Tor£(A/, AT), so

the desired condition on t ® K is the conclusion of Lemma 3.3.

4. Modules with bounded resolutions. As a first application of Theorem 3.1, we
will analyse resolutions by free modules of bounded rank. This analysis will be
carried further in the next two sections (see especially Theorem 5.2).

We will say that a complex F: . . . -» F, —> F0 is periodic of period 2 if there
exists a map of complexes s: F-»F of degree —2 such that s: F]+2-»F, is an
isomorphism for all / > 0.

Theorem 4.1. Let A be a regular local ring, and let I c A be an ideal generated by
an A-sequence. Set B = A/I, and let

F:  ...^F,^F0

be a minimal B-free resolution. If {rank F,} is bounded, then F becomes periodic of
period 2 after at most 1 + dim B steps.

Remark. (1) Using the ideas of Corollary 6.2, the result can be generalized to the
case in which B is an "abstract complete intersection"-that is, in which only the
completion of B is assumed to have the given form.

(2) We will see in Proposition 5.3 that rank Fd+X = rank Fd+2 = . . . , so
"{rank F,} bounded" implies "{rank Fi}j>d+X constant".

Proof. We first reduce to the case in which the residue class field of A is infinite.
We must prove Coker(F,,+2 —» Fd+X) s Coker(F,,+4—> Fd+J). If such an isomor-

phism exists after a faithfully flat extension of B, then it exists already over B
[EGA, Chapter IV, Proposition 2.5.8]. On the other hand, writing 91t  for the
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maximal ideal of A, and letting z be an indeterminate, ^[z],^^ is a faithfully flat
extension of A, and

4z W/ (*» • • • ' *.K* W]Ä ß[z W]
is a faithfully flat extension of B which has an infinite residue class field. Thus we
may assume from the outset that the residue class field of A is infinite.

We can now apply Theorem 3.1, which shows that if x,,..., x„ is a well-chosen
set of generators for (x,, . . . , x„), then there exists an integer TV such that
f, = tx(A, {x,}, F): F/+2 —» F¡ is an epimorphism for all / > TV.

From this property of /, it follows that rank FN < rank FN+2 < ... and
rank FN+X < rank FN+J < .... Since {rank F,} is bounded, both these increasing
sequences become stationary; as soon as this happens /, becomes an isomorphism.
Thus there exists an integer M such that tx: F,+2 —» F, is an isomorphism for / > M.
Thus F becomes periodic after M steps.

It remains to show that we can take Af = d + 1. To do this we reduce to the case
dim 5 = 0: To this end, let x„+1, . . ., xn+d G A be a 5-sequence and let B =
5/(xn+„ . . ., xn+d). For any /, tx: Fi+2 —» F, is an isomorphism if B ® tx: B ®
Fi+2 -» B ® F,; is an isomorphism. Furthermore, by Lemma 0.1(i)

B®Fd:   .. .^>B®Fd+x^>B®Fd

is a minimal free resolution over B. Thus we may assume that dim B = d = 0, and
prove that /,: F/+2 -» F, is an isomorphism for all i > 1. To do this we will use the
self-injectivity of B [B] which implies that any truncation of F uniquely determines
all but F0:

Lemma 4.2. Let B be a zero-dimensional Gorenstein local ring. If

F:   ...^F2^F,^F0

is a minimal B-free resolution, then for each i > 1, F, is the injective envelope of
CokerF/+2^F,.+ 1.

Proof. Let C, = Coker(F, + 2 -» F, + ]). Since B is self-injective, and F is minimal
and exact, the free complex Hom(F, B) is also minimal and exact. Thus if i > 1,

Hom(F;_„ B) -> Hom(F„ B) -+ Hom(C„ B) -» 0
is the beginning of a minimal free resolution. But the functor Hom( , B) is a
duality on the category of finitely generated B-modules. Thus 0 —* C, -> F¡ -> F,_,
is the beginning of a minimal injective resolution of C; in particular F¡ is the
injective envelope of C,.

Returning to the proof of Theorem 4.1, we may assume by induction that /,:
Fi+2 -» F, is an isomorphism for all /' > 2, so in particular

Coker(F5 —* F4) = Coker(F3 —» F2).

By Lemma 4.2, there exists an isomorphism í making the diagram

^5        ">        E4        -        ^

'.1 h\ is (*)
F,     ->  >2     -*     F,
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commute. If we regard (*) as a map of complexes, then we see by Proposition 1.3,
that the diagram

^5        ^        ^3

'll i*
F3      -      F,

'i

commutes up to homotopy. Since F3 —» F, is an isomorphism and F is minimal, tx:
F3 —» F, is an isomorphism as well.

5. Resolutions of period 2. Motivated by Theorem 4.1, and by the fact (to be
proved in the next section) that over a hypersurface every minimal free resolution
becomes periodic of period 2, we take up a general study of resolutions of period 2.

We begin with a general construction of periodic resolutions. It will turn out
(Theorem 5.2) that all periodic resolutions over complete intersections arise from
this construction.

A matrix factorization of an element x in a ring A is an ordered pair of maps of
free A -modules (<p: F -» G,ty: G -* F) such that <pty = x • lc and tyy = x • lF.

Note that if (<p, ty) is a matrix factorization of x, then x annihilates Coker <p.

Proposition 5.1. Let (<p: F—*G,ty: G-*F) be a matrix factorization of an
element x in a ring A. Set B = A/(x), and write ~ for reduction modulo x. If
(x)/(x2) is free over B, then the periodic complex

F(<p,<¡>):  ...^F^G^F^G

is a B-free resolution of Coker <p, and t(x, F(<p, ty)) is the identity.

Proof. Since x(Coker q?) = 0, we have Coker <p = Coker <p. The relation of <p
and ty being symmetric, it will be enough to show the exactness at F. If Tí is a free
A -module and k: K —* F is a map such that <ptc = 0, we must show that ic factors
through ty.

Since ¿pic = ((jpk) there exists a map y: K —» G such that <p« = xy. Thus

XK = tyfpK = *(xy) = xtyy.

Since (x)/(x2) is free over A/(x), this implies k = (tyy) = tyy, as required.
To prove that t(A, x, F(cp, ty)) is the identity, consider the obvious lifting

F(<p, ty):  .. .^>F^>G-+F^>G.

Since (qp, ty) is a matrix factorization, f. F-» F and t: G —> G may be taken to be
the identity maps.

Theorem 5.2. Let A be a regular local ring with infinite residue class field, and let
I O A be an ideal generated by an A-sequence. Set B = A/I. If F is a periodic
minimal B-free resolution, then there exist a local ring Bx, a nonzero divisor x G Bx,
and a matrix factorization (<p, ty) of x over Bx, such that F s F(<p, ty).
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Proof. As in the proof of Theorem 3.1, a set of generators x,, . . . , x„ of / can
be chosen such that t = tx(A, {x,}, F): F¡+2-> F¡ is an isomorphism for all /' > 0
(because F is periodic, we do not need to truncate F). Set Bx = A /(x2, . . . , x„),
and let x be the image of x, in Bx. From Proposition 1.7, we see that / =
t(Bx, x, F). Let F: -^> F2^>Fx-^>F0 be the sequence of maps of 5,-free modules
used to define /, and let t = t(Bx, x, F). By Nakayama's Lemma, t is an isomor-
phism. Identifying F0 with F2 and F, with F3 by means of /, we see that (<p, ty) is a
matrix factorization of x. Since F(qp, ty) and F are both minimal free resolutions of
Coker(Ä ® qp), they are isomorphic.

Proposition 5.3. Let R be a noetherian ring, and let  ... -* G—► F^> G be a free
resolution of a finitely generated R-module which is periodic of period 2.  Then
rank F = rank G.

<p      ¥     <p      ^
Proof. We may suppose that F has the form F:   . . . —» F—» G —» F-* G -» ....

By localizing at a minimal prime of B (which does not affect the rank of F or of G )
we may assume that B is artinian, and thus of finite length. Now

length F = length(image <p) + length(image ty) = length G
so

rank F = length F/ length B
= length G/length B = rank G.

Corollary 5.4. If (<p: F—» G,ty\ G -» F) is a matrix factorization of an element
x G A such that (x)/(x2), if free over A/(x), then rank F = rank G.

Proof. Apply Proposition 5.1 and Proposition 5.3.
If x is a nonzero divisor, more can be said. We will use the following definitions:

Let qp: F^Gbea map of free modules, with rank G = g. We write FitA qp for the
ideal generated by the minors of <jp of order g — k. (Fitfc qp is the "kth Fitting
invariant" of Coker qp [Kap]). If F and G have the same rank, then Fitj qp is
generated by the determinant of any matrix representing qp, and we write FiLj qp =
(det qp).

Proposition 5.5. Let x G A be a nonzero divisor, and let qp: F ^> G be a map
between free modules. There exists a matrix factorization of the form (qp, ty) if and
only if

(a) rank F = rank G,
(b) det qp is a nonzero divisor, and
(c) x • Fit,(qp) c (det qp).

If ty exists, it is uniquely determined by qp.

Proof. Suppose (qp, ty) is a matrix factorization of x. Condition (a) follows from
Corollary 5.4. Since ^qp = x ■ lF is a monomorphism, qp must also be a monomor-
phism, and (b) follows ("Mc Coy's Theorem": see [Kap]). Choosing bases for Fand
G, and regarding qp as a square matrix, we let <pc be the matrix of cofactors of qp, so
that qpcqp = qpqpc = (det qp) • 1. The entries of qpc are precisely the generators of
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Fit,(qp). But qp^ = x • 1G, so
xqpc = ^qp<pc = ty ■ (det qp),

proving (c). From this last equation, we see that ty = xqpc/det qp (over the ring
v4[(det qp)-1]). Since det qp is a nonzero divisor, this shows that ty is determined by

qp.
Conversely, if (a) and (c) are satisfied, then there exists a matrix ty such that

x • qpc = ^(det qp). Thus det qp ■ ̂ qp = xqpcqp = x • det qp, and (det qp)qp^ = xqpqpc =
x • det qp. If now (b) is satisfied, qp^ = x = ^qp as required.

Remark. (1) Let x G A be a nonzero divisor, and suppose qp: F^ G and ty:
G —> F are maps of free modules with rank F = rank G. Then <pty = x • 1G implies
that ty = xqp"1 over the ring /l[x_1], so ^qp = x • lc. Thus half the condition for
(qp, ty) to be a matrix factorization implies the other half.

(2) If qp: F—> G is a map between free modules of the same rank such that det qp
is a nonzero divisor, then annÄ(Coker qp) = (Fit,(qp): det qp) (see, for example, [B-E
3]). Thus condition (c) is equivalent to x Coker qp = 0.

We now consider the case in which x is a prime nonzero divisor, so that
B = A/(x) is an integral domain. Let Q be the quotient field of B. If Af is a
5-module, we define rankÄ M to be the dimension of the g-vectorspace Q ® M.

Proposition 5.6. Suppose that x G A is aprime nonzero divisor, and that (qp, ty) is
a matrix factorization of x. Write det qp = xku, with u G (x). 77ie« rankB(Coker qp)
= k.

Proof. Localizing at (x), we may assume that A is a discrete valuation ring with
parameter x. It follows easily (for example from the theory of elementary divisors)
that (qp, ty) « (lg-* © xik, xlg_k © lfc), where g = rank G. The desired result
follows.

Finally, if (qp: F^>G,ty: G —> F) is a matrix factorization of x, consider the
problem of explicitly determining ty from qp. If x is a prime nonzero divisor, then,
since (det qp)(det ty) = xg, where g = rank G, we must have det qp = xku, for some
unit u. If k = 1, then letting qpc be the matrix of cofactors of qp, (qp, u~l<pc) is also a
matrix factorization of x, so by Proposition 5.5, ty = u~\c. The following proposi-
tion generalizes this remark. Recall that if F and G have rank g, then a choice of
generators in /\g F and /\8 G induces isomorphisms

k        s   g-k k s   g-k
A^A f*,      Ac^A g*.

With this notation, qpc = S "'(A8"' «P*)S- M°re generally [Bou, Chapitre III]

k /8_I       \ g
Ar«-'( A«p*)« = A«p-

Proposition 5.7. Suppose (qp, ty) is a matrix factorization of a nonzero divisor
x G A, and that det qp = xku,for some u G A. Then

k ,g~k     .

u/\ty = 8-\ A<P*J6\
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Proof. Both (aV> u Akty) and (A*<P> ̂_1 Ag~k<P*8) are matrix factorizations
of xu = det qp, which is a nonzero divisor by Proposition 5.5, condition (b). The
conclusion follows from the last statement of Proposition 5.5.

6. Resolutions and Cohen-Macaulay modules over a hypersurface. In this section,
we will show that minimal resolutions over a hypersurface are eventually periodic
(Theorem 6.1), and deduce some consequences for these rings. Theorem 6.1 could
be deduced from the machinery we have already built up; but we have chosen to
give an elementary proof, which foreshadows some of the ideas in the next two
sections. We are grateful to M. Höchster for a remark which simplified our original
proof of Theorem 6.1.

We will say that a complex F: . . . —» F, -» F0 becomes periodic of period 2 after k
steps if the truncation F*'0:  . . . —> Fk +, -* Fk is periodic of period 2.

If B is a local ring, then a (finitely generated) 5-module M is a maximal
Cohen-Macaulay module if depth M = dim B (the largest possible value); that is,
if there is a system of parameters/),, . . . ,pd in B which form an Af-sequence.

Theorem 6.1. Let A be a regular local ring, x G A, and let B = A/x. Let
d = dim A. If

F:  ...-F,-+F0

is the minimal B-free resolution of a finitely generated B-module M, then:
(i) F becomes periodic of period 2 after d + 1 steps,
(ii) F is periodic (necessarily of period 2) if and only if M is a maximal

Cohen-Macaulay B-module with no free summand.
(iii) Every periodic minimal free resolution over B has the form F(qp, ty) for some

matrix factorization qp, ty of x over A. In particular, the map t(A, x, F) gives the
periodicity.

The following corollary generalizes the Auslander-Buchsbaum-Serre characteri-
zation of regular local rings as those of finite global dimension:

Corollary 6.2. Let R be a local ring. The following conditions are equivalent:
(i) The maximal ideal of R can be generated by 1 + dim R elements, and the zero

ideal of R is analytically unmixed (that is, 0 is unmixed in the completion of R ).
(ii) The minimal free resolution of any finitely generated R-module becomes

periodic, of period 2, after 1 + dim R steps.
(iii) There exists a free resolution F: . . . —» F, -* F0 of the residue class field of R

such that for some n, rank F„ < «.

Remark. A ring satisfying condition (i) is sometimes called an "abstract hyper-
surface", since its completion can be written as a regular local ring modulo a
principal ideal. Since condition (ii) of the corollary is preserved by localization, one
consequence of the corollary is that any localization of an abstract hypersurface is
an abstract hypersurface. Using the material of §8, an analogous result could be
proved for "abstract complete intersections" of codimension < r for any r.
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Proof of Theorem 6.1. By Lemma 0.1, part (i) follows from part (ii). For the
"only if" part of (ii), note that if M has a periodic minimal free resolution
...-»G-»F—>G—>A/—»0, then Af ss ker(G -> F), so Lemma 0.1 applies to

show that Af is a maximal Cohen-Macaulay module with no free summands.
We will now show that if Af is a maximal Cohen-Macaulay 5-module without

free summands, then the minimal B-free resolution of M has the form F(qp, ty),
where (qp, ty) is a matrix factorization of x. By virtue of Proposition 5.1 this will
conclude the proof.

By the theorem of Auslander-Buchsbaum-Serre,

projective dimension^ (A/) = dim A — depth M = 1.

Let F*: 0 -» F^> G -» M —> 0 be the minimal free resolution of M as an A -module.
Since Af is annihilated by x, xG c (image qp), so there exists a map ty: G —» F so
that <pty = xlG. Multiplying by qp on the right we get qpS^qp = xqp. Since qp is a
monomorphism, this implies ^qp = x • 1F, so (qp, ty) is a matrix factorization of x
over A.

Writing ~ for reduction modulo x,

^ — ç _ 9 —F(q>, ty):  ... -+G^>F^G

is a periodic free resolution of Af by Proposition 5.1. It remains to show that
F(qp, ty) is minimal. Since 0—* F^>G was chosen to be minimal, we need only
show that if 9ît is the maximal ideal of B, then ty(G) c 91tF. However, since
F(qp, ty) is exact,

ty(G ) s Coker q3 s Â7 s M.

If ty(G) were not contained in 91tF, then ty(G) would contain a basis element of
F, so ty(G) would have a B-free summand. Since we assumed that Af had no free
summands, this concludes the proof.

Proof of Corollary 6.2. (i) => (ii). Let F: . . . -» F2 -> F, -» F0 be the minimal
free resolution of an B-module Af. Because F is minimal, it suffices to prove that
Q,f+2(M) s S2f(Af) for large i. But it follows from Cohen's structure theorems that
the completion R can be written in the form R = A/I, where A is a regular local
ring, whose dimension is the number of generators 1 + dim R of the maximal ideal
of R, and / is an ideal of A. The hypothesis (i) on R means that the associated
primes of 0 in R all have the same dimension, so / is unmixed of height 1. Since A
is regular, A factorial, so / is principal, say I = (x).

By Theorem 3.1(i), the minimal resolution R ® F of R ® M becomes periodic of
period 2. Writing ük(M) for the fcth-syzygy module of M as an B-module, and
using the corresponding notation for syzygies over R, we have:

R ® fif+2(A/) = flf+2(B ®M) s Sl?(R ®M) s R ® fi?(M)
for i large.
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The fact that R ® ß?+2(A/) s R ® ßf (M) implies that ñf+2(Af ) s fi? (M)
[EGA, Chapitre IV, 2.5.8]. (Sketch of proof. The maps

a

R ® fi?+2(M) £  B ® fi?(A/)
ß

that give the isomorphism may be approximated 91t-adically by maps of the form
R ® a' and R ® ß'. For sufficiently good approximations, a' and ß' will be onto.
But then a'ß' and ß'a', being epimorphisms from a noetherian module to itself, are
isomorphisms.) This proves (i) => (ii).

(ii) =* (iii) is obvious.
(iii) =*> (i). Condition (i) is really a condition on the completion of R, and

condition (iii) passes to the completion, so we may assume that R is complete.
Write R = S/I, where 5 is a regular local ring of the minimal possible dimension;
say dim S = d. The number d will also be the minimal number of generators of the
maximal ideal of R. Suppose I is minimally generated by e elements. Then by [Gl],
the underlying graded B-module of F may be written as a tensor product of which
one of the factors is D(Re) ® ARd, where ARd is the exterior algebra on d
generators of degree 1 and D(Re) is the divided power algebra on e elements of
degree 2. (See §2 or [G-L] for more details.)

If e = 0, then B = S is regular, and (i) is trivial. If e = 1, then by the unmixed-
ness theorem [Mat, Theorem 16.D], / is unmixed of height 1, and (i) follows. If
d < 1, then / is principal, so e = 1. Thus we are done unless d > 2, e > 2. But
then a straightforward computation shows that

rank Fk > rank(D(Re) ® ARd)k

> rank(F»(B2) ® AB2)* = k,

contradicting condition (iii).
As a consequence of Theorems 6.1 and 5.2, we see that periodic free resolutions

and Cohen-Macaulay modules over a hypersurface correspond to matrix factoriza-
tions. To be more precise, we introduce some terminology:

Two matrix factorizations (qp: F^ G, ty: G —» F) and (qp': F' —» G', ty': G' —»
F') of x G A are equivalent if there exist isomorphisms a, ß making the diagram

<p *
F      -+     G      -»     F
ai ßi ai

F'     ->     G'     -->     F'•p' *'
commute. (If x is a nonzero divisor, we need only require that one square
commutes.) The direct sum of (qp, ty) and (qp', ty') is (<p © qp', ty © ty'). The trivial
factorizations are (1, x) and (x, 1). A factorization is reduced if it is not equivalent
to a factorization having a trivial factorization as a direct summand. If x is a
nonzero divisor and A is local with maximal ideal 91t, it is easy to show that (qp, ty)
is reduced if and only if <p(F) c 91tG and ty(G) c 91tF.
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Corollary 6.3. Let A be a regular local ring, and let B = A/(x) be a proper
factor ring. Write ~ for reduction modulo x. The associations

(<p,ty)^F(v^y.  ... ^gXF^G
and

(qp, \¡t) h> A/(9,*) = Coker qp

induce bijections between the set of
(1) Equivalence classes of reduced matrix factorizations of x over A.
(2) Isomorphism classes of nontrivial periodic minimal free resolutions over B.
(3) Maximal Cohen-Macaulay B-modules without free summands.

If x G A is a prime, we can be still more explicit:

Corollary 6.4. Let A be a regular local ring with maximal ideal 91t and let F be
a free A-module of rank n. Let x G A be a prime element and set B = A/(x). There
is a bijection between the sets

(i) Maximal Cohen-Macaulay B-modules of rank k requiring exactly n generators.
(ii) Equivalence classes of endomorphisms qp: F ^> F with qp(F) c 91tF, det qp =

x*, and Fit,(qp) c (x*~ '). (The equivalence relation is given by qp — PyQ if P and Q
are automorphisms of F with det P det Q = 1.)

The bijection is induced by qp i—» Coker qp.

Remark. If k = 1, the condition Fit, qp c (x*_1) becomes vacuous.
Suppose qp satisfies (ii). From Proposition 5.5, we see that there is a matrix

factorization of x of the form (qp, ty). (In particular, Coker qp is a B-module!)
Corollary 6.4 now follows from Corollary 6.3 and Proposition 5.6.

7. Construction of free resolutions over a complete intersection. In this section we
will give a construction for free resolutions over a complete intersection which
generalizes the constructions of §§2 and 5 (and also the construction given in [G2]).
Its disadvantage is that it does not always produce minimal resolutions. We will see
in the next section that this can be overcome "in relative codimension 1".

Let A be a ring, let x,,..., xn be an A -sequence, and set B = A/(xx, . . ., xn).
Given any A -free resolution of a B-module M, and certain additional data, we will
construct a B-free resolution of Af, and we will describe the action of the
tXA, {x }, -) on this resolution.

3 3 3
Let F: . . . —*Fi+X-* F¡—* be a complex of A -modules. We will distinguish

between endomorphisms of degree k of F as a graded module (that is, a family of
maps s: F¡ —> F¡+k, for all i) and endomorphisms of degree k of F as a complex (s
as above, subject to sd = ds).

We also introduce some multi-index conventions. A multi-index (of length «) is a
sequence a = i[ax, . . . , a„> where each a, is an integer > 0. We write 0 =
(0, . . . , 0>. The order of a multi-index a is

n

|«|= 2 «,-i-i
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The sum a + ß is defined as (a, + ßx, . . . , an + /3„>.
If F is an A-free resolution (with A as above), we will show how to make

B ® D(A ") ® F = D(B") ® F into a B-free resolution, using the auxiliary maps
described in the next theorem:

Theorem 7.1. Let A be a ring, and let M be an A -module which is annihilated by
elements xx, . . . , xn G A. Suppose the ideal (x,, . . . , x„) contains a nonzero divisor.
If F is a free resolution of M, then there are endomorphisms sa of degree 2\a\ — 1 of F
as a graded module for each multi-index a satisfying

(i) s0 is the differential of F.
(ii) // a is the multi-index <0, . . . , 0, 1, 0, . . . , 0) (1 in the jth place) then the

map S(ySa + sas0 is multiplication by x .
(iii) If y is a multi-index with \y\ > 1, then 2a+/3_r saSß = 0.

Remarks. (1) If F is finite, only finitely many sa are nonzero.
(2) If x,,..., x„ is a regular sequence on A, and if K is the Koszul complex

resolving (x,, . . . , x„), considered as a differential graded algebra, then it seems
reasonable to hope that the minimal free resolution F can be given the structure of
a differential graded K-module. (For example, if Af were cyclic, and F had the
structure of a graded commutative associative differential algebra conjectured in
[B-E 1], this would follow. In any case, there are resolutions of any module M
which are K-modules [G2].) In plain terms, this means that for each/ = 1, . . . , «,
multiplication by x, on F should be homotopic to 0 by a map Sj satisfying sj — 0,
s¡Sj — — SjSj. If such maps exist for F, then for each multi-index a we could set

0   if a = 0,
Sj    if a = <0, . . ., 1, . . . , 0) (with 1 in the/th place),
0   otherwise,

and this choice would satisfy Theorem 7.1. Thus the theorem may be regarded as
giving an "approximate K-module structure" on F. See note at end of paper.

Using Theorem 6.1, we can construct A/(xx, . . ., x„)-free resolutions from
A-free resolutions, if x,, . . ., xn is an ^-sequence, as follows:

Theorem 7.2. Let A be a ring, and let x,, . . . , xn be an A-sequence. Set
B = A /(x,, . . ., xn), and let F be an A-free resolution of a B-module M. Let {sa} be
a family of endomorphisms of F as a graded module satisfying the conditions of
Theorem 7.1. Finally, let /,,..., tn be variables of degree —2, and set D = D(B") =
Homgraded B.modules(B[tx, . . . , ?„], B), with the natural structure of a B[tx, .. ., /„]-
module. The graded B-module D ® F, equipped with the differential 3 = 2a / ° ® sa is
a B-free resolution of M. Moreover, tj(A, {x,}, D ® F) may be chosen to be tj® 1.

Remarks. (1) Write t,, . . . , t„ for the dual basis to tx, . . . ,tn, so that t(o) =
T(«i). . . T(«*) ¡s a dual basis of D to the base of monomials. As in §2, we see that
ta(T(P)) = 0 for all a with \a\ > \ß\. Thus 3D8lF is well defined even though the
sum involved is formally infinite.
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(2) The construction of D ® F generalizes the construction given in §5. If F has
length 1, that is

F:0-*G->F,
Jo

then s0 = qp, and the only nontrivial sa is sx: F —> G, which satisfies sxs0 = x. Since
x is a nonzero divisor, this implies s0sx = x, so (s0, sx) is a matrix factorization of x,
and with the notation of §5, D ® F = F(s0, sx).

Proof of Theorem 7.1. Beginning with the definition s0 = 3, we will construct
the sa by induction on \a\.

Condition (ii) is the assertion that sa, for a = <0, . . . , 0, 1, . . . , 0> (with 1 in the
y'th place), is a homotopy for multiplication by x,. Since x-Af = 0, multiplication by
Xj is indeed homotopic to 0 on F, so the existence of sa for \a\ = 1 satisfying
condition (ii) is assured.

Now suppose sa have been constructed for a with |a| < |y0|, for some y0. Set

6 =   ~        Zj SaSß,
a + 0=7o

l«l<Yo
I/?Kyo

we seek a map sy with s s0 + s0sy = e. Since s2, = 0, any map of the form
ss0 + SqS must commute with s0. A straightforward but tedious computation, using
(i), (ii) and (iii) with |y| < |y0|, shows that, indeed, es0 = s0e. The next lemma thus
finishes the proof.

Lemma 7.3. Let F be a free resolution of an A-module M, and suppose that the
annihilator of M contains a nonzero divisor. Let e: F -^ F be an endomorphism of
degree k > 0 of F as a graded module, and let s0 be the differential of F. Then there
exists an endomorphism s of F as a graded module such that SqS + ss0 = e if and only
if sQe = es0.

Proof of Lemma 7.3. The necessity of the condition is obvious; we prove the
sufficiency. Since e: F-*F commutes with s0, it is an endomorphism of F as a
complex of degree k > 0. But since M is annihilated by a nonzero divisor, the
induced map

M = Coker(F, -» F0) ^Coker(F, + 1 -» Fk) c Fk_x

must be 0. Thus e is homotopic to 0; that is, there exists a map 5 such that
e = SqS + ss0.

Before launching into the proof of Theorem 7.2, we examine, under the
hypotheses of Theorem 7.2, the homology of the complex B ® F. If a =
<0, . . . , 0, 1, 0, . . . , 0> (i in they'th place), we will write i, in place of sa for the
map making multiplication by xy homotopic to 0. We continue to write s0 for the
differential of F. Since jy3+3i, = xy, the map 1 ® sy B®F->B ®F is an
endomorphism of B ® F as a complex, and thus acts on //„(B ® F).
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Lemma 7.4. With hypotheses as in Theorem 7.2, the homology of B ® F is given by
m

Hm(B®F) s /\Bn ® M.

Furthermore, there is a basis ux, . . . ,un of B" such that, writing

ay /\Bn^/\B"

for the map oy. b i-> u<■ /\ b, the map

( A B") ® M = Hm(B ® F) -* Hm + X(B ® F) = ( A *") ® M

induced by 1 ® Sj is a, ® 1.

Proof. Let
2

K: K(x„ . . . , x„):  . . . A /\A"^An^A

be the Koszul complex which resolves B as an A -module, and let «,,..., ün be a
basis for A " such that k(uj) = x-. It is easy to check that the map

ay /\A"^AAn
given by öj(a) = ùj f\a satisfies ko, + ô,/c = x,. Let irx and w2 be the natural
projections of complexes

B® f^-k®f^Ik® M.
Each of irx and w2 induces an isomorphism on homology and factors through
B ® K ® F. Moreover, the maps

%j = öj®\ + 1 ® sy K ® F -* K ® F

satisfy (k ® j0)Sy. + Sy(ic ® s0) = x,- for each /, and make the diagram of com-
plexes

B®F     V-      B®K®F      V-     K®Af
l ® sji i&j ii, ® l

B®F     V-     B®K®F     ^l     K®A/

commute. Consequently, 1 ® Sj induces the same map as ô, ® 1 on

//„(B ® F) s Tor^(B, Af ) s //„(K ® A/).

Now T¥„(K ® M) = ( A A ") ® M = /\Bn ® M, since k ® 1 w is 0, so the map
induced by 1 ® & on homology is a ® 1.

Proof of Theorem 7.2. Let D(A") = Hom(A[tx, . . . , tn], A), so that D = B ®
D(A "), and define

3d®f=2 ta®sa:D(An)®F^D(A")®F,
a

so that 3 = B ® 3. We will continue to write s0 for the differential of F, and s¡ for sa
when a = <0, . . . , 0, 1, 0, . . . , 0> (with a 1 in the/th place).
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It follows easily from the formulas of Theorem 7.1 that

92=   2  fy ® *, = 2   *,('; ® O,
y-i

where we have written x, for the map "multiplication by x,". Thus 32=B®32 =
0, so D ® F is a complex, and t/A, {x,}, D ®F) = B ® (tj ® I) = tj ® 1, as
claimed.

It remains to prove that D ® F is exact. We will do this by regarding D ® F as a
filtered complex, and considering the associated spectral sequence. (See, for exam-
pie, [S].)

We filter D ® F by degree in D = D(B"), setting

<§, = §,(D ® F) = 2  Dk(Bn) ® F,
k<l

so that 0=focf, C...cD®F.We also set

gr,(D ® F) = %/%_x = D,(DH) ® F,

gr(D ® F) = 2 gr,(D ® F).
Since each tj acts on D with degree —2, <3r, is a subcomplex. Associated with this
filtration of D ® F is a spectral sequence

E ' = #(gr(D ® F)) =► H(D ® F).
We assert that the filtration is finite on each term of the complex D ® F, in fact

S,[(D®F)m] = 2 Dk(B») ® Fj = (D ® F)m
k<l;2k+j = m

if / > m/2, since Fj• = 0 for y < 0. Thus the above spectral sequence converges.
We next compute El and its differential dl. Since D^B") is a free B-module, we

have
//m(gr,D ® F) = Hm(D,(B") ® F) = /}(B") ® i/m(B ® F)

m
= DXB") ® A B- ® M,

by Lemma 7.4. The differential
dl: Hjgr,(D ® F)) -+ Hm+x(gr,_x(D ® ¥))

is induced by 9 = 2 ¿a ® .ya, and is thus given by
«

2 /, ® */ Z>,(/»") ® //m(B ® F) -» Z>,_,(*") ® //m+,(B ® F).
/-l

By the second statement of Lemma 7.4, this is the same as
" m m+1

2 tj ® a, ® 1: ß/B") ® A B" ® Af -* D,_X(B") ®  /\ B" ® M.
7=1

If we now define complexes

0 e '
Ar(Bn):0^Dr(Bn)® A ß"^ Dr_x(B") ® /\Bn-+

... ^,_„(i")8/\fiS0
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by e = 2"=, t¡ ® a¡, we see that El, with its differential d\ is the direct sum of the
complexes Ar(B") ® M.

The next lemma will show that the homology of all these complexes is 0, except
that H(A0(B") ® M) at Af. Thus the spectral sequence will degenerate at E2, and
we will have T7(D ® F) = Af, so that D ® F is a resolution of M. Thus Theorem
7.2 will be established by the following lemma:

Lemma 7.5. With the above notation, the complex Ar(B") is split exact for all
r > 0. The homology of

o
Ao:0^Do(B")® /\Bn^0

is B.

Proof. The proof is given in full in [B-E 2]. The idea is that 2"_0 Ar is the
B-dual of the Koszul complex K*1'1.'"' which resolves

B= B[tx,...,tn]/(tx,...,tn)

over the polynomial ring B[tx, . . . , /„]. Thus the homology of 2^L0 Ar is B ("in
degree (0, 0)"), and Ar is exact for r > 0. Split exactness follows from exactness,
since Ar is a B-free complex. The second statement of the lemma is obvious.

8. The inductive construction of minimal resolutions. In this section we will use
Theorem 3.1, to give a sort of inductive construction of minimal resolutions over a
complete intersection; we show that such a resolution has a truncation which is
derived by the process of §7 from a resolution over a complete intersection of
smaller codimension.

Consider the setting of Theorem 3.1 where we have a local ring A, an A -sequence
x,, . . . , xn, and the factor ring B = A/(xx, . . . , xn). Let B, = A/(x2, . . . , xn). If
F is a B-free complex, then tx(A, {x,}, F) = f,(B,, x,, F). Our basic result is the
following:

Theorem 8.1. Let B, be a local ring, and let x G B, be a nonzero divisor. Set
a       a

B = B,/(x), and let F:  .,..—» F¡-* F0 be a B-free resolution of a B-module M such
that t = t(Bx, x, F): F —» F is an epimorphism. Let

F":   ... -^Ff-^Fo*

be a sequence of maps of free Bx-modules such that B ® F* = F. If 3t2 = xf*, then

a»|<f      a*|irf   „a»
K* = Ker r»:  .. .   -*  K*  -+  Fxf->F*

is a Bx-free resolution of M.
Moreover setting D = D(B]) then F s D ® K* as complexes, with the differential

on D ® K* being that defined in Theorem 7.2.

Remark. If F is minimal, then K" is too.
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Corollary 8.2. Let B be a local complete intersection of codimension n, and let F
be the minimal B-free resolution of a B-module M. There exist a local complete
intersection B, of codimension « — 1 and an element x G B, such that B = B,/(x),
and for ail large TV the truncation F**0 of F has the form F(Af) « D ® G, where
D = D(Bl) is the divided power algebra, G is the minimal Bx-free resolution of the
Nth B-syzygy of M, and D ® G has the differential defined in Theorem 7.2.

Proof of Corollary 8.2. Apply Theorems 3.1 and 8.1.
Part of Theorem 8.1 actually holds more generally:

Lemma 8.3. Let B, be a local ring, and let x G B, be a nonzero divisor. Set
B = B,/(x) and let (F, 3) be a complex of free B-modules. Let (F8, 3*) be a lifting of
(F, 3) to a sequence of maps of free B-modules, as in Theorem 8.1. If f8: F8—»F8
satisfies xf8 = 3 *2, then f8 commutes with 3 8 and Ker i8 is a complex with differential
38|Ker/8.

Proof, xr8 = 3 82 clearly commutes with 38; since x is a nonzero divisor, f8 does
too. This implies in particular that 3 "(Ker t8) c Ker ts. Also, 3 *2(Ker /8) =
xr8(Ker /8) = 0, so the second statement follows from the first.

Proof of Theorem 8.1. By Nakayama's Lemma, ts: F8 -» F* is an epimorphism.
Thus for each /',

K* = Ker(f8: F* -+ F?_2)

is a free summand of F,8. Note that for i = 0, 1, A",8 = F,8. Thus by Lemma 8.3, K8
is a free complex.

We must now show
(i) Coker( F8^F8) = M,
(ii) //,(K8) = 0 for i > 0.
For (i), note that since if: F28 —»■ F,8 is onto, we have

xF$ = image xt\ = image 382 c imageÍF,8—> F$\.

Thus Coker(F8 —> F$) is annihilated by x. Thus

Coker(F,8 -+ F08) = B ® Coker(F8 -* F08) = Coker(F, -» F0) = Af.

For (ii), let K = B ® K8. Since K8 is a free direct summand of F8, we will have
K = Ker t. Thus there is an exact sequence of complexes 0—>K-*F—>F—»0
(where degree t = -2 as usual). From the ensuing long exact sequence in homol-
ogy, we easily deduce

//,(K) = 0,       i> 2,
HX(K) a //0(K) ^ H0(F) = M. (*)

Next consider the exact sequence of complexes 0 —» K8 —» K8 -> K -» 0. The long
exact sequence in homology together with (*) yields exact sequences

0 ^ /f,(K8) i Ä,.(K») ̂0,       i > 2, (..)
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and

O -4 HX(KS) A HX(K*) -» mX H0(Ks) -4 H0(K*) -> M -> 0. (•'••)

From (i) we get //0(K8) = Af so (***) becomes

0 ■*» //,(K8) A //,(K8) -* Af -i A/ -> 0.

Since an endomorphism of a noetherian module which is an epimorphism must be
an isomorphism, ker 8 = 0 and we obtain 0 —> //,(K8)—» //,(K8) —» 0. Since x is in
the maximal ideal of B,, this last sequence and (**) show that f/,(K8) = 0 for all
i > 1 by Nakayama's Lemma. This proves (ii).

It remains to show that F = D ® K8. However, by Theorem 7.1, both are B-free
resolutions of the same B-module M. Since Kf = Ker(F,8—* F,!2), we have

rank Kf = rank F, - rank F¡_2,       i > 0.

An easy computation now shows that rank F, = rank(D ® K8),. Since both F
and D ® K8 must be built out of the minimal B-free resolution of M by the
addition of various trivial summands, this implies F = D ® K8.

9. Two results on modules over finite groups. Modular representations of finite
groups behave in many ways like modules over complete intersections, probably
because, in characteristic p, the subalgebra corresponding to a maximal abelian p
subgroup is a complete intersection (see the proof of Theorem 9.1 for details);
however, the nonabelian /7-part, and the whole /»'-part, make it difficult to apply
our theory directly except in special cases.

The proof of Theorem 9.1, below, is such a case. On the other hand, our proof of
Theorem 9.2 is really an application of the philosophy of this paper, rather than of
the results we have developed. Both results are extensions of results of J. Alperin
[A2]; in the case of Theorem 9.1 we get a better bound (as conjectured by Alperin),
while in Theorem 9.2 we are able to drop Alperin's assumption that the ground
field k is algebraic over the prime field.

Theorem 9.1 has been proved, independently and by very different means, by
Carlson [C]. The interested reader should consult his paper for a more precise
analysis of the group-theoretic case.

Theorem 9.1. Let k be a field of characteristic p =£ 0, and let G be a finite group.
Suppose G contains an abelian subgroup of order p" and exponent pe. If M is a
kG-module that can be resolved by kG-projections of bounded rank, then
pn~e\d\mk M.

Proof. Of course we may assume that G is abelian of rank/?" and exponentpe;
that is, in terms of generators and relations, G = <g,, . . ., gs; gf' = gf"2 = • • • =
g/"1 = 1>, with «, < e and e + 2*_2 «, = «. Writing x, = g, - 1, we see that
kG = k[\Xx, . . . , XS\]/(X\°', Xf\ . . . , Xf'). Since kG is thus a complete intersec-
tion, Theorem 4.1 shows that the resolution of Af becomes eventually periodic.
Since kG is self-injective, Af is a direct sum of a free module and a module whose
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resolution is periodic. Since free modules have rank p ", we may assume that Af
itself has a periodic resolution.

Extending k if necessary to an algebraically closed field, and applying Theorem
5.2 (together with the explicit construction of the ring B, in the proof of that
theorem) we see that there are elements r2, . . ., rs G k such that Af has projective
dimension 1 as a module over

k[\Xx,...,Xn\]/ (xÇ - r2Xf, ..., Xy - rsXf).
Note that if t = rl/p"' then

xf - W = (*,. - ttXCY',
since «, < e. This suggests the change of variable y, = Xx,

y,. = Xt - ttX?-!,       i = 2,...,s,
and in this notation, Af is a module of projective dimension 1 over the ring
k[\yx, . . . ,_yj]/(y£"2, • • • , yf')- We now take any matrix presenting Af, lift it to a
matrix over k[\yx, . . . ,ys\], and let M be the cokernel of the lifted matrix. Since M
is complete and separated for the ( y2, . . . , yi)-adic topology, and

M/(y2, ...,ys)M= M

has finite length, we see that M is finitely generated over the subring
^[|v2, . • • ,y„\]. On the other hand, it is easy to show that y2, . . . , y„ is an
A/-regular sequence (see for example [B-E 0]). By the Auslander-Buchsbaum-Serre
Theorems, [Mat, p. 113] M is then a free k[[y2, . . . , yJ]-module, of rank t, say. But
then

M = M/yÇ, ...,yf
has dimension tpn:p"3 .../>"* = tp"~e, as desired.

Theorem 9.2. Let k be a field, and let G be a finite group. If M is a finitely
generated kG-module with no free summands, and if M can be resolved by kG-projec-
tive modules of bounded rank, then M has a periodic kG-resolution.

Proof. Let J = rad kG. The ring H*(G, k) is noetherian by Evens Theorem
[EV]. If P -» k is a projective resolution of k, then P®A/-»A:®A/=A/is a
projective resolution of Af, so H*(G, TV) is a finitely generated graded H*(G, k)-
module.

If H*(G, TV) ̂  0 for infinitely many i, then, by standard theorems about
primary decomposition, there will, for some large «, be an element s G Hn(G, k)
such that for all large /', multiplication by s induces a monomorphism H'(G, TV) —»
H'+"(G, TV). Of course, 5 is represented by a map of degree — « from P to P, and
so the map s induced on H*(G, TV) may be represented as a map of degree —n
from P ® TV to P ® TV. Of course, any other resolution of TV must also support a
map of degree - n inducing s.

Applying this to the module Af ® kG/J, we see that there is an endomorphism
of degree - « of the minimal resolution Q of Af which induces a monomorphism
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on the homology
ExtkG(M, kG/J) = H'(G, M ®k kG/J),

or,   for   large   i,   equivalently,   induces   epimorphisms   Tor*+„(Af, kG/J) -*
Tor,(Af, kG/J) for all large i.

Since Q is minimal, this implies that the maps
s:Qn + i^Qi (*)

are epimorphisms for all large i; since the ranks of the Q¡ are bounded, this implies
that j is actually an isomorphism, at least when restricted to a sufficiently high
truncation of the complex Q, and thus the resolution of M is eventually periodic, of
period «. Since, however, kG is self-injective, and since Af has by hypothesis no
free summands, this shows that the resolution of Af is itself periodic of period «.

Note added in proof (March 1980). L. Avramov, in a recent preprint (to
appear in Amer. J. Math.), has shown that there is a nonvanishing obstruction to
the hope expressed in Remark 2 after Theorem 7.1, above. However, as he remarks,
it is still possible to hope that that hope is fulfilled for some sequences x,, . . . , x„.
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